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When a body moves through a fluid, it can experience a force orthogonal to its movement, called
lift force. Odd viscous fluids break parity and time-reversal symmetry, suggesting the existence
of an odd lift force on tracer particles, even at vanishing Reynolds numbers and for symmetric
geometries. It was previously found that an incompressible odd fluid cannot induce lift force on
a tracer particle with no-slip boundary conditions, making signatures of odd viscosity in the two-
dimensional bulk elusive. By computing the response matrix for a tracer particle, we show that an
odd compressible fluid can produce an odd lift force. Using shell localization, we provide analytic
expressions for the drag and odd lift forces acting on the tracer particle in a steady state and also at
finite frequency. Importantly, we find that the existence of an odd lift force in a steady state requires
taking into account the non-conservation of the fluid mass density due to the coupling between the
two-dimensional surface and the three-dimensional bulk fluid.

Introduction..— Odd materials are characterized by the
breaking of parity symmetry, which manifest itself in vis-
cous and elastic tensor contributions that are odd under
index exchange. Breaking this symmetry results in the
emergence of novel phenomena, endowing odd materials
with fascinating properties that are interesting for vari-
ous fields of physics, including electron fluids [1–3], topo-
logical waves [4–7], fluid dynamics [8–11], complex ma-
terials [12–16], soft active matter, statistical physics and
biological physics [17–28]. Notably, these materials are
now within experimental reach and their properties can
be measured, validated and further explored [3, 22, 27].

The simplest examples of odd materials are odd fluids,
which are characterized by odd viscosity. Odd viscosity is
a transport coefficient in two dimensions breaking parity
and time-reversal symmetry, which can occur in passive
fluids subject to a background magnetic field [29, 30], as
well as in active chiral systems [8, 26].

The signatures of odd viscosity in fluids have been ex-
plored in various contexts (see e.g. [8–11, 20–22, 24, 31–
41]). The experimental realization of an active odd fluid
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in Ref. [22] showed that the strongest signatures of odd
behavior, such as edge flow or the rotation of asymmet-
ric droplets, are found at interfaces. Inserting a tracer
or probe particle in an odd fluid naturally introduces a
boundary, making it an ideal candidate to probe the odd
properties of a fluid, and has been the subject of several
numerical and theoretical studies [10, 23, 25, 33, 38, 39].
In particular, due to the parity-breaking nature of odd
viscosity, symmetry allows a fluid with a constant veloc-
ity at infinity not only to induce a drag force on a tracer
particle, but also a lift force, orthogonal to the movement
of the tracer. This odd lift force is allowed at vanishing
Reynolds number and in a symmetric geometry. This il-
lustrates its different physical origin compared to the lift
force observed for instance in aeronautics, that requires a
nonvanishing Reynolds number or a symmetry-breaking
mechanism such as the shape of the wing [42].
Surprisingly, such a lift force is absent1 in incompress-

ible odd fluids [10], and the motion of a tracer particle
cannot be used to detect signatures of odd properties in
these systems.
This brings us to a variant of the more-than-a-century-

old question: how much force does a tracer particle in a

1 A nonvanishing odd lift force, on a tracer in an incompress-
ible fluid, assuming no-slip boundary conditions, was obtained
in Ref. [33], but was contradicted in Ref. [10]. The discrepancy
can be traced to the computation of the force on the probe, which
in Ref. [33] used an incorrect pressure field.
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fluid experience? Answering this question typically re-
quires finding a smooth and regular solution for the veloc-
ity profile of the fluid flows satisfying appropriate bound-
ary conditions near the tracer particle and far away from
it. However, when one tries this for two-dimensional flu-
ids one encounters a problem, commonly known as the
Stokes paradox, which prevents a solution to the Stokes
equation for a disk moving through a two-dimensional
fluid with infinitely large system size [43]. The Stokes
paradox can be circumvented by adding a scale to the
problem which “regularizes” the paradox. One way to
do this is, is a through the Oseen approximation [44],
which introduces the far field velocity through an inertia
term. The Oseen approximation can be improved in an
iterative way, which is called asymptotic expansion [45–
50]. Another way that the Stokes paradox is evaded, is
by assuming that the two-dimensional fluid is in contact
with a three-dimensional bulk, to which momentum is
relaxed [51–53]. This is what will be considered in this
work.

In this Letter, we show that a tracer particle in an odd
compressible fluid experiences a lift force proportional to
the odd viscosity coefficient, and that compressibility is a
necessary condition for the existence of an odd lift force
in two dimensions. As commonly done when studying
the motion of tracers in fluids and to make direct con-
tact with the incompressible case studied in Ref. [10], we
consider no-slip boundary conditions on the surface of the
tracer. Lifting the incompressibility constraint dramat-
ically complicates the two-dimensional fluid equations,
the description of the fluid velocity requires, in addition
to the stream function, a second scalar field. The dif-
ferential equations of these two scalar fields are coupled
due through odd viscosity. In addition, one also needs
to account for the non-trivial role of density. To tackle
these difficulties, we avoid computing the fluid profile and
instead use the “shell localization” approach [54–56] to
analytically compute the drag and lift forces on a tracer
particle in two different situations: a fluid in a steady-
state configuration, and a fluid excited by an external
force with finite driving frequency.

Crucially —and this point was overlooked in previ-
ous studies on this subject in which an instantaneous
density relaxation was considered [38]— we show that
lift force only persists in a steady state in systems for
which the density is not conserved. Non-conservation of
density is generic in active systems as a consequence of
birth and death processes, for instance in “Malthusian
flocks” [57, 58], cellular tissues [59], and in chemotac-
tic systems [60]. Furthermore, absence of mass density
conservation in two dimensions can arise from exchanges
with a three-dimensional fluid bulk [61, 62]. This is for in-
stance the case if the odd properties of the fluid stem from
the activity of chiral particles, such as bacteria [63] or
spermatozoa [64] that swim in a three-dimensional fluid
and can accumulate at a surface.

As a further step, we also investigate the response of a
probe excited periodically. At finite frequency, we show

that an odd lift force can be measured in compressible
fluids even if the mass density is conserved. This paves
the way towards measurements of odd transport coeffi-
cients using frequency-dependent micro-rheology.

Compressible odd fluid.— We consider a thin layer of an
odd compressible viscous fluid at the interface between
two bulk (even) fluids, for instance water and air. For
simplicity, we consider this layer to be flat and infinitely
thin, such that the odd fluid can be described effectively
as two-dimensional. The stress tensor associated with
the mechanical properties of the odd fluid with velocity
field vi reads

σij = 2ηs∂⟨ivj⟩ + 2ηo∂{ivj} + (ηb∂kvk − P ) δij , (1)

where i, j denote two-dimensional Cartesian coordinates
and where summation over repeated indices is implied.
For an arbitrary tensor Aij , we have introduced the no-
tation A⟨ij⟩ = (Aij + Aji)/2 − Akkδij/2 for its trace-
less symmetric part, such that ∂⟨ivj⟩ is the fluid shear
rate. We have also introduced the odd tensor contrac-
tion A{ij} = (εikAkj+εikAjk+εjkAki+εjkAik)/4, where
εij denotes the fully antisymmetric tensor in two dimen-
sions with ε12 = −ε21 = 1. Finally, we denote by ηs,b,o
the shear, bulk and odd viscosities of the fluid, and by P
its pressure field.
The divergence of the stress tensor (1) then allows us

to write the momentum balance equation, which corre-
sponds to the odd version of the Navier–Stokes equation.
It reads:

∂tπi + vk∂kπi = ηs∂k∂kvi + ηb∂i∂kvk − ∂iP

+ ηoεij∂k∂kvj −
1

τ
πi + fi .

(2)

where πi = ρvi is the fluid momentum density with ρ the
local mass density. The first line of Eq. (2) is the usual
isotropic Navier–Stokes equation, while the first term in
the second line is the signature of odd two-dimensional
fluids. In addition, we have included in Eq. (2) a momen-
tum relaxation process with timescale τ . This process
accounts for linear friction between the two-dimensional
fluid and the three-dimensional bulk which can generi-
cally exists in our geometry. The last term fi in Eq. (2)
is an external force density acting on the fluid, which will
prove convenient to compute the drag and lift coefficients
of a probe immersed in the fluid.
As will become clear below, the compressibility of the

odd fluid layer is a necessary condition to observe a non-
vanishing lift force. A compressible fluid can be described
by providing an equation of state for the pressure field P
written as a series expansion in powers of the fluid den-
sity ρ. For a weakly compressible fluid that we consider
here, we keep only the first nontrivial order and write:

P (ρ) = P0 + χ
(ρ− ρ0)

ρ0
, (3)

where χ−1 is the compressibility, and P0 and ρ0 are the
reference pressure and density, respectively. Finally, the
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mass density obeys the balance equation

∂tρ+ ∂k(ρvk) = − 1

κ
(ρ− ρ0) , (4)

where we have included a mass exchange process with
timescale κ to account for particle exchange with the
bulk of the fluid [62]. Note that linear terms propor-
tional to the density in Eq. (3) and in Eq. (4) would
also be allowed in an active fluid layer [65], such as a
cell epithelium. In this specific case, χ(ρ − ρ0)/ρ would
correspond to an active isotropic stress and (ρ − ρ0)/κ
would account for cell divisions and extrusions. Finally,
we emphasize that the case of a momentum-conserving,
mass-conserving, or incompressible fluid can be easily re-
covered by taking respectively the limit τ → ∞, κ → ∞,
or χ → ∞ in Eqs. (2)-(4). These coupled equations thus
provides the ideal starting point for studying odd effects
in two-dimensional fluid layers.

To simplify the system of coupled nonlinear differential
equations (2)-(4), we linearize it to first order in vi and
δρ = ρ − ρ0 near a vanishing velocity and homogeneous
reference state. The balance equations then take the form

ρ0∂tvi = ηs∂k∂kvi + ηb∂i∂kvk

+ ηoεij∂k∂kvj − ∂iP − ρ0
τ
vi + fi ,

(5a)

∂tδρ+ ρ0∂kvk = − 1

κ
δρ . (5b)

We will use these equations to compute the response of
a probe to an external force in an odd fluid.

Shell localization.— Having defined the equations of mo-
tion, we move to Fourier space with the convention

g(t, xi) =
1

(2π)3

∫
dωd2k g(ω, ki)e

−iωt+ikjxj , (6)

for some function g(t, xi) so that Eq. (5) can be written
in matrix form Gijvj = fi with Gij given by

Gij = k̂ik̂j

[
ρ0
τ

− iωρ0 +

(
ηs + ηb +

χκ

1− iωκ

)
k2

]
+(δij − k̂ik̂j)

[ρ0
τ

− iωρ0 + ηsk
2
]
+ εijηok

2 ,

(7)

where k =
√
kiki and k̂i = ki/k. This relation can be

inverted as

vi(ki, ω) = Mij(ki, ω)fj(ki, ω) , (8)

where we have defined Mij = G−1
ij . Equaqtion (8) yields

the velocity induced by a force distribution. Specifically,
we consider the force applied on a tracer particle, which
is a rigid disk of radius a located at the origin. Due to
the rotational symmetry of the disk, we can decompose
the force density as fj(ki, ω) = L(k)Fj(ω). The shell

localization method consists in considering that the force
density is located in real space according to [54, 55, 66]:

L(x) =
1

2πa
δ(|x| − a) . (9)

Equation (9) enforces the force density exerted by the
disk on the fluid to be uniformly distributed along the
entire edge of the disk. The disk is coupled to the fluid
through a no-slip boundary condition, which equates the
velocity of the tracer particle to the fluid velocity at the
edge of the tracer particle. Fourier transforming Eq. (9)
yields L(k) = J0(ak) with Jn(z) the nth Bessel function
of the first kind. The velocity of the disk located at |x| =
0 is then directly given by the inverse Fourier transform
at the origin

vi(|x| = 0, ω) = Mij(ω)Fj(ω) , (10)

where the “response matrix” is

Mij(ω) =
1

(2π)2

∫ 2π

0

dθ

∫ ∞

0

dk kL(k)Mij(ki, ω) . (11)

The response matrix Mij(ω) encodes the velocity of a
rigid probe immersed in an odd fluid as a function of the
applied (frequency-dependent) force Fj(ω). Using the
disk radius a we can introduce the dimensionless coeffi-
cients

zi = aki , ω̃ = ωa2ρ0/ηs , η̃o = ηo/ηs , η̃b = ηb/ηs

τ̃ = τηs/(ρ0a
2) , χ̃ = χρ0a

2/η2s , κ̃ = κηs/(ρ0a
2) ,

(12)

so that Eq. (7) turns into

Gij =
ηs
a2

{
ẑiẑj

[
1

τ̃
− iω̃ +

(
1 + η̃b +

χ̃κ̃

1− iω̃κ̃

)
z2
]

+(δij − ẑiẑj)

[
1

τ̃
− iω̃ + z2

]
+ εij η̃oz

2
}
,

(13)

where z =
√
zizi and ẑi = zi/z. Before considering the

most general case of a compressible fluid, where a lift
force can arise, we first discuss the limiting case of an
incompressible odd fluid. This corresponds to the limit
χ̃ → ∞, for which the matrix M reads

lim
χ→∞

Mij(zk, ω̃) =
a2

ηs

δij − ẑiẑj
z2 + τ̃−1 − iω̃

. (14)

It may be observed that this matrix is transverse to
the wave-vector, indicating the absence of an odd lift
force as expected for an incompressible odd fluid [10].
In addition, the odd viscosity transport coefficient is ab-
sent, indicating that the response of the tracer particle
in the case of an odd incompressible fluid is identical
to the response in the case of an even incompressible
fluid. In the Supplementary Material [67], which includes
Refs. [47, 51–53, 68–72] we verify that in the incompress-
ible case the shell localization gives a drag force that
is consistent with results found by explicitly solving the
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FIG. 1. Steady-state drag coefficient Md (A) and lift coeffi-
cient Ml (B) as a function of the dimensionless inverse com-
pressibility Θ = (χ̃κ̃)−1 for different values of the relaxation
time τ̃ and for η̃b = η̃o = 1.

boundary value problem in two instances. Specifically,
we recover the result for two-dimensional oscillatory drag
[68, 69] as well as the result for the drag force found in
the Saffman-Delbrück model [51, 52], provided we appro-
priately match the relaxation time to the coefficients of
this model [53].

Odd lift force.— We now address the general case of a
compressible fluid. In this setting, the response matrix
can written as

Mij(ω) =
1

ηs
(Mdδij −Mlεij) , (15)

where Md and Ml are respectively the dimensionless re-
sponse functions for drag force, and for lift force, specific
to compressible odd fluids.

Steady-state odd lift force.— We first consider the steady-
state case ω̃ → 0 with a non-vanishing relaxation rate
τ̃−1 ̸= 0. The drag and lift are obtained by computing
the momentum integrals

Md =
1

4π

∫
dz J0(z)

D(z)

Q(z)
, (16a)

Ml =
1

2π

∫
dz J0(z)

L(z)

Q(z)
, (16b)

where we have defined:

Q(z) = τ̃2z4
(
η̃b + η̃2o +Θ−1 + 1

)
+ τ̃ z2(η̃b +Θ−1 + 2) + 1 ,

(17a)

D(z) = τ̃ z
(
τ̃ z2(η̃b +Θ−1 + 2) + 2

)
, L(z) = η̃oτ̃

2z3 ,

(17b)

and where Θ−1 = κ̃χ̃. As advertised in the introduc-
tion, we note that the odd lift force vanishes for η̃o → 0,
which is expected as it can only be induced by a parity-
odd coefficient. Furthermore, Ml is only non-vanishing
when κ̃−1 is non-vanishing, since in the steady case the
limit κ̃ → ∞ is equivalent to the incompressible limit for
which was shown in Eq. (14) that the lift force vanishes.
This means that in a steady state there can only be lift
forces when density is not conserved, for instance if ex-
changes between the surface and three-dimensional fluid,
parameterized by the relaxation time κ, take place.
As we detail in the Supplementary Material [67], where

we use Ref. [73], the momentum integrals can be com-
puted analytically using residues but their expression can
become lengthy. For the purpose of clarity, we consider
a series expansion in powers of the odd viscosity η̃o and
keep the first non-vanishing contribution. Specifically, we
find

Md =
K0(τ̃

−1/2) +K0[(Ξτ̃)
−1/2]/Ξ

4π
+O(η̃2o) , (18a)

Ml =
η̃o

[
K0(τ̃

−1/2)−K0[(Ξτ̃)
−1/2]/Ξ

]
2π(Ξ− 1)

+O(η̃2o) ,

(18b)

with Ξ = 1+ η̃b +Θ−1 and where Kn(x) is the nth mod-
ified Bessel function of the second kind. In the incom-
pressible fluid limit or for a compressible fluid without
mass density relaxation (Θ → 0), we find Ml = 0 and
Md = K0(τ̃

−1/2)/(4π).
We now evaluate Md and Ml from Eq. (16) as a func-

tion of Θ and provide the result in Fig. 1. We take
η̃b = η̃o = 1 for the dimensionless viscosities. We observe
in Fig. 1 A that the drag force is significantly affected by
the momentum relaxation time τ̃ but only weakly de-
pends on the compressibility parameter Θ. On the other
hand, Fig. 1 B shows the crucial role of the compressibil-
ity in the magnitude of the lift force, which vanishes in
the incompressible limit Θ → 0.
We also consider the limit Θ → ∞ which corresponds

to an infinitely compressible fluid (χ̃ = 0), or to a fluid
with an instantaneous density relaxation κ = 0). In this
limit, any deviation from the reference density ρ0 is in-
stantly relaxed to the bulk, such that pressure is constant
and plays no role in the response matrix. In this case,
our equations reduce to the ones considered in Ref. [38]
where numerical expressions for the response function are
computed.

Lastly, we note that the odd lift coefficient M1 can be-
come negative for small values of τ̃ and large values of Θ.
However, this regime in parameter space for which τ ≪ 1
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FIG. 2. Real (A,C) and imaginary parts (B,D) of the com-
plex drag and lift coefficients Md,l as a function of the dimen-
sionless frequency ω̃ for different values of the inverse com-
pressibility χ̃ and for η̃b = η̃o = 1.

is precisely the regime in which momentum relaxation
dominates and the system given by Eqs. (5) no longer
provides an accurate description of two-dimensional fluid
flows.

Frequency-dependent lift force.— We now consider the
system in the absence of relaxation processes (τ̃−1 → 0
and κ̃−1 → 0) to focus on the frequency-dependent re-
sponse of the tracer. In Fig. 2, we display the real and
imaginary parts of the drag coefficient Md(ω̃) and odd
lift coefficient Ml(ω̃) as a function of the dimensionless
frequency ω̃ and for different values of the inverse com-
pressibility χ̃−1. The drag coefficient Md(ω̃) diverges as
ω̃ → 0, which is a signature of the Stokes paradox, see
Figs. 2 A and B.

On the other hand, the lift coefficient Ml(ω̃) vanishes
at steady state, see Figs. 2 C and D. At finite excita-
tion frequency and compressibility, a nonvanishing odd
response can be measured. Note that both the drag and
lift responses vanish at large frequencies, as expected for
a fluid.

Additionally, a simple analytic expression for the drag
and odd lift coefficientMd,l can be obtained by expanding
Eq. (11) in the absence of relaxation processes (τ̃−1 → 0
and κ̃−1 → 0) and at leading order in the inverse com-
pressibility χ̃−1. One obtains

Md =
1

4π
K0

(√
ω̃/i

)
+O(χ̃−1) , (19a)

Ml =
−iω̃η̃o
2πχ̃

K0

(√
ω̃/i

)
+O(χ̃−2) . (19b)

The drag and lift coefficients have a completely different
behavior in the limit of small frequencies. Indeed, we

have the expansion2

Md = − 1

8π

(
log

ω̃

4
+ 2γEM − iπ

2

)
+O(χ̃−1, ω̃) , (20a)

Ml =
iω̃η̃o
4πχ̃

(
log

ω̃

4
+ 2γEM − iπ

2

)
+O(χ̃−2, ω̃2) , (20b)

which shows a log ω̃ divergence of the drag, as expected
from the Stokes paradox , while the odd lift coefficient
vanishes as ω̃ log ω̃. This difference in the small ω̃ behav-
ior is clearly visible in Fig. 2.

Discussion.— In this Letter we obtained analytical ex-
pressions for the drag and lift coefficients of a disk in a
two-dimensional odd compressible fluid. We used a shell
localization approach [54, 55] to study the probe response
both at steady-state and at finite frequency. In the in-
compressible limit, we confirmed the absence of odd ef-
fects on the tracer with no-slip boundary conditions [10].
Having in mind a two-dimensional system embedded in a
three-dimensional bulk, we have considered a finite mo-
mentum relaxation due to friction, which remedies the
Stokes paradox. We found that in order for lift force to
be non-vanishing in the steady case, an additional density
relaxation due to exchanges with the bulk is required.3

The shell localization approach has also been used to
compute drag force for the incompressible Oseen equa-
tion [76]. An interesting question is whether it is possible
to also apply this computation for the case where the Os-
een approximation is applied to odd compressible fluids.
Furthermore, it would be interesting to see whether “ef-
fective boundary conditions” [77] accounting for a small
finite compressibility can be used to capture the odd lift
force on the probe while using an incompressible model
in the bulk. Finally, when the tracer is excited at finite
frequency ω, we found that an odd lift response exists at
finite frequency, and vanishes as ω log(ω) in the limit of
small frequency. For comparison, the drag response di-
verges in the same limit as log(ω), a signature of Stokes
paradox [68, 69]. These results suggest that active micro-
rheology could be used to measure the properties of odd
viscoelastic materials.

Acknowledgements.— J.A. is partly supported by the
Nederlandse Organizatie voor Wetenschappelijk Onder-
zoek (NWO) through the NWA Startimpuls funding

2 Note that because the drag coefficient diverges in the limit
ω̃ → 0, the expansion in a series of ω̃ must be performed after
computing the momentum integral over z.

3 Note that in Ref. [38], the odd lift force was computed in the limit
of a vanishing density relaxation time (κ → 0) using the Lorentz
reciprocal theorem [74]. However, this theorem relies on the
index exchange symmetry ηijkl = ηklij of the viscosity tensor,
which does not hold for an odd fluid. After completing this
work, a work appeared where a modified version of the Lorentz
reciprocal theorem is introduced which can accommodate for the
anti-reciprocal odd viscosity [75] and can therefore be used to
overcome this problem.



6

scheme and by the Dutch Institute for Emergent Phe-
nomena (DIEP) cluster at the University of Amsterdam.
R.L. was supported, in part, by the cluster of excel-
lence ct.qmat (EXC 2147, project-id 39085490). P.S. ac-
knowledges the support of the Narodowe Centrum Nauki
(NCN) Sonata Bis Grant No. 2019/34/E/ST3/00405 and
NWO Klein grant via NWA route 2. C.D. acknowledges

the support of the LabEx “Who Am I?” (ANR-11-LABX-
0071) and of the Université Paris Cité IdEx (ANR-18-
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P. Surówka, Phys. Rev. E 105, 054607 (2022).

[20] M. Han, M. Fruchart, C. Scheibner, S. Vaikuntanathan,
J. J. de Pablo, and V. Vitelli, Nat. Phys. 17, 1260 (2021).

[21] C. Hargus, J. M. Epstein, and K. K. Mandadapu, Phys.
Rev. Lett. 127, 178001 (2021).

[22] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna,
D. Bartolo, M. J. Shelley, and W. T. M. Irvine, Nat.
Phys. 15, 1188 (2019).

[23] C. Reichhardt and C. J. O. Reichhardt, Phys. Rev. E
100, 012604 (2019).

[24] T. Markovich and T. C. Lubensky, Phys. Rev. Lett. 127,
048001 (2021).

[25] C. J. O. Reichhardt and C. Reichhardt, EPL 137, 66004
(2022).

[26] S. Fürthauer, M. Strempel, S. W. Grill, and F. Jülicher,
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4Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
5Department of Physics, King’s College London, London WC2R 2LS, U.K.

6Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
7Dutch Institute for Emergent Phenomena (DIEP),

University of Amsterdam, 1090 GL Amsterdam, The Netherlands
8Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany

9Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
10Institute of Theoretical Physics, Wroc law University of Science and Technology, 50-370 Wroc law, Poland

I. INCOMPRESSIBLE DRAG FORCE

In this section we explicitly compute the response matrix in two simple incompressible scenarios. In the absence of
relaxation (τ̃−1 → 0), the incompressible response matrix is given by

Mij(ω̃)=
δij
4πηs

∫
dz

zJ0(z)

z2 − iω̃

= − δij
8πηs

[
log

(
ω̃

4

)
+ 2γEM− i

π

2

]
+O(ω̃) ,

(S1)

where γEM is the Euler-Mascheroni constant. We see that this result is divergent in the steady-state limit (ω̃ → 0),
which is a signature of the Stokes paradox [1]. Note that the shell localization result given in Eq. (S1) matches the
drag force that one would obtain from solving explicitly the Stokes equation with no-slip boundary conditions [2, 3].

A second scenario is the steady-steady case ω̃ → 0 with a finite relaxation rate τ̃−1 ̸= 0. The incompressible
response matrix now reads

Mij(0) =
δij
4πηs

∫
dz

zJ0(z)

z2 + 1/τ̃

=
δij
4πηs

[
log

(
2
√
τ̃
)
− γEM

]
+O(τ̃−1) .

(S2)

In this case, the response matrix is non-divergent thanks to the momentum relaxation circumventing the Stokes
paradox [4–7]. The result in Eq. (S2) can be compared to the result from works of Saffman and Delbrück [8, 9], if
one matches the relaxation τ̃ as [5]

τ̃ =

(
ηs

2aη′s

)2

, (S3)

where η′s is the shear viscosity of the surrounding bulk fluid that is tied to the substrate in Refs. [8, 9]1. We thus
find that in these two instances, the shell localization approach yields the same results as in previous works where the
fluid velocity profile is computed over the entire two-dimensional surface [8, 9].
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1 Note in Refs. [8, 9] the shear viscosity in the substrate η

(SD)
s is three-dimensional and therefore it has different units from the ηs

appearing in this letter. In Eq. (S3) the two viscosities are related by taking η
(SD)
s → ηs/h, with h being the height of the substrate.
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II. ANALYTICAL COMPUTATION OF THE RESPONSE MATRIX

In this section, we show how the integrals performed throughout this Letter can be performed using the method of
residues. For a compressible fluid as described in the main text, the response coefficients are obtained by performing
momentum integrals that take the form

I[R] =

∫ ∞

0

dz R(z)J0(z) , (S4)

where R(z) = A(z)/B(z) is an odd function of z, and where A and B are polynomials in z. We call zn the nth root of
B(z), such that B(zn) = 0. Following Ref. [10], the integral I[R] can be computed analytically in terms of the Hankel

functions of the first kind H
(1)
ν and the Bessel functions of the second kind Yν . It reads:

I[R] = iπ
∑

zn∈C+\R

Res
(
R(z)H

(1)
0 (z), zn

)
− π

∑
zn∈R+

Res (R(z)Y0(z), zn) ,
(S5)

where the first sum is over the roots of B(z) whose imaginary part is strictly positive, and the second one is over the
positive real roots of B(z). We denote by Res(f(z), zn) the residue of f at point zn.

As an illustration, we consider the oscillatory incompressible case in the absence of relaxation (τ̃−1 → 0), for which
one has

R(z) =
z

z2 − iω̃
, (S6)

and thus for which A(z) = z and B(z) = z2 − iω̃ with the roots z1,2 = ±
√
iω̃. In this case, only the first term in the

right-hand side of Eq. (S5) contributes, and since the Hankel function H
(1)
0 has no pole in z1 =

√
iω̃, it yields

I
[
z/(z2 − iω̃)

]
=

iπ

2
H

(1)
0 (

√
iω̃) = K0(−i

√
iω̃) , (S7)

where Kν(x) is the ν
th modified Bessel function of the second kind. An expansion of Eq. (S7) in series of ω̃ yields the

result given in Eq. (S1).
The same procedure can be applied for the compressible case, and was used the main text.
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