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 B S T R A C T 

his paper examines the energetics of a conv ectiv e flow subject to an oscillation with a period t osc much smaller than the
onv ectiv e time-scale t conv , allowing for compressibility and uniform rotation. We show that the energy of the oscillation is
xchanged with the kinetic energy of the convecti ve flo w at a rate D R 

that couples the Reynolds stress of the oscillation with
he conv ectiv e v elocity gradient. F or the equilibrium tide and inertial wav es, this is the only energy e xchange term, whereas for
 modes there are also exchanges with the potential and internal energy of the convective flow . Locally , | D R 

| ∼ u 

′ 2 /t conv , where
 

′ is the oscillating velocity. If t conv � t osc and assuming mixing length theory, | D R 

| is ( λconv /λosc ) 2 smaller, where λconv and

osc are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide
ags behind the tidal potential by a phase δ( r) ∼ rω osc / ( g( r) t conv ( r) ) , where g is the gravitational acceleration. The equilibrium
ide can be described locally as a harmonic oscillator with natural frequency ( g/r ) 1 / 2 and subject to a damping force −u 

′ /t conv .
lthough δ( r) varies by orders of magnitude through the flow, it is possible to define an average phase shift δ which is in good

greement with observations for Jupiter and some of the moons of Saturn. Finally, 1 / δ is shown to be equal to the standard tidal
issipation factor. 

ey words: convection – hydrodynamics – Sun: general – planets and satellites: dynamical evolution and stability – planet–star
nteractions – binaries: close. 

 I N T RO D U C T I O N  

he circularization of stellar binaries and the orbital evolution of the moons of giant planets give very good constraints on the amount of energy
issipation in bodies in which tides are excited. Both solar-type stars and giant planets have extensive convective envelopes. Starting with
ahn ( 1966 ), it has commonly been assumed that convection acts as a turbulent viscosity which damps tidal oscillations. In this picture, the

ate at which kinetic energy per unit mass is exchanged between tidal oscillations and the convective flow is D R = 

〈
u 

′ 
i u 

′ 
j 

〉 (
∂ V i /∂ x j 

)
, where

u 

′ is the conv ectiv e v elocity and V is that of the tides, and mixing length theory is used to express 
〈
u 

′ 
i u 

′ 
j 

〉
in terms of a turbulent viscosity

nd the shear associated with the tidal velocity. This assumes that D R has the (ne gativ e) sign required for energy to be transferred from tidal
scillations to the conv ectiv e flow, leading to dissipation of the tides. This requires the energy of the background shear flow (tides) to be fed
nto conv ectiv e motions. This is by no means a trivial assumption, and there are counter examples of convection acting as a ne gativ e viscosity
Starr 1968 ). It is also well known that, in the Sun, energy is extracted from convection to be fed into the shear associated with differential
otation. Ho we ver, Zahn’s theory is very successful at reproducing the circularization time-scales inferred from observations in cases where
he conv ectiv e turno v er time-scale t conv is small compared to the period of the oscillations t osc (Verbunt & Phinne y 1995 ). 

In the opposite regime t conv � t osc , it has been argued that the turbulent viscosity should be reduced because conv ectiv e eddies cannot
xchange momentum with their environment during a tidal period (Zahn 1966 ; Goldreich & Nicholson 1977 ). This results in rates of energy
issipation orders of magnitude too small to account for observations. The discrepancy between theory and observations is particularly severe
or Jupiter, where t conv / t osc is larger than 10 3 in the whole of the envelope when considering the interaction with Io. 

Ho we v er, the v ery fact that there is hardly an y conv ectiv e transport during a tidal period when t conv � t osc actually invalidates the model
f convection acting as a turbulent viscosity (Terquem 2021 ). In this regime, the rate at which kinetic energy is exchanged between tidal
scillations and the conv ectiv e flow is still D R as written abo v e, but with u 

′ being the v elocity of the tides and V that of the conv ectiv e flow:
he role of the fluctuations and that of the mean flow are reversed. This is because the Reynolds stress −ρ

〈
u 

′ 
i u 

′ 
j 

〉
is al w ays associated with

he fastest varying component of the flow. Here again, assuming that D R has the (positive) sign required for energy to be transferred from the
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ides to convection, Terquem & Martin ( 2021 ) obtained rates of energy dissipation in agreement with observations for the circularization of
olar-type stars. 

The fact that observations can be accounted for by assuming that energy is systematically transferred from the tides to convection, both
hen the tides act as the fluctuations or as the mean flow, is compelling. However, it is worth noting that in either case there is no proof so far

hat tidal energy is al w ays dissipated. 
The analysis in Terquem ( 2021 ) was restricted to incompressible and non-rotating flows. The present paper aims at generalizing this

nalysis by including compressibility and uniform rotation. The addition of compressibility will enable the application of the formalism to the
ase where the oscillations are pressure modes, which are associated with time-scales much shorter than the conv ectiv e time-scales in stars. It
s believed that they are damped through their interaction with the conv ectiv e flow, and this is usually modelled using mixing length theory.
o we ver, this has been found not to be in good agreement with numerical simulations (Basu 2016 ), which is not surprising in the context
f the new formalism which applies when t osc � t conv . The addition of uniform rotation will also enable the application of the formalism to
nertial waves. This is important because, if the tidal frequency is smaller than twice the rotation frequency, the response of a rotating star
r giant planet to a tidal perturbation is the superimposition of an equilibrium tide and propagating inertial waves. It has been assumed in
revious studies that these waves are damped through their interaction with a turbulent conv ectiv e viscosity. Howev er, like for the equilibrium
ide, damping of inertial waves cannot be described by mixing length theory when t osc � t conv . 

This paper examines in full generality in which form energy is transferred between an oscillation and convection. We take into account
ll the energy stores and examine all the routes that the energy of the oscillation could potentially travel through. 

We then focus on tidal oscillations and, assuming local dissipation, calculate the phase by which the tide lags behind the perturbing
otential. We also explore the damped harmonic oscillator model for the equilibrium tide. 

The plan of the paper is as follows. In Section 2 , we write the energy conservation equations for the flow as a whole, without separating
he oscillation from the conv ectiv e flow. Assuming t osc � t conv , we then perform a Reynolds decomposition and write the kinetic, potential,
nd internal energy conservation equations for the mean conv ectiv e flow and for the oscillation separately in Section 3 . These equations are
v eraged first o v er the time-scale t osc and then o v er a time-scale long compared to t conv . We show that the energy of the oscillation is exchanged
ith the kinetic energy of the conv ectiv e flow at a rate D R per unit mass that couples the Reynolds stress of the oscillation with the conv ectiv e
elocity gradient. If the oscillation is the equilibrium tide or an inertial wave, D R is the only term that exchanges energy between the oscillation
nd the conv ectiv e flow, and it is al w ays balanced by the w ork done by the tidal force, whether this is positiv e or ne gativ e. If the oscillation
s a p mode, there is an additional exchange with the potential and internal energy of the conv ectiv e flow, because of compressibility. In
ection 4 , we discuss how to express D R in terms of the flow velocities. We re vie w the standard cases of viscous and turbulent shear flows,
nd examine oscillations with t osc either small or large compared to t conv . This makes it clear that many of the questions that arise about the
irection of energy transfer when the tides are fast are also rele v ant when the tides are slow and play the role of the mean flow. The two cases
hould therefore be examined together. When t conv � t osc , | D R | ∼ u 

′ 2 /t conv , where u 

′ is the oscillating velocity. If t conv � t osc and assuming
ixing length theory, | D R | is ( λconv / λosc ) 2 smaller, where λconv is the mixing length and λosc is the spatial scale on which the oscillation varies.
his applies to p modes, the equilibrium tide and inertial waves. In Section 5 , we focus on tidal oscillations and assume local dissipation. We
how that the phase shift between the oscillation and the tidal potential varies by orders of magnitude through the flow. For the equilibrium
ide, which we model as a harmonic oscillator, it is ho we ver possible to define a mean phase shift for the flow which can be compared to the
 alues deri ved from observ ations for Jupiter and Saturn. The inverse of this mean phase shift is equal to the standard tidal dissipation factor
 = 2 πE 

′ 
p /	E , where E 

′ 
p is the potential energy in the tide and 	 E is the total energy dissipated during a tidal period. Finally, we summarize

nd discuss our results in Section 6 . 

 T H E  DIFFERENT  F O R M S  O F  E N E R G Y  

e consider a body (solar-type star or giant planet) in uniform rotation which has an envelope in which energy is transported by convection.
e note Ω the angular velocity vector of the body, u the velocity of the gas in the rotating frame, ρ its density and p its pressure. The body is

ubject to a tidal force per unit mass f t = −∇ Ψt , where Ψt is the tidal potential in the rotating frame. 

.1 Conser v ation of energy 

o help the discussion, we first recall the equations expressing conservation of energy for the flow in the conv ectiv e env elope without separating
idal oscillations and conv ectiv e motions. The flow satisfies the mass conservation equation 

∂ρ

∂t 
+ 

∂ 

∂x j 

(
ρu j 

) = 0 , (1) 

nd Navier–Stokes equation, which i -component in Cartesian coordinates is 

∂u i 

∂t 
+ ρu j 

∂u i 

∂x j 
= − ∂p 

∂x i 
+ ρg i + ρf c,i + ρf t,i + 

∂σij 

∂x j 
, (2) 

here g i is the (ne gativ e) acceleration due to the gravity of the body itself in the i -direction, f c = −2 Ω×u is the Coriolis force per unit mass,

ij is the viscous stress tensor and repeated indices are summed o v er. In the cases of interest, the centrifugal force is very small compared
MNRAS 525, 508–526 (2023) 
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o the gravitational force, into which it can be subsumed. F or e xample, in the Sun, the centrifugal force is about 10 5 times smaller than the
ravitational force (Miesch 2005 ). For this reason, it is neglected here. In a solar-type star, almost all of the mass is in the radiative core, so
hat g � −GM / r 2 , where M is the total mass of the star. In principle, to calculate g in the envelope of a giant planet, self-gravity has to be taken
nto account. Ho we ver , in the parts of the en v elope where tides hav e a significant amplitude, g is also well approximated by −GM / r 2 , where M
s the total mass of the planet. This approximation will therefore be used thereafter. We note Ψ0 the associated gravitational potential, defined
hrough g = −∇ Ψ0 (i.e. in spherical coordinates, Ψ0 = −GM /r ). 

Multiplying equation ( 2 ) by u i , summing up o v er i and using equation ( 1 ) yields the equation for kinetic energy conservation 

∂ 

∂t 

(
1 

2 
ρu 

2 

)
= − ∂ 

∂x j 

[(
1 

2 
ρu 

2 + p 

)
u j − σij u i 

]
+ p ∇ · u + ρg · u + ρ f t · u − σij 

∂u i 

∂x j 
. (3) 

n equation for the gravitational potential energy is obtained by multiplying equation ( 1 ) by the potential energy per unit mass Ψ = Ψ0 + Ψt .
ssuming Ψ0 to be independent of time, this yields 

∂ 

∂t 
( ρΨ ) = − ∂ 

∂x j 

(
ρΨ u j 

) − ρg · u − ρ f t · u + ρ
∂Ψt 

∂t 
. (4) 

quations ( 3 ) and ( 4 ) show that potential and kinetic energies are exchanged through the work ρ ( g + f t ) · u done by the total gravitational
orce, which includes both the tidal force and the self-gravitational force. The term ρ ( ∂ Ψt /∂ t ) represents the excess or deficit of potential
nergy due to the time dependence of the tidal potential. Although it does not appear to involve work done, we will see in Section 3.7 that,
hen integrated over the envelope, its average over a tidal period is actually equal to the average work done by the tidal force. 

An equation for the internal energy is obtained from the first law of thermodynamics 

∂e int 

∂t 
= − ∂ 

∂x j 

(
e int u j 

) − p ∇ · u + σij 

∂u i 

∂x j 
− ∇ · q , (5) 

here e int is the internal energy per unit volume and q is the radiative flux of thermal energy. Conv ectiv e and radiativ e transport of energy
re contained in the first and last terms on the right-hand side, respectively. Equations ( 3 ) and ( 5 ) show that kinetic and internal energies are
xchanged through viscous dissipation and through the work p ∇ · u done by the pressure force. 

By adding equations ( 3 ), ( 4 ), and ( 5 ), we obtain a conservation equation for the total energy per unit volume e tot = ρu 

2 / 2 + ρΨ + e int 

∂e tot 

∂t 
= − ∂ 

∂x j 

[
( e tot + p ) u j − σij u i 

] + ρ
∂Ψt 

∂t 
− ∇ · q . (6) 

he work done by the tidal force does not appear as a source term for the total mechanical energy, no more than the work done by the buoyancy
orce does, because the tidal potential is included in the potential energy. 

.2 Energy dissipation 

e now integrate equation ( 6 ) over the whole volume of the convective envelope. The divergence term on the right-hand side becomes an
nte gral o v er the surf aces. The contribution from the outer surf ace is ne gligible as ρ and p are v ery small there. At the inner surface, the
onv ectiv e v elocity vanishes, the v elocity of the equilibrium tide is v ery small, and the radial v elocity of inertial wav es has to vanish to satisfy
he boundary condition with either a solid core or a radiative layer. The contribution from the inner surface is therefore also negligible, and the
urface integral can be ignored. 

In the absence of tides, transport of energy throughout the envelope adjusts itself so that a steady state is maintained (i.e. e tot integrated
 v er the envelope is constant) over time-scales long compared to that of the flow and small compared to the time-scale on which the internal
tructure of the body evolves. When tides are present, the total energy has contribution from the tidal oscillation. Averaged over a tidal period,
his contribution is constant o v er a time-scale short compared to the tidal evolution time-scale of the binary. Therefore, o v er such time-scales,
he integral of the term on the left-hand side of equation ( 6 ) is zero and we then obtain ∫ 
V 

〈
ρ

∂Ψt 

∂t 

〉
d v + E core = 

∫ 
S 

F rad · d s , (7) 

here V is the volume of the conv ectiv e env elope, F rad is the radiativ e flux through the outer surface S, and E core is the thermal energy entering
hrough the inner surface (due to nuclear energy production in a star and other mechanisms in a giant planet). The brackets denote an average
 v er the tidal period. 

The equation abo v e shows that, if the tidal potential results in an excess of potential energy (i.e. the integral on the left-hand side is
ositive), it has to be ultimately radiated away along with the energy E core produced in the core of the body. As potential energy cannot be
onverted directly into internal energy, which is the only form of energy which can be radiated away, it first has to be converted into kinetic
nergy. 

Equation ( 7 ) can also be written as ∫ 
V 

〈
ρ

∂Ψt 

∂t 

〉
d v = δ

(∫ 
S 

F rad · d s 
)

, (8) 
NRAS 525, 508–526 (2023) 
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here the term on the right-hand side is the perturbation to the net surface flux due to the tidal oscillation, which has contribution from the
erturbation to the flux itself, but also from the perturbation to the surface normal and to the surface area. An explicit calculation shows that
his term is proportional to the Lagrangian variation of the radial flux at the surface, which itself depends on the radial component of the
idal displacement there (Dziembowski 1977 ; Bunting & Terquem 2021 ). Numerical simulations aiming at calculating tidal dissipation should
herefore allow the outer surface of the flow to oscillate under tidal forcing. Enforcing rigid boundaries may prevent the energy to be released
nd create spurious results. 

 E QUAT I O N S  F O R  T H E  OSCILLATION  A N D  T H E  M E A N  FLOW  

he response of a rotating conv ectiv e flow to tidal forcing includes a non-w avelik e part (equilibrium tide) to which are superimposed
ropagating inertial waves when the tidal frequency is smaller than twice the rotation frequency. In addition to tidally forced oscillations, a
onv ectiv e flow can also support propagating pressure waves. 

In the analysis presented below, we consider a forced oscillation in a compressible conv ectiv e flow in uniform rotation. The oscillation can
herefore be identified with either an equilibrium tide, the sum of an equilibrium tide and a propagating inertial wave if the rotation frequency
s large enough, or a propagating pressure wave (for which f t has to be thought of as the force that excites the wave rather than a tidal
orce). 

We note t osc and ω osc the period and frequenc y, respectiv ely, of the oscillation in the rotating frame. F or tidal oscillations, we hav e
 osc = 2 | ω orb − Ω| , where ω orb is the orbital frequency of the binary (we only consider circular orbits). In this section, we assume t osc � t conv ,
here t conv is the characteristic time-scale associated with conv ectiv e motions. We will however also discuss the case where the oscillation

ime-scale is the longest one in the following section. 

.1 Reynolds decomposition 

e use the Reynolds decomposition in which the total velocity in the rotating frame is written as u ( r , t ) = V ( r , t ) + u 

′ ( r , t ) , where u 

′ 

s the velocity associated with the periodic oscillation in the rotating frame. In other words, if we note 〈 . . . 〉 a time-average over t osc , then
u 

′ ( r , t ) 
〉 = 0 . This defines V ( r , t ) ≡ 〈 u ( r , t ) 〉 as the mean velocity, and this is the conv ectiv e v elocity in the rotating frame. As evidenced

y the Sun, convection in the presence of rotation may induce differential rotation. This is not al w ays the case, ho we ver, as Jupiter for example
s mostly in rigid body rotation. When differential rotation is present, then it can be thought of as being included in V (e.g. Durney & Spruit
979 ). 

A Reynolds decomposition can also be made for the pressure p ( r , t ) = p 0 ( r ) + δp ( r , t ) + p 

′ ( r , t ) and the mass density ρ ( r , t ) =
0 ( r ) + δρ ( r , t ) + ρ ′ ( r , t ) , with 

〈
p 

′ ( r , t ) 
〉 = 

〈
ρ ′ ( r , t ) 

〉 = 0. In other words, ρ ′ and p 

′ are the zero-mean density and pressure perturbations
ssociated with the oscillation, δρ and δp are the fluctuations due to convection, and ρ0 and p 0 are the density and pressure in the fluid at
ydrostatic equilibrium (i.e. the values the density and pressure would have in the absence of convection and oscillation). 

We will also assume that the time deri v ati ve of the oscillating quantities u 

′ , ρ ′ , and p 

′ average to zero over a time t osc , as is the case for
eriodic oscillations. 

The Reynolds decomposition above allows the oscillation to couple to convection through the non-linear term in Navier–Stokes equation,
ut does not allow mode–mode coupling for p modes or inertial waves. This could only be captured by having a sum of different u 

′ ,
ach for a different wave, in the decomposition for u . Since p modes are excited by the turbulent conv ectiv e flow itself, modes with
ifferent frequencies co-exist and interact with each other. However, p mode damping through mode–mode coupling is believed to be
egligible in the Sun due to the small amplitude of the modes (Kumar & Goldreich 1989 ; Weinberg, Arras & Pramanik 2021 ), and
herefore this is neglected here. Similarly, a tidally excited inertial wave could in principle interact with free inertial waves if these were
resent in the flo w. Ho we ver, numerical simulations of Jupiter have found that free inertial waves could not be maintained, probably
ecause of their interaction with convection and gravity waves (Glatzmaier 2018 ). Although the question of whether these waves are
resent or not is still open, we will neglect the possibility of them coupling with tidally excited modes. Our analysis therefore does
ot include possible resonances. Note that we also neglect possible interactions of tidal oscillations or p modes with magnetic waves.
f these mechanisms are a source of damping, the corresponding terms can be added to the terms we include in the analysis presented
elow. 

The kinetic energy of the flow per unit volume is e k = 

(
ρ0 + δρ + ρ ′ ) (V + u 

′ ) (V + u 

′ ) / 2. Averaged over t osc , this gives 

〈 e k 〉 = E k + 

〈
e ′ k 
〉 + 

〈
ρ ′ u 

′ 〉 · V , (9) 

here we have defined E k = ( ρ0 + δρ) V 

2 / 2 and e ′ k = 

(
ρ0 + δρ + ρ ′ )u 

′ 2 / 2. 

.2 Equations for the kinetic energy averaged over the oscillation time-scale 

s will be discussed in Section 3.9 , neglecting density perturbations in Navier–Stokes equation before performing time averages to derive
quations for the oscillation and the mean flow yields inconsistencies. Therefore, we first derive the equations for the conservation of kinetic
nergy without making any approximations. The small density perturbation limit will then be examined in the next subsection. 
MNRAS 525, 508–526 (2023) 
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Substituting the Reynolds decomposition in Navier–Stokes equation ( 2 ) and averaging over t osc yields 

( ρ0 + δρ) 
∂V i 

∂t 
+ 

〈
ρ ′ ∂u 

′ 
i 

∂t 

〉
+ ( ρ0 + δρ) V j 

∂V i 

∂x j 
+ ( ρ0 + δρ) 

〈
u 

′ 
j 

∂u 

′ 
i 

∂x j 

〉
+ 

〈
ρ ′ ∂u 

′ 
i 

∂x j 

〉
V j + 

〈
ρ ′ u 

′ 
j 

〉 ∂V i 

∂x j 
+ 

〈
ρ ′ u 

′ 
j 

∂u 

′ 
i 

∂x j 

〉
= 

− ∂ 

∂x i 
( p 0 + δp ) + ( ρ0 + δρ) g i − 2 ( ρ0 + δρ) Ω×V | i − 2 

〈
ρ ′ Ω×u 

′ 〉∣∣
i 
+ 

〈
ρ ′ f t,i 

〉 + 

∂ 
〈
σij 

〉
∂x j 

, (10) 

here | i denotes the i component. To derive the abo v e equation, we have assumed that g and Ω are not affected by the perturbations. We have
lso interchanged time averages with space deri v ati ves. Note that p 0 and ρ0 satisfy the hydrostatic equilibrium equation −∂ p 0 / ∂ x i + ρ0 g i = 0.
his could be subtracted off, but we keep these terms as it makes the discussion about energies more clear. 

Averaging the mass conservation equation ( 1 ) over t osc yields 

∂ ( δρ) 

∂t 
+ 

∂ 

∂x j 

[
( ρ0 + δρ) V j + 

〈
ρ ′ u 

′ 
j 

〉] = 0 , (11) 

nd subtracting from equation ( 1 ) gives 

∂ρ ′ 

∂t 
+ 

∂ 

∂x j 

[
( ρ0 + δρ) u 

′ 
j + ρ ′ V j + ρ ′ u 

′ 
j −

〈
ρ ′ u 

′ 
j 

〉] = 0 . (12) 

We obtain an equation for E k by multiplying equation ( 10 ) by V i and summing o v er i . Using equations ( 11 ) and ( 12 ) then yields 

∂E k 

∂t 
= − ∂ 

∂x j 

[
( E k + p 0 + δp ) V j + ( ρ0 + δρ) V i 

〈
u 

′ 
i u 

′ 
j 

〉 + 

1 

2 
V 

2 
〈
ρ ′ u 

′ 
j 

〉 + V i V j 

〈
ρ ′ u 

′ 
i 

〉 + V i 

〈
ρ ′ u 

′ 
i u 

′ 
j 

〉 − 〈
σij 

〉
V i 

]
− V i 

〈
∂ 

∂t 

(
ρ ′ u 

′ 
i 

)〉
+ D R − D v + ( ρ0 + δρ) g · V + ( p 0 + δp ) ∇ · V − 2 

〈
ρ ′ Ω×u 

′ 〉 · V + 

〈
ρ ′ f t 

〉 · V , (13) 

here we have defined 

 R = 

[
( ρ0 + δρ) 

〈
u 

′ 
i u 

′ 
j 

〉 + 

〈
ρ ′ u 

′ 
i u 

′ 
j 

〉 + 

〈
ρ ′ u 

′ 
i 

〉
V j 

] ∂V i 

∂x j 
, (14) 

 v = 

〈
σij 

〉 ∂V i 

∂x j 
. (15) 

imilarly, we obtain an equation for e ′ k by multiplying equation ( 2 ) by u 

′ 
i , summing o v er i , using equation ( 1 ) and averaging over t osc . This

ields 〈
∂e ′ k 
∂t 

〉
= − ∂ 

∂x j 

[〈
e ′ k 
〉
V j + 

〈
e ′ k u 

′ 
j 

〉 + 

〈
p 

′ u 

′ 
j 

〉 − 〈
σij u 

′ 
i 

〉] − 〈
ρ ′ u 

′ 
i 

〉 ∂V i 

∂t 

−D R − D 

′ 
v + 

〈
ρ ′ g · u 

′ 〉 + 

〈
p 

′ ∇ · u 

′ 〉 + 2 
〈
ρ ′ Ω×u 

′ 〉 · V + 

〈(
ρ0 + δρ + ρ ′ ) f t · u 

′ 〉 , (16) 

here 

 

′ 
v = 

〈
σij 

∂u 

′ 
i 

∂x j 

〉
. (17) 

No approximations have been made to obtain the equations above, i.e all the terms have been retained. As pointed out above, these
quations apply whether the oscillation is an equilibrium tide, the sum of an equilibrium tide and a propagating inertial wave, or a propagating
ressure wave (in which case f t has to be thought of as the force that excites the wave). They also apply even if the oscillations are not periodic,
n which case the average has to be taken o v er a time long compared to t osc and short compared to t conv . Therefore, these equations can be used
hen the role of the tidal oscillations and that of convection are reversed, i.e. when the tides are the mean flow and conv ectiv e motions are the

apid fluctuations, which is appropriate when t conv � t osc (note, ho we ver, that in that case the fluctuating velocity does not average to zero, but
o a value which is second order in the fluctuations, e.g. Nordlund, Stein & Asplund 2009 ). 

.3 The case of small perturbations 

e now approximate the energy conservation equations ( 13 ) and ( 16 ) using 
∣∣ρ ′ ∣∣ � ρ0 and 

∣∣u 

′ ∣∣ � | V | , which is al w ays satisfied for tidal
scillations or pressure modes in a conv ectiv e flow. 

The mass conservation equation ( 12 ) can then be approximated as 

∂ρ ′ 

∂t 
+ 

∂ 

∂x j 

[
( ρ0 + δρ) u 

′ 
j + ρ ′ V j 

] = 0 . (18) 

We note λconv the characteristic spatial scale of the conv ectiv e eddies (mixing length), such that V ∼ λconv / t conv (if V includes significant
ontribution from differential rotation, then t conv and λconv are themselves affected by rotation). We further note λosc the characteristic spatial
cale o v er which the oscillating quantities vary. For the equilibrium tide in Jupiter, Saturn, or the Sun, and in the parts of the envelope where
ides are significant, λosc / λconv � 1 near the surface and decreases to reach values on the order of unity deeper in the envelope. Since inertial
av es are driv en by the Coriolis force acting on the equilibrium tide (Ogilvie 2013 ), their λosc is comparable to that of the equilibrium tide.
or p modes, λosc is larger than the pressure scale height H p . Since λconv ∼ 2 H p , it follows that λconv � λosc in all cases. 
NRAS 525, 508–526 (2023) 
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Therefore, ∣∂ (ρ ′ V j 

)
/∂x j ∣ ∼ ∣ρ ′ ∣V /λconv ∼ ∣ρ ′ ∣ /t conv . Since t osc � t conv , this is very small compared to ∣∂ρ ′ /∂t ∣ ∼ ∣ρ ′ ∣ /t osc , so that

quation ( 18 ) can be further approximated as: 

∂ρ ′ 

∂t 
+ 

∂ 

∂x j 

[
( ρ0 + δρ) u 

′ 
j 

] = 0 . (19) 

his yields 
∣∣ρ ′ ∣∣ /t osc ∼

∣∣∂ (ρ0 u 

′ 
j 

)
/∂x j 

∣∣ ∼ ρ0 u 

′ /λosc or ∼ ρ0 u 

′ /r , depending on whether the oscillation is compressible or not. This implies 

≡
∣∣ρ ′ ∣∣
ρ0 

V 

u 

′ � 

λconv 

λosc 

t osc 

t conv 
� 1 . (20) 

herefore, in equation ( 9 ), 
∣∣〈ρ ′ u 

′ 〉 · V 

∣∣ / ∣∣〈e ′ k 〉∣∣ ∼ ε � 1. The kinetic energy averaged over the tidal period is then 〈 e k 〉 � E k + 

〈
e ′ k 
〉
, which

s the sum of the kinetic energy of the mean flow and that of the oscillation. 
Furthermore, having ε � 1 and 

∣∣ρ ′ ∣∣ � ρ0 yields D R � ρ0 D R (where we have also used | δρ| � ρ0 ), with 

 R = 

〈
u 

′ 
i u 

′ 
j 

〉 ∂V i 

∂x j 
, (21) 

hich is the parameter that was first introduced in Terquem ( 2021 ). 

.4 Av eraging o v er the conv ecti v e time-scale 

s we are interested in the exchange of energy between convection and the oscillation over a time-scale long compared to the convective
ime-scale, we now average equations ( 13 ) and ( 16 ) over such a time-scale. 

The exact same procedure is followed when the mixing length approximation is used, which may be appropriate when t conv � t osc , and
hich corresponds to the tidal oscillation being the mean flow and convection being the rapid fluctuations. In that case, the first time averaging

s done o v er the conv ectiv e time-scale, and the second o v er the oscillation period. Mixing length theory assumes that D R , which involv es a
oupling between the conv ectiv e Re ynolds stress and the gradient of the tidal velocity, is al w ays ne gativ e, corresponding to local dissipation
f the tides (mean flow). Therefore, D R does not average to zero o v er an oscillation period, even though it is linear in the gradient of the tidal
elocity (see Appendix A for a more detailed discussion). 

Similarly, here, where t conv � t osc and D R involves a coupling between the Reynolds stress of the oscillation and the gradient of the
onv ectiv e v elocity, we allow for the possibility that the oscillation is locally dissipated. This corresponds to D R > 0 and implies that D R 
= 0,
here the o v erline denotes an average over a time long compared to the convective time-scale. 

Locally, | D R | given by equation ( 21 ) is of order u 

′ 2 V /λconv ∼ u 

′ 2 /t conv . If the oscillation is locally dissipated, then D R is positive everywhere
nd at all times, and D R = | D R | . Ho we ver, if the oscillation is not locally dissipated, 

∣∣D R 

∣∣ may be much smaller than | D R | , in which case
he rate of energy dissipation is too low to explain the circularization of solar-type binaries (Terquem & Martin 2021 ). We will neglect in
quations ( 13 ) and ( 16 ) the terms which are small compared to ρ0 | D R | when av eraged o v er a long time-scale, while retaining ρ0 D R to allow
or the possibility of local dissipation. If 

∣∣D R 

∣∣ is actually small compared to | D R | , then the exchange of energy between the oscillation and
onv ectiv e eddies with long time-scale is negligible and cannot account for the observations, in which case the terms that we neglect are not
mportant anyway. 

We therefore neglect 
〈
ρ ′ u 

′ 
i 

〉
( ∂ V i /∂ t ) in equation ( 16 ), as it is ε times smaller than ρ0 | D R | . We also note that, in equation ( 13 ),

∂ 
(
ρ ′ u 

′ 
i 

)
/∂t 

〉 = 0 because ρ ′ u 

′ 
i is the sum of constant and periodic terms. 

We now compare the Coriolis term, which redistributes kinetic energy among the different components of the velocities, to ρ0 | D R | . We
ave 

∣∣〈ρ ′ Ω×u 

′ 〉 · V 

∣∣ ∼ ∣∣ρ ′ ∣∣ u 

′ ΩV , as ρ ′ is almost in phase with u 

′ 
ϕ (they would be exactly in phase if there were no exchange of energy

etween the oscillation and the conv ectiv e flow). The ratio of this quantity to ρ0 | D R | is ( λconv /λosc ) Ωt osc . If Ω is large, then Ωt osc � π , so
hat this ratio is of order unity. Ho we ver, mass conserv ation implies that V ∼ ( | δρ| /ρ0 ) V � V (Nordlund et al. 2009 ). Therefore the Coriolis
erm averaged over a long time-scale is very small compared to ρ0 | D R | , and will therefore be neglected. 

The work done by the tidal force on the conv ectiv e flow is given by the last term on the right-hand side of equation ( 13 ). Av eraged o v er a
ong time-scale, this is 

〈
ρ ′ f t 

〉 · V ∼ ∣∣ρ ′ ∣∣ f t V . The work done by the tidal force on the oscillation is given by the last term on the right-hand side
f equation ( 16 ), and is 

〈
ρ f t · u 

′ 〉 ∼ ρ0 f t u 

′ δ, where δ is the (small) phase shift between the tidal displacement and the tidal force which results
rom the exchange of energy between the oscillation and convection. The ratio of these two terms is therefore η ≡ ∣∣ρ ′ ∣∣V / 

(
ρ0 u 

′ δ
) = εV / ( V δ) .

he work done by the buoyancy force g | δρ| over ∼λconv is equal to the kinetic energy per unit volume of conv ectiv e motions (Schwarzschild
958 ), so that | δρ| /ρ0 ∼ V 

2 / ( gλconv ) ∼ V / ( gt conv ) , and this is equal to V /V . Therefore, η ∼ εV /( gt conv δ). We will show in Section 5.1 that η
1 for tidal oscillations, so that the last term on the right-hand side of equation ( 13 ) can be neglected: most of the tidal work is done on the

scillating velocities, not on the mean flow. This implies that the mean flow ‘feels’ the effect of the tidal forcing through exchanging energy
ith the oscillation, rather than directly. (For p modes, there is no work done by the forcing on the conv ectiv e flow, as the forcing comes from

onvection itself). 
Finally, we note that V � V also implies that the term ∂ 

(〈
e ′ k 
〉
V j 

)
/∂x j averaged over a long time-scale is very small compared to ρ0 | D R |

we are assuming that the gradient of the conv ectiv e v elocity, not the v elocity itself, may couple to the tidal Re ynolds stress). 
Using the small perturbation approximations described in Section 3.3 and averaging equations ( 13 ) and ( 16 ) over a time long compared

o the conv ectiv e time-scale while retaining D R then yields 
MNRAS 525, 508–526 (2023) 
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∂E k 

∂t 
= − ∂ 

∂x j 

[
( E k + p 0 + δp ) V j −

〈
σij 

〉
V i 

] + ρ0 D R − D v + ( ρ0 + δρ) g · V + ( p 0 + δp ) ∇ · V , (22) 〈
∂e ′ k 
∂t 

〉
= − ∂ 

∂x j 

(〈
p 

′ u 

′ 
j 

〉 − 〈
σij u 

′ 
i 

〉) − ρ0 D R − D 

′ 
v + 

〈
ρ ′ g · u 

′ 〉 + 

〈
p 

′ ∇ · u 

′ 〉 + ρ0 

〈
f t · u 

′ 〉 , (23) 

here the average over the long time-scale is now taken as read. Equations ( 22 ) and ( 23 ) show that kinetic energy is exchanged between
he mean flow and the oscillation at a rate ρ0 D R per unit volume, which extends the result that was established by Terquem ( 2021 ) in the
ncompressible and non–rotating case. 

.5 Equations for the potential and internal energy 

e now write the equations for the potential and internal energy of the oscillation and mean flow to identify the terms which exchange the
inetic energy of the oscillation with other forms of energy. 

The potential energy per unit volume is e p = 

(
ρ0 + δρ + ρ ′ ) ( Ψ0 + Ψt ) . Av eraged o v er t osc , we get 

〈
e p 
〉 = E p + 

〈
e ′ p 
〉

with E p =
 ρ0 + δρ) Ψ0 being the potential energy of the mean flow and 

〈
e ′ p 
〉 = 

〈
ρ ′ Ψt 

〉
being the mean potential energy of the oscillation. 

We obtain an equation for E p by multiplying equation ( 11 ) by Ψ0 , which yields: 

∂E p 

∂t 
= − ∂ 

∂x j 

(
E p V j + 

〈
ρ ′ Ψ0 u 

′ 
j 

〉) − ( ρ0 + δρ) g · V − 〈
ρ ′ g · u 

′ 〉 , (24) 

here we have used the fact that Ψ0 and ρ0 are independent of time. 
A conservation equation for e ′ p is obtained by multiplying equation ( 1 ) by Ψt and averaging over t osc : 〈

∂e ′ p 
∂t 

〉
= − ∂ 

∂x j 

[〈
e ′ p 
〉
V j + ( ρ0 + δρ) 

〈
Ψt u 

′ 
j 

〉] + 

〈
ρ ′ ∂Ψt 

∂t 

〉
− ρ0 

〈
f t · u 

′ 〉 , (25) 

here we have used η � 1. 
For a perfect gas, the internal energy per unit volume is e int = p /( γ − 1), where γ is the ratio of the heat capacity at constant pressure to that

t constant volume. Assuming this parameter not to be affected by the perturbation, we have 
〈
p 

′ / ( γ − 1 ) 
〉 = 0 and 〈 e int 〉 = ( p 0 + δp ) / ( γ − 1 )

s then the internal energy of the mean flow: on av erage o v er a tidal period, there is no internal energy in the tidal oscillation. A conservation
quation for e int is obtained by averaging equation ( 5 ) over t osc 〈
∂e int 

∂t 

〉
= 

∂ 

∂t 

(
p 0 + δp 

γ − 1 

)
= − ∂ 

∂x j 

[ 

( p 0 + δp ) V j 

γ − 1 
+ 

〈
p 

′ u 

′ 
j 

〉
γ − 1 

] 

− ( p 0 + δp ) ∇ · V − 〈
p 

′ ∇ · u 

′ 〉 + D v + D 

′ 
v − 〈 ∇ · q 〉 . (26) 

.6 Identifying all the terms responsible for energy transfer between oscillation and mean flow 

s can be seen from equation ( 22 ) to ( 26 ), to leading order, the work done by the tidal force enters through the kinetic and potential energies
f the oscillation only. The potential energy of the oscillation cannot be exchanged with the mean flo w. Ho we ver, the kinetic energy of the
scillation can be exchanged with the kinetic energy of the conv ectiv e flow through the term ρ0 D R , with the potential energy of the conv ectiv e
ow through the buoyancy term 

〈
ρ ′ g · u 

′ 〉, and with the internal energy of the convecti ve flo w through the pressure term 

〈
p 

′ ∇ · u 

′ 〉 and
iscous term D 

′ 
v . 

The compressibility associated with low-frequency tidal oscillations is negligible. This can be seen by comparing t osc with the time t s =
osc / c s it takes a sound wave to cross the characteristic spatial scale of the oscillation, where c s is the sound speed. We have c s ∼

√ 

p 0 /ρ0 ∼
 

gH p , where H p is the pressure-scale height, so that t s ∼
(
λosc / 

√ 

rH p 

)
ω 

−1 
0 , where ω 0 ≡

√ 

g/r is the natural frequency. The perturbation is
herefore approximately incompressible if t s /t osc ∼

(
λosc / 

√ 

rH p 

)
( ω 0 t osc ) 

−1 � 1. We have checked that this is satisfied for the tidal periods
f interest in Jupiter, Saturn, and the Sun, although it is only marginally satisfied very close to the surface in Jupiter and Saturn. Therefore, the
ffect of compressibility on tidal oscillations can be neglected (Lighthill 1978 ), which means that terms involving ∇ · u 

′ (and therefore also
 · ξ , where ξ is the Lagrangian tidal displacement) can be discarded. 

The buoyancy term is 
〈
ρ ′ g · u 

′ 〉 � 

〈
ρ ′ gu 

′ 
r 

〉
, since gravity is mostly in the radial direction. The mass conservation equation ( 19 ) can be

ritten as ρ ′ = −∇ · ( ρ0 ξ ) , where we have used | δρ| � ρ0 . This shows that 
〈
ρ ′ u 

′ 
r 

〉 = −ρ0 

〈
u 

′ 
r ∇ · ξ

〉
, as ρ0 varies with r only. 

Therefore, both the pressure and buoyancy terms can be neglected for tidal oscillations. Note that they were also neglected compared
o the term involving the Reynolds stress in the study of gravity waves or f -modes interacting with convection in Press ( 1981 ), Goldreich &
umar ( 1990 ), Lecoanet & Quataert ( 2013 ). 

For p modes ho we ver, t s / t osc becomes of order unity near the surface of the conv ectiv e zone of the Sun, and compressibility therefore
lays a role for the damping of these modes. This yields a phase shift between ρ ′ and p 

′ which results in net work done by the pressure force
Samadi, Belkacem & Sonoi 2015 , see also Goldreich & Kumar 1990 for a comparison of these terms with the term involving the Reynolds
tress). 

The viscous flux and D 

′ 
v in equation ( 23 ) can also be neglected, because microscopic viscosity has a negligible effect on oscillations,

xcept possibly near the surfaces of the envelope. In general, viscous dissipation is negligible away from the surfaces of the conv ectiv e env elope,
NRAS 525, 508–526 (2023) 
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oth in the Sun (Miesch 2005 ) and in Jupiter (Guillot et al. 2004 ). In the bulk of the conv ectiv e zone, the energy contained in the large scale
ddies is transported towards the surface mostly by the enthalpy flux, with comparatively very little dissipation due to viscous stresses acting
n the smaller scales. Near the surf ace, the enthalp y flux f alls off and energy is transported by the radiative flux (e.g. Featherstone & Miesch
015 ). 

.7 Tidal work and dissipation 

e now consider the specific case of a tidal oscillation, for which the terms related to buoyancy, compressibility and viscosity can be neglected
n equation ( 23 ). The divergence term in this equation can also be neglected, because 

〈
p 

′ u 

′ 〉 is associated with compressibility, which we have
ust shown is not playing any role. 

Equation ( 23 ) can therefore be written as 〈
∂e ′ k 
∂t 

〉
= −ρ0 D R + ρ0 

〈
f t · u 

′ 〉 . (27) 

quations ( 25 ) and ( 27 ) have been obtained after av eraging o v er a time long compared to the conv ectiv e time-scale, so that the time deri v ati ves
n the left-hand side are changes o v er long time-scales. Since the brackets are time averages over short time-scales, they can be swapped with
he time deri v ati ves, i.e. 

〈
∂ e ′ k /∂ t 

〉 = ∂ 
〈
e ′ k 
〉
/∂t and similarly for e ′ p . Therefore, given that 

〈
e ′ k 
〉

and 
〈
e ′ p 
〉

are constant, equations ( 25 ) and ( 27 )
ecome 

0 

〈
f t · u 

′ 〉 = − ∂ 

∂x j 

(〈
e ′ p 
〉
V j + ρ0 

〈
Ψt u 

′ 
j 

〉) + 

〈
ρ ′ ∂Ψt 

∂t 

〉
, (28) 

0 

〈
f t · u 

′ 〉 = ρ0 D R . (29) 

ntegrating equation ( 28 ) over the volume V of the convective envelope yields ∫ 
V 

ρ0 

〈
f t · u 

′ 〉 d v = 

∫ 
V 

〈
ρ ′ ∂Ψt 

∂t 

〉
d v, (30) 

here we have used the fact that ρ0 is very small on the outer surface and u 

′ is very small on the inner surface (as in Section 2.2 ), so that
he divergence term does not contribute. Comparing this equation with equation ( 8 ) shows that the energy which is ultimately radiated away
omes from the work done by the tidal force (when this is positive). 

We now discuss the implications of equation ( 29 ). 
When there is no exchange of energy between the tidal flow and convection, i.e. D R = 0, the tidal displacement ξ is in phase with the

idal force f t , so that u 

′ = ∂ ξ/∂t is in quadrature and 
〈

f t · u 

′ 〉 = 0. This means that f t · u 

′ is positive during half a tidal period and ne gativ e
uring the other half. When it is positive, the kinetic energy of the oscillation increases while its potential energy decreases by the same
mount. When it is ne gativ e, the kinetic energy decreases and the potential energy increases. 

When there is dissipation, i.e. D R > 0, ξ lags behind f t by a (positive) phase shift δ, which yields 
〈

f t · u 

′ 〉 ∝ sin δ with 
〈

f t · u 

′ 〉 > 0. In
ther words, when the tidal flow transfers energy to convection, work is done by the tidal force, which supplies the energy being transferred.
his ultimately comes from the orbital motion of the binary. 

If D R < 0 instead, the tidal flow extracts kinetic energy from convection. In that case, ξ leads f t and the situation is as above but
ith δ < 0. The work done by the tidal force on the flow is now ne gativ e. In other words, the energy extracted from convection by

he tidal oscillation is remo v ed from the flow by the work done by the tidal force, and is ultimately fed to the orbital motion of the 
inary. 

The analysis abo v e shows that tidal energy cannot be dissipated by the oscillation itself, as it cannot be converted into thermal energy of
he oscillation. It can only be dissipated by being transferred to the kinetic energy of the mean conv ectiv e flow first, where it becomes part of
he conv ectiv e ener gy budget and is transformed into thermal ener gy in the standard way. 

.8 Equilibrium tide and inertial waves 

s already mentioned abo v e, when the tidal frequency in the rotating frame is less than twice the rotational frequency, propagating inertial
aves are excited. This corresponds to t orb ≥ t rot /2, where t rot is the rotational period. 

When this condition is satisfied, the oscillation is the sum of a non-wave like part and an inertial wave. The non-wave like part is the
quilibrium tide, which corresponds to the flow being al w ays instantaneously at hydrostatic equilibrium in the perturbed potential, and is
herefore a solution of the equations without the Coriolis force. The Coriolis force acting on the equilibrium tide is then a forcing term that
rives inertial waves (see Ogilvie 2013 for a thorough discussion). Denoting u 

′ 
e and u 

′ 
w the velocities associated with the equilibrium tide and

nertial wav es, respectiv ely, we then have 
∣∣u 

′ 
e 

∣∣ / ∣∣u 

′ 
w 

∣∣ ∼ | ω osc | / ( 2 Ω) ≤ 1. When inertial waves are present, D R can be written as D R , e + D R , w 

 D R , ew , with 

 R,e = 

〈
u 

′ 
e,i u 

′ 
e,j 

〉 ∂V i 

∂x j 
, D R,w = 

〈
u 

′ 
w,i u 

′ 
w,j 

〉 ∂V i 

∂x j 
, D R,ew = 

(〈
u 

′ 
e,i u 

′ 
w,j 

〉 + 

〈
u 

′ 
e,j u 

′ 
w,i 

〉) ∂V i 

∂x j 
. (31) 
MNRAS 525, 508–526 (2023) 



516 C. Terquem 

M

T  

p  

c

3

B  

t  

k  

i  

s  

 

a
 

e
 

w  

4

W  

t  

t  

a  

F

4

I  

 

i

σ

w

D

A  

v
 

a  

v  

e  

v  

m  

t  

t

4

I  

c  

w  

a

D

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/508/7227355 by guest on 13 August 2023
his shows that the exchange of energy between the conv ectiv e flow and the tidal oscillation can be written in the same way whether the
erturbation is dominated by the equilibrium tide, by inertial waves, or by both. Therefore, those inertial waves which have a period small
ompared to the conv ectiv e time-scale can only be dissipated by interaction with convection if D R , w > 0. 

.9 Comments on Barker & Astoul ( 2021 ) 

arker & Astoul ( 2021 ) have claimed that the term exchanging kinetic energy between convection and tidal oscillations is ρ0 D R − t 1 with
 1 ≡ V i 

〈
u 

′ 
i 

(
∂ρ ′ /∂t 

)〉
(using their notations), instead of ρ0 D R , as found abo v e. Their result is based on identifying the term exchanging

inetic energy as being ρ0 V · (u 

′ · ∇ 

)
u 

′ only, i.e. neglecting the contribution from the local time deri v ati ve ρ ( ∂ u /∂t ) and also other terms
n ρ ( u · ∇ ) u in Navier–Stokes equation. Ho we v er, as the y bring ∂ρ ′ /∂t back from the mass conservation equation, their analysis is not
elf-consistent and does not yield the correct energy conservation equation. Including the local time deri v ati ve would indeed add the term

V · ρ ′ (∂ u 

′ /∂t 
)

which, added to t 1 , gives V i 

〈
∂ 
(
ρ ′ u 

′ 
i 

)
/∂t 

〉
, which is zero (see Section 3.4 ). 

When all the terms are taken into account in a self-consistent manner, the correct exchange term is therefore ρ0 D R , as shown in the
nalysis presented abo v e. 

We also note that, contrary to what is argued by Barker & Astoul ( 2021 ), the term ρ0 V i V j 

(
∂u 

′ 
i /∂x j 

)
, which has been regarded as the term

xchanging energy between tides and convection in previous studies (as will be discussed in the next section), is not an alternative to ρ0 D R

hen t osc � t conv . Indeed, ρ0 V i V j 

(
∂u 

′ 
i /∂x j 

)
averages to zero over the shortest time-scale t osc . This is discussed in more details in Appendix A .

 V I S C O U S  A N D  T U R BU L E N T  SHEAR  FLOW S,  SLOW  A N D  FA ST  TI DES  

e now discuss how to express D R in terms of the flow velocities. Before considering tidal oscillations in conv ectiv e flo ws, we first re vie w
he classical treatment of viscous and turbulent shear flows, as this is instructive and this has been used to approximate tidal dissipation in
he standard approach, when the tides are the mean flow. We then discuss both the standard approach and the case of fast tides to which the
nalysis of the previous section applies. Although, in this section, we refer to the oscillation as a tide, the discussion also applies to p modes.
or those modes ho we ver, D R is only part of the exchange energy rate with the convective flow. 

.1 Viscous and turbulent shear flows 

n a viscous flow with mean velocity U , momentum is transported in the direction of decreasing momentum by the fluctuating (thermal) part
c of the particle v elocities. After trav elling through a mean free path λ, particles collide with each other and redistribute momentum. For an
ncompressible Newtonian fluid, the viscous stress is given by 

ij = −ρ
〈
c i c j 

〉 = ρν

(
∂U i 

∂x j 
+ 

∂U j 

∂x i 

)
, (32) 

here ν ∼ cλ/ 3 is the kinematic viscosity. This corresponds to a rate of change of energy per unit mass for the mean flow given by 

 R, visc = 

〈
c i c j 

〉 ∂U i 

∂x j 
= −1 

2 
ν

(
∂U i 

∂x j 
+ 

∂U j 

∂x i 

)2 

. (33) 

s D R , visc < 0, kinetic energy is irreversibly lost by the mean flow. In this case, the correlations < c i c j > between the components of the
elocity fluctuations are a result of the shear, and are given the sign required for kinetic energy to be transformed into thermal energy. 

In the classical case of a turbulent shear flow, as described, e.g., in Tennekes & Lumley ( 1972 ), the Reynolds stress −ρ < c i c j > is
ssociated with the velocity c of the turbulent fluctuations. The rate of change of energy per unit mass for the mean shear flow, which has
elocity U , is still D R , turb = < c i c j > ( ∂ U i / ∂ x j ). Because the length scale of the turbulent eddies is small compared to the scale of the shear flow,
ddies are stretched by the shear flow, and conservation of angular momentum then produces a correlation of the components of the turbulent
elocity yielding D R , turb < 0. Therefore, here again, < c i c j > is determined by the shear. This corresponds to a transfer of energy from the
ean flow to the largest turbulent eddies and the subsequent cascade results in a small scale viscous dissipation of the free energy present in

he shear flow. This is consistent with the fact that the turbulence is due to instabilities of the mean shear flow itself, so that the energy of the
urbulent eddies comes from the shear. 

We now discuss energy transfer in conv ectiv e flows subject to tidal oscillations. 

.2 Slow tides t conv � t osc and mixing length theory 

n the analysis done in the previous section, it was assumed that the tidal period was the shortest time-scale. Ho we ver, the same analysis
ould be done for the case where the conv ectiv e time-scale is the shortest time-scale. Convective motions would then be the rapid fluctuations,
hereas the tidal oscillation would be the mean flow . This is the standard picture which has been considered by previous authors. This yields
 rate of change of kinetic energy which is still given by 

 R, slow = 

〈
u 

′ 
i u 

′ 
j 

〉 ∂V i 

∂x j 
, (34) 
NRAS 525, 508–526 (2023) 
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ut with V being the tidal velocity and u 

′ being the convective velocity , and the average is o v er a time long compared to the conv ectiv e
ime-scale and short compared to the tidal period (see Appendix A ). Since the mean flow is now the tidal oscillation, transfer of energy from
he tides to convection requires D R , slow < 0. 

In previous studies, starting with Zahn ( 1966 ), the mixing length approximation has been used to write D R , slow in terms of a turbulent
onv ectiv e viscosity. This relies on assuming that conv ectiv e eddies behav e like particles in a fluid, and exchange momentum with their
nvironment when the y dissolv e after having travelled over a mixing length λconv , which is (at most) twice the pressure scale height. The
eynolds stress, −ρ

〈
u 

′ 
i u 

′ 
j 

〉
, is then expressed by analogy with the viscous stress ( 32 ) as 

− ρ
〈
u 

′ 
i u 

′ 
j 

〉 = ρνt 

(
∂V i 

∂x j 
+ 

∂V j 

∂x i 

)
, (35) 

here νt ∼ u 

′ λconv is the turbulent conv ectiv e viscosity. The rate of energy dissipation is then given by equation ( 33 ) with ν being replaced by

t , which yields 

∣∣D R, slow 

∣∣ ∼ u 

′ λconv 

(
V 

λosc 

)2 

∼ V 

2 

t conv 

(
λconv 

λosc 

)2 

, (36) 

here we have used | ∂ V i / ∂ x j | ∼ V / λosc and u 

′ ∼ λconv /t conv . Therefore, D R , slow is linear in the conv ectiv e v elocity u 

′ and quadratic in the tidal
elocity V . 

The mixing length approximation assumes that conv ectiv e eddies al w ays extract energy from the background shear flow, i.e. transport
he momentum associated with the tides from regions where it is high to regions where it is lower. In other words, in this picture, the tidal
scillation dictates the direction in which conv ectiv e eddies trav el, yielding the correlations 

〈
u 

′ 
i u 

′ 
j 

〉
between the components of the conv ectiv e

elocity to have the sign required for tides to be dissipated. Note that, as the tidal velocity changes sign periodically, 
〈
u 

′ 
i u 

′ 
j 

〉
has to change sign

n the same time-scale to keep D R , slow < 0. 
There are two issues with this picture. First, it is difficult to envision how tidal velocities, which are orders of magnitude smaller than

onv ectiv e v elocities in the flows of interest, could influence the conv ectiv e v elocities. Second, ev en if the tides could affect conv ectiv e motions,
t is not clear this would result in the correlations 

〈
u 

′ 
i u 

′ 
j 

〉
having the required amplitude and the required sign. Indeed, although convection does

orrelate velocity and density fluctuations very ef fecti vely (yielding positive work from the buoyancy force), it does not necessarily produce
orrelations of the components of the flow velocity (Tennekes & Lumley 1972 , Section 3.4 ). And when such correlations are produced, they do
ot necessarily have the sign required for convection to act as a viscosity (Starr 1968 ). The fact that differential rotation in the Sun is produced
y the conv ectiv e Re ynolds stress is a clear e xample of conv ection acting as a ne gativ e viscosity. 

Finally, we comment on the fact that the mixing length theory is based on a diffusion approximation which is not formally valid when
he length scale o v er which the fluctuations vary is comparable to that o v er which the mean flow varies, which is the case when considering
ides in a conv ectiv e flo w. This is e ven more of a problem in the presence of rotation, which affects the motion of the conv ectiv e eddies as they

o v e o v er a mixing length. In such a case, the motion of conv ectiv e eddies cannot be treated in a similar way as the motion of molecules, for
hich rotation is irrele v ant as they move over a mean free path. 

There are therefore unjustified assumptions behind the model of convection acting as a turbulent viscosity. Ho we ver, it gi ves theoretical
issipation rates which are in agreement with observed circularization periods for binaries for which t conv � t osc (Verbunt & Phinney 1995 ). 

.3 Fast tides t conv � t osc 

ere, D R is given by equation ( 21 ), where u 

′ is the tidal velocity (fluctuations) and V is the convective velocity (mean flow). To leading
rder, u 

′ 
r and u 

′ 
θ are in phase (any phase shift would be a result of energy exchange between the oscillation and the conv ectiv e flow), so that

u 

′ 
r u 

′ 
θ

〉 ∼ u 

′ 2 . We also have 
〈
u 

′ 2 
r 

〉 ∼ 〈
u 

′ 2 
θ

〉 ∼ 〈
u 

′ 2 
ϕ 

〉 ∼ u 

′ 2 , so that 

| D R | ∼ u 

′ 2 V 

λconv 
∼ u 

′ 2 

t conv 
, (37) 

here we have used | ∂ V i / ∂ x j | ∼ V / λconv ∼ 1/ t conv . Therefore, here again, D R is linear in the conv ectiv e v elocity V and quadratic in the tidal
elocity u 

′ . This is consistent with equation ( 29 ), as the amplitude of the tidal velocity is proportional to that of the tidal force, so that the
ependence on u 

′ is quadratic. The dependence on the conv ectiv e v elocity comes from the phase shift between the tidal force and the tidal
isplacement, which is due to the interaction between the tides and convection. 

In previous studies, it has been argued that mixing-length theory is applicable to both the case of slow and fast tides, but that in the regime
f fast tides the turbulent viscosity has to be reduced (Zahn 1966 ; Goldreich & Nicholson 1977 ). The results abo v e show that mixing-length
heory does not apply to fast tides, but none the less the tidal dissipation rate has the same form as that given by this theory, except without the
eduction factor . The dissipation rate is actually larger than for slow tides, as | D R , slow / D R | ∼ ( λconv / λosc ) 2 (remembering that the roles of the
idal and conv ectiv e v elocities hav e been e xchanged in the e xpression for D R , slow ). This is much smaller than unity in the parts of the conv ectiv e
nvelopes of the Sun, Jupiter, and Saturn which contribute to tidal dissipation, which yields enhanced exchange of energy when t conv � t osc . 

In general, at a given location in a convecti ve flo w, there is a range of conv ectiv e time-scales associated with eddies of different sizes.
herefore, even when t osc is small compared to the longest conv ectiv e time-scale, it is still likely to be large compared to the shortest one.
his implies that values of t osc / t conv smaller and larger than unity simultaneously contribute to exchange of energy. Ho we ver, since | D R , slow | is
MNRAS 525, 508–526 (2023) 
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ignificantly smaller than | D R | , the rate of exchange of energy is dominated by the interaction with the eddies which have the longest convective
ime-scale. Note, ho we ver, that the analysis presented here does not apply when t conv ∼ t osc , so there is still a possibility that resonant interaction
etween tides and convection plays a significant role. 

In the case of fast tides, since the tidal oscillations are the rapid fluctuations, D R > 0 corresponds to a transfer of energy from the tidal
ow to convection, whereas D R < 0 correspond to the tidal flow extracting kinetic energy from convection. If the tide is approximated
y its equilibrium value, 

〈
u 

′ 
i u 

′ 
j 

〉
> 0 and therefore tidal dissipation requires the gradient of the conv ectiv e v elocity to couple to this

eynolds stress in a particular way. As in the case of slow tides, it is difficult to envision how the tidal oscillation could induce such a 
oupling. 

Ho we ver, like for the case of slow tides, Terquem & Martin ( 2021 ) showed that assuming D R > 0 in the regime t conv � t osc yields
issipation rates which account for the circularization of solar-type binaries, which has been a longstanding theoretical puzzle. 

 PHASE  LAG  A N D  TIDAL  DISSIPATION  FAC TO R  

he tidal dissipation factor is only rele v ant when the tide is locally dissipated by interaction with convection, i.e. when D R > 0 for fast tides
r D R , slow < 0 for slow tides. Therefore, in this section, we assume that the tide is indeed locally dissipated and derive an expression for the
hase lag and tidal dissipation factor using the formalism presented abo v e. 

.1 Phase lag 

s already mentioned, when there is dissipation, the Lagrangian displacement ξ lags behind the tidal force f t by a phase δ. Therefore, if
he tidal potential is proportional to cos (2 ϕ − ω osc t ) in the rotating frame, then u 

′ 
r and u 

′ 
θ are proportional to sin (2 ϕ − ω osc t − δ) while u 

′ 
ϕ 

s proportional to cos (2 ϕ − ω osc t − δ). (We are assuming here that the phase shift is the same for all the components of ξ , which may not
ctually be the case; e.g. Bunting, Papaloizou & Terquem 2019 ). This yields 

〈
f t · u 

′ 〉 ∼ f t ( r ) u 

′ ( r ) sin δ where f t ( r ) and u 

′ ( r) denote positive
haracteristic values of f t and u 

′ at r and where we assume averages over θ . From equation ( 29 ), we then have δ ∼ D R / 
[
f t ( r ) u 

′ ( r ) 
]
, where we

ave used sin δ � δ as dissipation is weak. Equation ( 37 ) gives D R ∼ u 

′ 2 ( r ) /t conv ( r ), where again we assume av erages o v er θ . This then yields
∼ u 

′ ( r ) / [ f t ( r ) t conv ( r ) ] . 
For the equilibrium tide, the characteristic value of the tidal displacement is ξ ( r) ∼ Ψt ( r) /g( r) (Ogilvie 2014 ). Since u 

′ ( r) = ω osc ξ ( r),
e then get 

( r ) ∼ rω osc 

g ( r ) t conv ( r ) 
. (38) 

ote that, here, we rely on first-order perturbation theory to compute the phase shift, i.e. we use the velocity calculated while ignoring
issipation to derive the phase shift that results from dissipation. This approach, which was also used in Terquem et al. ( 1998 ), is valid because
he energy dissipated during a tidal cycle is small compared to the energy contained in the tides. 

If the mass M of the star or planet is centrally condensed, then g ( r ) � GM / r 2 . As already mentioned abo v e, this is a very good approximation
n the conv ectiv e env elope of the Sun. It is also a reasonably good approximation in the outer parts of the envelope of Jupiter and Saturn, where
he tides are significant. Therefore, the phase shift can be approximated as 

( r ) ∼ r 3 

GM 

ω osc 

t conv ( r ) 
. (39) 

his is exactly the same expression as that obtained by Darwin ( 1879 ) for a viscous sphere, except that in Darwin’s expression r is the radius
f the sphere and t conv is a coefficient which is assumed to be uniform. Zahn ( 1977 ) later used Darwin’s formula by identifying this coefficient
ith what he called the ‘friction time’, which is the time it takes for convection, assumed to act as a turbulent viscosity, to transport energy

hroughout the conv ectiv e env elope of the star. 
In Section 3.4 , we calculated that the ratio of the work done by the tidal force on the conv ectiv e flow to that done on the oscillation is

= εV /( gt conv δ), where ε is given by equation ( 20 ). Using equation ( 38 ), this yields η ∼ ελconv t osc /( rt conv ) � 1, which confirms that most of
he work is done on the oscillation. 

If the amplitude of inertial waves dominates over that of the equilibrium tide, then u 

′ ( r) ∼ 2 Ωξ ( r), where ξ is the displacement
orresponding to the equilibrium tide (see Section 3.8 ). Therefore, equations ( 38 ) and ( 39 ) still apply but with ω osc being replaced by 2 Ω , with
he caveat that possible strong latitudinal dependence of inertial waves are not captured by the averaging over θ . 

The time lag 	 t is defined through δ( r ) = ω osc 	 t ( r ), and therefore equation ( 38 ) yields a time lag independent of frequency for the
quilibrium tide. 

The e xpression abo v e has been deriv ed assuming fast tides. F or slow tides, D R is ( λconv / λosc ) 2 smaller, so that the right-hand side of
quations ( 38 ) and ( 39 ) has to be multiplied by this factor. 

In previous studies, it has been assumed that tidal dissipation in a giant planet or in a star could be quantified by a single uniform phase
ag. Ho we ver, equation ( 38 ) shows that δ is strongly dependent on r , increasing sharply towards the surface. The phase lag is uniform when
he response of the body is viscoelastic, but not in the presence of a fluid. 
NRAS 525, 508–526 (2023) 
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.2 Phase lags associated with different satellites 

et us consider the case where there are two moons, contributing tidal forces per unit mass f t, 1 and f t, 2 with frequencies in the rotating
rame ω osc, 1 and ω osc, 2 , respectively. Then u 

′ = u 

′ 
1 + u 

′ 
2 , where u 

′ 
i (with i = 1, 2) oscillates with frequency ω osc, i . Averaging over a time

ong compared to both 2 π / ω osc, 1 and 2 π / ω osc, 2 remo v es the terms involving a product of perturbations with different frequencies (even if the
requencies are commensurate). Equation ( 29 ) then becomes 〈

f t, 1 · u 

′ 
1 

〉 + 

〈
f t, 2 · u 

′ 
2 

〉 = D R, 1 + D R, 2 , (40) 

ith D R, 1 = 

〈
u 

′ 
1 ,i u 

′ 
1 ,j 

〉 (
∂ V i /∂ x j 

)
and similarly for D R , 2 . 

Because, on average, f t, 1 does not work on u 

′ 
2 , and f t, 2 does not work on u 

′ 
1 , the dissipation rate D R , i can only be due to the work done

y f t,i on u 

′ 
i . The equation abo v e then implies that 

〈
f t,i · u 

′ 
i 

〉 = D R,i for both i = 1 and i = 2, so that equation ( 38 ) is satisfied for each of
he moons. 

.3 Harmonic oscillator and tidal dissipation factor 

e now focus on the equilibrium tide. Ever since Goldreich ( 1963 ), Kaula ( 1964 ), and MacDonald ( 1964 ), the tidal dissipation factor Q has
een e xtensiv ely used to quantify the amount of energy dissipation in moons, planets and stars. 

In Appendix B , we give a brief review of the calculation of the phase lag δ and Q factor for a driven and damped harmonic oscillator.
omparing the expressions obtained for sin δ in both the case of the equilibrium tide (equation 38 ) and the harmonic oscillator (equation B4 ),
e see that we can model the equilibrium tide as a harmonic oscillator with natural frequency ω 0 = ( g / r ) 1/2 � ( GM / r 3 ) 1/2 , driving frequency
 = ω osc and damping coefficient γ = 1/ t conv , providing ω 

2 
0 � ω 

2 
osc � γω osc . For both Saturn and Jupiter interacting with their closest moons,

hese inequalities are well satisfied, although in the outer parts of the envelope ω 

2 
0 is only about 5 times ω 

2 
osc . For Saturn interacting with Rhea

nd Titan, this approximation is only marginally satisfied at the surface of the envelope, where ω 

2 
0 /ω 

2 
osc ∼ 2. 

We can therefore approximate the equilibrium tide at some location r as a one dimensional harmonic oscillator which equation of motion
s 

d 2 ξ

d t 2 
+ ω 

2 
0 ξ = −γ u 

′ + f t cos ( ω osc t ) , (41) 

here ξ and u 

′ are characteristic values at r of (any component of) the tidal displacement and v elocity, respectiv ely, and f t is a characteristic
alue at r of the amplitude of the tidal force per unit mass. In this equation, −ω 

2 
0 ξ and −γ u 

′ are the restoring and friction forces
er unit mass, respectively. The restoring force is the gravitational force since ω 

2 
0 ξ ≡ gξ/r = gu 

′ / ( ω osc r ) ∼ ρ ′ g/ρ0 , where the mass
onservation ( 19 ) has been used. For a harmonic oscillator, the rate of work done by the friction force, γ u 

′ 2 , is equal to the rate of
ork done on av erage o v er a period by the driving force. As γ u 

′ 2 = D R , identifying γ u 

′ with the friction force is consistent with equation
 29 ). 

The equilibrium tide assumes that the tidal displacement adjusts itself so that the flow is al w ays at equilibrium in the perturbing potential.
his is only satisfied if 

∣∣d 2 ξ/ d t 2 
∣∣ � ∣∣ω 

2 
0 ξ
∣∣, i.e. ω 

2 
osc � ω 

2 
0 , which is consistent with the condition required for sin δ to be approximated by

quation ( B5 ). In that case, the energy of the oscillator is dominated by the potential energy, which is e ′ p ( r ) = ρ0 ω 

2 
0 ξ

2 / 2 ∼ ρ ′ gξ ∼ ρ ′ Ψt per
nit volume, so that the peak energy E 

� in the expression ( B8 ) of the Q factor is the peak potential energy, not the peak kinetic energy. 
It is clear from the discussion abo v e that the equilibrium tide can only be described locally as a harmonic oscillator. 
Fig. 1 shows the time lag 	 t ( r ) = δ( r )/ ω osc for both Jupiter and Saturn and Q ( r ) ≡ 1/sin δ( r ) for Jupiter interacting with Io and for Saturn

nteracting with Enceladus as a function of position in the planet. The models for Jupiter and Saturn have been provided by I. Baraffe (Baraffe,
habrier & Barman 2008 ). The model for Saturn has a ratio of the mixing length to pressure scale height α = 0.5, instead of the value of 2
sed in stars, as it has been argued that this may be better suited for planetary interiors (see Terquem 2021 for a more detailed discussion about
hese models). As can be seen on this figure, δ, and therefore Q , vary by orders of magnitude throughout the envelope. 

.4 Comparison with obser v ations for Jupiter and Saturn 

bservational constraints on tidal dissipation in a planet are obtained by calculating the tidal deformation of the planet due to a moon, and
he gravitational potential V ext that this deformation produces at the position of the moon. It is assumed that, because of tidal dissipation in
he planet, the tidal bulge (equilibrium tide) lags behind the line joining the centres of the planet and moon, which corresponds to a phase
ag δ. Therefore, V ext results in the planet e x erting a torque onto the moon. The component Γz of this torque along the direction of the orbital
ngular momentum yields a secular acceleration of the moon. Since Γz ∝ k 2 sin δ, where k 2 is the Lo v e number of the planet, comparing the
olutions of the equations of orbital evolution with the observations enables constraints to be put on the phase shift ( k 2 being independently
onstrained). The tidal dissipation factor Q is calculated through Q = 1/tan δ. More details can be found in Goldreich & Soter ( 1966 ), Mignard
 1980 ), Murray & Dermott ( 1999 ), and Lainey, Dehant & P ̈atzold ( 2007 ). 

When more than one moon is present, each moon i is assumed to be associated with a distinct phase shift δi . This corresponds to a potential
 ext, i produced by the planet at the position of all the moons, but this potential is only associated with a torque on moon i when an average is

aken o v er a time-scale long compared to all the tidal periods. Constraints are derived by taking into account the interactions between all the
MNRAS 525, 508–526 (2023) 
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M

Figure 1. Time lag 	 t = δ/ ω osc for Jupiter (red curve) and Saturn (orange curve) and tidal dissipation factor Q ≡ 1/sin δ for the tides raised on Jupiter by Io 
(blue curve) and the tides raised on Saturn by Enceladus (cyan curve), in logarithmic scale, versus r / R planet , where R planet is either the radius of Jupiter or that 
of Saturn. 	 t is independent of ω osc whereas Q ∝ 1/ ω osc . The phase lag δ varies by orders of magnitude through the envelope of the planets. The observations 
give Q = 3.56 × 10 4 for Jupiter interacting with Io, and Q = 2.45 × 10 3 for Saturn interacting with Enceladus. 
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bjects in the system, and the secular acceleration of the different moons has contribution from dissipation in the planet but also in the moons
hemselves. 

Although these studies were initially developed for rocky planets, for which the response is viscoelastic and therefore well described by
 uniform phase shift, they have also been used to quantify tidal dissipation in giant planets (Lainey et al. 2009 , 2012 ; Jacobson 2022 ). 

As shown abo v e, δ for a gaseous planet is not uniform, and varies by orders of magnitude throughout the planet. In order to relate the
nalysis done in this paper to observational constraints, we now show that we can define an average phase shift for the planet. The torque Γz

 x erted by the planet on the moon is equal and opposite to that e x erted by the moon on the planet. Therefore 

z = 

∫ 
V 

ρ ′ ∂Ψt 

∂ϕ 

d v, (42) 

here V is the volume of the envelope of the planet. 
For a circular orbit, the tidal potential is given by Ψt ( r, θ, ϕ, t ) = 3 f r 2 sin 2 θ cos ( 2 ϕ − ω osc t ) with f = −GM p /(4 a 3 ), where M p is

he mass of the companion which excites the tides and a is the binary separation. We have shown in Section 3.6 that 
〈
ρ ′ g · u 

′ 〉 was
egligible. This implies that the phase shift between ρ ′ and ξ r is very small compared to the phase shift δ between ξ r and the tidal potential
otherwise 

〈
ρ ′ g · u 

′ 〉 would be comparable to ρ0 

〈
f t · u 

′ 〉, and therefore to ρ 0 D R ). Therefore, ρ ′ lags behind Ψt by δ and we can write
′ ( r, θ, ϕ, t ) = ρ ′ ( r) h ( θ ) cos ( 2 ϕ − ω osc t − δ) , with h a function of θ . We have assumed here that the variables are separable, which is not the
ase when there is rotation. Ho we ver, for uniform rotation (applicable for most of the interior of Jupiter and Saturn), the tidal displacement
s well approximated by that corresponding to a non-rotating body (Ioannou & Lindzen 1993 ). Using these expressions of Ψt and ρ ′ in
quation ( 42 ) then yields 

z = −6 πf 

∫ π

0 
sin 3 θh ( θ ) d θ

∫ R p 

R i 

ρ ′ ( r ) r 4 sin δ ( r ) d r, (43) 

here R i and R p are the inner and outer radii of the env elope, respectiv ely. We can write Γz as being proportional to an average sin δ for the
lanet by defining this average as 

in δ = 

∫ R p 
R i 

ρ ′ ( r ) r 4 sin δ ( r ) d r ∫ R p 
R i 

ρ ′ ( r ) r 4 d r 
. (44) 

his yields an average time lag 	t = δ/ω osc where δ � sin δ. 
Since sin δ( r) ∼ D R / 

[
f t ( r) u 

′ ( r) 
] ∼ rD R / 

[
Ψt ( r) u 

′ ( r) 
]

and ρ ′ ( r) ∼ ρ0 u 

′ ( r) / ( rω osc ) , equation ( 44 ) can also be written as 

in δ ∼
∫ R p 

R i 
ρ0 D R r 

2 d r 

ω osc 

∫ R p 
R i 

ρ ′ Ψt ( r ) r 2 d r 
. (45) 

he numerator is the total energy dissipated per unit time, whereas the integral in the denominator is the total potential energy E 

′ 
p in the tide.

herefore, we have sin δ ∼ 1 /Q with: 

 = 

2 πE 

′ 
p 

	E 

, (46) 

here 	 E is the total energy dissipated during one oscillation period. 
NRAS 525, 508–526 (2023) 
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Figure 2. Dissipation of the tides raised in Jupiter (left-hand panel) and Saturn (right-hand panel) by Io and Enceladus, respectively. The blue and cyan curves 
show 

∫ r 
R i 

ρ′ ( r ) r 4 sin δ ( r ) d r normalized to unity versus r / R planet . The parts of the envelope which contribute most to sin δ are abo v e the value of r at which this 
quantity becomes non negligible. Therefore, the curves show that most of the dissipation occurs in the ∼15 outer per cent of the envelopes. The red and orange 
curves show 1/ t conv normalized to unity. This is a measure of the Brunt–V ̈ais ̈al ̈a frequency, and therefore of non-adiabaticity. 
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Terquem ( 2021 ) incorrectly took twice the kinetic energy instead of the potential energy to compute Q , arguing equipartition between
inetic and potential energy. Although those energies are comparable in the outer parts of Jupiter’s env elope, the y are ho we ver not the same
ecause ω 0 is a few times ω osc . This also led an incorrect dependence on the tidal frequency. 

To compute the average of sin δ, equation ( 44 ) shows that it has to be weighed by ρ ′ , and not by ρ0 . This is because sin δ, which does
ot depend on the perturbation, is only rele v ant in the parts of the flow where the tidal perturbation is significant. The exact form of ρ ′ ( r)
s therefore not important when computing sin δ, as long as it tracks the tidal perturbation. To get numerical values of sin δ, we then use ρ ′ 

orresponding to the standard equilibrium tide, which is incompressible, i.e. ρ ′ ( r) = − ( d ρ0 / d r ) ξr ( r), with ξ r ( r ) = −3 fr 2 / g ( r ), even though
n the regime t osc < t conv it is not the correct form of the equilibrium tide (Terquem et al. 1998 ; Goodman & Dickson 1998 ). We have checked
hat using ξ r to weigh sin δ in equation ( 44 ), instead of ρ ′ , does not make a difference, which pro v es that using an approximate form of ρ ′ is
ufficient. To calculate Q directly from E 

′ 
p though, as given by equation ( 46 ), the correct form of ρ ′ has to be used. We have indeed checked

hat the standard equilibrium tide gives a value of Q from equation ( 46 ) which is about an order or magnitude larger than 1 / sin δ calculated
rom equation ( 44 ). 

We now evaluate δ for Jupiter and Saturn. 
For the tides raised in Jupiter by any of its moons, equation ( 44 ) gives 	t = 0 . 3 s and, in the case of Io, for which ω osc = 2.7 × 10 −4 s −1 ,

 / δ = 1 . 3 × 10 4 . This is close to the value of 3.56 × 10 4 derived by Lainey et al. ( 2009 ). 
For the tides raised in Saturn by any of its moons, we obtain 	t = 1 . 0 s and 1 / δ = 6 × 10 3 for Mimas (for which ω osc = 1.7 × 10 −4 s −1 ),

 / δ = 4 × 10 3 for Enceladus (for which ω osc = 2.2 × 10 −4 s −1 ), 1 / δ = 3 × 10 3 for Rhea (for which ω osc = 3.0 × 10 −4 s −1 ), and 1 / δ = 3 × 10 3

or Titan (for which ω osc � 2 Ω = 3 . 2 × 10 −4 s −1 ). 
For Mimas, Enceladus, Tethys, and Dione interacting with Saturn, Laine y et al. ( 2020 ), and Jacobson ( 2022 ) deriv ed a value of 	 t roughly

etween 0.3 and 3.7 from observations, which is in reasonable agreement with our value for 	t . For Titan, Jacobson ( 2022 ) also has a value
ithin that range, whereas Lainey et al. ( 2020 ) derived a time lag 10 times larger. For Rhea, both studies report values of 	 t close to 10. 

For both Jupiter and Saturn, Fig. 2 shows the regions which contribute most to sin δ, and therefore to tidal dissipation. 
In principle, we could also calculate directly the orbital evolution time-scale t a = a /(d a /d t ) = | E orb | /(d E /d t ), where E orb = −GMM p /(2 a )

s the orbital energy (with M being the planet’s mass and M p the satellite’s mass) and d E /d t is the energy dissipated per unit time. Using
 E/ d t = 

∫ 
ρ0 

(
u 

′ 2 
r /t conv 

)
d v, where the integral is o v er the volume of the conv ectiv e env elope, we obtain t −1 

a = 0 . 3 × 10 −10 yr −1 for Io.
o we ver, this cannot be compared meaningfully to the observations, which give t −1 

a = 0 . 09 × 10 −10 yr −1 (Lainey et al. 2009 ), because
ur calculation does not include the contribution from the dissipation of tidal energy in Io itself, nor the effect of Europa and Ganymede,
hich is important because of the Laplace resonance the satellites are in. The fact that Io is moving towards Jupiter, instead of away from

t as would be the case if only tidal dissipation in the planet were important, shows that the motion of Io is dominated by these other 
ontributions. 

 SUMMARY  A N D  DISCUSSION  

.1 Summary 

he work presented in this paper shows that the energy of a tidal oscillation in a conv ectiv e flow can only be exchanged with the convective
ow by changing the kinetic energy of this flow, not its internal nor potential energy. The analysis has been done for t osc � t conv , and in this
ase the rate D R of energy exchange couples the Reynolds stress associated with the oscillation to the gradient of the conv ectiv e v elocity.
his result is valid even when the flows are compressible and in the presence of uniform rotation, and applies whether the oscillation is the
quilibrium tide or a superposition of the equilibrium tide and a propagating inertial wave. If the oscillation is a p mode, the rate at which
he kinetic energy of the oscillation is exchanged with the kinetic energy of the conv ectiv e flow is still given by D R . However, in that case,
MNRAS 525, 508–526 (2023) 
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nd because of compressibility, there is also an exchange between the kinetic energy of the oscillation and the potential and internal energy of
onvection. 

The analysis would still apply when t osc � t conv , and the rate of energy exchange per unit mass would still be D R , but with this term now
oupling the Reynolds stress associated with the convective velocities to the gradient of the velocity of the oscillation. 

In the case t osc � t conv , | D R | ∼ u 

′ 2 V /λconv , where u 

′ and V are the velocities of the oscillation and conv ection, respectiv ely. In the case
 osc � t conv , and assuming that mixing length theory applies in this regime, | D R | has the same form but is ( λconv / λosc ) 2 smaller. Therefore, not
nly is the energy exchange not suppressed for fast tides, contrary to what has been assumed in previous studies, it is actually much larger than
or slow tides! Local dissipation of the oscillation requires D R > 0 when t osc � t conv and D R < 0 when t osc � t conv . This means that whichever
o w is v arying faster has to transport the momentum associated with the slo wly v arying flo w from regions where it is high to regions where it

s lower. It is not clear how, or even if, that happens. 
Focusing on tidal oscillations, and assuming local dissipation of the tides, we have calculated the phase lag δ( r ) between the oscillation

nd the tidal potential. We have shown that this is simply given by r ω osc /( gt conv ), where the gravitational acceleration g and t conv have to
e e v aluated locally. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency ( g / r ) 1/2 and subject to a
amping force −u 

′ /t conv . 
Although δ( r ) varies by orders of magnitude through the conv ectiv e env elope of a planet, it is possible to define an av erage phase shift δ

hich can be compared to the phase shift derived from observations. For the equilibrium tide, we have found that 1 / δ is equal to the standard
idal dissipation factor Q = 2 πE 

′ 
p /	E. As δ ∝ ω osc , the time lag associated with this phase shift does not depend on frequency (i.e. it is

niquely defined for a planet, independently of the moon that raises the tides), and Q ∝ 1/ ω osc . 

.2 Discussion 

t has been proposed that the dissipation of inertial waves could explain the circularization of solar type binaries (Barker 2020 , 2022 ). In these
tudies, no specific dissipation mechanism is being proposed, it is just assumed that dissipation takes place. As the analysis we have presented
bo v e applies to propagating inertial waves as well as to the equilibrium tide, it shows that inertial waves cannot in general be an alternative
o the equilibrium tide to explain dissipation: if they are dissipated, the equilibrium tide is dissipated as well. 

Of course, inertial waves could in principle provide more dissipation. Ho we ver, this is not borne out by the results of Barker ( 2022 ) for
olar-type stars. Their fig. 3 shows that solar-type stars can only reach the circularization periods observed for 10 Gyr clusters if they circularize
p to about 9 d on the PMS, which is significantly abo v e the value of 7 d derived from observations. 

Therefore, circularization on the PMS is clearly o v erestimated in this calculation (this is achieved by starting the tidal interaction when
he stars are only 0.15 Myr). If circularization is actually only achieved up to orbital periods of 7 d on the PMS, as suggested by observations,
ignificant tidal dissipation is needed after the MS, when the star rotates much more slowly. For the Sun in its current state, inertial waves would
nly be tidally excited in binaries with orbital periods larger than 13 d. They could therefore not explain the increase of the circularization
eriod from 7 d on the PMS to 10–12 d at the beginning of the RGB. Finally, we note that, in these studies, the energy dissipated by inertial
aves is calculated using an av erage o v er all frequencies. This formalism was initially proposed by Ogilvie ( 2013 ) to calculate the dissipation
f energy when the forcing is impulsive. It is appropriate if tides are raised during a brief encounter or in very eccentric orbits, but not in a
ircular binary when only one dominant frequency contributes to the tides. The reason invoked by Barker ( 2020 ) for using this averaging is
hat the dissipation of energy of inertial waves varies by orders of magnitude depending on the frequency. Ho we ver, this is by no means a
ustification for using an averaging over all possible frequencies. 

If D R has the sign required for local dissipation of the oscillation to occur, then dissipation of the equilibrium tide alone explains the
ircularization periods of solar-type stars derived from observations, and the interaction does not need to be started before about 0.4 Myr for
ircularization up to periods of 7 d to be achieved on the PMS (Terquem & Martin 2021 ). For Jupiter and Saturn, the results presented in this
aper show that the phase shift due to tidal dissipation of the equilibrium tide is also consistent with observations, except for the tides raised by
hea in Saturn, and maybe also for the tides raised by Titan in this planet. Ho we ver, for these moons, the equilibrium tide approximation may
ot apply in the outer parts of the envelope, which contribute most to dissipation, as the natural frequency ω 0 is comparable to the oscillation
requency ω osc there, as pointed in Section 5.3 . Resonance locking with inertial waves has been proposed as a possible mechanism driving
he evolution of the moons of Saturn (Fuller, Luan & Quataert 2016 ; Lainey et al. 2020 ), and it explains the phase shift of Rhea and Titan.
ut again, this can only occur if these inertial waves are dissipated by interaction with convection. Resonance locking also requires the tidal
scillation to resonate with a free inertial wave in the planet. Whether such free modes can be maintained is still an open question. 

In this context, it is important to note that mode–mode coupling for inertial waves, whether it is a tidally driven oscillation resonating
ith a free mode, or free modes parametrically interacting with each other, cannot be modelled in the presence of a turbulent viscosity arising

rom convection. As demonstrated in this paper , con vection does not act as a turbulent viscosity. Instead, damping of an inertial wave which
nteracts with a conv ectiv e flow is itself a result of mode–mode coupling between the inertial wave and the unstable gravity waves which
haracterize convection. 

The very important question that remains to be answered is whether D R has the sign needed for the tidal oscillation to be damped. It
as al w ays been assumed to be the case for slow tides, when mixing length theory is used, and it is indeed what numerical simulations show
Ogilvie & Lesur 2012 ; Duguid, Barker & Jones 2020 ; Vidal & Barker 2020 ). For fast tides, there is some suggestion in the simulations
erformed by Barker & Astoul ( 2021 ) that D R integrated over the flow domain is positive, which corresponds to tidal dissipation. The total rate
NRAS 525, 508–526 (2023) 
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f energy dissipation is found to be significantly smaller than what we obtain by assuming local dissipation, but the results may be affected by
he use of rigid boundary conditions, as discussed in Section 2.2 . 

Further work, and in particular numerical simulations, are of course needed to investigate the dissipation of tidal oscillations when t osc �
 conv . 

As compressiblility has been taken into account, the formalism presented in this paper applies to p modes. The oscillation period of
 modes is much smaller than the conv ectiv e time-scale of the slowest eddies in a large part of the conv ectiv e zone, and therefore mixing
ength theory does not apply to describe the interaction of the modes with these eddies. It has been proposed that the damping of p modes is
ominated by resonant interactions with convection, i.e. by interactions with eddies which have a conv ectiv e time-scale comparable to that of
he oscillation, and this interaction has been studied using the mixing length approximation (Goldreich & Keeley 1977 ). However, the analysis
resented here shows that, if this approximation applies, it is only in the regime t conv � t osc . Numerical simulations actually confirm that
ixing length theory is not a good approximation to model the damping of p modes (Basu 2016 ). Resonant interaction is not captured by the

nalysis presented in this paper, which relies on a separation of time-scales. If important, resonant interaction needs to be investigated using
 different approach. It would still be interesting to study the interaction of p modes with the slowest eddies, to obtain some estimate of the
nergy damping rate to which they contribute. Existing theories are indeed not fully successful at reproducing the mode linewidths (Houdek &
upret 2015 ), and it has been argued that a no v el approach is needed (Belkacem et al. 2019 ). 
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PPENDIX  A :  TIME  AV E R AG I N G  A N D  T H E  RO LE  O F  VELOCI TY  C O R R E L AT I O N S  

his appendix discusses the effect of time averaging on the rate of energy exchange between the fluctuations and the mean flow. 
Here, we use a Reynolds decomposition u = V + u 

′ where the velocity u 

′ varies on a time-scale t 1 and the velocity V varies on a
ime-scale t 2 � t 1 . If t 1 = t osc and t 2 = t conv , then we are in the regime of fast tides, and u 

′ is the tidal velocity (fluctuations) whereas V is the
onv ectiv e v elocity (mean flo w). Ho we ver, if t 1 = t conv and t 2 = t osc , then we are in the regime of slow tides, and u 

′ is the conv ectiv e v elocity
fluctuations) whereas V is the tidal velocity (mean flow). Although the paper focusses on fast tides, the discussion in this appendix is valid
or both cases. When dealing with slow tides, we assume that there exists a time τ such that t 1 = t conv � τ � t 2 = t osc . When dealing with fast
ides, we take τ = t 1 = t osc . In both cases, we also define a time τ ′ � t 2 . We note <. . . > a time average over τ and 〈 . . . 〉 τ ′ a time average over
′ . In this appendix, we also assume that both the mean flow and the fluctuations are incompressible, as this makes the discussion simpler and

t does not affect the argument presented here. 
To derive an equation for the kinetic energy of the fluctuations, we dot Navier–Stokes equation with u 

′ , which brings in the term
u 

′ · ( u · ∇ ) u . Using the Reynolds decomposition and ∇ · u 

′ = ∇ · V = 0, this term can be written as the sum of a divergence and d R , where
e define 

 R = u 

′ 
i u 

′ 
j 

∂V i 

∂x j 
− V i V j 

∂u 

′ 
i 

∂x j 
. (A1) 

he divergence term does not exchange energy between the fluctuations and the mean flow, it only transports energy through the flow, so that
e ignore it. Therefore, the term ( u · ∇ ) u in Navier–Stokes equation only contributes d R to the kinetic energy of the fluctuations. If we now

v erage o v er the time τ , during which V i and V j stay almost constant, we obtain 

〈 d R 〉 = D R = 

〈
u 

′ 
i u 

′ 
j 

〉 ∂V i 

∂x j 
. (A2) 

herefore, D R is the only term contributed by ( u · ∇ ) u to the mean kinetic energy of the fluctuations. 
Now, as we are usually interested in the energy exchange between the fluctuations and the mean flow o v er a long time-scale, D R has to

e av eraged o v er τ ′ . Naiv ely, we could e xpect 〈 D R 〉 τ ′ = 0, because 
〈
∂V i / ∂x j 

〉
τ ′ = 0. Ho we ver, in a standard shear flo w, where the turbulence

s due to instabilities in the flow itself, the energy of the turbulent eddies has to come from the free energy present in the shear. It is therefore
ssumed that D R has the sign required for energy to be transferred from the mean shear flow to the turbulent fluctuations. In other words, the
ign of 

〈
u 

′ 
i u 

′ 
j 

〉
is correlated with that of ∂ V i / ∂ x j , so that 〈 D R 〉 τ ′ 
= 0. 

In the case, where the turbulence is produced by buoyancy, the energy in the turbulent eddies does not depend on a background shear
o w. Ho we ver, mixing length theory assumes that, if a mean shear flow is introduced in the conv ectiv e flow, energy is transferred from the
hear flow to the conv ectiv e eddies so that here again 〈 D R 〉 τ ′ 
= 0. 
NRAS 525, 508–526 (2023) 

http://dx.doi.org/10.1086/167616
http://dx.doi.org/10.1051/0004-6361:20065466
http://dx.doi.org/10.1038/nature08108
http://dx.doi.org/10.1088/0004-637X/752/1/14
http://dx.doi.org/10.1038/s41550-020-1120-5
http://dx.doi.org/10.1093/mnras/stt055
http://dx.doi.org/10.1029/RG002i003p00467
http://dx.doi.org/10.12942/lrsp-2005-1
http://dx.doi.org/10.1007/BF00899817
http://dx.doi.org/10.12942/lrsp-2009-2
http://dx.doi.org/10.1093/mnras/sts362
http://dx.doi.org/10.1146/annurev-astro-081913-035941
http://dx.doi.org/10.1111/j.1365-2966.2012.20630.x
http://dx.doi.org/10.1086/158809
http://dx.doi.org/10.1051/eas/1573003
http://dx.doi.org/10.1093/mnras/stab224
http://dx.doi.org/10.1093/mnras/stab2322
http://dx.doi.org/10.1086/305927
http://dx.doi.org/10.1093/mnras/staa2239
http://dx.doi.org/10.3847/1538-4357/ac0fdd


Tidally oscillating convective flows 525 

A

T
 

f  

f

m

w

x

w

X

A

w

w
 

s  

U  

b  

w  

f

Q

w  

p  

i  

c

	

A

	

T

Q

N  

f

Q

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/525/1/508/7227355 by guest on 13 August 2023
PPENDIX  B:  QUALITY  FAC TO R  O F  A  H A R M O N I C  OSCI LLATO R  

his appendix re vie ws the harmonic oscillator and the relation between the quality factor and phase lag. 
We consider a harmonic oscillator consisting of a mass m which mo v es along the x -axis and is subject to a restoring force −kx , a friction

orce −bv , and a periodic driving force F = F 0 cos ( ωt ), where k and b are positive constants, F 0 and ω are the amplitude and frequency of the
orcing, respectively, x is the displacement from equilibrium and v is the velocity. The equation of motion is 

 

d 2 x 

d t 
+ kx = −bv + F 0 cos ( ωt ) , (B1) 

hich general solution is 

( t) = A e −γ t/ 2 cos ( ω 1 t + φ) + X 0 cos ( ωt − δ) , (B2) 

here A and φ are two constants which depend on the initial conditions, γ = b / m , ω 

2 
1 = ω 

2 
0 − γ 2 / 4 with ω 

2 
0 = k/m , and 

 0 = 

F 0 /m [ 
( ω 2 0 −ω 2 ) 2 + γ 2 ω 2 

] 1 / 2 , (B3) 

sin δ = 

γω [ 
( ω 2 0 −ω 2 ) 2 + γ 2 ω 2 

] 1 / 2 . (B4) 

s expected, δ > 0, i.e. the oscillation lags behind the driving force because of dissipation. 
If ω 

2 
0 � ω 

2 � γ 2 ω 

2 , then: 

sin δ � 

γω 

ω 

2 
0 

, (B5) 

hereas, if ω 

2 � ω 

2 
0 � γ 2 ω 

2 , then: 

sin δ � 

γ

ω 

. (B6) 

Multiplying equation ( B1 ) by v yields the equation for the conservation of energy 

d 

d t 
[ K( t) + U ( t) ] = −b v 2 + F 0 v cos ( ω t ) , (B7) 

here K ( t ) = mv 2 /2 and U ( t ) = kx 2 /2 are the kinetic and potential energy, respectively. 
After a time t � γ −1 , the first (transient) term in the expression ( B2 ) for x ( t ) becomes negligible, and x is equal to the steady state

olution X 0 cos ( ωt − δ). In this regime, the stored kinetic energy is K( t) = mX 

2 
0 ω 

2 sin 2 ( ωt − δ) / 2 and the stored potential energy is
( t) = mX 

2 
0 ω 

2 
0 cos 2 ( ωt − δ) / 2. They both remain constant on average over a period, which implies from equation ( B7 ) that the work done

y the driving force on average over a period is all done against the friction force. The total energy stored in the oscillator, E ( t ) = K ( t ) + U ( t ),
as built to its steady state value during the initial transient phase when only part of the work done by the driving force was acting against the

riction force. 
The quality factor for a harmonic oscillator is defined as 

 = 

2 πE 

� 

	E 

, (B8) 

here 	 E is the (positive) energy dissipated during one period and E 

� is either the average energy < E > stored in the oscillator during one
eriod (Feynman 1964 ; Kleppner & Kolenkow 2013 ), or the peak (maximum) energy stored during one period. In general, the former definition
s used for mechanical oscillators whereas the latter is used for electrical oscillators. Ho we ver , in problems in volving tidal dissipation, it is
ustomary to use for E 

� the peak energy. 
In steady state, the period is T = 2 π / ω and: 

E ≡ −
∫ T 

0 

d E 

d t 
d t = −2 π

ω 

〈
d E 

d t 

〉
. (B9) 

s discussed abo v e, we have <d E /d t > = − < Fv > , which yields 

E = πF 0 X 0 sin δ. (B10) 

he maximum value that E ( t ) reaches during one period is E 

� = mX 

2 
0 max 

(
ω 

2 , ω 

2 
0 

)
/ 2. Therefore, we obtain 

 = 

max 
(
ω 

2 , ω 

2 
0 

)
[ (

ω 

2 
0 − ω 

2 
)2 + γ 2 ω 

2 
] 1 / 2 1 

sin δ
. (B11) 

ote that, using equation ( B4 ), we can also write Q = max 
(
ω 

2 , ω 

2 
0 

)
/ ( γω ) . This is the same expression we obtain by calculating Q directly

rom its definition and with d E /d t = −bv 2 . 
If ω 

2 
0 � ω 

2 � γ 2 ω 

2 , then: 

 � 

1 

sin δ
� 

ω 

2 
0 

γω 

, (B12) 
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hereas, if ω 

2 � ω 

2 
0 � γ 2 ω 

2 , then: 

 � 

1 

sin δ
� 

ω 

γ
. (B13) 

When ω 

2 
0 � ω 

2 � γ 2 ω 

2 , E 

� is equal to the maximum of the potential energy, which is reached at t = T /4 for our choice of initial
onditions, and can be calculated while neglecting dissipation. Therefore 

 

� � 

∫ T / 4 

0 
F v d t = 

F 0 X 0 

2 

(
cos δ − π

2 
sin δ

)
. (B14) 

sing | sin δ| � | cos δ| together with equations ( B8 ) and ( B10 ) then yields 

 � 

1 

tan δ
. (B15) 
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