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ABSTRACT

Performance complementarity of solvers available to tackle black-
box optimization problems gives rise to the important task of algo-
rithm selection (AS). Automated AS approaches can help replace
tedious and labor-intensive manual selection, and have already
shown promising performance in various optimization domains.
Automated AS relies on machine learning (ML) techniques to recom-
mend the best algorithm given the information about the problem
instance. Unfortunately, there are no clear guidelines for choosing
the most appropriate one from a variety of ML techniques. Tree-
based models such as Random Forest or XGBoost have consistently
demonstrated outstanding performance for automated AS. Trans-
formers and other tabular deep learning models have also been
increasingly applied in this context.

We investigate in this work the impact of the choice of the ML
technique on AS performance. We compare four ML models on
the task of predicting the best solver for the BBOB problems for
7 different runtime budgets in 2 dimensions. While our results
confirm that a per-instance AS has indeed impressive potential, we
also show that the particular choice of the ML technique is of much
minor importance.

1 INTRODUCTION

Black-box problems are challenging to optimize as we do not have
direct access to information about problem instances at hand, but
instead learn about them by sampling and evaluating solution can-
didates. Black-box optimization algorithms use precisely this infor-
mation in order to iteratively steer the search towards the optimum.
Many algorithms have been developed for the purpose of solving
black-box problems, and they exhibit different performances de-
pending on their structural and behavioral properties. Choosing the
best-suited algorithm for a certain problem instance is known as
per-instance algorithm selection (PIAS), and it has led to impressive
performance gains when algorithms available to choose from ex-
hibit complementary performances [6]. Automated PIAS relies on
ML techniques to predict which algorithm to recommend based on
the characteristics of the problem instance at hand. There are many
open challenges in adapting PIAS to black-box settings. One of
them concerns the characterization of black-box problem instances
without having any prior information about them. A classical tech-
nique to approximate problem instances by computing statistics
from a set of solution candidates and their evaluations is known as
Exploratory Landscape Analysis (ELA) [9]. So-obtained (landscape)
features are then used to discriminate between instances.
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Another prominent open question concerns the choice of the ML
technique; it is not evident which approaches are best-suited for
applications in the context of black-box optimization, and whether
there is a big difference between the techniques at all. Given an
ELA-based instance representation as input, feature-based ML ap-
proaches are commonly employed to learn the mapping between
them and algorithm performances or rankings for each of those
instances as output. Classical supervised approaches for such pre-
diction tasks used in the literature are regression and classification,
as well as a variant of the latter that is pairwise classification. Regres-
sion models learn to predict a real-valued metric (e.g., target preci-
sion or expected runtime), while classification consists of predicting
a label of the category in which the input belongs (i.e., the name of
the best algorithm). Pairwise classification allows for selecting the
overall “winner” solver, following a tournament-like structure by
converting a multi-class problem into a series of two-class problems.
Among different models used for either regression or (pairwise-)
classification tasks, classical tree-based models, such as Random
Forests and XGBoost, have demonstrated tremendous success in al-
gorithm performance prediction in the optimization domain. Recent
advances in ML and deep learning (DL) have shown that certain
neural network architectures, such as Transformers, could also be
successfully applied to tabular data prediction tasks [2, 3]. Notable
examples include TabPFEN [5], and FT-Transformer [2]. A large va-
riety of available techniques yields a meta-optimization problem
of choosing the best-performing AS approach or ML model for
applications in black-box optimization.

Our contribution. In this paper, we assess the relevance of
selecting the underlying ML technique for a given AS task on a
single-objective black-box problem set with a portfolio of inherently
different black-box solvers. Specifically, we compare the predictive
power of three AS approaches (regression, classification, and pair-
wise classification), orthogonal to four ML models: two tree-based
(Random Forest and XGBoost) in all three AS modalities, and two
DL-based models (TabPFN for classification and FT-Transformer
for regression) on the same landscape-aware AS task, for seven
different solver runtime budgets and in two dimensionalities. We
show that the choice of the ML technique has only a minor impact
on the AS performance, as well as on the reliability and robustness
of the results, as long as it is a method that demonstrates good per-
formance on tabular data in general. At the same time, we confirm
that PIAS truly is a core ingredient for boosting the performance
of black-box solvers, irrelevant of the underlying ML technique;
any algorithm selection approach outperforms any static choice
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of the solver across all settings. We suggest that research efforts
should be instead directed towards (1) the identification of (and
possibly involving the design of) suitable training sets and (2) the
reduction of the overhead cost for feature extraction. The choice of
the ML technique, in contrast, seems to be much less relevant for
the design of efficient PIAS approaches in black-box optimization.

Availability of data and code. Following best practices towards
replicability and reproducibility, full project data, code and detailed
description of the experimental setup, as well as figures for all
settings, are available at [8].

2 EXPERIMENTAL SETUP
2.1 Data Collection

Problem instance portfolio. For the problem instance portfolio,
we make use of 24 single-objective, noiseless black-box optimization
problems from the BBOB benchmark suite of the COCO environ-
ment [4], whose objectives are to be minimized. In our study, we
consider the first 10 instances of the 24 BBOB functions, in di-
mensions 5 and 20. This results in two separate problem instance
portfolios of size 240, one for each dimension.

Problem landscape data. For representing the problem landscape
data, we make use of the so-called "cheap" ELA features imple-
mented in the R package flacco. We have considered a total of 69
different ELA features, which have been calculated using the Latin
hypercube sampling strategy with 1 000 sample size on a total of 100
independent repetitions. To represent each problem instance, we
calculate the median value for each feature over the 100 repetitions.
Algorithm portfolio. For the algorithm portfolio, we use a diverse
set of 11 algorithms. For details on the selected algorithms, we refer
the reader to [8].

To collect performance data for our algorithm portfolio, we use
the IOHexperimenter framework [1]. For each problem instance,
we perform 50 independent repetitions, for a budget of 10 000 func-
tion evaluations for each run. The complementarity of algorithms
is essential for reaching peak AS performance. To this end, we have
determined the proportion of problem instances where an algo-
rithm is the optimal choice for each runtime, both for the 5D and
20D problem instance portfolios. Only the algorithms that exhibit
superiority over 5% of the problem instances are included in the
final algorithm portfolio. The final algorithm portfolios for different
runtimes and problem dimensionalities are made available in [8].

2.2 Algorithm Performance Prediction

AS approaches. To predict the performance of algorithms, we
consider three ML-based AS approaches: regression, classification,
and pairwise classification. In all three cases, an ELA feature vector
is used to describe each problem instance. In the case of regres-
sion, we aim to predict the target precision that each algorithm
in the portfolio will achieve on the problem instances, for a fixed
runtime and problem dimensionality. We cap the target precision
at 1078 and perform a log;, transformation of the target variable.
For classification, to the ELA vector of each problem instance, we
assign a label of the best performing algorithm from our portfolio.
This translates to the task of multi-class classification, where the
target variable is the algorithm name/label we aim to predict. Note
that it can happen that multiple algorithms achieve the same target
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precision on a given problem instance (usually when they reach a
target precision of 0, i.e., the optimum). In such cases, we randomly
choose one of them as the best. Finally, in pairwise classification,
we transform the multi-class classification problem into a set of
binary classification problems, where we predict which algorithm
performs better out of the two on a given problem instance. For
an algorithm portfolio of size K, in the case of the classification,
we have one multi-class classification problem with K classes. In
the case of pairwise classification, however, K(K — 1)/2 binary
classification problems need to be solved to cover all possible pairs
of algorithms. We count the number of times an algorithm was pre-
dicted to be the best among all pairs, and form our final prediction
by selecting the algorithm with the most "wins".

ML models. For each of the AS approaches, we train different
ML models to assess whether the performance of the algorithm
selector depends on the underlying model. We use Random Forest
and XGBoost for all three AS approaches, as well as TabPFN for
(pairwise-) classification and FT-Transformer models for regression.
Hyperparameter tuning and model evaluation. In order to
evaluate the performance of our ML models, we employ a nested
leave-one-group-out cross-validation (CV) technique, where groups
are defined based on the ID of each benchmark problem instance.
The setup consists of two stages of CV, with an outer loop splitting
the data into training and testing sets and an inner loop determin-
ing the optimal hyperparameters for the model. We use the grid
search strategy for hyperparameter tuning and determine the best
hyperparameters based on the average performance on the holdout
folds in the inner CV. The R? score and F1 score are utilized as
performance metrics for regression and (pairwise-)classification,
respectively. The hyperparameters selected for tuning and their
corresponding search spaces are available at [8]. After identify-
ing optimal hyperparameters, the final model is trained on all the
training data and evaluated using the test set from the outer loop.

2.3 Per-instance Algorithm Selection

The AS quality is evaluated by comparing it to two standard base-
lines: (1) the virtual best solver (VBS), which represents the per-
formance of a theoretical perfect algorithm selector that always
chooses the true best algorithm for each problem instance, and (2)
the single best solver (SBS), which is the algorithm with the best
average performance among all algorithms in the portfolio. The
“VBS-SBS gap” represents the difference between the VBS and SBS
performances and gives an indication of the potential gains from
PIAS. To evaluate the performance of PIAS, we compute the differ-
ence (or loss) between the target precision of the selected algorithm
F # and the target precision of the per-instance VBS F #+. We do
this after taking the logarithm of the achieved target precision:
L(A, A*) =log,y(Fq) —log,y(Fz+). We calculate the losses for
each instance separately and investigate their distribution.

3 RESULTS

Following the experimental protocol described in Section 2, we first
affirm that AS leads to impressive performance gains compared
to any standalone solver. In order to assess the performance in a
principled way, we test all chosen AS approaches/ML models on 10
instances of each of the 24 BBOB problems, for different algorithm
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Figure 1: The loss of the AS across the ML model types for the three AS approaches (i.e., R = regression, C = classification, and
PC = pairwise classification), aggregated over BBOB problems in 5D for runtime 2500.
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Figure 2: A heatmap depicting the percentage of problem
instances where the VBS is selected as optimal by the AS, for
the various problem dimensions, runtimes, ML methods, and
AS approaches.

runtime values and in dimensions 5 and 10. We compare the per-
formance of the AS with that of different solvers in the portfolio,
aggregated over all BBOB problems. We see that AS undoubtedly
outperforms all solvers by a large margin, irrespective of the ML
model or task. While we do not show the specific results of the AS
comparison with individual solvers here due to space constraints,
we make them available at [8].

3.1 Comparing Algorithm Selection Approaches

After establishing the relevance of AS itself, we compare the perfor-
mance of different AS approaches (or underlying ML tasks), namely
regression, classification, and pairwise classification. Contrasting
the losses obtained by different AS approaches, and we do not
observe any, drastic differences among them. However, regression-
based AS seems to have a slightly worse performance than classifi-
cation and pairwise classification. This holds true across all different
ML models, all seven different runtimes, and in both dimensions [8].

To intuitively quantify the high performance (and thus reliability)
of all considered approaches, we record the number of times that

each solver from the portfolio is the VBS and the number of times
each solver is selected by the AS based on regression, classification,
and pairwise classification. We observe that all AS approaches
very tightly follow the overall distribution of VBSs. There are no
significant differences across different runtimes for any of the ML
tasks. This is consistent for other ML models as well. The results and
visualizations that support these conclusions are available at [8].

3.2 Comparing Machine Learning Models

We further investigate how different ML models compare for a fixed
AS approach, across all runtimes and dimensions. To achieve this,
we contrast the losses obtained by different ML models, as shown in
Figure 1 for a runtime of 2500 in 5D. Similarly, as in Section 3.1, we
conclude that the regression-based AS approach results in slightly
larger losses compared to classification and pairwise classification,
but the difference is not substantial enough to draw definite con-
clusions. Among the regression models, the RF model outperforms
XGBoost. This can be attributed to the ease of tuning RF compared
to XGBoost. Implementing a different hyperparameter tuning strat-
egy, such as Bayesian Optimization, would likely further improve
the performance of XGBoost and bring it closer to that of RF.

The FT-Transformer regression model shows the largest loss
compared to the other two regression-based models, which is in
line with our expectations. As highlighted in [2], tree-based models
outperform deep learning models, such as the FT-Transformer, on
tabular problems. This may be partly due to the fact that DL models
usually need more training data than tree-based models. In this
study, with only 240 data examples, the FT-Transformer might not
have sufficient training data to generalize effectively. Although the
performance of the FT-Transformer could potentially be improved
with a different tuning strategy, we still anticipate that the tree-
based models will outperform the FT-Transformer in our AS task.
On the other hand, when it comes to classification and pairwise
classification, there are no significant differences between the ML
models. This remains consistent across all runtimes and dimensions,
as evidenced by the results available in [8].

Finally, we summarize the results of the AS performance across
different ML models, AS approaches, runtimes, and dimensions in
Figure 2. Here, instead of focusing on the loss as a quality indicator



of the AS performance, we measure the percentage of problem
instances where the VBS was selected as optimal by the AS. Our
previous observations still hold true, i.e., regression-based AS per-
forms worse than the other two approaches, especially in the case
of FT-Transformer models (which is now clearly visible in Figure 2),
while classification and pairwise classification exhibit comparable
performance with a slight edge for classification. Notably, TabPFN
performs similarly to tree-based methods, or even slightly better,
which has also been observed in [5]. We point out that, for small
runtimes (100 and 250) in 20D, exceptionally good performance
of (almost) all techniques might be due to the small size of algo-
rithm portfolios for respective runtimes. With less algorithms in
the portfolio, the AS problem gets easier to tackle, which is evident
in Figure 2 from the larger percentage of correctly selected VBS.

4 DISCUSSION AND CONCLUSIONS

We have confirmed in this work that PIAS bears considerable po-
tential for numerical black-box optimization, and that ELA-based
approaches are a sensible candidate to achieve impressive perfor-
mance gains. We have also shown that the choice of the ML model
(given that it had already been shown to perform well on tabular
data in general) and the AS approach (regression, classification,
pairwise classification) is of minor importance. However, this does
not suffice to benefit from PIAS in practice, as real-world use cases
remain very costly to both optimize and extract information from.
We thus face two key challenges in applying these methods to the
black-box optimization domain: (1) the cost for feature extraction
and (2) warm-starting the chosen solvers.

Since our primary objective in this work has been the compari-
son of the different ML techniques, we have ignored challenge (1) by
assuming that ELA features are available at no cost. This is of course
not true in practice, where the solvers need to balance the trade-off
between sampling for ELA computation and the budget that re-
mains for the actual optimization phase. The first attempts aimed at
integrating the ELA computation into the optimization process ([7]
and references therein) encourage us to believe that ELA features
can be valuable even when extracted from search trajectories rather
than from a dedicated sampling phase that precedes the optimiza-
tion, but also demonstrate much room for improvement. Regarding
the warm-starting aspect, item (2) in our list above, we observe a
surprising ignorance in the community, and this in works on per-
instance algorithm selection, per-instance algorithm configuration,
as well as in studies deliberately focusing on switching from one
solver to another. We believe that neglecting the warm-starting
aspect is wasteful. First proposals for warm-starting techniques
have been made in [10] and [11]. The latter was considered in the
per-run approach suggested in [7], but the small number of algo-
rithms for which dedicated warm-starting techniques have been
designed suggests that this can only be seen as the first starting
point. We suspect both open questions (1) and (2) are of utmost
importance for the wider adoption of PIAS and per-instance algo-
rithm configuration techniques in practice, both in academic and
industrial use cases.
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