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ABSTRACT
Bayesian Optimization (BO) is a class of black-box, surrogate-based
heuristics that can efficiently optimize problems that are expensive
to evaluate and therefore allow only small evaluation budgets. Re-
gardless of the size of the budget, high dimensionality also poses a
challenge to BO, whose performance reportedly often suffers when
the dimension exceeds 15 variables. Many new algorithms have
been proposed to address this problem. However, it is not well
understood which one is the best for which optimization scenario.

In this work, we compare five state-of-the-art high-dimensional
BO algorithms, with vanilla BO and CMA-ES on the 24 BBOB func-
tions of the COCO environment at two dimensionalities, 10 and 60
variables. Our results confirm the superiority of BO over CMA-ES
for limited evaluation budgets and suggest that the most promising
approach to improve BO at high dimensionality is the use of trust
regions. However, we also observe significant performance differ-
ences for different function landscapes and budget exploitation
phases, indicating improvement potential, e.g., through hybridiza-
tion of algorithmic components.

KEYWORDS
Black-box optimization, Bayesian Optimization, High-dimensional
Bayesian Optimization, Benchmarking

1 INTRODUCTION
One of the most commonly used surrogate-based optimization
methods is Bayesian Optimization (BO) [6]. Through careful mod-
eling based on Gaussian process regression (GPR) and intelligent
search for candidate solutions through the optimization of an acqui-
sition function, BO algorithms can deliver impressive optimization
performance even with small evaluation budgets. However, when
the dimensionality of the problem exceeds 15 variables, the perfor-
mance of BO deteriorates due to the so-called curse of dimensionality.
Scaling BO to higher-dimensional spaces is challenging due to its
high statistical and computational complexity: the number of points
queried to satisfactorily cover the search space increases exponen-
tially with dimension, and optimizing the acquisition function re-
quires more and more computational power, being a non-convex
optimization problem on the same design space itself.

Related work: In recent years, characterized by increasingly
complex systems and large and high-dimensional data, great efforts
have been made to extend BO to higher dimensions, and various
strategies have been proposed. According to [2], these are mainly
based on (but not limited to) one of the following methods: Variable

selection, additive models, linear and nonlinear embeddings, and
trust regions. All of these strategies have advantages and disadvan-
tages [2], and it is not clear which one is best for which optimization
scenario. In Sec. 2 we discuss these categories further and give some
examples. However, for a more comprehensive overview, we refer
the reader to available reviews [2, 10], even though they are purely
informative and lack an experimental study comparing the meth-
ods. Comparative studies have also been conducted to present new
algorithms such as SMAC [8], TuRBO [5], SAASBO [4], etc., but
they are either outdated or limited to showing the potential of the
proposed algorithm rather than presenting a comprehensive and
unbiased performance comparison. Our work aims to fill this gap.

Disclaimer: In line with [2] we refer to the setting with dimen-
sion 60 as high-dimensional, even if BO-approaches for problems
with several thousands of variables have been studied [14].

Our contribution: In this article, we present the results of a
benchmarking study that follows the standardized, well-established
guidelines for unbiased performance comparison in numerical
black-box optimization. With the goal to obtain a first overview
over which high-dimensional BO (HDBO) approaches to favor for
which problem characteristics, we benchmark five BO variants that
are specifically designed for high-dimensional, low-budget opti-
mization problems with two standard solvers, vanilla BO and the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES).

To obtain interpretable results, we focus on the 24 functions
of the Black-Box Optimization Benchmarking (BBOB) suite from
the COCO benchmarking environment [7] and compare algorithm
performance for small evaluation budgets. Key findings from our
experiments are that (1) Vanilla BO performs better than CMA-ES
for small dimensions and low budget, (2) many of the algorithms
that aim to scale BO to higher-dimensional spaces outperform
vanilla BO and CMA-ES, and (3) among the compared algorithms,
the BO variant using trust regions performs particularly well on a
large number of function, dimension, and budget combinations.

Reproducibility: Our code for reproducing the exper-
iments is available on GitHub, in the public repository
IOH-HDBO-Comparison1. The project data is also available for inter-
active analysis and visualization on the IOHanalyzer platform [12]
as ‘HDBO’ dataset.

1 https://anonymous.4open.science/r/IOH-Profiler-HDBO-Comparison-ECF8
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2 HIGH-DIMENSIONAL BAYESIAN
OPTIMIZATION

BO is a sample-efficient framework for the global optimization of
expensive-to-evaluate black-box functions. It involves two main
components: a method for statistical inference, usually a GPRmodel,
and an acquisition function to sample new points. Both compo-
nents become more complex as the dimensionality of the problem
increases. Here, we test and compare algorithms representing the
main categories of algorithms for solving the problem of high dimen-
sionality in BO: Variable selection, additive models, linear embed-
dings, nonlinear embeddings, and trust regions [2]. Each category
has advantages and disadvantages, and the performance is often in-
fluenced by the available evaluation budget and problem structure.
For example, the first two categories assume an underlying struc-
ture on the objective function, e.g., intrinsic lower dimensionality
or additive structures, i.e., a decomposition of the objective function
into a sum of lower-dimensional components. In the selection of the
algorithms, we prefer the most recent ones, namely those that pro-
vide a Python implementation. For the variable selection approach,
we focus on Sparse Axis Aligned Subspace Bayesian Optimiza-
tion (SAASBO) [4]. Among the algorithms that use additive mod-
els, we analyze Ensemble Bayesian Optimization (EBO) [13].
Among the linear and nonlinear embeddings approaches, we focus
on PCA-assisted Bayesian Optimization (PCA-BO) [11] and
Kernel PCA-assisted Bayesian Optimization (KPCA-BO) [1],
respectively. For trust-region-based approaches, we consider Trust
Region Bayesian Optimization (TuRBO) [5].

3 EXPERIMENTAL SETUP
We compare algorithms on the 24 functions of the BBOB suite using
their definition from IOHprofiler [3]. The BBOB functions on which
we base our evaluation are divided into five groups: separable func-
tions (f1-f5), functions with low or moderate conditioning (f6-f9),
functions with high conditioning and unimodal structure (f10-f14),
multimodal functions with appropriate global structure (f15-f19),
and multimodal functions with weak global structure (f20-f24). The
problems belonging to the last two groups are most representative
of real-world problems, as they have a more complex landscape
characterized by high nonlinearity and roughness, with multiple
peaks or valleys. For each function, we consider dimensions 10
and 60. For dimension 60, we did not run complete experiments
for some algorithms due to time and memory constraints. Thus,
we performed 10 independent runs of each algorithm on the first
3 instances (instance ID 0-2) of the 24 BBOB functions, with the
following exceptions for D = 60: (1) We did not run experiments at
all with SAASBO, because the algorithm requires about 1 week to
complete a single run and a large amount of memory; (2) for EBO,
we only have results for functions f15-f24, because the algorithm
requires about 2 weeks for a run.

We compare the HDBO algorithms with a vanilla BO and a de-
fault CMA-ES. The general settings of the experiments follow. For
each run, the total evaluation budget is set to 10 × 𝐷 + 50 function
evaluations. For BO-based algorithms, the initial DoE size is set to𝐷 .
By default for the BBOB suite, the domain is set to [−5, 5]𝐷 . For each
algorithm introduced in Sec. 2, we use default settings for their hy-
perparameters. The implementation of vanilla BO is taken from the

Python module scikit-learn2, choosing Expected Improvement
(EI) as the acquisition function and a noise level equal to 0.01. The
implementation for CMA-ES is the one in the pycma package, avail-
able from the GitHub repository pycma3. The code for SAASBO is
taken from the GitHub repository saasbo4. The EBO code is taken
from the GitHub repository Ensemble-Bayesian-Optimization5,
but we redefine the acquisition function as the EI, because the
default implementation uses a global minimum value that is as-
sumed to be known, while we assume that it works in a complete
black-box scenario. We compare two different implementations
of EBO: EBO and EBO_B. They differ for the value of the hyper-
parameter 𝐵 that represents the number of query points selected
at each iteration. We use 𝐵 = 1 and 𝐵 = 10, respectively. To use
the same total budget, EBO_B runs for budget/10 iterations. The
code for PCA-BO and KPCABO is taken from the GitHub repos-
itory Bayesian-Optimization6. The TuRBO code is taken from
the GitHub repository TuRBO7. In our experiments, two different
implementations of TuRBO are compared: TuRBO1 and TuRBOm.
They differ in the number of trust regions used by the algorithm:
𝑡𝑟 = 1 and 𝑡𝑟 = ⌊𝐷/5⌋, respectively, where 𝑡𝑟 denotes the number of
trust regions and ⌊·⌋ denotes the floor function. The code to run the
experiments is a modular framework compatible with IOHprofiler.
It is available on GitHub in the repository IOH-HDBO-Comparison.
We used Python post-processing libraries to present our results.

4 RESULTS
Dimension D = 10. Fig. 1 compares the convergence behavior of all
algorithms at dimension 10, on all BBOB functions from f1 to f24. For
a small evaluation budget, vanilla BO always performs better than
CMA-ES, as we can see in particular on f2-f4, f12, and f19. However,
at the end of the budget, CMA-ES outperforms or is comparable to
vanilla BO in many cases. Overall, we see a good performance of
vanilla BO, which is due to the still low dimensionality. BO is always
among the best or at least comparable to the other algorithms, with
a few exceptions, reaching a particularly good performance on f5,
f6, f22, and f24. In Fig. 1, algorithm performance is not stable across
functions. However, SAASBO and TuRBO tend to predominate.
Specifically, TuRBO finds excellent loss values on f2, f3, f13, f14, f16,
f18, f20, and f22 (here together with SAASBO). Stagnation at a very
low budget is a common behavior of linear PCA-BO, KPCA-BO, and
both EBO and EBO_B (f1, f5, f6, and f20-f22). Finally, if we focus on
f5 (linear slope), we can observe the extremely good performance
of BO and SAASBO, which are able to immediately find the global
optimum due to the unimodal and monotonic landscape of this
function (this observation also holds for D = 60).

After computing the CPU time in seconds to complete the entire
run, we can also claim that SAASBO is the most expensive strategy
in terms of total CPU time with an average of 5284.51 seconds. The
two versions of TuRBO are the fastest, TuRBO1 has an average of
9.80 seconds and TuRBOm of 35.49 seconds. They are followed by
EBO_B (843.03 s), linear PCA-BO (115.59 s), and vanilla BO (168.01

2 https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
3 https://github.com/CMA-ES/pycma
4 https://github.com/martinjankowiak/saasbo
5 https://github.com/zi-w/Ensemble-Bayesian-Optimization
6 https://github.com/wangronin/Bayesian-Optimization
7 https://github.com/uber-research/TuRBO
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Figure 1: The best-so-far target gap for dimension 10.

s). From the analyses of convergence and CPU time at 10D, TuRBO1
and TuRBOm seem to perform best.

Dimension D = 60. Fig. 2 compares the convergence behavior
of the algorithms at dimension 60 for all BBOB functions from
1 to 24. Due to computational constraints, some algorithms are
missing, as explained in Sec. 3. The figure demonstrates how BO
suffers from a lower convergence rate at high dimensionality. In all
cases except for f5, here better convergence capabilities of CMA-ES
are evident. BO suffers from premature stagnation, which is due
to its higher computational complexity at dimension 60. We can
observe the same behavior for some HDBO methods, such as EBO
and, in some cases, linear and kernel PCA-BO. The performance
of BO decreases even on f24, where it was the best solver at D =
10. Both versions of TuRBO show very good performance for f1,
f13, f21, and f22, and there is a statistically significant difference
between them and the other algorithms, which is confirmed by a
Wilcoxon signed-rank test. Moreover, TuRBO is the only algorithm
that continues to improve as the number of evaluations increases,
while the other algorithms stagnate easily. Finally, we note that the
difference in performance between TuRBO1 and TuRBOm becomes
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Figure 2: Best-so-far target gap for dimension 60.

clearer (f2, f3, f8, f10, f16, f20), which suggests the use of just one
trust region for high-dimensional problems. Nonetheless, we can
observe an interesting performance of PCA-BO and KPCA-BO on
f9, f11, f18-f20, and f24, where they either rank first or show initial
speedups that make them good candidates for high-dimension/low-
budget optimization problems. EBO and EBO_B perform poorly.
We attribute this to the choice of their hyperparameters as the
default ones, which might not be ideal for the function landscapes
addressed in this study. As for the CPU time to complete the entire
run, EBO (732050.72 s) and KPCA-BO (145660.00 s) are the most
expensive, while TuRBO1 (874.75 s) is significantly faster than the
other algorithms, followed by TuRBOm (5297.99 s).

Further Discussion. For an in-depth comparison, we also
present in Fig. 3 the convergence evolution of the algorithms com-
pared on f24 at dimension 60, by freezing it at two different budgets:
200 and 600 evaluations. The figure gives an idea of the ranking
of the algorithms in different phases of the optimization runs and
clearly shows in which context one of the algorithms is preferable
to the others. For a limited budget, Fig. 3 (left) shows that linear
PCA-BO and KPCA-BO find the lowest loss values. We attribute this
to their better ability to find good solutions in a lower-dimensional
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Figure 3: Violin plots showing loss values at two different
budgets (200 and 600 function evaluations) for function 24.

manifold of the original search space. However, this often drives the
search towards local optima. At the end of the run, we observe in
Fig. 3 (right) that linear PCA-BO and KPCA-BO are outperformed by
TuRBO1 and TuRBOm, which better balance between exploration
and exploitation of the domain by using dynamic trust regions and
multiple restarts. Based on the Wilcoxon signed-rank test, these
results are statistically significant.

Therefore, based on the analysis, we believe that it would be in-
teresting to explore the possibility of merging the concepts behind
PCA-BO and TuRBO, by building local low-dimensional embed-
dings. In this way, one can benefit from both the flexibility of the
trust regions and the lower complexity of the manifolds with re-
duced dimension. We leave this to our future research.

5 CONCLUSION AND FUTURE PERSPECTIVES
We conducted an experimental study comparing the performance of
vanilla BO, CMA-ES, and five BO-based (HDBO) algorithms on the
24 noiseless BBOB functions in dimensions 10 and 60. Our results
confirm good performance of BO in the 10D case. But this perfor-
mance deteriorates as the dimensionality of the problem increases
to 60D. Here, CMA-ES performs better, especially for larger budgets.
However, the average observed performance of CMA-ES is worse
than that of the HDBO algorithms. Although we observe different
performances for different function landscapes and budget utiliza-
tion phases, TuRBO seems to be the most promising algorithm,
both in terms of convergence trend and CPU time. However, linear
PCA-BO and KPCA-BO also show potential for small evaluation
budgets, with fast convergence towards a near-optimal solution.

Further work is planned to develop a hybrid algorithm combin-
ing linear PCA-BO and TuRBO. This algorithm could avoid the
stagnation of linear PCA-BO by using restarts and trust regions,
while still benefiting from a linear, low-dimensional embedding.
This could lead to a very competitive algorithm for optimizing ex-
pensive black-box functions at high dimensionality. In addition,
we aim to create a modular framework that allows for choosing
a convenient strategy for the different optimization phases. The
choice of modules would concern the model fitting, the acquisi-
tion function (AF), the optimizer to search the AF, the use of trust
regions, etc. We also found that the poor performance of some algo-
rithms, especially EBO, could be due to poor initialization of their
hyperparameters. Therefore, we plan to investigate how the inves-
tigated algorithms could benefit from a dedicated hyperparameter
optimization [9]. We expect that these results could significantly
change the comparison of HDBO algorithms, since some of them

were not specifically designed for general optimization scenarios,
but rather for applications in machine learning.
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