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ABSTRACT
A key component of automated algorithm selection and configura-
tion, which in most cases are performed using supervised machine
learning (ML) methods is a good-performing predictive model. The
predictive model uses the feature representation of a set of problem
instances as input data and predicts the algorithm performance
achieved on them. Common machine learning models struggle to
make predictions for instances with feature representations not
covered by the training data, resulting in poor generalization to un-
seen problems. In this study, we propose a workflow to estimate the
generalizability of a predictive model for algorithm performance,
trained on one benchmark suite to another. The workflow has been
tested by training predictive models across benchmark suites and
the results show that generalizability patterns in the landscape
feature space are reflected in the performance space.

CCS CONCEPTS
• Computing methodologies→Machine learning; Learning
latent representations; Supervised learning; • Theory of com-
putation → Design and analysis of algorithms.
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1 INTRODUCTION
Automated algorithm configuration [1, 12] and selection [7, 8] are
among the most researched topics in evolutionary computation.
These systems often use predictive machine learning (ML) mod-
els which take the feature representation of problem instances as
input and predict the performance of an algorithm instance on a
problem instance. However, one of the main drawbacks presented
in these learning tasks is the low generalizability of the predictive
models. The models fail to provide accurate predictions for problem
instances whose feature representation is underrepresented or not
presented in the training data.

Recent studies [9, 14] show that poor predictive results have
been obtained when an ML model for performance prediction is
trained on the problem instances from one benchmark suite and
∗Also with Gulf University for Science and Technology.

then evaluated on problem instances from another benchmark suite.
Škvorc et al. [14] present results when a random forest (RF) model
trained on the BBOB (i.e., COCO) [5] benchmark suite provides poor
results when tested on artificially generated problem instances [15]
and vice-versa. Kostovska et al. [9] show that an automated algo-
rithm selector which is based on performance prediction models
trained on the BBOB benchmark suite, cannot generalize to problem
instances from the Nevergrad’s YABBOB [2] benchmark suite.

Our contribution: We propose a workflow to estimate the gen-
eralizability of a predictive model from one benchmark suite to
another. Problem instances are grouped into clusters based on
their features and further use the distribution of each benchmark
suite represented as the number of problem instances across the
clusters as a meta-representation for each benchmark suite. Sim-
ilarity between benchmark suites is calculated using this meta-
representation. This similarity can indicate if a predictive model
can be generalized across benchmark suites. We evaluated the work-
flow by training predictive models and found that generalizability
patterns in the feature space were also present in the performance
space.

Data and code availability: The data and the code involved in
this study are available at [11].

2 ASSESSING GENERALIZABILITY
WORKFLOW

Let us assume that we have𝑚 benchmark suites. Each benchmark
suite can consist of a different number of problem instances. One
out of𝑚 benchmark suites is selected to train the supervised ML
predictive model (M) and the remaining𝑚 − 1 benchmark suites
are used to test the model. To assess the generalizability of the
model M to the different benchmark suites used for testing, we
propose the following workflow:
Defining a unified meta-representation on a problem in-
stance level – represent the problem instances from all benchmark
suites using the same 𝑛 meta-features that describe the landscape
properties of the problem instances. With this, all problem instances
(i.e., the ones selected for training and the remaining ones used
for testing) are projected into the same 𝑛-dimensional vector space.
Defining a coverage matrix – based on their meta-representation
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cluster the problem instances from all benchmark suites into 𝑘

clusters. Next, for each benchmark suite calculate the percentage
of problem instances that belong to each cluster. With this, we de-
fine 𝑘-vector meta-representation on a benchmark suite level that
represents the distribution of the benchmark suite across different
clusters (i.e different regions in the problem space).
Define the similarity between two benchmark suites – the
similarity between a pair of benchmark suites is calculated using
their coverage matrix-based meta-representation. The approach
uses cosine similarity as a similarity measure [13].

High benchmark suite similarity suggests accurate predictions by
a model trained on one suite for the other suite. The low similarity
suggests poor generalization and coverage of different problem
landscape space regions.

3 EXPERIMENTAL DESIGN
The evaluation of the workflow has been performed in two experi-
ments. More details about them are provided below.
Benchmark suites: In the first experiment, we involve the bench-
mark suite data available from a previous study [10], where the
BBOB, CEC 2013, CEC 2014, CEC 2015, and CEC 2017 benchmark
suites are used. The CEC benchmark suites change annually, with
some overlap in problem instances across different suites, but the
definition of the same problem instance differs each year, which
may result in varying properties of the benchmarks even with the
same problem instance definition. In the experiments, the problem
dimension is set to𝐷 = 10. In the second experiment, we select bench-
mark problem instances that are affine recombinations of pairs of
BBOB problem instances, where 9,936 new problem instances are
generated for several dimensions [4]. Next, we use the SELECTOR
approach [3] to select diverse benchmark problem instances in
𝐷 = 5 based on their 14 landscape features. The benchmark prob-
lem instances have been transformed into a graph based on the
cosine similarity using their landscape features. Next, the Maximal
Independent Set method has been run five times independently to
select five benchmark suites (BS1, BS2, BS3, BS4, BS5) that contain
around 110 problem instances with minimal overlap. SELECTOR
guarantees that the distribution of the problem instances in the five
independent selections is similar.
Performance data: In the first experiment, performance data for
the CovarianceMatrix Adaption Evolutionary Strategy (CMA-ES) [6]
has been used. The algorithm stops after either reaching 100,000
function evaluations or finding a solution within 10−8 of the global
optimum. As a target in the regression models, we used the ob-
tained solutions’ precision (i.e., the error to the global optimum).
In the second experiment, we use the performance data of the Di-
agonal CMA-ES [6]. Here, we also retrieve the precision after a
budget of 10,000 function evaluations as a target variable for the
regressionmodels. For both experiments, we use their default hyper-
parameters implementation from the Nevergrad library [2].
Exploratory landscape analysis: For the first experiment, to
describe the landscape properties of each problem instance, 64
publicly available ELA features from a previous study [10] are used.
In the second experiment, 14 ELA features are used, also available
from a previous study [4].
Clustering: The K-Means algorithm clusters problem instances
from benchmark suites in both experiments. The Silhouette score

is used to estimate cluster number in the first experiment and the
elbow method with the distortion metric is used in the second
experiment. We tested different measures to estimate the number of
clusters, just to check the sensitivity of the approach using different
measures. ELA features are normalized before clustering, and the
scikit-learn package in Python is used for its implementation.
Predictive models: Random Forest (RF) models (from the scikit-
learn package in Python with default hyper-parameters) are trained
on each benchmark suite, evaluated on remaining suites, and re-
ported using median absolute error (MDAE). Results are analyzed
to determine if a pattern from the coverage matrix is also present in
automated algorithm performance prediction model performance.

4 RESULTS AND DISCUSSION
Here, the results for both experiments are presented in more detail.
First experiment. The optimal number of clusters has been esti-
mated to 13. Table 1 presents the coverage matrix, where each cell
in the table shows the percentage of the total number of instances
from the benchmark suite presented in the row, that belongs to
each cluster presented in the column. Each row then is used as a
meta-representation for each benchmark suite. The results show
that the BBOB benchmark suite is the most widely spread in the
feature space (i.e., landscape space) as its instances are distributed
across nine clusters out of 13, compared to the CEC benchmark
suites which condensed to a smaller number of clusters. There are
four clusters that consist only of BBOB problem instances. Also,
it is visible that the distribution of the CEC 2014 and CEC 2017
problem instances across the clusters is very similar.

Table 1: Coverage matrix calculated with 13 clusters.
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

BBOB 0.04 0.47 0.08 0.00 0.03 0.08 0.06 0.00 0.00 0.00 0.18 0.04 0.02
CEC2013 0.00 0.00 0.00 0.40 0.04 0.28 0.04 0.08 0.08 0.00 0.00 0.08 0.00
CEC2014 0.00 0.00 0.03 0.30 0.10 0.17 0.10 0.27 0.00 0.03 0.00 0.00 0.00
CEC2015 0.00 0.00 0.00 0.13 0.00 0.13 0.27 0.33 0.00 0.07 0.00 0.07 0.00
CEC2017 0.00 0.00 0.00 0.31 0.07 0.07 0.21 0.24 0.00 0.03 0.00 0.07 0.00

Figure 1 presents a heatmap of the cosine similarity between
the benchmark suite meta-representations, and hierarchical clus-
tering dendrogram of the benchmark suites’ meta-representations.
Based on the cosine similarity between the benchmark suites, the
similarity matrix is reorganized such that the more similar bench-
mark suites are placed together in the dendrogram. The colors in
the plot represent the cosine similarity. The figure shows that all
CEC benchmark suites have high similarity. The pairwise cosine
similarities between all pairs of CEC benchmark suites are greater
than 0.5. This is as expected since the CEC suites have had little
modifications through the years. However, comparing them to the
BBOB benchmark suite it seems that there is a big difference in how
their problem instances are distributed in the feature space, also
visible earlier from the coverage matrix. Looking into the clustering
result, it follows that CEC 2014 and CEC 2017 are the most similar
ones, further both of them are close to CEC2015, and then to CEC
2013, while all of them are placed on another side of the dendro-
gram compared to the BBOB. This result further points out that
we can expect a predictive model trained on CEC 2014 to have the
best results when it will be evaluated on CEC 2017 and vice-versa.
Further, a model trained on CEC 2014 or CEC 2017 is expected to
have good prediction results when it will be evaluated on CEC 2013
and CEC 2015. Also, models trained on CEC 2013 or CEC 2015 will
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Figure 1: Heatmap of the cosine similarity between bench-
mark suites representations generated based on 13 clusters.

have to generalize the prediction results across CEC benchmark
suites. The dissimilarity of CEC benchmark suites with the BBOB
benchmark suite indicates that we do not have a guarantee that the
model will generalize across them.

To investigate if the similarity patterns in the landscape fea-
ture space will also be present in the performance space as model
generalizability patterns, we present the evaluation results of an
algorithm performance predictive model, when the model is trained
on one benchmark suite and evaluated on the remaining ones. The
heatmap in Figure 2 presents the RF model errors for the perfor-
mance prediction of the CMA-ES. Each cell presents the median
absolute error of the RF model, trained on the benchmark suite
presented in the row, and evaluated on the benchmark suite pre-
sented in the column. The results show that a predictive model
trained on BBOB produces larger errors across all CEC benchmark
suites. A model trained on CEC 2017 provides smaller errors when
it is evaluated on CEC 2013, 2014, and 2015, and ends up with a
larger error for BBOB. When CEC 2013 is used to train the model,
similar errors are obtained across all benchmark suites. A similar
effect occurs when CEC 2015 is used for training, good errors are
achieved on CEC 2014 and CEC 2017, and the error increases for
CEC 2013, ending up with a larger error for BBOB.

The results indicate that a similar distribution of the benchmark
suites over the landscape feature space leads to similar model errors
on the suites. This study does not guarantee that the training and
testing error will be good but it guarantees that they will be in
similar ranges.We are not dealingwith the quality of the benchmark
suites but only comparing the landscape feature distribution of
the benchmark suites. However, it is not possible to establish a
complete generalizability mapping function between the landscape
feature space and the performance space, since these algorithms
are stochastic in nature and they all have different behavior.
Second experiment: Using the elbow method of the distortion
metric curve, the optimal number of clusters is determined to be
four. Table 2 presents the distribution of the five artificial bench-
mark suites across the four clusters. From the table, it follows that all
benchmark suites have similar distribution across the clusters, thus
following the same distribution across the feature space. In addition,
for each pair of benchmark suites we analyzed the cosine similarity
between their meta-representations based on the coverage matrix.

Figure 2: Heatmap showing the MDAEs of an RF model for
the performance of CMA. Rows indicate the train benchmark
suite and columns indicate the benchmark suite the model
was evaluated on.

Figure 3: Heatmap showing the MDAEs of an RF model for
the performance of diagonal CMA-ES. Rows indicate the
train benchmark suite and columns indicate the benchmark
suite the model was evaluated on.
The obtained cosine similarities of the meta-representations ex-
ceeded 0.98 for all pairs of benchmark suites. This result indicates
that a model trained on any one of these benchmark suites should
be easy to generalize to the remaining benchmark suites.

Table 2: Coverage matrix calculated with four clusters.
C1 C2 C3 C4

BS1 0.14 0.21 0.32 0.32
BS2 0.16 0.26 0.33 0.25
BS3 0.16 0.27 0.32 0.25
BS4 0.20 0.22 0.31 0.27
BS5 0.15 0.26 0.34 0.25

The evaluation results (MDAE) of the predictive models trained
on each of the five artificial benchmark suites and evaluated on the
remaining four for the diagonal CMA-ES are presented in Figure 3.
The rows indicate the benchmark suite on which the model has
been trained and the columns indicate the benchmark suite on
which the model has been evaluated.

The results show that the patterns that are visible in the land-
scape feature space are also reflected in the model performance
space. Models trained on all five benchmark suites separately are
generalizable or have similar errors on all the remaining bench-
marking suites. We also need to point out here that the training
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MDAE is smaller than all the MDAE obtained on the test benchmark
suites, which is expected in a machine learning setup. However, the
difference between the training and testing errors is not practically
significant (e.g., training MDAE is 0.06 for BS1, 0.04 for BS2, 0.08
for BS3, 0.03 for BS4, and 0.04 for BS5 for diagonal CMA-ES).

To show that different distributions in the feature landscape
space lead to worse model performance,we assessed all instances
in the fourth cluster. This cluster, referred to as BS6, includes sam-
ples from all five artificially generated benchmark suites and was
randomly selected to ensure a different feature landscape distribu-
tion than the other five suites. The BS6 instances cover only one
region of the feature landscape and do not include samples from the
three other regions present in the clustering result that are part of
the other five suites. Table 3 presents RF errors when the model is
trained on BS6 and evaluated for automated algorithm performance
prediction on the other five benchmark suites. It is obvious that the
error models are worse (compared with the errors presented in Fig-
ure 3. The results prove that different feature landscape distribution
decreases the generalization of a predictive model.

Table 3: RF errors when the model is trained on BS6 and
evaluated on the other five benchmark suites.

BS1 BS2 BS3 BS4 BS5

DE 0.185922 0.182945 0.183876 0.185423 0.202225
RSPSO 0.479039 0.492742 0.474655 0.506378 0.517526
diag CMA-ES 0.240901 0.240292 0.237267 0.25774 0.240292

5 CONCLUSION
Our study proposes a workflow for estimating the generalizability
of performance predictive models in automated algorithm selec-
tion and configuration. The workflow involves converting problem
instances into a common meta-representation and clustering them
to create a benchmark suite meta-representation. The similarity
between benchmark suites is then calculated to indicate generaliz-
ability between models. Two experiments were conducted, one with
commonly used benchmark suites and the other with artificially
generated suites. Results show that generalizability patterns in the
feature landscape space also exist in the performance space, assist-
ing in predicting model performance on new instances. However,
the workflow is dependent on the quality of the feature represen-
tation and may be affected by different performances of the algo-
rithm with similar feature representations. Future work will test
the workflow with different feature representations and families of
supervised machine learning methods.
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