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Abstract 33 

Recent developments in predicting and interpreting seismoelectric signals suggest a great potential 34 

for studying near-surface hydrogeological properties, particularly in the vadose zone. Previous 35 

studies have revealed that the seismoelectric spectral ratios obtained from earthquake-triggered 36 

seismoelectric data contain valuable hydrogeological information concerning porous media (e.g., 37 

permeability, porosity, fluid viscosity, and salinity). This study introduces Multi-Channel 38 

SeismoElectric Spectral Ratios (MC-SESRs) by considering an active seismic source acting on the 39 

ground surface. The frequency- and saturation-dependent excess charge density is adopted to 40 

calculate the cross-coupling coefficients. Applying a supervised learning task based on a flat neural 41 

network, the so-called “broad learning” model, to map and extract the features of MC-SESRs data, 42 

we seek to determine the permeability and the water table depth. Our results indicate that (1) MC-43 

SESRs are sensitive to the water table depth and permeability; (2) using more traces of SESRs data 44 

for inversion can increase accuracy; (3) the changing water table can be rapidly determined by the 45 

MC-SESRs by resorting to the broad learning inverse model, and it can attain an excellent accuracy 46 

while disturbed by data noise and misspecified model parameters (e.g., porosity and permeability) 47 

with errors of up to 20%. The proposed MC-SESRs inversion has potential applications for non-48 

invasive monitoring in shallow porous media (e.g., frost thawing and geothermal upwelling). 49 

Plain Language Summary 50 

A seismic source acting on the ground or occurring in porous materials containing water will 51 

generate seismic and electromagnetic field waves. The spectral ratios between the electric field 52 

and the seismic field are defined as SeismoElectric Spectral Ratios (SESRs), which are sensitive 53 

to physical properties’ contrasts at layer boundaries (e.g., water table and hydrogeological and/or 54 

lithological layer boundaries). Applying SESRs to reconstruct hydrogeological parameters 55 

eliminates the need to know the seismic source function, which greatly facilitates quantitative 56 

interpretation. However, SESRs are often acquired by natural earthquakes in previous studies. It 57 

limits interpreting SESRs to one-trace data. This study uses an active seismic source to obtain the 58 

Multi-Channel SESRs (MC-SESRs). We conduct several experiments on synthetic MC-SESRs 59 

data by using a neural network to obtain water table depths and permeabilities for a layered Earth 60 

model. Our results show that the trained neural network can instantly predict the time-variant water 61 

table depths accurately. This study indicates that the quantitative interpretation of MC-SESRs data 62 
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allows for effective and rapid characterization of near-surface hydrogeological properties and also 63 

provide a possible approach for the non-invasive monitoring of hydrogeological variations in 64 

shallow porous media by using controllable source. 65 

 66 

Keywords Hydrogeophysics; Seismoelectric coupling; Vadose zone; Water table monitoring; 67 

Seismoelectric spectral ratios; Broad learning 68 

1. Introduction 69 

In porous media, the surface of the solid grains (e.g., silicate minerals) is typically 70 

negatively charged due to fluid-mineral interactions (Glover & Jackson, 2010; Hunter, 1981; Revil 71 

et al., 2015). Considering the electrical double layer (EDL) model at the microscopic scale (1 - 10 72 

nm) (Figure 1a), a portion of the counterions (cations for negatively charged mineral surfaces) 73 

coats the interface between the mineral surface and pore fluid forming the Stern layer while the 74 

remaining excess charges are distributed in the diffuse Gouy-Chapman layer (Glover & Jackson, 75 

2010; Revil & Jardani, 2013). There is a shear plane in the diffuse Gouy-Chapman layer, beyond 76 

which the pore fluid and ions can move relative to the solid frame. As shown in Figure 1b, the 77 

electrical potential at the shear plane is defined as the Zeta potential (Hunter, 1981; Jougnot et al., 78 

2020). The Zeta potential is commonly used to estimate the electrokinetic coupling coefficient, 79 

which characterizes the relationship between electrical and hydraulic potential differences 80 

associated with fluid flow within a porous medium (Hunter, 1981). Note that all acronyms used in 81 

this paper are listed in Table A1 of Appendix A. 82 

Relative motions occur during the passage of seismic wavefields. Due to the electrokinetic 83 

effect, this process may generate streaming currents and natural electric fields (Pride, 1994; Revil 84 

et al., 2015; Revil & Linde, 2006). This process is commonly called seismoelectric (SE) 85 

conversion. The SE signals contain valuable information concerning the physical properties of 86 

both the pore fluid and the solid skeleton. The SE method can be used to determine 87 

hydrogeological properties provided the data measured on the ground surface or in boreholes are 88 

properly interpreted (Revil et al., 2012). During the past two decades, the SE method has seen 89 

significant development through (1) theoretical studies (e.g., Huang, 2002; Jougnot & Solazzi, 90 

2021; Monachesi et al., 2018; Solazzi et al., 2022; Thanh et al., 2022), (2) numerical modeling 91 

approaches (e.g., Garambois & Dietrich, 2002; Grobbe & Slob, 2016; Haines & Pride, 2006; Hu 92 
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& Gao et al., 2011; Jougnot et al., 2013; Ren et al., 2016a, b; Zheng et al., 2021), (3) physical 93 

laboratory experiments (e.g., Bordes et al., 2015; Devis et al., 2018; Wang et al., 2020; Zhu & 94 

Toksöz, 2013), and (4) field measurements (e.g., Butler et al., 2018; Dupuis & Butler, 2006; 95 

Garambois & Dietrich, 2001; Rabbel et al., 2020; Thompson & Gist, 1993). As the understanding 96 

of SE signals grows, this method is of increasing interest to researchers in near-surface geophysics 97 

(e.g., Grobbe et al., 2020). The electromagnetic (EM) wave fields originating from seismic 98 

excitations are regarded as a superposition of three types of patterns (Figure 1c): (1) localized SE 99 

field waves accompanying seismic waves in porous media, which are also commonly referred to 100 

as coseismic electric field waves (Bordes et al., 2015; Jougnot et al., 2013; Pride & Garambois, 101 

2002); (2) radiation waves induced on interfaces or directly converted from a seismic source 102 

(Dupuis et al., 2007; Haartsen & Pride, 1997; Garambois & Dietrich, 2002; Pride & Haartsen, 103 

1996) and (3) evanescent waves generated on interfaces if the seismic incident angle is larger than 104 

the critical angle (Butler et al., 2018; Dzieran et al., 2019; Ren et al., 2016a; Yuan et al., 2021; 105 

Zheng et al., 2021). The generation of interfacial radiation and evanescent SE waves results from 106 

property contrasts at an interface (Garambois & Dietrich, 2002; Ren et al. 2016a, b). Interfacial 107 

radiation SE waves and evanescent SE waves offer a way to examine permeability or porosity 108 

contrasts (Dzieran et al., 2019, 2020), parameters determining the soil moisture characteristic 109 

(Zyserman et al., 2017), strong saturation contrasts such as the water table (Bordes et al., 2015; 110 

Warden et al., 2013), and other parameters (e.g., Archie’s parameters, density, bulk, and shear 111 

modulus).  112 
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 113 

Figure 1. Schematic illustration of the generation of electromagnetic waves by seismoelectric 114 

conversion. (a) and (b) Electrical double layer and the corresponding electrical potential 115 

distribution. (c) Generation of localized, interfacial radiated, and evanescent electromagnetic 116 

wavefields due to an active seismic source. 117 

Based on numerical simulation studies, Ren et al. (2016b) put forward the idea that 118 

evanescent SE waves could be the main contribution to EM signals observed during earthquakes. 119 

This idea was later adopted by Dzieran et al. (2019) to investigate earthquake-triggered SE signals 120 

in data from Northern Chile. They show that the SeismoElectric Spectral Ratios (SESRs), defined 121 

as the ratios between the absolute values of the electric field and the seismic acceleration in the 122 

frequency domain, have a site-specific frequency dependence with a decreasing amplitude with 123 

increasing frequency. Dzieran et al. (2019) explain this trend by the fact that the amplitudes of 124 

evanescent SE waves decay approximately with exp(−ωpΔz), where ω is the angular frequency, p 125 

is the EM wave slowness, and Δz is the separation in depth between the receiver and the interface 126 

(Ren et al. 2018). Dzieran et al. (2019, 2020) successfully apply the SESRs to interpret shallow 127 

layered porous media's porosity and fluid salinity. However, Dzieran et al. (2020) state that the 128 
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SESRs are less sensitive to permeability variations. Inspired by Dzieran et al. (2019, 2020), this 129 

study extends the applications of SESRs data in several ways. 130 

First, we change the strategy of calculating the SE coupling coefficient. Dzieran et al. 131 

(2019, 2020) calculate the electrokinetic coupling coefficient defined by Pride (1994), accounting 132 

for the Zeta potential. Instead, we rely on the effective excess charge density to calculate the 133 

electrokinetic coupling coefficient (e.g., Revil & Mahardika, 2013; Revil et al., 2015). Both in 134 

saturated and partially-saturated conditions, the effective excess charge density is highly correlated 135 

with permeability (Guarracino & Jougnot, 2018; Jougnot et al., 2020; Soldi et al., 2019). At low 136 

frequencies, the ratio of the effective excess charge density at partial water saturation to the excess 137 

charge density at full saturation is proportional to the reciprocal of water saturation under the 138 

assumption of a thick EDL model (Linde et al., 2007a; Revil et al., 2007). To account for frequency 139 

dependence, we adopt an approximate empirical formulation by using the relaxation time to relate 140 

the quasi-static to dynamic electrokinetic coupling coefficient proposed by Revil & Mahardika 141 

(2013), which has been tested by experimental measurements and other approaches (Jougnot & 142 

Solazzi, 2021).  143 

Second, we consider the case of having both the seismic source and sensors located near 144 

the ground surface, which is very common in active-source SE field measurements (e.g., Butler et 145 

al., 1996, 2018; Dupuis et al., 2007; Garambois & Dietrich, 2001; Mikhailov et al., 1997; 146 

Thompson & Gist, 1993). Three-dimensional SE forward modeling algorithms using the 147 

reflectivity method (e.g., Garambois & Dietrich, 2002; Grobbe & Slob, 2016; Haartsen & Pride, 148 

1997; Ren et al., 2007, 2010) to calculate full waveform simulations for layered media suffer from 149 

highly time-consuming computations when the source and receivers both lie very close to surface. 150 

As the computation of full waveforms relies on numerical integration in the wavenumber domain, 151 

the integrand oscillates strongly with the wavenumber when the depth difference between the 152 

source and the receiver is small, which may cause a slow convergence. Zheng et al. (2021) solved 153 

this convergence problem by adopting the peak-trough averaging method (Zhang et al., 2001, 154 

2003), which selects peak and trough values in a stably oscillating sequence to apply the repeated 155 

average method (Dahlquist & Björck, 1974). Hence it offers an accurate and efficient tool for 156 

active-source SE forward modeling. This allows us to deal with any source-receiver geometries, 157 

particularly ground-based seismic sources. The Amplitude Variation versus Offset (AVO) method 158 

based on multi-channel observation has been widely applied in oil and gas exploration (Rutherford 159 
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& Williams, 1989). Multi-channel measurements can also be implemented in SE field experiments 160 

for stratified sediments. For example, Butler et al. (2018) presented that the multi-channel high-161 

resolution EM field data, illustrating multiple modes of SE signals, providing information on 162 

subsurface porous materials complementary to that provided by multi-channel seismic reflection 163 

data. Moreover, Rabbel et al. (2020) document the potential of using the interfacial SE responses 164 

to map the water table by comparing the multi-channel SE measurements with other geophysical 165 

measurements, such as ground-penetrating radar and traditional seismic recordings. Inspired by 166 

AVO and SESRs, we propose a Multi-Channel SESRs (MC-SESRs) method that, in addition to 167 

frequency variations, makes use of the variations of SESRs with respect to the source-receiver 168 

offsets. Thus, we can use more spatial information of SESRs data in the inversions and obtain an 169 

improved reconstruction accuracy. 170 

Third, the SESRs are determined by different parameters in different complicated non-171 

linear ways. For example, the water table variations affect the water saturation distribution, which 172 

determines the effective permeability (e.g., Mualem, 1976; van Genuchten, 1980), the permittivity 173 

(e.g., Linde et al., 2006), the electrical conductivity, the electrokinetic coupling coefficient (e.g., 174 

Warden et al., 2013; Revil & Mahardika, 2013; Zyserman et al., 2017), the bulk density, the elastic 175 

moduli, the seismic velocity (e.g., Mao et al., 2022; Solazzi et al., 2021) and so on. Dzieran et al. 176 

(2019) mentioned that inverse modeling of SESRs may need a more advanced approach compared 177 

to the conventional linearized inversion algorithm used in their work. Machine learning, which is 178 

enjoying increasing interest in geophysics, may offer a corresponding option.  179 

In this study, we rely on the broad learning (BL) model to invert hydrological parameters 180 

using MC-SESRs data. The BL system proposed by Chen and Liu (2017) is a flat neural network 181 

with a single lateral layer neural network, in contrast to deep structured neural networks. It is 182 

developed from the Random Vector Functional Link Neural Network (RVFLNN) (Pao et al., 1994) 183 

to apply an enhancement layer to link the input and output. Broadly expanding the enhancement 184 

nodes may enhance the capacity to approach non-linear problems. It only needs to learn the matrix 185 

weights of the link between the enhancement layer and output. Other matrix weights are randomly 186 

generated. Thus, the RVFLNN is a flat net without hidden layers, which avoids overtraining the 187 

neural network with many adjustable hyperparameters (Pao et al., 1994). Correspondingly, the BL 188 

structure improves the RVFLNN by adding a mapping feature layer to replace the original input 189 

based on the sparse autoencoder. Hence the BL structure first captures the features of input data in 190 
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the mapping feature layer. Since the BL network structure is fixed, its main advantage is that it 191 

avoids elusive complicated deep architectures and iterative training processes (Gong et al., 2022). 192 

Its efficient capacities for processing noisy time series and text classifications have been verified 193 

(Chen & Liu, 2017; Du et al., 2020; Feng et al., 2019; Gong et al., 2022). 194 

Most recently, Yang et al. (2022, 2023) applied the BL neural network to Rayleigh wave 195 

inversion. Considering a 1-D Earth model, Yang et al. (2022) examined the thickness and shear-196 

wave velocity ranges of each layer by the well-trained BL neural network. Then they used the 197 

optimal ranges as the search space of a Bayesian approach to complement the parameter 198 

optimization. Their results indicated that this two-stage approach can provide more accurate shear-199 

wave velocity models than without using a priori search space estimated by a BL model. Yang et 200 

al. (2023) also verified that using the BL approach to Rayleigh wave inversion may achieve a 201 

comparable accuracy but consume less training time than deep convolutional neural networks. In 202 

this study, we aim to determine hydrogeological parameters (water table depth and shallow layer 203 

permeabilities) under partially-saturated conditions by MC-SESRs data. For a specific investigated 204 

area whose layered structure had been determined, the well-trained BL model can, if fed with MC-205 

SESR data, estimate the water table depth and update the permeability in the shallow layer in a 206 

quasi-instantaneous manner. Due to its high training efficiency, BL can easily be retrained to 207 

optimize the network when more MC-SESRs data is obtained. This study may provide a new 208 

monitoring strategy for obtaining the water table depths using the time-lapse MC-SESRs data. It 209 

also has the potential application in long-term observations for assessing groundwater storage and 210 

monitoring volcanic activities. 211 

This paper is structured as follows. Section 2 describes the basic SE coupling equations, 212 

numerical simulation of the SE data, and our inversion framework. Section 3 focuses on analyzing 213 

the sensitivity of permeability and depth of water table (dwt) to MC-SESRs. Section 4 tests the 214 

performance of the BL neural network and presents the inversion results. Section 5 discusses the 215 

inversion results, and we provide conclusions in Section 6. 216 
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2. Methodology 217 

2.1. Cross-coupling equations 218 

For fluid-saturated isotropic porous media, the cross-coupled constitutive transport 219 

equations, including macroscopic Ohm’s and Darcy’s Law, can be expressed in the frequency 220 

domain through the following governing equations (Pride, 1994; Pride & Haartsen, 1996; Revil & 221 

Mahardika, 2013):  222 

 𝐉 =  𝜎∗(𝜔)𝐄 + 𝐿∗(𝜔)(−𝛁𝑝f + 𝜔2𝜌f𝐮s), (1) 

 −𝑖𝜔𝐰 = 𝐿∗(𝜔)𝐄 +
𝑘∗(𝜔)

𝜂w
(−𝛁𝑝f + 𝜔2𝜌f𝐮s), (2) 

 −𝑝f = 𝐶∇ ∙ 𝐮s + 𝑀∇ ∙ 𝐰, (3) 

 𝐓 = [(𝐾G −
2

3
𝐺) ∇ ∙ 𝐮s +  𝐶∇ ∙ 𝐰] 𝐈 + 𝐺(∇𝐮s + ∇𝐮s

T), (4) 

 −𝜌𝑏𝜔2𝐮s − 𝜌f𝜔
2 𝐰 = (𝐾𝐺 +

4

3
𝐺) ∇(∇ ∙ 𝐮s) − 𝐺∇ × ∇ × 𝐮s + 𝐶∇(∇ ∙ 𝐰) + 𝐅, (5) 

where Equations 1-2 describe the electrokinetic cross-coupling relationship between the electric 223 

field 𝐄 (V/m) and the volume-averaged fluid filtration displacement 𝐰 (m) = 𝜙(𝐮f − 𝐮s), which 224 

is defined by the porosity 𝜙 (m3/m3) and the volume-averaged fluid and solid displacements (𝐮f 225 

and 𝐮s). The subscripts ‘f’ and ‘s’ designate fluid and solid properties, respectively. We consider 226 

a time-harmonic disturbance varying as 𝑒−𝑖𝜔𝑡 with  𝑖 = √−1 the imaginary unit,  𝜔 = 2𝜋𝑓 the 227 

angular frequency in rad/s, and 𝑓 (Hz) the frequency. The superscript ‘*’ indicates that a property 228 

is frequency-dependent and hence complex. 𝑘∗(𝜔)  thus denotes the frequency-dependent 229 

permeability (m2). Permeability reflects the ability of porous media to allow fluid to flow through 230 

the pores. Equations 3 and 4 describe the poroelastic relations (Biot, 1956, 1962a, b) with 𝐈 231 

denoting the identity matrix. The parameters C (Pa) and M (Pa) are associated with the elastic 232 

moduli (Pride, 1994). 𝐾G (Pa) and G (Pa) denote the undrained bulk modulus and shear modulus 233 

of the solid skeleton. 𝜌𝑏  (kg/m3) and 𝐅 (N) in Equation 5 are the mass density of the porous 234 
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material and the body force applied on the bulk material, respectively. All parameters and their 235 

units used in this study are listed in Table A2 of Appendix A.  236 

Due to harmonic variations of the bulk-stress tensor 𝐓 (N/m2) and the pore fluid pressure 𝑝f 237 

(Pa), the flow changes from the viscous laminar regime to the inertial laminar regime beyond the 238 

critical or transition frequency (Revil & Mahardika, 2013; Solazzi et al., 2020, 2022). The 239 

permeability becomes frequency-dependent and complex-valued beyond the critical frequency, 240 

and its absolute value decreases with increasing frequency (Solazzi et al., 2020).  𝜂w denotes the 241 

dynamic viscosity of pore water (1.002× 10−3Pa∙ s). The macroscopic electrical current density 𝐉 242 

(A/m2) is the superposition of the conduction current density 𝜎∗(𝜔)𝐄 and the streaming current 243 

density 𝐉ek
∗  written by: 244 

 𝐉ek
∗ = 𝐿∗(𝜔)(−∇𝑝f + 𝜔2𝜌f𝐮s), (6) 

in which 𝜎∗(𝜔), and 𝜌f = (1 − 𝑆w)𝜌a + 𝜌w denote the complex electrical conductivity (S/m) and 245 

the fluid density (kg/m3), respectively. 𝑆w, 𝜌a = 1.21 (kg/m3) and 𝜌w = 1000 (kg/m3) are the 246 

water saturation, the density of the air and pore water. Note that we consider pore water as a dilute 247 

solution with low salinities (commonly around 0.002 mol/L) and, hence, the solute density is 248 

neglected. For highly saline solutions (e.g., seawater, contaminated water), the mass density of the 249 

solute would need to be included. Unless mentioned otherwise, the parameters used in this paper 250 

refer to standard ambient conditions (1 atm and 20 ℃). The presence of harmonic electric fields 251 

usually makes the electrical conductivity of porous materials vary with frequency due to 252 

polarization effects of electrically conductive mineral grains, interfacial electrochemistry, or 253 

colloidal chemistry (Revil, 2013). The effective electrical conductivity in the frequency domain 254 

can be expressed by (Revil et al., 2015): 255 

 𝜎∗(𝜔, 𝑆w) = 𝐹−1𝑆w
𝑛 𝜎w + 𝜎sur + 𝑖(𝜎quad − 𝜔𝜀0𝜅). (7) 

Therein, 𝑛  denotes the saturation exponent and 𝐹 = 𝜙−𝑚  is the electrical formation factor in 256 

Archie’s first and second laws with cementation exponent m (Archie, 1942). 𝜀0 = 8.85418 ×257 

10−12 F/m is the vacuum permittivity. 𝜅 denotes the static effective dielectric constant, which is 258 

the function of the water saturation: (Linde et al., 2006): 259 
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 𝜅(𝑆w) =
(𝐹−1)𝜅s+𝑆w

𝑛𝜅w+(1−𝑆w
𝑛)𝜅a

𝐹
. (8) 

The range of the dielectric constant for most rock-forming minerals is 4-6 and is commonly 260 

assumed to be 𝜅s = 4 for dry sand grains in near-surface measurements (e.g., Fitterman, 2015; 261 

Knight & Endres, 2005). 𝜅w = 80.1 and 𝜅a = 1 represent the dielectric constants of the pore 262 

water and the air, respectively. Based on a volume-averaging method, Equation 8 is derived from 263 

a two-phase model (i.e. pore fluid and solid grains) by Pride (1994), accounting for the effective 264 

pore fluid formed by water and air and combining Archie’s first and second laws (Linde et al., 265 

2006). This equation assumes that the two fluid phases in the pore space are immiscible. The 266 

physical relationship (Equation 8) has been previously used to simulate seismoelectric signals 267 

(e.g., Rosas-Carbajal et al., 2020). The surface electrical conductivity 𝜎sur  and the quadrature 268 

electrical conductivity 𝜎quad in Equation 7 are related to the fraction and mobility of counterions 269 

in the diffuse layer and in the Stern layer, respectively (Revil, 2013; Revil et al., 2015). Both 270 

conductivities are functions of water saturation. More details of these coefficients calculated by 271 

material properties and saturation levels, can be found in Table A3 of Appendix A. 272 

Based on the EDL model (Figure 1a), Equations 1 and 2 express that the poromechanical 273 

influence contributes to the streaming source current, and the electric field contributes to the pore-274 

fluid flow under the electroosmosis effect (Revil & Mahardika, 2013). The critical dynamic 275 

parameter 𝐿∗(𝜔) reflects the cross-coupling relationship. Due to the significance of frequency-276 

dependent cross-coupling coefficient 𝐿∗(𝜔) in transport equations, its calculation has attracted 277 

considerable attention in the recent decade (Jougnot & Solazzi, 2021; Jouniaux & Zyserman, 2016; 278 

Soldi et al., 2020; Thanh et al., 2022; Warden et al., 2013). A popular approach is using the Zeta 279 

potential to describe the cross-coupling coefficient (Dukhin & Derjaguin, 1974; Pride, 1994; 280 

Warden et al., 2013; Zyserman et al., 2017). An alternative is to use the movable (effective) excess 281 

charge density �̂�v
∗ (C/m3) and permeability to directly relate the relative flow to streaming current 282 

generation (Revil & Linde, 2006). The cross-coupling coefficient calculated by both approaches 283 

explains some experimental measurements (Bordes et al., 2015; Revil & Mahardika, 2013; Zhu & 284 

Toksöz, 2013). In terms of partially-saturated conditions considering only water and air in the pore 285 
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space, the latter approach conveniently relates 𝐿∗(𝜔)  to the effective permeability and �̂�v
∗  as 286 

functions of the water saturation by (Revil & Mahardika, 2013; Soldi et al., 2020): 287 

 𝐿∗(𝜔, 𝑆w) =
𝑘∗(𝜔,𝑆w)�̂�v

∗(𝜔,𝑆w)

𝜂w
. (9) 

The frequency-dependent (dynamic) characteristics of permeability and effective excess charge 288 

density are approximately described by the relaxation time or the angular transition frequency 289 

𝜔t (rad/s), which determines the transition from the viscous (low frequency) to inertial laminar 290 

flow (high frequency) (Revil & Mahardika, 2013). 𝜔t(𝑆w) is expressed as a function of water 291 

saturation by Revil and Mahardika (2013) and Solazzi et al. (2020): 292 

 𝜔t =
𝜂w𝜙𝑆w

𝜌w𝑘0(𝑆w)𝜏w(𝑆w)
, (10) 

where 𝜏w denotes the tortuosity related to the topology of the pore space. The saturation-dependent 293 

tortuosity is equivalent to 𝜙𝐹𝑆w
(1−𝑛)

 based on Archie’s law (e.g., Niu & Zhang, 2019; Jougnot et 294 

al., 2018; Revil et al., 2007; Revil & Jougnot, 2008). Since 𝑛 ≥ 1 (1 − 𝑛 ≤ 0), the tortuosity 295 

increases with the decrease of water saturation (e.g., Ghanbarian et al., 2013; Jougnot et al., 2018), 296 

while the transition frequency increases with the decrease of water saturation. Here, 𝑘0(𝑆w) 297 

denotes the quasi-static (𝜔 = 0) effective permeability as a function of saturation. When the 298 

frequency-dependent effective permeability and excess charge density are considered, Equation 9 299 

is written by (Revil & Mahardika, 2013): 300 

 
𝐿∗(𝜔, 𝑆w) =

𝑘0(𝑆w)�̂�v,0(𝑆w)

𝜂𝑤√1−
𝑖𝜔

𝜔t

. 
(11) 

There are two main approaches to describe this effective excess charge density �̂�v,0: either by 301 

volume-averaging (Linde et al., 2007a) or flux-averaging (Jougnot et al., 2012). In this work, the 302 

excess charge density at a saturated state is estimated from permeability using (Jardani et al., 303 

2007): 304 
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 log10 (�̂�v,0
sat) =  −0.82log10(𝑘0

sat) −9.23. (12) 

The superscript ‘sat’ denotes a fully saturated condition. This empirical relationship has been 305 

applied to various samples ranging from different salinities and lithologies even if it did not 306 

consider the effect of salinities of pore water on the excess charge density (Jardani et al., 2007; 307 

Jougnot et al., 2015).  308 

Another empirical relationship between the voltage coupling coefficient under saturated 309 

conditions 𝐶0
sat (mV/m) and the electrical conductivity of pore water 𝜎w (S/m) is expressed as 310 

(Linde et al., 2007b): 311 

 log(|𝐶0
sat|) = −0.895 − 1.319 log(𝜎w) − 0.1227[log(𝜎w)]2, (13) 

where 𝜎w is estimated by the salinity 𝐶w (mol/L) (Sen & Goode, 1992): 312 

 
𝜎w = (5.6 + 0.27𝑇 − 1.5 × 10−4𝑇2)𝐶w −

(2.36+0.099𝑇)𝐶w

3
2

1+0.214𝐶w
, 

(14) 

where 𝑇 is the temperature in Celsius (oC). Thus, the voltage coupling coefficient 𝐶0
sat varies with 313 

pore water salinity. Compared with laboratory and field measurements, Equation 13 works well in 314 

a range of 10-2 – 100.5S/m for 𝜎w, which covers typical pore water environments (Linde et al., 315 

2007b, Jougnot et al., 2015; Hu et al., 2020). By changing the unit of  𝐶0
sat to V/m, it can be 316 

transformed from the static coupling coefficient 𝐿0
sat (A/m2) by: 317 

 𝐶0
sat = −

𝐿0
sat

𝜎0
. 

(15) 

Further, 𝐶0
sat can be used to express the �̂�v,0

sat with: 318 

 �̂�v,0
sat = −

𝐶0
sat𝜎0𝜂𝑤

𝑘0
sat . 

 (16) 
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We may use Equation 12 to estimate �̂�v,0
sat under a known 𝑘0

sator we may derive �̂�v,0
sat by Equations 319 

13-16 using the salinity of pore water (Jougnot et al., 2015). Otherwise, 𝐶0
sat can be obtained by 320 

measuring the voltage differences and hydraulic pressure differences of samples to calculate values 321 

of �̂�v,0
sat by Equation 16. 322 

For partially saturated conditions, we applied the volume-averaging method to scale �̂�v,0 by 323 

the effective saturation 𝑆e =
𝑆w−𝑆wr

1−𝑆wr
 (Linde et al., 2007a; Revil & Cerepi, 2004; Revil et al., 2007):  324 

 
�̂�v,0(𝑆w)=

�̂�v,0
sat

𝑆e
, 

(17) 

where 𝑆wr (unitless) denotes the residual (irreducible) water saturation. Alternative formulations 325 

have been derived to explicitly describe the dynamic process of �̂�v,0 varying with water saturation 326 

based on the characteristic pore-size distribution (Jackson, 2010; Jougnot et al., 2012; Soldi et al., 327 

2020; Solazzi et al., 2022). Furthermore, the frequency-dependent effective excess charge density 328 

is calculated by applying a scaling factor √1 −
𝑖𝜔

𝜔𝑡
 (Revil & Mahardika, 2013), which also has been 329 

further developed by Jougnot and Solazzi (2021) and Thanh et al. (2022).  330 

Apart from the effective permeability and excess charge density, other effective parameters 331 

(e.g., the electrical conductivity 𝜎∗, the mass density of fluid 𝜌f) in Equations 1 and 2 strongly 332 

depends on the water saturation as well. Besides, the two fluid phases in the pore space affect the 333 

mechanical properties (e.g., the effective bulk moduli) that need to be considered in 334 

hydromechanical modeling of the volumetric strain of porous media and the infiltration 335 

displacement (Equations 3-5). This indicates that seismic signals could respond to variations in 336 

water saturation. We summarize the frequency-dependent (dynamic) and saturation-dependent 337 

parameters in Table A3 of Appendix A. More details with regard to the parameters mentioned 338 

above as well as the derived equations can be found in Revil & Mahardika (2013). 339 

2.2. Multi-Channel SeismoElectric Spectral Ratios (MC-SESRs) 340 

For isotropic layered media, as the SE field and the seismic particle acceleration field are 341 

triggered by the same seismic source, the seismic source function can be canceled when we 342 

calculate the ratios of SE fields to the seismic acceleration fields in the frequency domain (Dzieran 343 
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et al., 2019). Therefore, the SESRs can be represented by the ratio of their Green’s functions 344 

𝐺𝐸(𝜔) and 𝐺𝑎(𝜔), which is expressed as (Dzieran et al., 2019): 345 

 SESR(𝜔) = 
𝐄(𝜔)

𝒂(𝜔)
 = 

𝐺𝐸(𝜔)

𝐺𝑎(𝜔)
, (18) 

where 𝐄(𝜔) denotes the SE field spectra. 𝒂(𝜔) denotes the seismic ground acceleration field 346 

spectra, which also can be replaced by the components of seismic ground velocity spectra with 347 

𝑖𝜔𝐯(𝜔)  or displacement spectra with −𝜔2𝐮(𝜔) . The SESR indicates the ratio of Green’s 348 

functions, which contains the information of stratified porous media. The modulus of SESRs varies 349 

with position, or offset from the seismic source, represented by: 350 

 MC-SESR(𝜔,𝑥𝑖) =  
|𝐸𝑥,𝑖(𝜔)|

|𝑎𝑥,𝑖(𝜔)|
, 𝑖 = 1, 2, … , 𝐵 (19) 

where 𝑖 denotes the measured points and B is the total number of measured points. Here, 𝐸𝑥,𝑖 and 351 

𝑎𝑥,𝑖 denotes the horizontal electric field and seismic ground acceleration in the frequency domain 352 

at point 𝑖. 353 

2.3. Inversion framework 354 

Deterministic inverse modeling (e.g., Gauss-Newton, Conjugate Gradient, Levenberg-355 

Marquardt) algorithms need to construct an objective function, including the data misfit and a 356 

regularization term. The latter depends on prior and empirical information. In weakly non-linear 357 

problems, the iterative adjustment of model parameters using gradient-based information enables 358 

a minimum objective function to be attained. However, it is time-consuming when we deal with 359 

high-dimension parameter estimation, and these parameters affect the SESRs in a non-linear way. 360 

Furthermore, such deterministic inversions might fail to recover the true model, although the 361 

modeling data well match the observed data (Wu et al., 2021).  362 

In this study, we aim to reconstruct the permeability and water table depth using the near-363 

surface MC-SESRs data. As the water table is affected by land-management practices, 364 

precipitation, evapotranspiration, and other environmental changes, its depth may change with 365 

time. Machine learning techniques may allow us to efficiently monitor the dynamic water table. A 366 
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large number of samples are employed to train a neural network, which can construct the mapping 367 

process between the input data (MC-SESRs) and the output data (water table depth and 368 

permeability). Once the neural network is well trained, we can adapt it to a specific region to 369 

monitor variations of its water table and permeability efficiently. Deep-structured neural networks 370 

have been employed in solving geophysical inverse problems (e.g., Laloy et al., 2021; Wu et al., 371 

2021), which are alternatives for the SESRs inversion. But the many hidden layers included in 372 

such networks produce a large quantity of hyperparameters, which need large data sets and many 373 

training epochs to be estimated. Complicated deep architectures empower the neural network to 374 

project a more complex relationship between the input and output layers. However, the computing 375 

time is increased due to the iterations of training epochs, and overtrained networks could result. 376 

Chen and Liu (2017) propose a broad learning (BL) neural network that adopts a flat architecture 377 

without a complex multilayer structure. Its network structure does not change within the training 378 

process (Figure 2). It avoids adjusting elusive hyperparameters in the network, and its design 379 

largely decreases the training time compared with deep networks. Broadly expanding the mapping 380 

layer enhances the capacity of the neural network to approach complicated projecting 381 

relationships. More important, the broadly expanding structure can be used for incremental 382 

learning without retraining the network when additional data are available in input data (Chen & 383 

Liu, 2017). Compared with the performance of deep structured neural networks (e.g., deep 384 

convolutional neural networks, deep Boltzmann machines, and deep belief networks) on MNIST 385 

and NORB data sets, Chen and Liu (2017) demonstrated that the BL system can ensure a 386 

comparable classification accuracy while vastly reducing the training time. Recently, the BL 387 

approach has been applied to effectively and efficiently process classification and regression 388 

problems (Gong et al., 2022). Therefore, the BL approach is considered here to perform water 389 

table depth and permeability inversions using MC-SESRs data.  390 

As a supervised machine learning task, we need to generate a large number of training 391 

samples. We assume the number of samples is N for training the network and the number of 392 

inverted layers of permeability is L. If there are A frequencies and B measured points (traces) in 393 

Equation 19, the input matrix X is MC-SESRs data (Figure 2a). The output matrix Y is made up 394 

of N depths of the water table written by a vector 𝐝𝐰𝐭𝑁×1 and 𝑁 × 𝐿 permeability matrix written 395 

by 𝐊𝑁×𝐿 (Figure 2c). Using the neural-network architecture of the BL model (Chen & Liu, 2017), 396 

we first need to extract the features of MC-SESRs data as the input layer (Figure 2b):  397 
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 𝐅𝑖 = 𝜑𝑖(𝐗𝐖𝑖 + 𝛃𝑖), 𝑖 = 1, 2, … , 𝑄 (20) 

where 𝐅𝑖 denotes the 𝑖th mapped feature matrix. 𝐖𝑖 and 𝛃𝑖 denote the random weighting matrix 398 

and bias term, which are initially generated by standard uniform distributions in a range of [-1,1]. 399 

Assuming 𝐴 × 𝐵 = 𝐶, the sizes of matrices of 𝐖𝑖 and 𝛃𝑖 are 𝐶 × 𝑃 and 𝑁 × 𝑃, respectively. As 400 

shown in Figure 2b, P is the number of feature nodes in each mapping feature group 𝑖. 𝑄 is the 401 

number of mapping features. The function 𝜑𝑖 maps the sum of matrices 𝐗𝐖𝑖 + 𝛃𝑖 to [-1,1] by 402 

normalizing the minimum and maximum value each row (1,2, …, N). The sparse autoencoder is 403 

employed to shrink the input data and extract its mapping features by adapting 𝐖𝑖 (Chen & Liu, 404 

2017). As shown in Equation 20, this feature extracting step of the input data can be replaced by 405 

other extracting approaches from popular artificial neural networks (e.g., deep convolutional 406 

neural networks) (Gong et al., 2022). 407 

The features of input data extracted by mapping feature groups 𝐅𝑄 = [𝐅1, 𝐅2, … , 𝐅𝑄] are 408 

broadly expanded by M enhancement nodes with: 409 

 𝐄𝑗 = 𝜉𝑗([𝐅1, 𝐅2, … , 𝐅𝑄]𝐖𝑒𝑗 + 𝛃𝑒𝑗), 𝑗 = 1, 2, … , 𝑀 (21) 

where 𝐄𝑗  denotes the matrix of jth enhancement node. 𝐖𝑒𝑗  and 𝛃𝑒𝑗  are randomly generated 410 

similar to Equation 20. In this study, we used the hyperbolic tangent sigmoid transfer function as 411 

the non-linear activation function 𝜉𝑗(∙). Each enhancement node is integrated to an enhancement 412 

layer with 𝐄𝑀 = [𝐄1, 𝐄2, … , 𝐄𝑀].  413 

The output-layer hydrogeological parameters Y = [dwt, K] and the last layer integrated by 414 

input features and the enhancement layer are connected by a weighting matrix 𝐖𝑀:  415 

 𝐘 = [𝐅1, 𝐅2, … , 𝐅𝑄|𝐄1, 𝐄2, … , 𝐄𝑀]𝐖𝑀,  (22) 

Therefore, the training process only needs to estimate the connected-link matrix 𝐖𝑀  through 416 

solving the pseudoinverse matrix [𝐅𝑄|𝐄𝑀]+: 417 

 𝐖𝑀 = [𝐅𝑄|𝐄𝑀]+𝐘. (23) 
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Following Chen and Liu (2017), the ridge regression approximation is employed to optimize 𝐖𝑀 418 

by fulfilling: 419 

 arg min: ‖[𝐅𝑄|𝐄𝑀]𝐖𝑀 − 𝐘‖2
2 + 𝜆‖𝐖𝑀‖2

2, (24) 

where 𝜆 denotes a tradeoff regularization factor and ‖[𝐅𝑄|𝐄𝑀]𝐖𝑀 − 𝐘‖2
2 is the error term of the 420 

training set. Except for the connected matrix 𝐖𝑀, the remaining weight matrices in the network 421 

are randomly generated. Consequently, we can use the well-trained network with the optimal 422 

connected weights 𝐖𝑀 to invert MC-SESRs data. For example, if we acquired more MC-SESRs 423 

data, we just need to replace Input X with the new (untrained) data in Equation 20. By following 424 

similar computations to the training process by Equations 20-22, we then extract the mapping 425 

features of the inversion data and use an activation function to learn these features in the 426 

enhancement layer. Thus, we obtain the newly mapped feature matrices and enhancement matrices. 427 

Multiplied with the weight matrix derived from the training process (Equations 23 and 24), we can 428 

obtain the estimated water table depth and permeability (Equation 22). 429 
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 430 

Figure 2. Broad learning (BL) procedure including (a) the input (MC-SESRs data) layer, (b) the 431 

mapping feature layer and the enhancement layer, and (c) the output (permeability with water 432 

table) layer employed in this study. 433 
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3. Sensitivity Analysis 434 

3.1. Basic test model 435 

We first design a basic test model (Figure 3). It consists of five horizontal layers of porous 436 

materials. It is assumed that the shallow two layers (layers 1-2) are mainly made up of loamy 437 

sands, and the deeper two-layer soils (layers 3-4) with lower permeabilities considered as silty 438 

sands. The bottom layer 5 is assumed as a known layer with lower permeability (0.01 D), porosity 439 

(0.05), and electrical conductivity (16 μS/cm). These hydrogeological parameters are chosen 440 

based on Carsel and Parrish (1988). The initial water table is set at 3 m, implying that the 441 

shallowest layer is partially saturated (Figure 3a). The Richards’ equation (Richards, 1931) is used 442 

to solve the hydraulic problem in the vadose zone. The Mualem-van Genuchten (MVG) empirical 443 

model (Mualem, 1976; van Genuchten, 1980) is used to estimate the relationship between the 444 

water saturation and the effective permeability with the pore pressure. Based on the MVG model 445 

by introducing the soil-water characteristic parameters 𝛼𝑉G (m-1), 𝑛VG and 𝑚VG = 1 − 1/𝑛VG, the 446 

effective water saturation 𝑆e  and the static permeability 𝑘0 at partially saturated conditions are 447 

expressed by: 448 

 𝑆e =
1

[1+(𝛼𝑉G|𝐻p|)𝑛VG]
𝑚VG, (25) 

 𝑘0 = 𝑘0
sat𝑆e

1

2 [1 − (1 − 𝑆e

1

𝑚VG)
𝑚VG

]

2

. 
(26) 

Here, we assume that the absolute pressure head |𝐻p| (m) in the vadose zone is equal to the vertical 449 

distance between its elevation and the position of the water table (Zyserman et al., 2017). The 450 

effective electrical conductivity is calculated by Equation 7, whose formulas and the used 451 

parameters are given in Table A3 of Appendix A and Table S1 of the Supporting Information). 452 

The water saturation, the effective permeability, and the effective electrical conductivity of the top 453 

four layers are presented in Figures 3b-d under the assumption that the pore water salinity is 454 

homogeneous at 2 × 10−3 mol/L at 293.15 K, respectively. Note that the effect of the salinity at 455 

this level on the fluid mass density is negligible. In contrast, the mass density of the fluid solute 456 

should be considered in a highly saline environment (e.g., Hu et al., 2023). The specific parameters 457 

of each layered material are given in Table 1, whose descriptions can be found in Table A2 of 458 

Appendix A. 459 



manuscript published in Journal of Geophysical Research: Solid Earth 

 

 460 

Figure 3. Basic test model and its observations. (a) Geometry, (b) water saturation, (c) effective 461 

permeability, and (d) effective electrical conductivity in the top four layers 462 

There is a vertical force point source at the ground marked with a red square in Figure 3a. 463 

We assume that the seismic source function 𝑓s(𝑡) (N) presents as a Ricker wavelet with a peak 464 

frequency 𝑓p of 20 Hz: 465 

 
𝑓s(𝑡) = −2.506 × 105 [1 − 2(𝜋𝑓p)2 (𝑡 −

2

𝑓p
)

2

] exp [−(𝜋𝑓p)2(𝑡 −
2

𝑓p
)2]. 

(27) 

The spectrum of this zero-phase wavelet is in a range of ~ 70 Hz. This wavelet and its frequency 466 

band are usually considered in seismoelectric simulations (e.g., Jardani et al., 2010). Equation 27 467 

is applied to calculate the body force of Equation 5 in forward modeling. Receivers are installed 468 

at 0.1 m below the ground surface. The offset ranges from 5 – 105 m with 101 horizontal 469 

acceleration sensors and 101 horizontal point dipoles. The offset represents the distance between 470 

the source and each accelerometer or central point of each dipole. The interval of two adjacent 471 

receivers is 1 m (Figure 3a). Please note that the seismic particle velocity 𝐯(𝜔) obtained by 472 

geophones could also be used to calculate SESRs by transforming 𝐚(𝜔) to 𝑖𝜔𝐯(𝜔). As mentioned 473 

in Section 2.2, measuring SESRs does not require knowledge of the seismic source function, so 474 
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we would not need to know the amplitude of the seismic source. Additionally, the SE responses 475 

are proportional to the amplitude of seismic sources, either for explosive sources or weight drops, 476 

demonstrated in the field tests (Butler et al., 1999). Therefore, according to the specific prospecting 477 

conditions, this seismic source function can be replaced with other source functions. However, the 478 

seismic strength and waveform used here are adopted to illustrate that the predicted electric fields 479 

are expected to be measurable for a reasonable seismic source.  480 

Based on Section 2.1, with the dynamic and saturation-dependent parameters chosen, 481 

especially the cross-coupling coefficient 𝐿∗(𝜔, 𝑆w) in Equation 11, the peak-trough averaging 482 

approach based on Luco-Apsel-Chen Generalized Reflection and Transmission Method (LAC 483 

GRTM) (Zheng et al., 2021) is applied to obtain the frequency solution of the governing equations. 484 

The wave-field components are derived from the numerical integral over the wavenumber domain. 485 

The integrand includes the Bessel function and exponential terms of fast and slow P, S, and EM 486 

waves. Compared with the seismic wavelength, the relatively small source-receiver vertical 487 

differences make integrands more intensively oscillate. Therefore, this situation may cause a slow 488 

convergence computationally (Zheng et al., 2021). The peak-trough averaging approach uses a 489 

certain wavenumber interval in a stably oscillating range to determine peaks and troughs of 490 

integrands and subsequently apply the repeat average method to efficiently compute the numerical 491 

integration (Dahlquist & Björck, 1974). Thus, it allows us to consider more flexible source-492 

receiver geometries. All used dynamic and saturation-dependent parameters and corresponding 493 

formulations are given in Table A3 of Appendix A, and we summarize a flow chart of the model 494 

generation in Figure 4. We assume that the data recorded from 0 to 0.5 s is digitized by 4096 495 

samples with a sample interval of 0.1221 ms. After the full-waveform computation of this model, 496 

we display the horizontal components of seismic ground acceleration and SE wave fields (Figure 497 

5). Since a zero-phase wavelet was applied to simulate the seismic source (Equation 27), a time 498 

delay is shown in the waveforms (Figure 5). In addition, due to a low saturation (𝑆w =0.12) 499 

occurring on the near-surface (~0.3 m), the corresponding S-wave velocity is 1242.5 m/s. The 500 

surface waves can have a high apparent velocity to present in longer source-receiver offsets than 501 

the offset range shown in Figure 5. In this case, the maximum absolute horizontal electric field is 502 

26.27 μV/m. Although the electric-field signals are vulnerable to noise, the environmental noise 503 

level can be managed to below the order of 0.1 μV/m (see Butler et al., 2007; Dupuis et al., 2007; 504 
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Thompson & Gist, 1993). The near-surface electric field of this case is, hence, sufficient to be 505 

observed. 506 

 507 

Figure 4. Framework of MC-SESRs generation 508 

 509 

Figure 5. Horizontal components of wave fields under the basic test model (a) seismic ground 510 

acceleration and (b) seismoelectric wave fields 511 

The horizontal components of seismic ground acceleration and SE wave fields recorded in 512 

the time domain are subsequently transformed into the frequency domain. Then the MC-SESRs 513 

over the full 0.5s time window are calculated by Equation 19. Here, we take the frequency in the 514 



manuscript published in Journal of Geophysical Research: Solid Earth 

 

range of 2-72 Hz. The MC-SESRs’ contour map of this numerical model is shown in Figure 6a. 515 

The SESRs with greater strength are mainly distributed in a short-offset range (10 - 40 m) and a 516 

low-frequency range (~ 10 Hz). Since the SESR concept under the assumption of the localized 517 

(coseismic) SE field waves are linear with the ground acceleration, the frequency-dependent 518 

behaviors depend on the evanescent and radiated SE field waves (Dizeran et al., 2019). The 519 

generation of the radiated SE field waves is commonly regarded as caused by the seismic waves 520 

nearly vertically arriving at interfaces and the ground surface. Although the radiated EM waves 521 

generated by the direct SE conversions at the source also depend on the frequency, their strength 522 

is weak. The subsurface properties’ variations barely affect the component of MC-SESRs 523 

originating from the direct SE conversions. 524 

Once the seismic incident angle is larger than the critical angle 𝜃c: 525 

 
𝜃c = arcsin (

𝑉sei

𝑉EM
), 

 (28) 

where 𝑉sei  (m/s) and 𝑉EM  (m/s) denote the seismic wave velocity and EM wave velocity, 526 

respectively, the SE conversion leads to the generation of evanescent SE waves. Actually, 𝜃c 527 

approaches zero due to 𝑉EM ≫ 𝑉sei. The existence of physical properties’ contrasts causes the 528 

interfacial SE responses, mainly containing evanescent SE field waves. The superposition of 529 

different modes of SE conversions makes the spectral ratios between the SE responses and the 530 

ground acceleration are of frequency dependence. Thus, the SESR modulus decreasing with the 531 

increasing frequency mainly attributes to the evanescent SE waves, which approximately decay 532 

with a factor exp(−ωpΔz) (Ren et al., 2018). The horizontal EM wave slowness p relies on the 533 

incident angle of the seismic waves arriving at the interface and inducing the localized SE waves. 534 

The spatial variations of SESRs presumably are complicated due to the presence of a vadose zone. 535 

The multi-channel SE field waves combined with the ground acceleration field waves are sensitive 536 

to water table variations (e.g., Rabbel et al., 2020). Using MC-SESRs facilitates the inversion of 537 

hydrogeological parameters due to without reconstructing the seismic source function. Selecting 538 

SESRs from near- and far-offset receivers, we show the SESRs varying over frequency for three 539 

receivers with different offsets of 5 m, 30 m, and 50 m, respectively. As shown in Figures 6b-d, 540 

the SESRs at different offsets have a similar frequency dependence. The SESR generally increases 541 

as the frequency decreases, and their log-scale variations show an approximately linear correlation 542 
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in the low-frequency domain (~10 Hz), and it oscillates at higher frequencies. Notably, the 543 

oscillating signatures are more notable in the far-offset range (Figures 6c-d). These oscillatory 544 

characteristics may originate from the electric field induced by the guided P-wave traveling in the 545 

upper two layers.  546 

 547 

Figure 6. The MC-SESRs of the basic test model with (a) the contour map of MC-SESRs in 548 

logarithmic scale showing variations both with frequency and offsets. Sample SESR curves as a 549 

function of frequency at different offsets: (b) 5 m, (c) 30 m and (d) 50 m. 550 

551 
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Table 1  552 

Parameters of the basic test model 553 

Property Units Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

Thickness m 6 9 5 15 Inf. 

𝜙 m3/m3 0.41 0.43 0.46 0.38 0.05 

𝛼VG m−1 12.4 - - - - 

𝑛VG - 1.89 - - - - 

𝑆wr - 0.1585 - - - - 

𝜌s kg/m3 2650 2650 2650 2650 2700 

𝜌w kg/m3 1000 

𝜌a kg/m3 1.21 - - - - 

𝜌b
sat kg/m3 1973.5 1940.5 1891 2023 2615 

𝐶w mol/L 2× 10−3 

𝜎0
sat S/m 0.0073 0.0077 0.0083 0.0067 0.0016 

𝜂w Pa∙s 1× 10−3 

𝜂a Pa∙s 1.8× 10−5 - - - - 

T K 293.15 
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𝜅s - 4 

𝜅w - 80.1 

𝜅a - 1 

m - 1.35 

n - 1.85 

𝐾s GPa 35 35 35 35 36 

G GPa 2.49 2.49 14.08 14.08 15 

𝐾fr GPa 2.84 2.84 14.4 14.4 20 

𝐾w GPa 2.25 

𝐾a Pa 1.43× 105 - - - - 

  554 
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3.2. Analysis of permeability 555 

First, we test the sensitivity of SESRs with respect to permeability. The considered typical 556 

ranges in the critical zone refer to Carsel and Parrish (1988). The saturated permeability 𝑘𝑗
sat

 of 557 

the top four layers (𝑗 = 1,2,3,4) in the basic test model is 5.67, 8.51, 1.42, and 4.26 D, respectively 558 

(Figure 3c). By changing the saturated permeability of shallow layers (𝑗 = 1,2,3,4) ± 50%, we 559 

calculated the absolute MC-SESRs difference concerning the original model by: 560 

∆SESR(𝜔, 𝑥𝑖 , 𝑗) = |SESR(𝜔, 𝑥𝑖)𝑘𝑗
sat+50%−SESR(𝜔, 𝑥𝑖)𝑘𝑗

sat−50%|, (29) 

where the horizontal offset 𝑥𝑖  ranges from 5 to 105 m with the number of receivers 𝑖 =561 

1,2, … , 101. The short-offset (~20 m) SESRs have more changes when the permeability of shallow 562 

layers has been changed than the permeability of deep layers has been changed (Figure 7). Their 563 

maximum absolute differences with changing the saturated permeability of each layer decrease in 564 

depth, which is 0.0877, 0.0636, 0.0377, and 0.0069 (Figures 7c, 7e, 7h, and 7l), respectively. The 565 

MC-SESRs mainly change in near-offset traces (𝑥𝑖<45 m) and low frequencies (f< 10 Hz). The 566 

absolute differences of SESRs are less when the permeability in the lower zone changes (Figure 567 

7l), whose maximum absolute difference of SESRs is an order of magnitude smaller than for layers 568 

1 and 2. As shown in Figure 7, by changing the permeability of different layers, the absolute 569 

differences of SESRs produce different variations either in frequency or laterally. 570 
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 571 

Figure 7. The MC-SESRs in logarithmic scale with respect to (a-d-g-j) 50% decrease and (b-e-h-572 

k) 50% increase the basic test model of (a-c) layer 1, (d-f) layer 2, (g-i) layer 3, and (j-l) layer 4. 573 

(c-f-i-l) The absolute MC-SESRs difference in logarithmic scale of the corresponding layers 574 

calculated by Equation 29. 575 

To test the behaviors of SE wave-fields by changing the permeability of each layer, we 576 

compare the differences between the original waveforms with the changed waveforms in Figure 8. 577 

As shown in Figures 8e-h, the variations of SE wave fields are largest when the permeability of 578 

layer 2 changes (Figures 8b and 8f). Layer 2 is saturated and provided with the highest saturated 579 

permeability in the basic test model. Interestingly, the differences by changing the permeability of 580 

layer 1 (Figure 8e) show a very different trend within 0.06 – 0.14 s in contrast with other layers 581 

(Figures 8f-h). Layer 1 is a partially saturated zone, which produces a different behavior on 582 

waveforms compared with other layers. 583 
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 584 

Figure 8. (a-d) Horizontal components of SE wave fields for the basic test model (black solid 585 

lines) and for cases of 50% increase (red lines) and decrease (blue lines) in the permeability of 586 

layers 1-4 respectively. (e-h) Differences between SE wave fields obtained for cased of 50% 587 

increased (red lines)/decreased (blues lines) permeability in layers 1-4 respectively compared to 588 

those obtained for the original model, at three particular offsets, whose amplitudes are amplified 589 

by a factor of 8 compared to those in (a-d). 590 

3.3. Analysis of water table 591 

Second, we test how the different depths of the water table or partially-saturated conditions 592 

influence the distributions of MC-SESRs. Accounting for a static partially-saturated state, the VG 593 

model is used to determine the water saturation (van Genuchten, 1980). The water table of the 594 

basic test model is assumed to vary seasonally in a year. In this case, we assume the rainy season 595 

is from September to November with higher water levels, and the period of March to May is the 596 

dry season with lower water levels (Figure 9a). Correspondingly, the water saturation and the 597 

effective permeability at the shallow layer change with the water table (Figures 9b-c). As the used 598 

parameter 𝛼VG (12.4 m−1)  of the VG model is large, the permeability is rather low at low 599 

saturations. Note that the contour map of permeabilities shown in Figure 9c is an interpolation 600 
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result in the time and space domain. Permeabilities below the water level in each layer are different 601 

constants, as the basic test model presented in Figure 2c. The SESRs with the short (5 m), medium 602 

(30 m), and long (50 m) source-receiver offset are collected to show their responses to the 603 

variations of the water table (Figures 9d-f). The absolute ratios increase in the rainy season with 604 

higher water levels and decrease in the dry season with lower water levels.  605 

Furthermore, the strength of SESRs in the high-frequency domain is increased when the 606 

water table is in the shallow zone (e.g., September-November). The amplitudes of evanescent SE 607 

signals decay exponentially with the normal direction of the interfaces (Ren et al., 2016b; Ren et 608 

al., 2018). This implies that deep water tables cause weaker SE signals than shallow water tables. 609 

This characteristic is also embodied in the SESRs data obtained at the source-receiver offset of 30 610 

m (Figure 9e). Nevertheless, the sensitivity of the SESRs obtained at a more extended offset (50 611 

m) responding to the dynamic water table depth is considerably weakened (Figure 9f). This test 612 

implies we may use the time-lapse MC-SESRs data in short source-receiver traces to monitor the 613 

water table depth variations.  614 

 615 
Figure 9. The modeling results with the water table vary over time. (a) The depth of the water 616 

table, (b) the time-lapse variations of the water saturation with depth, (c) the effective permeability, 617 

and the SESRs in logarithmic scale collected at a source-receiver distance of (d) 5 m, (e) 30 m and 618 

(f) 50 m. 619 
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4. Inversion Results 620 

Employing synthetic seismic and SE data generated for the basic test model introduced in 621 

Section 3.1, we carry out a three-step strategy to perform MC-SESRs inversion. We assume that 622 

the depth and properties of the bottom layer 5, and all other layer depths and properties except for 623 

the water table depth and the permeabilities of layers 1-4 are known. The prior information could 624 

have been determined by drilling and other geophysical methods (e.g., Dzieran et al, 2019). This 625 

could represent a scenario where there was interest to monitor temporal changes in depth to the 626 

water table and to determine permeabilities of the near surface layers (to 35 m depth) for 627 

hydrogeological applications. 628 

To begin, we generated random samples by drawing permeabilities for each of layers 1 - 4 629 

from predefined reasonable ranges, and drawing a water table depth in layer 1 randomly from the 630 

range of 1 - 5 m. We account for the ranges of hydraulic conductivity 𝐾𝑗
sat of layers 1-2, referring 631 

to materials consisting of loamy sands. Layers 3-4 with a lower range of the soil permeabilities are 632 

considered to contain more silty sands (Carsel & Parrish, 1988). The hydraulic conductivity of 633 

layers 1-2 ranges from 3 to 35 cm/h and layers 3-4 ranges from 0.02 to 15 cm/h, which can be 634 

transformed to the ranges of permeability 𝑘𝑗
sat

 by is equal to 
𝐾𝑗

sat𝜂w

𝜌wg
, where g (m/s2) denotes the 635 

gravitational acceleration (9.81 m/s2). Following the flowchart of the model generation (Figure 636 

4), we calculated MC-SESRS of 7000 random samples. Therefore, the first step is to obtain the 637 

7000 input-output pairs. 638 

4.1. Performance of the BL neural network 639 

In the second step, we randomly selected 5000 from the 7000 input-output pairs for training 640 

the BL neural network (Figure 2). In addition, 1500 randomly generated samples were split into 641 

the original validation dataset (500 samples) and the original testing dataset (1000 samples). The 642 

input MC-SESRs data of the training samples are noise-free synthetic data, and output data are the 643 

dwt and the permeability of layers 1-4 (k1, k2, k3, k4) (Figure 2c). First, to accurately extract and 644 

map features of the input data, we need to set the number of mapping groups (Q) and feature nodes 645 

(P) of each group and their corresponding enhancement nodes (M) based on the BL architecture 646 

(Figure 2) introduced in Section 2.3. After that, the BL network is fixed. We tested different 647 
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configurations of the BL neural network to present the root-mean-squared errors (RMSEs) of 648 

training models (water table depth and permeability): 649 

 𝑅𝑀𝑆𝐸𝑗=√∑ (Output_𝑌
𝑖
𝑗

−True_𝑌
𝑖
𝑗
)2𝑛

1

𝑛
, 

 (30) 

where j denotes the corresponding numbers of different parameters (j = 1 for dwt, and j = 2 - 5 for 650 

k1-4 respectively). n is the number of samples for training the network, which is 5000 in this case. 651 

Output_𝑌𝑖
𝑗
   and True_𝑌𝑖

𝑗
  are the reconstructed and true output of the jth parameter of the ith 652 

sample. Here, we separately present the RMSEs of different parameters since the output dataset 653 

indicate different properties and in different scales. The ranges of P, Q and M are [10:5:100], 654 

[10:5:100], and [10:10:500], respectively. The regularization coefficient is set to 10−8 (see Chen 655 

& Liu, 2017). The optimum sets of parameters for training models are given in Table 2. The 656 

RMSEs of water table depth can be limited to 0.034 m. The RMSEs of permeability of layer 1 are 657 

much higher than layers 2-4. In contrast with deep layers, the permeability of the top layer is easier 658 

to be directly investigated in situ. k2 and k3 reach their optimum under P=15, Q=10 and M=500, 659 

and correspondingly, the RMSEs for estimating the dwt and k4 are satisfactory with the same 660 

setting.  661 

Table 2  662 

RMSEs of training data set with different configurations of the BL model (bold numbers denote 663 

the corresponding minimum RMSEs) 664 

Parameters of BL model RMSE of training models 

P Q M dwt (m) k1 (D) k2 (D) k3 (D) k4 (D) 

100 100 500 0.0210 2.4174 0.1462 0.1899 0.1526 

80 40 500 0.0271 2.4090 0.1713 0.2005 0.1644 

15 10 500 0.0339 2.4274 0.1415 0.1603 0.1616 

10 10 500 0.0336 2.4239 0.1473 0.1628 0.1500 

As the parameters’ estimation accuracy is the highest when the number of enhancement 665 

nodes (M) reaches the maximum in the search range, we expanded this range to search for an 666 

appropriate neural network. The neural network gets more complex structures with a large number 667 

of groups, mapping feature nodes, and enhancement nodes, which may empower the BL model to 668 

describe the approximate mapping relationship between the input and output data from the training 669 
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data set. As shown in Figure 2b, M directly reflects the complexity of the connected matrix for 670 

linking the integration of the feature mapping layer and the enhancement layer with the output 671 

layer. To examine whether the RMSEs would be reduced by keeping increasing the enhancement 672 

nodes and fixing P = 15 and Q = 10, we display the RMSEs varying with the number of 673 

enhancement nodes (Figure 10). In addition, we utilized 500 untrained samples from the validation 674 

dataset to test the inverted performance with increasing M. Further, the measured data in practice 675 

ineluctably contain some noise. With the improvement of pre-and post-processing techniques on 676 

near-surface SE applications, the signal-to-noise ratio (SNR) can be achieved to 20 – 45 dB (Butler 677 

& Russel, 2003; Butler et al., 2007). Thereby, to account for the possible interferences from self-678 

noise and background noise, we add 5% random noise of the mean amplitude of synthetic SESRs 679 

at each trace (SNR ≈ 26 dB) to the initial validation and testing datasets without noise 680 

contamination. Similar to the treatment of the training dataset, the RMSEs of the validation dataset 681 

are calculated by replacing the number of samples in Equation 30 to 500 and updating the 682 

corresponding output dataset. Slightly though, the RMSE set keeps decreasing with M increasing 683 

(Figures 10a, 10c, 10e, and 10g), which indicates the neural network has been adapted to the 684 

training data set. However, there are different trends shown in untrained samples (Figures 10b, 685 

10d, 10f, and 10h).  686 

The parameter estimation using untrained noisy data as input performs better when M is 687 

lower than 300 (Figures 10b, 10d, 10f, and 10h). The number of enhancement nodes of each 688 

parameter reaching a minimum RMSE is given in Table 3. To show the influence of chosen M on 689 

the inversion accuracy, we contrast the true and reconstructed models by inputting noisy MC-690 

SESRs of the validation dataset under the BL neural networks trained by M = 50, 200, 500, and 691 

1000, respectively. Taking the water table depth as an example to display (Figure 11), the majority 692 

of reconstructed models are visually closer to the true models with increasing M, but the RMSE 693 

increases when M≥200 (Figures 11c-d). The reconstructed permeability also presents a similar 694 

trend (see Figures S1-S3 of Supporting Information). It can be attributed to the large departure of 695 

a few estimations from the true models. Finally, to detect the dynamic water table, we choose M = 696 

240 as the number of enhancement nodes to train the BL model. 697 
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 698 

Figure 10. RMSEs of output data (a-b: water table depth, c-d: permeability of layer 1, e-f: 699 

permeability of layer 2, and g-h: permeability of layers 3-4) vary with the number of enhancement 700 

nodes (P=15, Q=10). Panels in the left column (a, c, e, g) represent the training data set and panels 701 

in the right column (b, d, f, h) represent the validation noisy dataset.  702 

Table 3  703 

RMSEs of validation data set with the optimum number of enhancement nodes (bold numbers 704 

denote the corresponding minimum RMSEs) 705 

Enhancement node RMSE of validation models 

M dwt (m) k1 (D) k2 (D) k3 (D) k4 (D) 

240 0.0895 2.7884 0.8879 0.5321 0.4339 

20 0.1839 2.6092 0.4798 0.6212 0.5654 

300 0.1945 4.5221 0.3084 0.9505 0.8540 

220 0.1196 2.7551 0.6383 0.4510 0.4140 

200 0.1117 2.8753 0.5839 0.4730 0.4101 

 706 
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 707 

Figure 11. Comparisons of the true and reconstructed depth of water table (dwt) of the validation 708 

dataset with (a) M = 50, (b) M = 200, (c) M = 500, and (d) M = 1000 709 

4.2. Comparisons of reconstructed and true models 710 

After the 500 validation samples validated the BL model obtained by the 5000 training 711 

samples, we took the third step to attain MC-SESRs inversion. We applied this BL neural network 712 

configured by P=15, Q=10, and M=240 to invert the water table depth and permeability of 1000 713 

testing samples with the same amount of noise contamination as the original testing MC-SESRs 714 

dataset. The testing dataset is independent of the training or validation datasets. The RMSEs of the 715 

testing dataset are calculated similarly to the validation dataset (Equation 30). The reconstructed 716 

depth of the water table has great consistency with corresponding true values (Figure 12a), whose 717 

RMSE is 0.09 m. The inversion results can nicely reconstruct the permeability of layer 2 (Figure 718 

12c), whose RMSE is 0.46 D. the reconstructed permeability of layers 3 and 4 deviates more from 719 

true values than layer 2 (Figure 12d), while their RMSEs are acceptable (0.56 D and 0.43 D, 720 

respectively). Nevertheless, the permeability of the partially saturated layer 1 cannot be 721 
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reconstructed, which concentrates around 5 D. It reflects that the SESRs data did not constrain the 722 

permeability of the unsaturated layer well since the low saturation makes a very low effective 723 

permeability to obtain a small SE coupling coefficient (Equation 11).  724 

 725 

Figure 12. Comparisons of the true and reconstructed (a) depth of water table, (b) permeability of 726 

layer 1, (c) permeability of layer 2 and (d) permeability of layers 3-4 using noisy MC-SESRs data 727 

(SNR ≈ 26 dB). 728 

Based on the settings of the basic test model, we used the SESRs data introduced in Section 729 

3.3 to characterize variations in the water table depth. As the data uncertainty not only can originate 730 

from the noise but also possibly contains the errors of the model parameters, here, we assumed 731 

five-percent errors of dwt, permeability, and porosity included in the basic test model. Still, the 732 

data are assumed to be contaminated by five-percent random noise in the following tests. 733 

Meanwhile, as the sensitivity analysis of SESRs to the dwt in Section 3.3 shows, the short-offset 734 

SESRs are more sensitive than the long-offset SESRs to the variations of dwt, we test to apply the 735 

different number of channels to reconstruct the dynamic dwt. All 101 channels’ or 26 short-offset 736 

channels’ SESRs data used to invert the dwt can obtain comparable accuracy under five-percent 737 

errors in model parameters (Figure 13). This test indicates that we can reconstruct dynamic shallow 738 
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dwt by using less short-offset MC-SESRs data. Since higher errors may occur in realistic 739 

measurements, we compare the inversion accuracy under five-percent, ten-percent, and twenty-740 

percent errors in the pre-defined model using 26 short-offset channels’ SESRs in Figure 14. The 741 

inverted water table depths are more deviated from the true values by enhancing errors. However, 742 

the overall inverted values are consistent with the true values with twenty-percent errors in the 743 

known model parameters, except for the result in September (Figure 14c). 744 

 745 

Figure 13. Detection of the water table depth using noisy MC-SESRs data collected from (a) 101 746 

traces (5 - 105 m) and (b) 26 traces (5 - 30 m). The blue diamonds represent the inverted value 747 

without the model errors; The red diamonds represent the true values with 5%-misspecified errors 748 

in pre-defined model parameters; The circles represent the inverted values, whose misspecified 749 

levels are indicated by the shaded areas and error bars. 750 
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 751 

Figure 14. Detection of the water table depth using the noisy 26-channel SESRs data with 752 

misspecified errors of (a) 5%, (b) 10%, and (c) 20% in pre-defined model parameters. Diamonds 753 

represent the true values; The circles represent the inverted values, whose misspecified levels are 754 

indicated by the shaded areas and error bars. 755 

As the absolute pressure head in the vadose zone is assumed to be the distance between its 756 

elevation and the water table level, the effective permeability and water saturation are calculated 757 

by the MVG model. We show that the true and the inverted permeabilities vary with time in Figure 758 

15. The permeability can still be reconstructed in the time-lapse profiles (Figure 15a). The 759 

predicted accuracy is also reduced when errors added to the model are enhanced (Figures 15b and 760 

15c). Particularly, the inverted errors of permeability increase in layer 4 due to the increasingly 761 

attenuated seismic and SE signals strength. The model parameters may be misspecified by larger 762 

errors, which causes lower inverted accuracy in deep layers due to the fragile signals. 763 
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 764 

Figure 15. Comparison of true (black lines) and inverted (pink) permeability with the changing 765 

water table depth by accounting for errors of (a) 5%, (b) 10% and (c) 20% in pre-defined model 766 

parameters.  767 

5. Discussion 768 

To test the capability of this neural network in the presence of noise, we decrease the SNR 769 

to 20 dB, 16 dB, and 14 dB by considering different random noise levels (10%, 15%, and 20%) 770 

into synthetic MC-SESRs data. Based on the assumptions in Section 4.3, we attempt to use the 771 

SESRs data at different noise levels to detect the changing water table levels. As shown in Figure 772 

16, the inverted accuracy is reduced when the noise is enhanced from 5% to 10% and more. In this 773 

case, the water table detection can be achieved at a 10% noise level when 26-channel SESR data 774 

(5 – 30 m) have been involved in the inversion (Figure 16a). This scenario can be improved by 775 

increasing the data by using more traces. The RMSE reaches 0.1671 m at a 20%-noise level when 776 

the used channels increase to 101. Correspondingly, the source-receiver offset ranges from 5 to 777 

105 m (Figures 16b, 16d, and 16f). The inverse modeling may be able to perform well for stronger 778 

noise levels when the used MC-SESR data are sufficient. Note that the monitoring test in Section 779 
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4.2 discussed the influence of different levels of errors in model parameters (Figures 13-15). 780 

Ideally, although the water table and permeability changed with time and contained model 781 

perturbations, the well-trained network (Figure 2) can recover their true values for a specific site. 782 

Therefore, the inverted values are still close to the true values using 26-channel data with mixing 783 

the noise level of 5% (Figure 13). However, the porosity of each layer is also assumed to be 784 

misspecified. Thus, the increased errors in the pre-defined model decrease the inverted accuracy 785 

of the water table depth and permeability. 786 

787 

Figure 16. Comparison of true (blue) and predicted (purple) water table depth by adding (a-b) 788 

10%, (c-d) 15% and (e-f) 20% random noise into data. The left panels (a, c, and e) use 26-channel 789 

SESRs data and the right panels (b, d, and f) use 101-channel SESRs data. The shaded areas 790 

indicate the misspecified levels. 791 

As aforementioned sensitivity of permeability and water table depth in Sections 3.2-3.3, 792 

the SESRs at different source-receiver offsets respond to the variations of different layers. The 793 

number and locations of sensors used for inversion may affect the inverted results. We test the 794 

inverted RMSEs using MC-SESRs with different offsets by 1000 untrained random models. The 795 

interval distance of adjacent sensors is kept at 1 m. It starts from offset = 10 m, which means that 796 

MC-SESRs data obtained by 6 traces in the range of 5 – 10 m are used for inversion (see Section 797 

2.3 𝐗: 𝐒𝐄𝐒𝐑5000×36×6). Figure 17 shows that the RMSEs dropped considerably when the used 798 

offsets increased to 30 m, but they continued reducing to a lesser extent. Generally, more SESRs 799 

data used for inversion should obtain higher inverted accuracy.  800 



manuscript published in Journal of Geophysical Research: Solid Earth 

 

Picking a model to contrast the true with reconstructed parameters, the predicted 801 

permeability can reconstruct the effective permeability above the capillary fringe based on the 802 

water table estimation. However, the predicted saturated permeability of layer 1 deviates from its 803 

true value (Figure 18a). The inverted saturated permeability of the top layer poorly fits the true 804 

value embodied in the whole test set (Figure 12b). As the effective permeability drops considerably 805 

at low water saturations, the SE coupling coefficient is rather small. Thus, the information of the 806 

saturated permeability in layer 1 cannot be extracted by the mapping feature layer of input MC-807 

SESRs data. The water table depth and permeability of layers 2-4 of the model are well estimated. 808 

Although the noisy MC-SESRs data for inversion are affected by disturbances (Figure 18c), the 809 

MC-SESRs data calculated by the predicted model (Figure 18d) well fit the synthetic MC-SESRs 810 

data (Figure 18b). The fitting errors concentrate in 10 – 25 m and low frequencies (~3 Hz) (Figure 811 

18e). The inversion accuracy for this case is satisfactory by using data from 26 channels (~30 m) 812 

to train and invert the water table depth and permeability. One estimation with lower accuracy is 813 

presented in the Figure S4 of Supporting Information, whose modeling result from the inverted 814 

parameters can recover the overall shape and trend of the original data, but the maximum absolute 815 

difference is one order of magnitude larger than Figure 18e.  816 

 817 

Figure 17. RMSEs between inverted and true models vary with the offset (SNR ≈ 26 dB). (a) 818 

water table depth, (b) permeability of layers 1-2 and (c) permeability of layers 3-4 819 
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 820 

Figure 18. Comparisons of the true model and the reconstructed model using 26-channel SESR 821 

data. (a) The blue (solid) and cyan (dashed) lines represent the true and predicted water table depth, 822 

respectively. The black (solid) and pink (dashed) lines represent the true and reconstructed 823 

permeability, respectively. (b-d) display the 26-channel synthetic and noisy SESR data modeling 824 

by (b-c) the true model and (d) the inverted model. (e) shows SESRs difference between the data 825 

modeling by the true model and the inverted model. 826 

6. Conclusions 827 

In this paper, we propose using MC-SESRs to process multi-channel SE signals and 828 

seismic signals recorded at the ground surface. By analyzing the sensitivity of MC-SESRs to the 829 

water table depth and permeability, the results indicate that MC-SESRs data obtained by different 830 

offsets respond to the variations of different water table depths and permeability. Moreover, we 831 

introduce a simple and efficient BL approach to interpret MC-SESRs data to quantitatively infer 832 

the water table depth and permeability of layered-porous materials. As a type of non-invasive 833 

measurement, MC-SESRs obtained by surface observations can supplement traditional piezometer 834 

installations. It can be applied to rapidly and accurately detect the water table for a specific 835 

investigated field even though pre-defined model parameters are misspecified by 20%. This feature 836 

of monitoring the water table has potential applications for assessing groundwater storage and 837 

studying frost thawing and volcanic eruption. Nevertheless, as aforementioned, the dynamic 838 
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effective excess charge density using the scaling factors by volumetric average and relaxation time 839 

suffers several limits as predictions, particularly at the pore scale. We suggest considering explicit 840 

frequency- and saturation-dependence in the future (Jougnot & Solazzi, 2021; Solazzi et al., 2022; 841 

Thanh et al., 2022). 842 

 843 

Appendix A  844 

Tables A1 and A2 list the acronyms as well as the notation and description of symbols used 845 

in the manuscript, respectively. The formulations of frequency-dependent (dynamic) and 846 

saturation-dependent parameters are summarized in Table A3. 847 

Table A1. Acronyms and meaning  848 

Acronyms Meaning 

SE SeismoElectric 

SESR SeismoElectric Spectral Ratio 

MC-SESR Multi-Channel SeismoElectric Spectral Ratio 

EDL Electrical Double Layer 

AVO Amplitude variation Versus Offset 

BL Broad Learning 

RVFLNN 
Random Vector Functional Link Neural 

Network 

EM ElectroMagnetic 

MVG Mualem-van Genuchten 

VG van Genuchten 

LAC GRTM 
Luco-Apsel-Chen Generalized Reflection and 

Transmission Method 

dwt Water table depth 
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Table A2. Nomenclature of the Material Properties 849 

Symbol Unit Description 

𝜔 rad/s Angular frequency 

f Hz Frequency 

𝜔t Hz Angular transition frequency 

𝜃c rad/s 
The critical angle of evanescent 

electromagnetic waves 

𝑆w - Water saturation 

𝑆wr - Residual water saturation 

𝑆e - Effective water saturation 

𝜎∗ S/m Complex electrical conductivity 

𝜎w S/m Electrical conductivity of pore water 

𝜎0 S/m Static bulk electrical conductivity 

𝐄 V/m Electric field 

𝐉 A/m2 Total current density 

𝐿∗ A/m2 Streaming cross-coupling coefficient 

𝐿0
sat A/m2 

Streaming cross-coupling coefficient at 

the saturated condition in low frequency 

�̂�v,0
sat C/m3 

Saturated effective excess charge density 

in low frequency 

�̂�v,0 C/m3 
Effective excess charge density in low 

frequency 

�̂�v
∗ C/m3 Complex effective excess charge density 

CEC C/kg Cation exchange capacity 

𝛽+ m2/sV 
Mobility of the counterions in the diffuse 

layer 

𝛽+
sur m2/sV 

Mobility of the counterions in the Stern 

layer 

𝑓Q - Fraction of counterions in the Stern layer 

𝐶0
sat

 V/m Streaming voltage coupling coefficient 

𝐶w mol/L Salinity of pore water 

𝐹 - Electrical formation factor 

𝑚 - Cementation exponent of Archie’s law 

𝑛 - Saturation exponent of Archie’s law 

𝑝f Pa Pore-fluid pressure 

𝜌f kg/m3 Mass density of fluid 

𝜌s kg/m3 Mass density of solid 

𝜌b
sat kg/m3 Saturated bulk mass density 

𝐮s m/s Averaging solid displacement 

𝐮f m/s Averaging pore-fluid displacement 

𝐰 m/s Averaging filtration displacement 

𝑘∗ m2 Frequency-dependent permeability 

𝑘0 - Effective permeability in low frequency 
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𝑘0
sat m2 Saturated permeability in low frequency 

𝜙 m3/m3 Porosity 

𝛼VG m−1 Parameters of van Genuchten model 

𝑛VG - Parameters of van Genuchten model 

𝜏w - Tortuosity 

𝜂w Pa∙s Dynamic viscosity of pore-water 

𝛼 - Biot coefficient 

𝛼sat - Saturated Biot coefficient 

T oC or K Temperature 

𝜀0 F/m Vacuum permittivity 

𝜅w - Dielectric constant of water 

𝜅a - Dielectric constant of air 

𝜅s - Dielectric constant of solid phase 

𝐾s Pa Bulk modulus of solid phase 

G Pa Frame shear modulus 

𝐾fr Pa Frame bulk modulus 

𝐾w Pa Bulk modulus of water 

𝐾a Pa Bulk modulus of air 

𝐾G Pa Undrained bulk modulus 

C Pa Biot modulus 

M Pa Biot modulus 

Table A3. Frequency- and saturation-dependent parameters and corresponding formulations 850 

Parameter Unit Expression References 

Angular 

transition 

frequency  

𝜔t(𝑆w) 

Hz 
𝜂w𝜙𝑆w

𝜌w𝑘0(𝑆w)𝜏w(𝑆w)
 

Revil & Mahardika, 

2013; Solazzi et al., 

2020 

Tortuosity 

𝜏w(𝑆w) 
- 𝜙𝐹𝑆w

1−𝑛 

Revil & Jougnot, 

2008; Jougnot et al., 

2018 

Dynamic 

permeability 

𝑘∗(𝜔, 𝑆w) 

- 

𝑘0(𝑆w)

1 −
𝑖𝜔

2𝜔t

 Revil & Mahardika, 

2013 

Effective water 

saturation  

𝑆e(𝑆w) 

- 
𝑆w − 𝑆wr

1 − 𝑆wr
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Quasi-static 

effective 

permeability 

𝑘0(𝑆w) 

- 
𝑘0

sat𝑆e

1
2 [1 − (1 − 𝑆e

1
𝑚VG)

𝑚VG

]

2

 

𝑚VG = 1 − 𝑛VG
−1 

Mualem, 1976; van 

Genuchten, 1980 

Specific 

moisture 

capacity 𝐶m(𝑆w) 

m−1 𝛼VG𝑚VG𝜙(1 − 𝑆wr)𝑆e

1
𝑚VG (1 − 𝑆e

1
𝑚VG)

𝑚VG

1 − 𝑚VG
 

Richards, 1931; van 

Genuchten, 1980 

Frequency-

dependent 

effective excess 

charge density 

�̂�v
∗
(𝜔, 𝑆w) 

- �̂�v,0(𝑆w)√1 −
𝑖𝜔

𝜔t
 

Revil & Mahardika, 

2013 

Complex 

electrical 

conductivity 

𝜎∗(𝜔, 𝑆w) 

S/m 
𝑆w

𝑛𝜎w

𝐹
+ 𝜎sur(𝑆w) + 𝑖[𝜎quad(𝑆w) − 𝜔𝜀0𝜅(𝑆w)] Revil et al., 2015 

Effective surface 

conductivity 

𝜎sur(𝑆w) 

S/m 
2

3
𝑚

(𝐹 − 1)

𝐹
𝑆w

𝑛−1𝛽+(1 − 𝑓Q)𝜌s𝐶𝐸𝐶 
Revil, 2013; Revil & 

Mahardika, 2013 

Effective 

quadrature 

conductivity 

𝜎quad(𝑆w) 

S/m −
2

3
𝑚

(𝐹 − 1)

𝐹
𝑆w

𝑛−1𝛽+
sur𝑓Q𝜌s𝐶𝐸𝐶 

Revil, 2013; Revil & 

Mahardika, 2013 

Dielectric 

constant 𝜅(𝑆w) 
- 

(𝐹 − 1)𝜅s + 𝑆w
𝑛𝜅w + (1 − 𝑆w

𝑛)𝜅a

𝐹
 Linde et al., 2006 

Biot coefficient 

𝛼(𝑆w) 
- 

𝑆w − 𝑆wr

1 − 𝑆wr
𝛼sat 

Revil & Mahardika, 

2013 

Mass density of 

fluid 𝜌f(𝑆w) 
kg/m3 𝑆w𝜌w + (1 − 𝑆w)𝜌𝑎  

Bulk modulus of 

fluid 𝐾f 
Pa 

1

𝑆w
𝐾w

+
1 − 𝑆w

𝐾𝑎
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