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Electrical noise in electrolytes: a theoretical perspective

Thê Hoang Ngoc Minh,a‡ Jeongmin Kim,a‡, Giovanni Pireddu,a, Iurii Chubak,a, Swetha Nair,a

and Benjamin Rotenberg∗a,b

Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale elec-
trochemistry, NMR relaxometry and Surface Force Balance measurements, all probe electrical fluc-
tuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar
nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise
from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the
relevant length and time scales of these dynamics are encoded in the dynamic structure factors.
However modelling the latter for frequencies and wavevectors spanning many orders of magnitude
remains a great challenge to interpret the experiments in terms of physical process such as solvation
dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid
surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in
the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety
of complementary experiments. We further analyze this quantity in the special case of an aqueous
NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss
the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how
the predictions can be improved. We finally discuss the contributions of ions and water to the total
charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding
of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to
decipher the microscopic properties encoded in the measured electrical noise.

1 Introduction

One of the most important properties of electrolytes, consisting of
ions in a solvent, and more generally of ionic fluids, is their ability
to conduct electricity under an external electric field. The result-
ing electric current results from the interplay between the driving
force, interactions between ions, and interactions between the
ions and the solvent molecules – generally understood in terms of
electrostatic and hydrodynamic effects, as well as diffusion (ther-
mal fluctuations) and friction (dissipation). Since ions and sol-
vent molecules display a (multipolar) charge distribution, their
coupling with electromagnetic fields is at the heart of many ex-
perimental techniques probing a wide frequency range, including
dielectric relaxation spectroscopy1,2, infrared and Raman THz
spectroscopy3, which can fruitfully be combined with measure-
ments of the conductivity at low frequency4. The interpretation
of these experiments in terms of microscopic mechanisms, in par-
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ticular solvation dynamics, greatly benefits from molecular sim-
ulations5–15, or analytical theories for the frequency-dependent
conductivity16–18.

The analysis of the fluctuations of the electric current, via its
power spectral density, revealed an algebraic behaviour at low
frequency (“1/ f ”, or “coloured noise”) in bulk electrolytes19,20

as well as, more recently, in experiments involving ionic currents
through single nanopores21–23. These observations prompted a
number of theoretical and simulation studies to assess its micro-
scopic origin24–30. Such electrical noise is also exploited in elec-
trochemical impedance measurements31–33 as well as in nanoflu-
idic setups using electrodes34,35. The charge fluctuations of elec-
trodes can also be analyzed to investigate the interfacial proper-
ties of nanocapacitors in simulations36–39. As discussed in more
detail in Section 2, fluctuations of the electrostatic potential or the
electric field experienced by an atom, which are intimately related
to the dynamics of its microscopic environment, in particular the
solvent polarization, plays an essential role on electron trans-
fer reactions40,41, water autodissociation42,43 as well as ion pair
dissociation44–46. The fluctuations of the electric field gradient
(EFG) drive the nuclear magnetic resonance (NMR) relaxation
of quadrupolar nuclei, so that these fluctuations also provide in
principle information on the microscopic fluctuations around the
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latter47. Here again, molecular simulations prove very useful
to quantitatively model the EFG fluctuations and open the way
to the interpretation of quadrupolar NMR relaxation in terms of
molecular motion48–58.

The dynamics of charge fluctuations are also related to the
static correlations between ions, as well as with the polar solvent.
These correlations are generally understood in terms of screen-
ing: of the electrostatic interactions between ions by the solvent
(with the reduction of the Coulomb interaction by the permittivity
of the latter) and of the electrostatic potential by the ions (with
the canonical Debye-Hückel theory and corresponding screening
length). The issue of static correlations between ions and sol-
vents has regained interest in recent years due to the report of
long-range forces in Surface Force Balance experiments with ionic
liquids and concentrated electrolytes59–62, with an “anomalous
underscreening” at odds with the Debye-Hückel picture. From
the dynamical point of view, linear response theory provides a
practical route to determine the frequency-dependent conductiv-
ity or permittivity from simulations using Green-Kubo or Einstein-
Helfand relations involving the appropriate correlation functions
of the electric current or polarization, even though the separa-
tion between mobile charges and polar molecules is a subtle is-
sue63–65. Confining electrolytes, or even pure solvent, between
neutral, charged or metallic walls, introduces further complexity,
as this modifies the static and dynamic correlations between the
polar molecules and the ions. This changes, sometimes dramat-
ically when the distance between the confining walls decreases
below tens of nanometers, the static and frequency-dependent
permittivity66–78, or the spectroscopic response79.

The spatial and temporal correlations of the charge density are
quantified by the charge-charge intermediate scattering function
or the charge-charge dynamic structure factor. The former is
a function of wavenumber k and time t, whose initial value is
the static structure factor, while the latter is a function of k and
frequency ω. They can be determined and analyzed in molec-
ular simulations (see e.g. Refs. 80–82 for pure water). The
wavenumber- and frequency-dependent response of the current
and polarization to electric field is directly related to the corre-
sponding conductivity and permittivity tensors83–88. While these
quantities cannot be measured directly, most of the observables
corresponding to the experiments described above can be ex-
pressed as special cases (k → 0 for the macroscopic limit, t → 0
or ω → 0 for the static limit) or as weighted integrals over modes.
Therefore, these experiments provide, at least in principle, com-
plementary windows to observe the charge fluctuations over dif-
ferent spatial and temporal scales.

Here, we highlight the central role of the charge-charge dy-
namic structure factor in the fluctuations of electrical observables
in electrolytes and offer a unifying perspective over seemingly un-
related experiments. We further analyze this quantity in the spe-
cial case of an aqueous NaCl electrolyte, using simulations with
explicit ions and an explicit or implicit solvent. We discuss the
ability of the standard mean-field Poisson-Nernst-Planck theory
to capture the simulation results, and how the predictions can be
improved. We finally discuss the contributions of ions and water
to the total charge fluctuations. Section 2 provides an overview

of electrical fluctuations in electrolyte, introducing the relevant
quantities and their link with various experimental observables.
Section 3 presents various theories to describe the dynamics of
ions, while Section 4 summarizes all simulation details. Finally,
the results are reported and discussed in Section 5.

2 Electrical fluctuations in electrolytes

2.1 Charge density and electric current fluctuations

We consider the dynamics of an ensemble of N classical particles
with (partial) charges qi = zie, where e is the elementary charge
and zi the valency. The microscopic state of the system if charac-
terized by their positions r⃗i(t) and velocities v⃗i(t), from which one
can determine the instantaneous charge density

ρq(⃗r, t) =
N

∑
i=1

qiδ [⃗ri(t)− r⃗] (1)

and the electric currrent density

j⃗q(⃗r, t) =
N

∑
i=1

qi⃗vi(t)δ [⃗ri(t)− r⃗] , (2)

where the q subscript refers to the electric charge and δ denotes
the Dirac delta function. The fluctuations of these quantities are
conveniently analyzed in reciprocal and frequency space, so that
we introduce the following spatial Fourier transform

Â(⃗k) =
∫

V
A(⃗r)e−i⃗k·⃗r d⃗r , (3)

where V is the volume of the system, and temporal Laplace trans-
form (with Laplace variable s =−iω)

B̃(ω) =
∫

∞

0
B(t)e+iωt dt . (4)

For the charge density, this leads to

ρ̂q(⃗k, t) =
N

∑
i=1

qie−i⃗k·⃗ri(t) (5)

from which we can define the charge-charge intermediate scat-
tering function89

Fqq(⃗k, t) =
1
N
⟨ρ̂q(⃗k, t)ρ̂q(−⃗k,0)⟩ , (6)

where ⟨· · · ⟩ denotes an ensemble average. Other normalizations
by the volume instead of the number can be found in the litera-
ture. For a bulk isotropic system, this quantity depends only on
the norm k of the wavevector. The initial value (for t = 0) of Fqq

is the charge-charge static structure factor

Sqq(⃗k) = Fqq(⃗k, t = 0) =
1
N
⟨
∣∣∣ρ̂q(⃗k, t = 0)

∣∣∣
2
⟩ , (7)

while the Laplace transform of Fqq provides the charge-charge
dynamic structure factor

Sqq(⃗k,ω) =
∫

∞

−∞

Fqq(⃗k, t)e+iωt dt = F̃qq(⃗k,ω)+ F̃qq(⃗k,−ω) . (8)
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Fqq(⃗k, t) can be recovered by the inverse Fourier transform

Fqq(⃗k, t) =
1

2π

∫
∞

−∞

Sqq(⃗k,ω)e−iωt dω . (9)

The above quantities cannot all be measured directly in exper-
iments as a function of wavenumber k and frequency ω, even
though they are related in various ways to a number of experi-
mental properties, in particular the response of the system to an
external electric field. Some examples of observables will be in-
troduced in Section 2.2. Similar functions can be defined from
other densities, weighed e.g. by the mass or the neutron scatter-
ing lengths of each atom instead of their charge, and the corre-
sponding scattering functions are related to responses other than
the charge or current induced by an electric field, which will not
be considered here (see e.g. Ref.90 for electro-acoustic couplings
in pure water). Nevertheless, we emphasize that combining the
responses to various perturbations provides complementary win-
dows on the dynamics of the particles – just as e.g. X-ray and
neutron diffraction provide complementary information on the
structure of water91,92.

2.2 Link with various observables

Having introduced the quantities describing the charge fluctua-
tions in Section 2.1, we now discuss the link between the latter
and various properties. We begin by standard ones related to
the current or polarization response of a bulk liquid to an ex-
ternal field in Section 2.2.1. We then introduce less frequently
considered observables such as the electric field gradient in Sec-
tion 2.2.2, or the charge induced by an electrolyte on a metallic
electrode in Section 2.2.3.

2.2.1 Electric current and polarization

The response of the charge distribution to external electric fields
is usually investigated by introducing monochromatic perturba-
tions E⃗ext (⃗k,ω). One is then interested in the electric current
j⃗q(⃗k,ω) (defined from Eq. 2 using Eqs. 3 and 4). It is common
practice to distinguish “free” and “bound” charges, by separating
the net charge from higher moments of each molecule, in particu-
lar their dipole moment, and to introduce the polarization density
P⃗(⃗r, t), whose divergence is minus the density of bound charges.
The total electric current is then separated into a term for free
charges and a polarization current (time derivative of the polar-
ization) and the effect of an external field on the current j⃗q(⃗k,ω)

and polarization P⃗(⃗k,ω) are described with response functions,
which are related to the wavenumber and frequency-dependent
permittivity and conductivity. These quantities are defined by in-
troducing the Maxwell field E⃗ (⃗k,ω) inside the sample, which dif-
fers from the external one due to the screening of the latter by
the system itself. The conductivity tensor is defined by Ohm’s law
(here with Fourier instead of Laplace transforms):

j⃗q(⃗k,ω) = σ (⃗k,ω) · E⃗ (⃗k,ω) (10)

and can be further separated into longitudinal and transverse con-
ductivities

σ (⃗k,ω) =
k⃗⃗ k
k2 σl (⃗k,ω)+

[
I− k⃗⃗ k

k2

]
σt (⃗k,ω) , (11)

with I the identity tensor. The permittivity tensor, defined by

P⃗(⃗k,ω) = ε0

[
ε (⃗k,ω)− I

]
· E⃗ (⃗k,ω) , (12)

can similarly be split into longitudinal and transverse compo-
nents.

Such a separation between free and bound charges is how-
ever not necessary in principle, and experiments such as di-
electric spectroscopy probe in fact both contributions simultane-
ously1,64,83,87,93. The relations between conductivity or permit-
tivity and the microscopic response, described below, can be for-
mulated using the total electric current, or equivalently the to-
tal polarization, which includes the contribution of “free” charges
via the so-called itinerant polarization (the time-integral of the
corresponding current)64. The total charge and polarization are
related by ∇ · P⃗ =−ρq, and the total current and polarization are
then related by j⃗q = ∂t P⃗ (for a more complete description at the
continuum level, see Ref. 94). This last relation, together with
Eqs. 10 and 12 lead to the relation between the generalized con-
ductivity and permittivity64,89

σ(k,ω) =−iω ε0 [ε(k,ω)− I] , (13)

which is usually used in dielectric spectroscopy for k = 0. In this
context, one sometimes also introduces the apparent permittivity
(see e.g. Ref 64) ε(ω)+ iσ(0)/ε0ω, such that in the limit k → 0
and ω → 0 Eg. 13 reduces to the static conductivity, which can be
computed as a Green-Kubo integral of the current autocorrelation
function89.

For their part, the response functions, or susceptibilities, ex-
press the change in the charge, polarization or current induced
by the external field E⃗ext (⃗k,ω). Their link with the permittivity
and conductivity depends on the boundary conditions (in partic-
ular in simulations using periodic boundary conditions)85,86,88

and on whether one considers the longitudinal or transverse re-
sponse. When retardation effects can be neglected, for k ̸= 0 the
response of the polarization is related to the permittivity by82,88:

χl(k,ω) = 1− 1
εl(k,ω)

, (14)

χt(k,ω) = εt(k,ω)−1 . (15)

Linear response theory then provides the expression of the rel-
evant response functions, in terms of equilibrium fluctuations of
the electric current and polarization88. For example, for non-
polarizable systems the above correlation function is related to
Sqq(⃗k) and F̃qq(⃗k,ω) as82,84,89,95

χl (⃗k,ω) =
βN

V ε0k2

[
Sqq(⃗k)+ iωF̃qq(⃗k,ω)

]
, (16)

where β = 1/kBT , with kB Boltzmann’s constant and T the tem-
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perature. Since Sqq(⃗k,ω) = 2Re
[
F̃qq(⃗k,ω)

]
(from Eq. 8 and the

fact that Fqq(⃗k, t) is an even function of time), one also finds this

result as a relation between Im
[
χl (⃗k,ω)

]
and Sqq(⃗k,ω), and the

real part is obtained from the Kramers-Kronig relation. Note that
this form of fluctuation-dissipation relation holds in the classi-
cal limit, which restricts in principle the range of frequencies
to ω ≪ kBT/ℏ, with ℏ the reduced Planck constant80. Some
molecular vibrations may correspond to frequencies not satisfy-
ing this constraint, but in the application to aqueous electrolytes
we will use a rigid water model for molecular simulations, which
suppresses high frequency vibrations. As mentioned above, the
present discussion is also limited to classical nonpolarizable mod-
els of the charge distribution, and we note that ab initio descrip-
tions may lead to further complications (see e.g. Ref. 96). Never-
theless, recent work on carbon/water interfaces using such simple
descriptions of water in classical molecular simulations were able
to demonstrate the subtle coupling between charge fluctuations
within the interfacial liquid and electronic degrees of freedom in
the solid, resulting in a fluctuation-induced quantum liquid-solid
friction97,98. This coupling also plays a role in the behaviour of
ions at such interfaces99.

The k2 factor in the denominator of the r.h.s. of Eq. 16 reflects
the link between polarization and charge, which reads in Fourier
space ρ̃q = i⃗k · P⃗. Using the initial value theorem for Laplace
transforms, limω→∞

[
−iωF̃qq(k,ω)

]
= Fqq(k, t = 0) = Sqq(⃗k) so that

limω→∞ χl (⃗k,ω) = 0 and limω→∞ εl (⃗k,ω) = 1. As mentioned above,
in dielectric spectroscopy experiments one only has access to the
k → 0 limit, so that the response functions are not known directly
as a function of k and ω. However, different experiments can pro-
vide complementary information on Fqq(k, t) (or other quantities
related to the dynamics of charge fluctuations), as illustrated e.g.
in Section 2.2.2.

While we have mainly emphasized the linear response of the
electric current to electric fields, we note that previous works
have also considered electrokinetic couplings from the cross-
correlations of electric and mass currents90,100–102. Following
early theoretical studies on coupled transport phenomena in ionic
fluids84, it might also be possible to extract transport coeffi-
cients from various density fluctuations, as recently proposed for
heat conductivity in uncharged systems103. In addition, recent
methodologies based on the large deviations of the electric cur-
rent fluctuations have also been introduced to predict the re-
sponse to large external fields, including the couplings between
ions and solvent104,105.

2.2.2 Electric potential, field and field gradient

Fluctuating sources (charges) result in fluctuating electric po-
tential φ (scalar), field E⃗ = −∇φ (vector) and field gradient
V = −∇∇φ (rank-2 tensor). The solvation dynamics around ions
can be probed in spectroscopic experiments and some observ-
ables are related to the change in the electronic distribution be-
tween the ground state and excited states, which couples to the
electric potential, field or field gradient fluctuations5–7. These
fluctuations and their mutual effect on ions or complex solutions
can be sampled in molecular simulations106–110 or modelled by

analytical approaches based on continuum electrostatics111–113,
(Gaussian) field theory114–117 or mode coupling theory, which in-
volves the intermediate scattering functions such as Fqq(k, t) (see
e.g. Ref.118). The effect of interfaces (around a solute, or at the
air-water interface) on these fluctuations was also investigated by
the same approaches119–124

The key role of these fluctuations on electron transfer reactions
in solution has also been understood by Marcus, whose pioneer-
ing work captured the effect of the solvent polarization within
continuum electrostatics40,41. The fluctuations of the so-called
vertical energy gap and corresponding reorganization free energy
were later sampled using ab initio and classical molecular sim-
ulations125 and better described in implicit-solvent theories via
e.g. molecular Density Functional Theory126. The same con-
cepts were also applied to redox reactions near metallic inter-
faces127–130 (see also Section 2.2.3). Electric field fluctuations
also play an important role in water autodissociation42 as well as
vibrational dephasing in water131 and ion pair dissociation44–46.

The dynamics of the electric field gradient (EFG) tensor Vαβ

can be probed in NMR relaxometry experiments of quadrupolar
nuclei (those with spin I ≥ 1, such as 7Li+, 23Na+, 25Mg2+, 39K+,
etc.), as the coupling between the quadrupolar moment of the nu-
cleus eQ with Vαβ usually dominates the relaxation if present47.
Provided that the magnetic field B⃗ points in the z-direction of the
laboratory frame and that the extreme narrowing regime holds
(i.e., the typical time scale of EFG fluctuations is much smaller
than the inverse Larmor frequency of the nucleus), the longitudi-
nal relaxation rate 1/T1 of a quadrupolar solute can be expressed
as48–55

1
T1

=
3
8

2I +3
I2(2I −1)

(
eQ
ℏ

)2
(1+ γ∞)

2
∫ +∞

0
dt ⟨Vzz(t)Vzz(0)⟩ . (17)

For the sake of simplicity, in Eq. 17 we assume that the electron
cloud contribution to the EFG at the nucleus can be incorporated
via the Sternheimer (anti-)shielding factor132, γ∞, and thus Vzz

is the zz component of the EFG tensor obtained using the clas-
sical charge distribution around the solute. However, improve-
ments upon the Sternheimer approximation are necessary to ob-
tain better predictions for the quadrupolar NMR relaxation rates
in aqueous electrolyte solutions56,58. Quadrupolar relaxation in
ionic liquids has also recently been investigated using molecular
simulations57.

The relevant autocorrelation function ⟨Vzz(t)Vzz(0)⟩ can be
related to the charge-charge intermediate scattering function
Fqq(⃗k, t) of the electrolyte, see Eq. 6. As shown by Perng and
Ladanyi133,

⟨Vzz(t)Vzz(0)⟩ ≈
∫ +∞

0
dkW (k)Fqq(⃗k, t), (18)

where the weight function W (k) = 8
5

j2
1(ka)
a2 takes into account the

finite solute radius a, and j1(x) is the spherical Bessel function
of the first kind. Note that the dielectric theory of Perng and
Ladanyi133 relies on a series of approximations: (i) the solute
motion is ignored; (ii) a cavity construction is used to account
for the finite ion size a; (iii) translational symmetry of the elec-
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trolyte is imposed, i.e. charge density fluctuations around the
solute are assumed to be equal to those in the bulk. While such
approximations oversimplify microscopic details of the solvation
dynamics51,52, Eq. 18 provides a straightforward way of relating
the relaxation of the electric field gradient fluctuations with that
of collective dielectric modes of the solution.

2.2.3 Charge induced on an electrode

The electric fluctuations recorded with electrodes in nanoelec-
trochemical devices have been correlated to the microscopic dy-
namics of the electrolyte34,35. Electrode surfaces polarize in re-
sponse to the presence of external charges, resulting in an in-
duced charge density at the surface of the metal. The relation be-
tween the electrode response and the external charge density can
be expressed by means of Green’s functions, taking into account
appropriate boundary conditions134. The link between electrode
response and the external charge density distribution suggests
that the charge induced to the electrodes can be used to infer
static and dynamical properties of the electrolyte.

Several strategies have been used to model induced charges
in molecular simulations38 and to understand how they depend
on electrolyte configurations135,136. Molecular simulations of
nanocapacitors (viz. electrolyte confined between two polariz-
able electrodes) have been used to estimate electrochemical prop-
erties from the fluctuations of induced charges, and to understand
how they relate to the behaviour of the confined electrolyte. The
differential capacitance Cdiff of a capacitor, i.e. the derivative of
the average charge on the electrodes with respect to the applied
voltage ∆Ψ between them, can be estimated from the fluctuations
of the total electrode charge36,37,137,138

Cdiff =
∂ ⟨Q⟩
∂∆Ψ

= β ⟨δQ2⟩ , (19)

where δQ = Q − ⟨Q⟩. Furthermore, the frequency-dependent
admittance Y (ω) can be estimated from the dynamical fluctu-
ations of the electrode charge, using the following fluctuation-
dissipation relation139

Y (ω) = β

[
iω⟨δQ2⟩+ω

2
∫

∞

0
⟨δQ(0)δQ(t)⟩e−iωtdt

]
. (20)

At low frequency, the admittance behaves as Y (ω)≈ iωβ ⟨δQ2⟩×
(1− iωτ) ≈ iωCdiff/(1+ iωτ), with the time τ defined as the in-
tegral of the normalized charge autocorrelation function. An
analogy with the RC timescale of capacitors, with R a resistance,
points to dissipative processes during the charge/discharge. The
interpretation in terms of equivalent circuit requires some cau-
tion, but it is particularly useful for extrapolating from molecular
to larger scales and connecting with experiments139.

In the absence of applied voltage, the total charge induced on
the electrodes is proportional to the total polarization of the elec-
trolyte in the direction perpendicular to the electrode surfaces. At
finite voltage, the relation between electrode charge and polariza-
tion also involves a contribution proportional to the magnitude of
the external field140. This allows rewriting Eqs. 19 and 20 using
the electrolyte polarization, thus creating a direct connection be-
tween the electrochemical properties of nanocapacitors and the

microscopic fluctuations of the electrolytes.

3 The charge-charge dynamic structure factor of
aqueous electrolyte solutions

We now illustrate the above discussion for the specific case of
an aqueous sodium chloride solution. We investigate the charge-
charge dynamic structure factor for an electrolyte described with
explicit ions and solvent molecules using molecular dynamics
(MD) simulations, as well as with explicit ions in an implicit sol-
vent characterized by a dielectric constant εr using Langevin dy-
namics (LD) and Brownian dynamics (BD) simulations. We also
consider the predictions of theories corresponding to the implicit
solvent description. This section introduces various theories to
describe the dynamics of ions, while simulation details are pre-
sented in Section 4.

3.1 Poisson-Nernst-Planck

A standard theory for the dynamics of electrolyte solutions is the
Poisson-Nernst-Planck (PNP) model141. Despite its simplicity and
its limitations as the salt concentration increases, it captures the
basic ingredients of the ionic dynamics, namely thermal diffusion
and the effect of electrostatic interactions, which are treated at
the mean-field level. It combines a conservation (Nernst-Planck)
equation for the local density ρα (⃗r, t) of ionic species with charge
qα = zα e and diffusion coefficient Dα :

∂ρα

∂ t
+∇ · [−Dα ∇ρα −βDα qα ρα ∇φ ] = 0 , (21)

with the Poisson equation satisfied by the electrostatic potential
in the implicit solvent:

∆φ =− ρq

ε0εr
. (22)

Analytical results can be obtained by considering small deviations
of the concentrations and potential around the average values,
ρα (⃗r, t) = ρ0

α + δρα (⃗r, t), and linearizing the PNP equations. At
equilibrium, one recovers the Debye-Hückel (linearized Poisson-
Boltzmann) solution, where the potential and density perturba-
tions decay over the characteristic Debye screening length λD =

κ
−1
D , with

κ
2
D = 4πlB ∑

α

ρ
0
α z2

α (23)

and the Bjerrum length lB = βe2/4πε0εr. Relaxation of charge
fluctuations occurs over the so-called Debye relaxation time

1
τD

= 4πlB ∑
α

ρ
0
α z2

α Dα . (24)

While analytical results can be obtained in the general case
where cations and anions have different diffusion coefficients, in
the following we will discuss only the simpler one where both
are equal, D+ = D− = D, and use the average value between
that of Na+ and Cl− ions for the comparison with simulations.
The difference in diffusion coefficients induces an internal elec-
tric field, a process resulting at long times in the common diffu-
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sion of the ions (Nernst-Hartley)142. The result for the average
diffusion coefficient D = (D++D−)/2 neglects corrections of or-
der |D+−D−|/|D++D−|. Under this simplifying assumption, the
Debye time Eq. 24 reduces to τD = 1/Dκ2

D, and the quantities de-
fined in Section 2.1 can be computed analytically:

SPNP
qq (k) =

k2

k2 +κ2
D
, (25)

FPNP
qq (k, t) = SPNP

qq (k)e−D(k2+κ2
D)t , (26)

F̃PNP
qq (k,ω) =

SPNP
qq (k)

−iω +D(k2 +κ2
D)

, (27)

SPNP
qq (k,ω) =

2Dk2

ω2 +D2(k2 +κ2
D)

2 . (28)

3.2 Dynamical Density Functional Theory

The above results can be slightly generalized to go beyond some
limitations of the PNP model, which treats the electrolyte as a gas
of ions interacting only via the mean-field electrostatic potential.
This model is as a special case of Dynamical Density Functional
Theory (DDFT). The following steps can be found in more de-
tail in the recent review by te Vrugt et al.143. DDFT models the
evolution of a density field ρ (⃗r, t) as:

∂ρ

∂ t
= ∇ ·

(
βD ·ρ ∇

δF [ρ]

δρ

)
, (29)

where the right-hand side comes from the divergence of a flux
involving a density-independent mobility βD and the gradient of
a local chemical potential, which is the functional derivative of
the free energy functional F [ρ]. The latter can be decomposed
into an ideal term leading to the usual ideal part of the chem-
ical potential, and an excess term arising from the interactions.
The PNP model is recovered by describing the excess term as the
mean-field electrostatic energy, but it is possible to include more
elaborate models to capture e.g. some of the steric and electro-
static correlations between the ions. As in the PNP case, one can
then linearize the density around a homogeneous state with den-
sity ρ0 to arrive at the following evolution equation for the excess
density δρ = ρ −ρ0:

∂δρ

∂ t
= D∆δρ −Dρ0∆

∫
c(2)(

∣∣⃗r− r⃗′
∣∣ ;ρ0)δρ (⃗r′, t)d⃗r′ , (30)

where c(2)(r;ρ0) is the direct pair correlation function for a ho-
mogeneous fluid of density ρ0, which is, up to a factor kBT , the
second order functional derivative of the free energy. The solution
of this equation is easily found in reciprocal space, using the rela-
tion 1−ρ0 ĉ(2)(k;ρ0) = S(k) with the static structure factor (which
comes from the Ornstein-Zernike equation, see Ref. 89), with the
result:

δ ρ̂(k, t) = δ ρ̂(k,0)e−Dk2t/S(k) . (31)

For the charge-charge correlation function, this leads to the ex-
tension of Eqs. 26 and 28:

Fqq(k, t)≃ Sqq(k)e−Dk2t/Sqq(k) (32)

and

Sqq(k,ω)≃ 2Dk2

ω2 +[Dk2/Sqq(k)]2
. (33)

This result can be used to model the dynamics of the charge
distribution beyond PNP if a more accurate model of the struc-
ture is available, either from improved free energy functionals,
or from simulations. We will consider the latter strategy in Sec-
tion 5.1. One should however keep in mind that these results
also rely on the linearization of the density around its average
and neglect features of the dynamics that may play a role, such
as hydrodynamic effects. We also note that other forms of DFT,
in particular stochastic DFT (with various approximations), have
recently been used to predict the conductivity of electrolyte, in-
cluding thermal noise and in some cases hydrodynamic effects,
both at equilibrium and for nonequilibrium steady-states in the
presence of an applied electric field, in the bulk and under con-
finement24–28,144–149.

3.3 Ballistic regime

In the case of an explicit solvent, following Newton’s laws of mo-
tion, the behaviour at high frequency (ω →∞) and small distances
(k → ∞) can be modelled as a ballistic regime, provided that the
probed distances are sufficiently short (typically a fraction of the
distance between ions and molecules, which is also comparable
to their size). In that case, one can also neglect correlations be-
tween ions, so that the correlation of the sum over ions reduces
to a sum of self terms. The resulting structure factor can be un-
derstood as the Maxwell-Boltzmann distribution of velocities ω/k
for each ion89:

SBall.
qq (k,ω) =

1
2

[√
2πβm+

k2 e−βm+ω2/2k2
+

√
2πβm−

k2 e−βm−ω2/2k2

]
,

(34)

where m+ and m− are the masses of the cations and anions, re-
spectively.

4 Simulation details

We simulate a bulk aqueous sodium chloride solution using MD,
LD and BD simulations, all using periodic boundary conditions.
For MD, the simulated system consists of Nwater = 3050 water
molecules and NNaCl = 70 ion pairs. Water molecules are de-
scribed using the SPC/E water model150 and ions by the Joung-
Cheatham force-field151. Short-range Lennard-Jones interac-
tions between unlike particles are computed using the Lorentz-
Berthelot mixing rules; they are truncated and shifted at a cut-
off r = 9 Å. Long-range electrostatic interactions are computed
with the PPPM method152. Newton’s equations of motion are
integrated with the velocity Verlet algorithm using a timestep
δ t = 2 fs, and water molecules are treated as rigid using the
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SHAKE algorithm153. The ionic solutions is first equilibrated at
p = 1 atm and T = 298.15 K using the Nosé-Hoover barostat and
thermostat, with time constants of 1000 fs and 100 fs, respec-
tively. The resulting average box size Lbox = 45.6 Å, corresponding
to a salt concentration of 1.23 M, is then used for NV T simula-
tions at the same temperature. Three independent simulations
are run, for at least 20 ns of equilibration followed by 80 ns of
production. Each production run is divided into 6 blocks consid-
ered as independent for the analysis. We also perform simulations
for pure water using the same procedure and the same number of
water molecules, as well as simulations at infinite dilution with
a single cation and anion to determine their diffusion coefficients
from the slope of their mean-square displacement. The static per-
mittivity εs is calculated from the fluctuations of the total water
dipole moment M⃗W in the aqueous solutions and pure water as88

εs = 1+
β

3ε0V
⟨δM⃗2

W ⟩ , (35)

where V is the volume of the simulation box.
For implicit solvent simulations (LD and BD), short-range in-

teractions between ions are identical to that for MD simulations,
described above. The Coulomb interactions are still computed
using the PPPM method, but screened by the dielectric constant
of the solvent. We use the experimental value154 εr = 78.5,
which is slightly larger than the one of the SPC/E water model
(εr = 70.5)155. The diffusion coefficients D± of the ions for
BD, or corresponding friction coefficients for Lanvegin dynamics
(γ± = 1/βD±), are taken from MD simulations at infinite dilu-
tion as described above, namely: DNa+ = 1.54 10−9 m2.s−1 and
DCl− = 1.28 10−9 m2.s−1. The equations of motion are integrated
using the velocity Verlet algorithm with a timestep δ t = 2 fs cou-
pled with a Langevin thermostat fixed at T = 298.15 K for the un-
derdamped LD, and the overdamped BAOAB integrator156 with
δ t = 25 fs for BD. These simulations are much less computation-
ally demanding than MD, so that we study the same salt concen-
tration of 1.23 M using a larger system with NNaCl = 560 ion pairs
in a cubic box of size 2Lbox, for much longer simulations times.
For both LD and BD, we perform five independent runs. The total
simulation time for each production run is 5 µs for LD and 50 µs
for BD. Each of them is then divided into 50 blocks considered as
independent for the analysis.

All MD, LD and BD simulations are performed with the
LAMMPS simulation package157. The Fourier components of the
charge density, ρ̂q(⃗k, t) (Eq. 5), are sampled every 6 fs, 400 fs,
and 1 ps for MD, LD and BD respectively, for selected wavevec-
tors compatible with the periodic boundary conditions, satisfying
|⃗k|= nkmin with kmin = 2π/Lbox, where Lbox is the box size for MD
simulations and n integers between 1 and 256. This covers length
scales ranging between 0.2 and 45.6 Å, smaller than the particle
size and larger than the typical correlation lengths in the elec-
trolyte. For LD and BD simulations, with a box size 2Lbox, we also
consider |⃗k| = kmin/2. The correlation function Fqq(⃗k, t) and its
Fourier transform Sqq(⃗k,ω) are then computed from the time se-
ries of ρ̂q(⃗k, t) using fast Fourier transforms (FFT). In the absence
of external field the three directions of space are equivalent: In
order to improve the statistics we consider wavevectors in the x,

y and z directions and average the results. The reported results
further correspond to averages over the runs and blocks, with un-
certainties estimated as the standard error between independent
realizations.

5 Results
Section 5.1 first examines the ionic contribution to the charge
fluctuations, comparing the results from MD simulations in the
presence of an explicit solvent, with LD and BD using an implicit
solvent, as well as theoretical predictions described in Section 3.
Section 5.2 is then devoted to the contributions of ions and water
to the total charge fluctuations.

5.1 Ionic contribution to the charge fluctuations
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Fig. 1 Static charge-charge structure factor Sqq(k) (see Eq. 7), including
only ions. The figure displays results from molecular dynamics (MD,
blue), Langevin dynamics (LD, yellow), and Brownian dynamics (BD,
red) simulations, for wave vectors ranging from the minimal value for the
box size of the MD simulations, kmin = 2π/Lbox, to 256kmin, corresponding
to wavelengths between 45.6 and 0.2 Å, as well as for kmin/2 in the LD
and BD case for which a larger simulation box was used. The results are
also compared with the prediction of PNP theory (see Eq. 26, dashed
line) and for an ideal gas (dashed-dotted line). The vertical dotted lines
indicate k = kmin and k = κD, the inverse Debye screening length.

Fig. 1 shows the static charge-charge structure factor Sqq(k) =
Fqq(⃗k, t = 0) for the various levels of description. For sufficiently
large k > 10 Å−1, corresponding to wavelengths shorter than the
ionic size (hence distances much shorter than the typical dis-
tance between ions), all results converge to the ideal gas result
Sqq(k) = 1. For sufficiently small k ≲ κD, the MD, LD and BD
results are similar and well described by the linearized mean-
field Debye-Hückel theory. Despite the limited accessible range
of wavevectors, the simulations seem to follow the corresponding
scaling as k2 (see Eq. 25), which reflects the screening of electric
fields by the ions (see also the discussion of the Stillinger-Lovett
conditions in Section 5.2). Nevertheless, Debye-Hückel theory is
not expected to be quantitative for relatively high salt concentra-
tions (typically, beyond 10−2 M) such as the one considered here.
This is evident for intermediate k, where even the results of im-
plicit solvent simulations are not recovered, suggesting the impor-
tance of ion-ion correlations, which may be both of electrostatic
and steric origin, in this range158,159. In addition, the BD results
also deviate from the MD ones. This highlights the (expected)
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shortcomings of the underlying implicit solvent model for lengths
scales comparable to the size of ions and water molecules.
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Fig. 2 (a) Dynamic charge-charge structure factor Sqq (⃗k,ω) (see Eq. 8),
including ions only, normalized by its initial value Sqq (⃗k,ω = 0), which is
reported in panel (b). Both panels show results from molecular dynamics
(MD, blue), Langevin dynamics (LD, yellow, in panel (a) only), and
Brownian dynamics (BD, red) simulations, for wave vectors ranging from
the minimal value for the box size of the MD simulations, kmin = 2π/Lbox,
to 256kmin, corresponding to wavelengths between 45.6 and 0.2 Å, as well
as for kmin/2 in the LD and BD case for which a larger simulation box was
used. (c) Dynamic charge-charge structure factor for k = 4kmin, from MD
and BD. The simulation results are also compared with the prediction
of Dynamical Density Functional Theory Eq. 33 (DDFT, dashed lines),
using the static structure factor Sqq(k) obtained in the corresponding
simulations in panels (b) and (c), or from Debye-Hückel theory (i.e. PNP,
see Eq. 28, black dotted line) in all panels. In panels (b) and (c), the
MD predictions are scaled by the appropriate ratio of number of atoms
for comparison with the other models (see text). Panels (a) and (b) also
show the prediction for the ballistic regime (Eq. 34, dashed-dotted line).
The vertical dotted lines in panel (b) indicate k = kmin and k = κD, the
inverse Debye screening length.

Fig. 2a then displays the charge-charge dynamic structure fac-
tor Sqq(k,ω) defined by Eq. 8, including ions only, as a function of
frequency ω and normalized by its initial value. The results are
shown from MD, LD and BD simulations for selected wave vectors
ranging from the minimal value for the box size of the MD simu-
lations, kmin = 2π/Lbox, to 256kmin, corresponding to wavelengths
between 45.6 and 0.2 Å. The MD predictions are scaled by the
appropriate ratio of number of atoms, 2NNaCl/(3Nwater +2NNaCl),
since these numbers enter in the definition of the charge-charge
dynamic structure factor (see Eq. 6). We also report the predic-
tions of PNP theory (Eq. 28) and, for the largest wavenumbers,
for the ballistic regime (Eq. 34).

For all wave vectors and levels of description, Sqq(⃗k,ω) decays
from its initial value to 0 for ω → ∞, but the crossover occurs
at higher frequencies for increasing k, reflecting a faster decor-
relation of the charge over shorter length scales. Furthermore,
the shape of the decay depends on k and on the level of de-
scription. For the largest k = 256kmin, the MD results follow the
Gaussian decay predicted by Eq. 34, without any adjustable pa-
rameter. This ballistic regime, expected when the wavelength is
shorter than the distance between ions and molecules, is not cap-
tured by the implicit solvent models. As k decreases, Sqq(⃗k,ω)

gradually changes toward a limiting curve (corresponding to the
k → 0 limit, even though it cannot be reached for a finite box
size), which displays a Lorentzian shape over a wide frequency
range. Some features of the MD results, especially at high fre-
quency, are not reproduced by the implicit solvent simulations,
which neglect the details of the short-time dynamics, modeled
only by the friction force. Nevertheless, LD and BD simulations
correctly capture the behaviour at lower frequency, both in terms
of shape and crossover frequency, which grows with increasing k.
This confirms the relevance of the choice of friction for LD and
BD, which was determined from the diffusion coefficients in MD
simulations, as explained in Section 4. Of course, since the time
step for BD is larger than in MD, the largest frequency that can be
sampled with such simulations does not reach that of the latter,
but they can be used to probe lower frequencies.

The Lorentzian decay predicted by PNP theory (Eq. 28) cor-

responds to the diffusion of charge over a distance 1/
√

k2 +κ2
D,

which grows with decreasing k and reduces in the limit k ≪ κD to
the Debye length λD ∼ 0.364 Å. The corresponding crossover fre-
quency of Dκ2

D, the inverse of the Debye time. The predictions are
in semi-quantitative agreement with the LD and BD simulations,
but the observed crossover frequency is slightly higher than the
one from simulations. Several factors can contribute to such a dis-
crepancy, in particular the fact that the static correlations between
ions are not well described at such a high salt concentration, as
discussed above. In addition, one should keep in mind that for the
high concentration considered here, the Debye length is shorter
than the ionic size, so that this is not the most relevant correla-
tion length61,62,158–165. From the more general DDFT approach,
Eq. 33, one predicts that the crossover frequency is given in the
k → 0 limit by limk→0 Dk2/Sqq(k), which reduces to Dκ2

D when the
free energy functional corresponds to Debye-Hückel theory.

The initial value of the dynamic charge-charge structure factor
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Sqq(⃗k,ω = 0) shown in Fig. 2b also illustrates many of the simi-
larities and differences between levels of description discussed so
far on the frequency-dependence. The BD simulations reproduce
correctly the MD results at small and large k but fail to capture
the intermediate range, where the maximum is rather well lo-
cated (close to κD) but underestimated. PNP theory also captures
these two limiting regimes and only qualitatively captures the BD
results in the intermediate range, with a maximum predicted at
k = κD but underestimated compared to BD. Introducing the static
structure factor Sqq(k) from BD in the DDFT result Eq. 33 signif-
icantly improves the predictions. This indicates that most of the
limitations of PNP theory follow from that of Debye-Hückel the-
ory to predict the structure at the relatively large concentration
considered here (see Fig. 1). In contrast, for MD it is not suffi-
cient to introduce Sqq(k) in Eq. 33 to recover Sqq(⃗k,ω = 0).

The same observations can be made for non-zero frequencies,
as illustrated for k = 4kmin = 0.55 Å−1 in Fig. 2c. BD correctly cap-
tures the high-frequency results of MD in the considered range
(below 1 THz, significantly lower than the upper range covered
in panel 2a), and the crossover frequency toward the ω → 0
value. The latter is underestimated by BD. PNP overestimates
the crossover frequency and underestimates the ω → 0 limit. In-
troducing the static structure factor from BD in Eq. 33 provides
a good description of Sqq(⃗k,ω), but the same procedure for MD
only partly improves the results, suggesting that other effects aris-
ing from the dynamic correlations related to the explicit solvent
are at play. Even though this is beyond the scope of this work,
it might be possible to capture part of these effects in more ad-
vanced DDFT relaxing in particular the assumption of a density-
independent mobility143, in BD simulations, e.g. by introduc-
ing hydrodynamic interactions166–168, or using other advanced
mesoscopic simulation techniques taking the coupling with hy-
drodynamic flows into account169–172, as well in analytical theo-
ries for transport in electrolytes14,28,145–147,173,174.

5.2 Ion and water contributions to the charge fluctuations

We now focus on the case of MD simulations with an explicit sol-
vent to analyze the contributions of ions and water to the charge-
charge dynamic structure factor. To that end, we split the charge
density in Eq. 5 into two sums over Na+ and Cl− ions (I) and
water oxygen and hydrogen atoms (W), respectively:

ρ̃q(⃗k, t) = ρ̃
I
q(⃗k, t)+ ρ̃

W
q (⃗k, t) . (36)

The charge-charge dynamic structure factor defined by Eqs. 6
and 8 can then be expressed as

Stot
qq (k,ω) = SI

qq(k,ω)+SW
qq(k,ω)+SIW

qq (k,ω) , (37)

corresponding to ion-ion, water-water and cross terms. Note that
the denominator in Eq. 6 is N, the total number of atoms, for all
three contributions to ⟨ρ̂q(⃗k, t)ρ̂q(−⃗k,0)⟩.

Fig. 3a and 3b report the total Sqq(k,ω) and the ion-ion and
water-water contributions for k = kmin and k = 64kmin, which are
representative of the k → 0 and k → ∞ regimes, respectively. The
cross-correlations, which are generally negative (see below) are

Fig. 3 Dynamic charge-charge structure factor for the MD simulations
with an explicit solvent as a function of frequency for k = kmin (a) and
k = 64kmin (b). Each panel shows the total Stot

qq (k,ω) in black, as well as
the contributions of ion-ion correlations, SI

qq(k,ω), in blue and of water-
water correlations, SW

qq(k,ω), in red (see Eq. 37).

not shown on this log-log scale, but can be inferred from the other
terms. For both the small and large k regimes, at high frequency
the total charge fluctuations correspond essentially to that of wa-
ter only, and the ion-ion and cross terms are negligible. In fact,
this observation holds for the whole frequency range at large k
(see also the discussion of Fig. 4c below for the ω → 0 limit).
This is not the case for k → 0: at low frequency, the ion-ion and
water-water contributions are similar and much larger than the
total Sqq(k,ω), which points to the importance of the cross term.

The significance of ion-water correlations is further illustrated
in Fig. 4a, which reports all contributions (as well as the total)
to the low frequency limit Sqq(k,ω → 0) as a function of k. For
k/2π ≲ 0.3 Å−1, the cross term is negative and almost compen-
sates the sum of the other two contributions, which are compara-
ble (Stot

qq ≪ SW
qq ≈ SI

qq). In the static limit, ion-ion interactions are
screened by the dielectric solvent and water is also dramatically
impacted by the presence of ions, both in their immediate vicin-
ity with the formation of solvation shells and at longer distances
due to the screening of the electric field by the ions, which mod-
ifies the dipolar (and higher-order) correlations between solvent
molecules. This static mutual screening can be captured with liq-
uid state theories, e.g. using integral equations175–178, or in the
“dressed ion” picture of Kjellander, who also emphasized the key
role of non-local electrostatics179–184.

The zero-frequency limit Sqq(k,ω → 0) is not the static charge-
charge structure factor, which corresponds to t = 0 rather than
ω = 0, but reflects the mutual screening of ions and water in
the presence of a static external electric field. In the (k,ω) → 0
limit, these correlations between the fluctuations of the polar-
ization due to water dipoles and ionic displacements (P⃗W and
the itinerant polarization P⃗I , respectively) are reflected in the
Stillinger-Lovett conditions185,186. Following Refs.65,87, these
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Fig. 4 Zero-frequency limit of the dynamic charge-charge structure factor
Sqq(k,ω → 0) for the MD simulations with an explicit solvent as a function
of k in log-lin scale (a) and log-log scale (b). Both panels show the total
Stot

qq in black, as well as the contributions of ion-ion correlations, SI
qq, in

blue and water-water correlations, SW
qq, in red (see Eq. 37). The cross

ion-water correlations, SIW
qq , are also reported in green in panel (a), while

panel (b) further shows the result for pure water (red dashed-dotted line).
Panel (c) shows the ratio between the contribution of ions and the total,
i.e. SI

qq(k,ω → 0)/Stot
qq (k,ω → 0). The vertical dotted lines in all panels

indicate k = kmin and k = 64kmin (considered in Fig. 3), as well as k = κD,
the inverse Debye screening length. The top and bottom horizontal lines
in panel (c) indicate the the square of the static permittivity ε2

s using the
value determined from the simulations at finite concentration (Eq. 35),
as well as the ratio (∑i∈I q2

i )/(∑i∈all q2
i ), respectively.

sum rules can be expressed as ⟨P⃗W · P⃗I⟩ = −⟨|P⃗W |2⟩ and ⟨|P⃗W |2⟩ =
⟨|P⃗I |2⟩ − 3ε0kBT/V . The results displayed in Fig. 4a show that
these (anti-)correlations between water and ions persist at finite
k corresponding to distances larger than the molecular sizes. Note
that in our analysis SIW

qq includes ion-water and water-ion terms,
which explains the factor of two with respect to the first sum rule.

Fig. 4b further shows the same results as panel 4a (except the
cross term) in log-log scale, and compares them to the results for
pure water. While the behaviour of water in the ionic solution
is similar to that of pure water for large k (probing length scales
similar or smaller than the intramolecular distances), its contri-
bution to Sqq(k,ω → 0) follows that of the ions for k → 0 (typi-
cally k ≲ κD). This again illustrates the above-discussed correla-
tions between water and ions fluctuations. In this small k regime,
SI

qq ≈ SW
qq, and the total Stot

qq , while much smaller, displays a similar
decay with k. As seen in Section 5.1, SI

qq(k,ω) is reasonably well

described in this regime by the implicit solvent model based on
the static permittivity εr of the pure solvent. While this is clearly
not sufficient to describe the charge fluctuations for larger k, one
may examine whether the total charge fluctuations in the limit
k → 0 and ω → 0 can be expressed from the sole contribution of
the ions. For example, in the static limit the electrostatic potential
or the field due to a point ion in a solvent can be expressed as that
of the bare ion divided by the permittivity, because the contribu-
tion of the solvent is (−1+ 1/εr) times that of the ion (see also
Eq. 14) – and almost cancels the latter for εr ≫ 1 as in the case of
water.

Fig. 4c reports the ratio between the contribution of ions and
the total charge-charge dynamic structure factor in the ω → 0
limit, i.e. SI

qq(k,ω → 0)/Stot
qq (k,ω → 0). For k → ∞, this ratio

converges to a plateau, consistent with the value expected by as-
suming that in this limit of infinitely short length scales only the
“self” term for each atom contributes to the product defining the
charge-charge structure factor (see Eq. 6), which results in a ra-
tio (∑i∈I q2

i )/(∑i∈all q2
i ) ≈ 0.04. More interesting is the opposite

limit k → 0, where the ratio SI
qq/Stot

qq seems to reach a plateau.
Since the ionic contribution is qualitatively well described in this
limit by the PNP result (see Fig. 2b), one can use Eq. 28 to esti-
mate the zero-frequency limit, which scales as κ

−4
D ∝ ε2

r . One can
therefore conjecture that this factor also corresponds to the ratio
between the bare contribution of the ions (in vacuum) and that
of the ions in solution, as explained above for the screened po-
tential. Fig. 4c also shows the plateau corresponding to ε2

s , with
the permittivity of the ionic solution εs = 53.0± 0.3 (obtained by
Eq. 35), smaller than that of the pure solvent by a factor consis-
tent with previously reported results at this concentration64,187.
Even though the range of k is limited by the finite size of the sim-
ulation box and the logarithmic scale does not allow to appreciate
the exact value of the plateau, the consistency with the numeri-
cal results supports the above discussion. We note that the latter
neglects the k-dependence of the static permittivity, i.e. non-local
electrostatic effects whose importance was highlighted by several
authors188–191. The possibility to analyze the contributions to
Stot

qq (k,ω) using molecular simulations can shed light on how to
improve continuum descriptions not only of the static permittiv-
ity, but also on its dynamic response.

6 Conclusions
We have illustrated the role played by electric fluctuations in a
number of experiments, which probe various observables that
all reflect the same underlying dynamics of ions and solvent
molecules. The microscopic fluctuations of the charge are en-
coded in the charge-charge intermediate scattering function or
the charge-charge dynamic structure factor, Sqq(k,ω). While
these quantities cannot be measured directly as a function of the
wavenumber and time or frequency, many observables can be ex-
pressed as special cases (k → 0 for the macroscopic limit, ω → 0
for the static limit) or as integrals over modes that depend on the
property of interest. In this work, we illustrated this on a few
examples to highlight the relevance of combining seemingly un-
related experiments that provide complementary windows on the
microscopic charge fluctuations.
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We discussed several theoretical approaches to model the dy-
namics of charge fluctuations in electrolytes, and presented new
simulation results with both explicit and implicit solvent mod-
els for a ≈ 1 M aqueous NaCl. As expected for this rather high
concentration, the linearized Poisson-Nernst-Planck theory can-
not predict quantitatively the charge-charge dynamic structure
factor over the whole wavenumber and frequency range. Nev-
ertheless, it captures the main features for the small k and ω

regimes. The predictions for the Sqq(k,ω) in the intermediate k
range can be significantly improved by introducing the static cor-
relations obtained from Langevin or Brownian dynamics in the
more general result of Dynamic Density Functional Theory Eq. 33.
This suggests that the main limitation of linearized PNP is the cor-
responding free energy functional and not the description of dy-
namics itself in the considered case. However, the implicit-solvent
simulations neglect other important features related to the sol-
vation of ions by the molecular solvent (at large k and ω) and
hydrodynamic couplings between ions via the solvent (at small
k and ω). This is reflected in the fact that introducing the static
correlations from molecular simulations in the DDFT result is not
sufficient to quantitatively predict the dynamic structure factor.

Finally, we analyzed with molecular dynamics simulations the
contributions of ion-ion, water-water and ion-water correlations
to the total charge-charge dynamic structure factor. Even at this
relatively high concentration, Sqq(k,ω) is dominated by water for
all frequencies for large k, as well as for high frequency at all k.
In contrast, for small k and ω the total Sqq(k,ω) is much smaller
than both the ion and water contributions, which are compara-
ble, due to the strong negative correlation between them. We
discussed these results in the general context of screening, such
as exact sum rules (Stillinger-Lovett conditions) in the (k,ω)→ 0
limit arising from the mutual influence of ions and water. These
correlations are here shown to persist for finite wavenumbers cor-
responding to distances larger than the molecular sizes. They fur-
ther suggest that in the (k,ω) → 0 limit, it remains possible to
relate the total Sqq(k,ω) to the ion contribution only, with a scal-
ing factor involving the static permittivity, thereby making the
link with the PNP-like description. The possibility to analyze the
contributions to Stot

qq (k,ω) using molecular simulations can shed
light on how to improve continuous descriptions not only of the
static permittivity, but also on its dynamic response.

The examples developed in the present work are mainly related
to dielectric spectroscopy and impedance measurements, even
though NMR relaxation provides an illustration of a very different
type of experiments. They are but a few of the many possibilities
mentioned to obtain information on the microscopic dynamics of
charges in ionic fluids – which extend well beyond the important
case of aqueous electrolytes. In particular, the cross-correlations
between charge and other properties such as mass or momentum
can be probed in electrokinetic/electroacoustic experiments, and
are related to the electrostatic contribution to the friction exerted
on the ions90,110, while specific information can be obtained us-
ing other experiments such as quasi-elastic neutron scattering, to
which hydrogen atoms contribute significantly. We hope that the
present transverse perspective on the dynamics in ionic fluids will
motivate experts of different experimental techniques to combine

their complementary views on the same systems.
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