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ABSTRACT

Aims. We present the Rotation code Using Barotropy conservation over Isopotential Surfaces (RUBIS), a fully Python-based centrifu-
gal deformation program that is available publicly. The code has been designed to calculate the centrifugal deformation of stars and
planets resulting from a given cylindrical rotation profile, starting from a spherically symmetric non-rotating model.
Methods. The underlying assumption in RUBIS is that the relation between density and pressure is preserved during the deforma-
tion process. This leads to many procedural simplifications. For instance, RUBIS only needs to solve Poisson’s equation in either
spheroidal or spherical coordinates, depending on whether the 1D model has discontinuities.
Results. We present the benefits of using RUBIS to deform polytropic models and more complex barotropic structures, thus providing
insights into baroclinic models to a certain extent. The resulting structures can be used for a wide range of applications, including the
seismic study of models. Finally, we illustrate how RUBIS is beneficial specifically in the analysis of Jupiter’s gravitational moments
through its ability to handle discontinuous models while retaining a high accuracy compared to current methods.
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1. Introduction

Rotation is ubiquitous in both stars and planets, and it has a
profound effect on their structure and evolution. For instance,
recent interferometric observations have shown to what extent
stars can be affected by centrifugal deformation and gravity
darkening (e.g., Domiciano de Souza et al. 2003; Monnier et al.
2007; Zhao et al. 2009; Che et al. 2011; Bouchaud et al.
2020). Various studies have predicted (Endal & Sofia 1976;
Zahn 1992; Maeder & Zahn 1998; Mathis & Zahn 2004) and
shown (Meynet & Maeder 2000; Palacios et al. 2003, 2006;
Amard et al. 2019) its impact on stellar evolution and raised a
number of open questions (e.g., Deheuvels et al. 2012, 2015;
Benomar et al. 2015; Ouazzani et al. 2019. The monograph by
Maeder (2009) provides a comprehensive description of the
impact of rotation on stellar evolution from a theoretical stand-
point, while Aerts et al. (2019) provided a recent review that
focused on transport processes in these stars and the result-
ing open questions. Likewise, rotation plays an important role
in gas giants such as Jupiter and Saturn. It proved critical to
take centrifugal deformation into account when interpreting the
gravitational moments of Jupiter measured by Juno in order
to investigate the presence of a core (e.g., Wahl et al. 2017)
or to probe the wind gradient and differential rotation (e.g.,
Iess et al. 2018; Guillot et al. 2018). Furthermore, the recent
detection of f -modes1 (e.g., Hedman & Nicholson 2013) and g-
modes (Mankovich & Fuller 2021) in Saturn has sparked krono-
seismic2 investigations into Saturn’s core, which required taking
the effects of rotation on Saturn’s structure and pulsations into
account (Fuller 2014; Mankovich et al. 2019; Dewberry et al.
? https://github.com/pierrehoudayer/RUBIS

1 Fundamental (f) modes: oscillation modes with no radial nodes, thus
with the radial order n = 0.
2 Kronoseismology: seismology of Saturn.

2021). Hence, there is a real need for numerical tools that are
able to calculate the structure of these stars and planets.

In the stellar domain, much progress has been made over
the past years in devising 2D stellar structure codes that fully
take rotation into account. For instance, the Self-Consistent Field
(SCF) method has been devised to calculate the structure of
stars with pre-imposed cylindrical rotation profiles (Jackson et al.
2005; MacGregor et al. 2007). It alternates between solving Pois-
son’s equation and the hydrostatic equilibrium, thereby iteratively
adjusting the distribution of matter in the star. Because the rota-
tion profile is conservative, the structure of the star is barotropic,
which means that lines of constant pressure, density, temperature,
and thus the total (gravitational and centrifugal) potential coin-
cide. Hence, solving the hydrostatic equilibrium amounts to find-
ing the lines of constant total potential and redistributing the mat-
ter so that the density is constant along these lines.

A drawback of the SCF method is that the energy equa-
tion is only solved along horizontal averages rather than locally.
To overcome this difficulty, the Evolution STEllaire en Rotation
code (ESTER) was developed (Espinosa Lara & Rieutord 2013;
Rieutord et al. 2016). As a result of solving the energy equation
locally, the rotation profile (which is calculated along with the
stellar structure) is no longer conservative, and the stellar struc-
ture is baroclinic, that is, isodensity and isobars are now free
to differ. Currently, neither code is capable of carrying out stel-
lar evolution, and the codes instead calculate static models. The
composition within ESTER models may nonetheless be adjusted
to mimic the effects of stellar evolution.

A solution for bypassing the above limitation is to take stel-
lar models from 1D non-rotating stellar evolution codes and
to subsequently introduce the effects of centrifugal deforma-
tion. This is the strategy introduced in Roxburgh (2006). The
author used the density profile from the 1D model, applied it
along a radial cut (at some given latitude), and then iteratively
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reconstructed the distribution of matter in the rest of the star for
a predefined 2D rotation profile. From there, the pressure distri-
bution and gravitational field may be calculated. In addition, if an
assumption is made on the chemical composition, then it is pos-
sible to deduce the adiabatic exponent, Γ1, throughout the star
through the equation of state, followed by variables such as the
sound velocity and the Brunt-Väisälä frequency. Hence, a com-
plete acoustic structure is obtained that allows the calculation of
pulsation modes (Ouazzani et al. 2015).

One of the limitations of this method is that the energy equa-
tion is not taken to account and is thus not generally satisfied. To
overcome this difficulty, this method may be applied to 1D models
where the effects of rotation are already taken into account, albeit
in an approximate way. For instance, models from the Grenoble
stellar evolution code (STAREVOL; Palacios et al. 2003, 2006),
the Geneva stellar evolution code (Eggenberger et al. 2008), and
the Code d’Evolution Stellaire Adaptatif et Modulaire with Trans-
port (CESTAM; Marques et al. 2013) take into account the hor-
izontally averaged effects of rotation through the formalism
developed in Zahn (1992) and Maeder & Zahn (1998). Manchon
(2021) developed a method that is more elaborate because it cal-
culates the centrifugal deformation for CESTAM models, but then
feeds the information from the 2D structure back into the 1D for-
malism using the approach described in Mathis & Zahn (2004).
Such a procedure could then be applied at each time step when
the evolution of a star is calculated, and a greater degree of real-
ism can be achieved in this way.

In this article, we wish to develop a method analogous to
that of Roxburgh (2006) but that is simpler. In particular, we
wish to avoid having to reuse the equation of state to recalculate
the Γ1 profile. The resulting program, the Rotation code Using
Barotropy conservation over Isopotential Surfaces (RUBIS),
achieves this by preserving the relation between density and
pressure rather than density and radius when going from the 1D
to the 2D structure, as we describe below. Hence, the equation
of state is automatically satisfied throughout the model because
thermodynamic quantities are simply carried over from the 1D
case. With this approach, deforming a 1D polytropic structure,
for instance, leads to a 2D polytropic structure, unlike what
would happen with the approach in Roxburgh (2006). Finally,
we wish to make this approach applicable to stars and planets,
which may include density discontinuities. Models with discon-
tinuities require applying a different strategy when solving Pois-
son’s equation, as we explain below.

As was the case with the approach developed in Roxburgh
(2006), RUBIS does not take the energy conservation equation
into account. Hence, the models it deforms will only be suitable
for adiabatic pulsation calculations. For full non-adiabatic cal-
culations, models such as those from the ESTER code should be
used instead, in which the hydrostatic structure and the energy
equation are solved in a full 2D context.

The article is organised as follows: Sect. 2 begins by explain-
ing how our code, RUBIS, works, and Sect. 3 emphasises the
specific features that differentiate it from existing programs.
Section 4 is devoted to carrying out numerical tests, in particular,
comparisons with existing programs, and it establishes the scope
within which the assumptions we adopted are valid. Section 5 is
dedicated to our conclusion and more broadly, to our perspec-
tives on the future use of RUBIS.

2. Description of RUBIS

As stated in the introduction, the starting point of the method is
to assume that the relation between ρ and P is preserved when

going from the non-rotating to the rotating models. This can
be justified in one of two ways: either some intrinsic relation
exists between ρ and P, for instance, the polytropic relation, or
we assume that the thermodynamic structure of the non-rotating
model is in some sense a good approximation of the structure of
the rotating model. We discuss this assumption in Sects. 3 and 4.
We now derive the direct implication of this assumption, which
is also the key property of RUBIS.

The hydrostatic equilibrium of a rotating, self-gravitating
object (with a conservative rotation profile) is described by the
following equation:

∇P = −ρ∇Φeff , (1)

where P is the pressure, ρ is the density, and Φeff = ΦG + ΦC is
the total potential, ΦG being the gravitational potential and ΦC
the centrifugal potential. These potentials satisfy the following
equations:

∆ΦG = 4πGρ, (2)

ΦC = −

∫ s

0
Ω2(s′)s′ds′, (3)

where G is the gravitational constant, Ω(s) is the rotation pro-
file, and s is the distance to the rotation axis. We recall that
conservative rotation profiles are cylindrical, that is, they only
depend on the distance to the rotation axis. This property allows
the centrifugal force to derive from a potential and leads to a
barotropic structure for the object, as can be seen by taking the
curl of Eq. (1) divided by the density: ∇ρ × ∇P = 0.

We introduce a coordinate system (ζ, θ, ϕ) such that ζ is con-
stant along isopotential lines, and where θ and ϕ denote the usual
polar and azimuthal angles. At this stage, ζ is a dimensionless
variable used to label the isopotential lines and is not a physical
coordinate. This means that there are no requirements on what
values it takes as long as it varies smoothly and monotonically
from the centre of the star or planet to the surface. Accordingly,
given the barotropic structure of the deformed object, quantities
such as P and ρ only depend on ζ. Hence, projected on the natu-
ral basis, we can show that Eq. (1) reduces to

dP
dζ

= −ρ
dΦeff

dζ
, (4)

the other components being zero. This equation can be compared
with its non-rotating equivalent,

dPsph

drsph
= −ρsph

dΦsph

drsph
, (5)

where Φsph reduces to the gravitational potential, and where the
notation rsph has been introduced to avoid confusion between r in
the rotating and non-rotating models. It is possible to choose the
values of ζ in such a way that P(ζ) ≡ Psph(rsph) given that P is a
monotonic function of ζ. As a result, dP/dζ = dPsph/drsph imme-
diately follows. Furthermore, preserving the relation between
ρ and P when going from the non-rotating and to the rotating
model also leads to ρ(ζ) = ρsph(rsph), and this holds regardless
of whether ρ varies monotonically with ζ. The hydrostatic equa-
tions then show that dΦeff/dζ = dΦsph/drsph. In other words,

Φeff(ζ) = Φsph(rsph) + cnst. (6)

The constant that appears in this equation may in fact be deduced
by applying the above equation at the object’s centre, that is,
rsph = ζ = 0 (assuming the gravitational components of
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Fig. 1. Flowchart illustrating how RUBIS works. Each step shows the quantity that is obtained and in terms of which variable it is obtained.

both potentials match a vacuum potential outside the deformed
object).

These observations lead us to outline the following iterative
approach, which is a simplified version of the SCF algorithm
(Jackson et al. 2005; MacGregor et al. 2007):
1. Find the gravitational potential based on the matter distribu-

tion (Sect. 2.1).
2. Add the centrifugal potential to the gravitational potential

(Sect. 2.2).
3. Find the level surfaces, that is, the lines of constant total

potential, and redistribute the matter on these surfaces
(Sect. 2.3).

4. Return to step 1 and iterate until convergence (Sect. 2.4).
Figure 1 illustrates this algorithm schematically. These steps are
described in more detail below.

2.1. Finding the gravitational potential

There are two different ways of calculating the gravitational
potential. The first approach consists in interpolating the mat-
ter distribution onto the spherical coordinate system and solving
Poisson’s equation after having projected it onto the spherical
harmonic basis (Sect. 2.1.1). The second approach consists in
solving Poisson’s equation using the spheroidal coordinate sys-
tem directly (Sect. 2.1.2).

2.1.1. Using spherical coordinates

Although the first approach may sound more complicated
because of the additional interpolation step, it is in fact more effi-
cient. When the matter distribution is expressed using spherical
coordinates, Poisson’s equation becomes separable with respect
to the spherical harmonic basis. This allows it to be solved effi-
ciently.

The interpolation of the density profile onto the spherical
coordinate system is carried out using cubic splines along each
latitude with the SciPy sub-package scipy.interpolate3.
Afterwards, the density profile is decomposed using the spher-
ical harmonic basis as follows:

ρ(r, θ, ϕ) =

∞∑
`=0

∑̀
m=−`

ρm
` (r)Ym

` (θ, ϕ), (7)

where

ρm
` (r) =

"
4π
ρ(r, θ, ϕ)

[
Ym
` (θ, ϕ)

]∗
sin θdθdϕ, (8)

3 https://docs.scipy.org/doc/scipy/reference/
interpolate.html

and where ` represents the harmonic degree, m the azimuthal
order, Ym

` the corresponding spherical harmonic, and (·)∗ the
complex conjugate. Because the deformed object is axisymmet-
ric, only the m = 0 components of ρ and ΦG are non-zero. Hence,
in what follows, we assume m = 0 and drop the m index. On a
practical level, the manipulation of harmonic series, whether for
decomposition or projection, is implemented in RUBIS using the
appropriate scipy.special4 routines.

Poisson’s equation is subsequently projected onto the spher-
ical harmonic basis, thus leading to

d2Φ`
G

dr2 +
2
r

dΦ`
G

dr
−
`(` + 1)

r2 Φ`
G = 4πGρ` (9)

for each spherical harmonic. Here, Φ`
G represents the projection

of ΦG onto the harmonic basis. Equation (9) can be solved ana-
lytically using integrals,

Φ`
G = −

4πG
2` + 1

[∫ r

0
ρ`(s)

s`+2

r`+1 ds +

∫ R

r
ρ`(s)

r`

s`−1 ds
]
, (10)

where R is the stellar radius. However, when ` becomes large,
the above formula can lead to poor numerical results. There-
fore, we prefer to solve Eq. (9) numerically by first casting it
into a first-order system of two differential equations, discretis-
ing it using the finite-difference approach described in Reese
(2013), and solving the system with an efficient band matrix
factorisation using the appropriate Lapack5 wrapper available
in scipy.linalg.lapack6. This requires including boundary
conditions that ensure the continuity of Φ`

G and its derivative on
the object’s surface,

Φ
`,in
G (R) = Φ

`,out
G (R) (11)

dΦ
`,in
G

dr

∣∣∣∣∣∣∣
R

=
dΦ

`,out
G

dr

∣∣∣∣∣∣∣
R

. (12)

In addition, we also apply regularity conditions in the centre and
at infinity,

Φ`
G(r) ∝

r→0
r` (13)

Φ`
G(r) ∝

r→∞
r−(`+1). (14)

4 https://docs.scipy.org/doc/scipy/reference/special.
html
5 https://netlib.org/lapack/
6 https://docs.scipy.org/doc/scipy/reference/linalg.
lapack.html
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Combining the latter equation with Eqs. (11) and (12) then
leads to the following condition on the object’s surface (e.g.,
Ledoux & Walraven 1958):

dΦ`
G

dr
(R) +

` + 1
R

Φ`
G(R) = 0. (15)

Equations (9) together with conditions (13) and (15) are
solved up to a certain degree, L, which is fixed by the user at
the beginning of the procedure. When the Φ`

G(r) functions have
been obtained, the potential is then deduced in terms of the (r, θ)
coordinates using

ΦG(r, θ) =

∞∑
`=0

Φ`
G(r)Y0

` (θ). (16)

2.1.2. Using spheroidal coordinates

This approach does not function correctly when the density pro-
file is discontinuous. A discontinuity in the density profile will
follow a level surface due to the barotropic structure of the
object. Hence, it will intersect spherical surfaces thus causing
the density profile to be discontinuous as a function of latitude
for certain values of r. This leads to poor numerical results when
the density profile is projected onto the spherical harmonic basis
and may stop the algorithm from converging.

Accordingly, Poisson’s equation must be solved directly in
the spheroidal coordinate system, (ζ, θ, ϕ). Hence, the following
harmonic decomposition is used instead:

ΦG(ζ, θ) =

∞∑
`=0

Φ`
G(ζ)Y0

` (θ). (17)

When we treat the radial distance, r, as a function of ζ and θ, we
obtain through tensor analysis (cf. Appendix A) the following
explicit expression for Poisson’s equation:

∂ζ

 r2 + r2
θ

rζ
∂ζΦG

−2rθ∂2
ζθΦG−∆Sr ∂ζΦG +rζ∆SΦG = 4πGr2rζρ,

(18)

where

∆S = ∂2
θθ + cot θ∂θ, (19)

and where rζ = ∂ζr, rθ = ∂θr, rζθ = ∂2
ζθr, and so on. We note that

due to the symmetry around the rotation axis, derivatives with
respect to ϕ vanish.

This equation is then projected onto the spherical harmonic
basis, discretised in the radial direction using finite differences,
and solved. Because of its expression, Eq. (18) is not separable
on the spherical harmonic basis. Hence, the equations for the
different Φ`

G are coupled,

L∑
`′=0

∂ζ
(
P``

′

ζζ ∂ζΦ
`′

G

)
− P``

′

ζθ ∂ζΦ
`′

G − P
``′

θθ Φ`′

G = 4πG(r2rζ)` ρ, (20)

which results in the appearance of coupling integrals, P``
′

·· , as
well as the harmonic decomposition of r2rζ denoted (r2rζ)` (we
refer to Appendix A for an explicit expression of the terms
appearing in Eq. (20)). These equations must then be solved
simultaneously. However, the use of finite differences means
that only adjacent values of ζ are coupled. Hence, grouping
together the unknowns, Φ`

G(ζi), according to ζ values leads

to a band matrix (although of much larger dimensions than
when solving Eq. (9)), which can be filled efficiently using the
scipy.sparse7 package, and which is once more solved with
the Lapack routine.

In order to ensure that the potential matches a vacuum poten-
tial outside the deformed object, a second domain is added
with the object’s surface as an inner boundary and a sphere as
the outer boundary. Poisson’s equation is then enforced on this
domain subject to interface conditions on the inner boundary in
order to ensure the continuity of the gravitational potential and
its gradient which, in terms of the spheroidal coordinates, results
in preserving r−1

ζ ∂ζΦG in addition to ΦG through the surface. In
the case of internal density discontinuities, these two conditions
(derived in Eqs. (A.11) and (A.18)) must be added at each of
the domain interfaces. Finally, conditions analogous to Eqs. (13)
and (15) are applied in the centre and on the outer spherical
boundary.

Once more, ΦG(ζ, θ) can subsequently be deduced from
the Φ`

G(ζ) using Eq. (17). It should be noted that the lat-
ter equation implicitly also gives us the gravitational poten-
tial as a function of r and θ by using the relation r(ζ, θ) since
ΦG(r(ζ, θ), θ) = ΦG(ζ, θ).

2.2. Adding the centrifugal potential

Whether solving Poisson’s equation in spherical (cf. Sect. 2.1.1)
or spheroidal (cf. Sect. 2.1.2) coordinates, we derived the gravi-
tational potential ΦG(r, θ) at this point. The total potential at any
point in the structure is therefore determined by simply adding
the centrifugal potential ΦC(r, θ). As mentioned above, the lat-
ter must satisfy a cylindrical symmetry in order to preserve the
barotropic relation. As a consequence, this approach cannot be
used on potentials derived from shellular rotation profiles, that
is, Ω = Ω(r), for instance. However, we note the large number
of profiles that can be used because any 1D rotation profile inte-
grated using Eq. (3) could lead to an eligible ΦC(s) in theory. In
practice, it may be advisable to check that at least the Rayleigh
criterion for stability is verified: ∂r(r4Ω2) > 0.

After it is chosen, the integration of the rotation profile may
lead to analytical expressions for the centrifugal potential. Typi-
cal examples are those involving solid rotation,

Ω(s) = Ω0 → ΦC(r, θ) = −
1
2

s2Ω2
0, (21)

or a Lorentzian profile,

Ω(s) =
1 + α

1 + α(s/Req)2 Ω0 → ΦC(r, θ) = −
1
2

(1 + α)2s2Ω2
0

1 + α(s/Req)2 ,

(22)

where s = r sin θ and Ω0 and α designate the rotation rate on the
equator and the relative difference on the rotation rate between
the centre and equator, respectively.

2.3. Finding level surfaces and redistributing matter

When the total potential Φeff(r, θ) has been calculated, level sur-
faces may be obtained by finding isopotential lines. As a first
step, Eq. (6) shows that the total potential just found must sat-
isfy

Φeff(r, θ) = Φsph(rsph) + cnst, (23)

7 https://docs.scipy.org/doc/scipy/reference/sparse.
html
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meaning that the latter can be deduced from the initial (spheri-
cal) potential to which a suitable constant has been added. The
value of this constant is immediately found by applying the same
relation at the model’s centre,

cnst = ΦG(0, 0) + ΦC(0, 0) − Φsph(0). (24)

Therefore, a given level surface r∗(θ) (corresponding to a certain
ζ∗) can be deduced from the freshly calculated potential Φeff(r, θ)
by satisfying Eq. (23) for all θ, using the constant provided by
Eq. (24). As explained at the start of the section, choosing level
surfaces in this way ensures that the correspondence between
ρ(ζ) and ρsph(rsph) is preserved for ζ = rsph.

The level surfaces can be found in many different ways.
In our algorithm, we decompose f (r) = Φeff(r, θ) as a sum of
Hermite splines because both Φeff and ∂rΦeff are available. Using
the current level surfaces as a first guess, we can now use
Newton’s method to find the new r values satisfying Eq. (23).
This approach can reach a high degree of accuracy fairly quickly
given the efficiency of Newton’s method and because the posi-
tions of level surfaces change progressively less during the suc-
cessive iterations, thus causing the first guess to become very
close to the actual solution.

When the new set of level surfaces, r(ζ, θ), has been
obtained, redistributing the matter is trivial and corresponds to
simply assigning the ρ values to the new surfaces. Because all
the above equations are solved in their rescaled form, the final
step consists in updating the values involved in these scales,
namely the mass, M, as we describe in Sect. 3.2, and the equa-
torial radius, Req, of the model. This also implies rescaling the
different non-dimensional variables, for instance,

ρ̄i+1 = ρ̄i
Mi

Mi+1

(
Ri+1

Ri

)3

(25)

P̄i+1 = P̄i

(
Mi

Mi+1

)2 (
Ri+1

Ri

)4

, (26)

where ρ̄ and P̄ denote the dimensionless density and pressure
profiles, and the indices i and i + 1 are the iteration number. The
algorithm then returns to the first step, in which the gravitational
potential is calculated based on the matter distribution, and iter-
ations continue until the method converges.

2.4. Convergence

Convergence occurs when r(ζ, θ) stops changing from one iter-
ation to the next, at least to within some given precision. This
can be measured in various ways. For the sake of simplicity,
we check whether the variations of Rpol/Req has gone below a
user-defined threshold in our algorithm. In the rare cases when
the algorithm fails to converge (typically at near-critical rotation
rates), we can progressively increase the rotation rate with each
iteration before reaching the nominal value.

3. Specificities of this approach

3.1. Equation of state

In the description provided in the previous section, no mention
of energy transfer is made, in contrast to various traditional and
new SCF methods (Jackson 1970; Roxburgh 2004; Jackson et al.
2005; MacGregor et al. 2007). By assuming that the effective
relation between density and pressure is preserved, there is no
need to address this question and the only equation explicitly

Table 1. Performances (time | memory allocation) of RUBIS (spherical
version) measured on a 1.9 GHz Intel Core i7-8665U CPU with four
cores (eight threads) processor.

Spherical N = 1000 N = 2000 N = 4000

L = 25 1.1s | 0.3GB 2.1s | 0.4GB 4.1s | 0.8GB
L = 51 2.3s | 0.3GB 4.0s | 0.4GB 7.0s | 0.8GB
L = 101 4.0s | 0.3GB 7.2s | 0.4GB 12.4s | 0.8GB

Notes. The model is a polytrope of index 3, rotating at Ω = 0.75ΩK, N
being its radial resolution and L the angular resolution of the 2D grid
(as well as the number of spherical harmonics used).

Table 2. Same as Table 1, but Poisson’s equation is solved in spheroidal
coordinates.

Spheroidal N = 1000 N = 2000 N = 4000

L = 25 8.6s | 0.5GB 12.6s | 0.6GB 22.7s | 0.8GB
L = 51 23.7s | 1.2GB 35.4s | 1.6GB 61.8s | 2.4GB
L = 101 76.8s | 3.6GB 114.1s | 5.2GB 181.0s | 8.2GB

solved in the program is Poisson’s equation. As a direct conse-
quence of this premise, the time needed to deform a given model
is quite short, as shown in Tables 1 and 2. The computation time
scales roughly with NL in the spherical case and with NL2 in the
spheroidal case.

Considering how drastic this simplification is, it is worth
questioning its relevance and real meaning. Let T denote the
temperature and Xi the chemical element abundances. Assum-
ing that the model’s structure satisfies a general equation of state
P(ρ,T, Xi), which need not be known in the present method,
and assuming that matter is organised according to this equa-
tion in both the original and the deformed model, the conser-
vation of the profile ρ(P) along the level surfaces automatically
implies a constraint on the thermal structure of the model. If,
furthermore, the chemical composition is preserved during the
transformation, this constraint merely results in the conservation
of the temperature profile along the level surfaces. This con-
sequence is somewhat approximate from an energetic point of
view because it has long been known that the thermal imbalance
caused by rotation (von Zeipel 1924; Eddington 1925) should
give rise to effective temperature differences over the same level
surface (Zahn 1992; Maeder 1999). Any deformation assuming
a conservative rotation profile faces this limitation. To try to
estimate its impact on the structure, we propose in Sect. 4.2 a
comparison between the centrifugal deformation obtained with
RUBIS and that obtained with a code including energy trans-
fer, namely the ESTER code (Espinosa Lara & Rieutord 2013;
Rieutord et al. 2016).

3.2. Mass growth

A direct consequence of preserving ρ(P) is that the model mass
is not conserved during the deformation. Although the density
does not change on the level surfaces, the volume enclosed in
each of them evolves during the deformation. This inevitably
leads to a change in the total mass (and in most cases, to an
increase), as shown in Fig. 2. We emphasise that this is not an
intrinsic inconsistency of the program but a consequence of the
underlying assumptions; the deformation procedure we present
must be seen as a purely mathematical transformation of the
original model, not a dynamical one. In particular, the latter is
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Fig. 2. Mass growth in polytropes of indices N = 1 (red curves) and N = 3 (blue curves) as a function of the normalised rotation rate in the case
of solid rotation. The upper and lower thin curves represent the equatorial and polar radii in both polytropes, respectively, and the thicker curves
indicate their mass. All quantities are expressed in units of the non-rotating models’ parameters, and the percentages on the right side give the
relative mass increase at Ω = 0.9ΩK with ΩK =

√
GM/R3, the Keplerian rotation rate. The colour maps adjoining the curves depict the mass

distribution in both models after deformation at Ω = 0.9ΩK.

not expected to preserve the total mass of the system, as would
be the case if a static model started to spin until it reached the
desired rotation speed.

In addition to the rotation rate, the amount of mass growth
also depends on the initial mass distribution of the model, as
illustrated in Fig. 2. Because the most deformed isopotentials
are those located near the surface, models that concentrate most
of the mass in their core (e.g., the polytrope of index N = 3)
undergo an increase of only a few percent in their total mass,
even at speeds close to the critical rotation rate. Conversely, more
homogeneous models such as the N = 1 polytrope change signif-
icantly in mass because more mass is contained in these highly
deformed isopotentials. In some cases, this can lead to a relative
mass increase of over one-third.

3.3. Adaptive rotation rate

When going from one iteration to the next, we are faced with the
following conundrum. The centrifugal potential depends on the
value of rotation rate. It then subsequently intervenes in the total
potential and hence the calculation of new isopotential surfaces.
In particular, this leads to a new determination of the equato-
rial radius (which is generally larger than the previous estimate).
However, this radius is required to obtain the rotation rate, which
intervenes in the centrifugal potential, in order to ensure that the
ratio Ω/ΩK is preserved at the equator. Hence, the rotation rate
and the equatorial radius are interdependent.

One may naively think that simply iterating the above algo-
rithm, being a fixed-point scheme, will resolve this interdepen-
dence. However, if the (dimensionless) target rotation rate is
sufficiently close to critical, then the critical rotation rate can
easily be exceeded when the equatorial radius is updated. This
then hampers calculating isopotential surfaces and thus causes
the iterations to stop prematurely. In order to resolve this interde-
pendence, we need to anticipate the value of the equatorial radius
such that the target value of Ω/ΩK is reached at the equator. For
the sake of clarity, we now describe this using some equations.
In what follows, the indices i and i+1 refer to the current and fol-
lowing iteration, and the index ∞ denotes their limits. In order
to avoid overloading an already cumbersome notation, dimen-
sionless versions of the quantities R,Ω,Φ are denoted r, ω, φ,
respectively.

Fig. 3. Typical shapes of isopotentials in a meridional cross section,
inside and outside a rotating model. The critical isopotential (denoted
by its value, Φ crit

eff
) is shown in black, and the level surfaces with higher

and lower values appear in grey and blue, respectively.

From a mathematical point of view, the problem occurs when
attempting to find an isopotential with a value Φeff > Φ crit

eff
,

the latter being defined as the value of the potential for which
∇Φeff · er = 0 on the equator. Figure 3 provides a clear view
of what happens in this case: because these isopotentials are not
closed surfaces, Newton’s method, as described in Sect. 2.3, can-
not converge on the equator, and the algorithm simply breaks
down. This issue might be surprising at first glance because it
is clear that even the value of the highest isopotential (corre-
sponding to the surface) should remain below Φ crit

eff
as long as

the specified rotation profile, Ω(s), satisfies Ωeq/ΩK < 1.
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In a naive iterative scheme, however, it is possible to face
this issue because the Keplerian break-up rotation rate, Ω i

K =√
GMi/R i

eq
3, changes from one iteration to the next. Further-

more, because the equatorial radius increases faster than the
mass as a function of the rotation rate (cf. Fig. 2), and because the
dimensionless rotation rate on the equator ωeq does not change,
the final equatorial rotation rate Ω ∞

eq = ωeqΩ ∞
K is lower than

the initial value, thus implying that it decreased at some point in
the iterations. In other words, the determination of the outermost
isopotential with the current equatorial rotation rate, Ω i

eq, might

have a value exceeding
(
Φ crit

eff

) i+1
if Ω i

eq/Ω
i+1

K > 1. The closer
ωeq is to 1, the higher the likelihood that this problem occurs.

To overcome this difficulty,a new sequence of equatorial
rotation rates, Ω̃ i

eq, must be found such that the procedure finally
converges towards Ω ∞

eq = ωeqΩ ∞
K , without ever facing the cri-

terion just stated above. The solution we found is to define this
sequence as

Ω̃ i
eq = ωeqΩ̃ i

K , (27)

where Ω̃ i
K =

√
GMi/(R i+1

eq )3. In terms of the current scaling,
this solution amounts to adapting the dimensionless rotation rate
during the iterations because Ω̃ i

eq can be re-expressed as

Ω̃ i
eq = ω̃ i

eqΩ i
K, (28)

with

ω̃ i
eq = ωeq

Ω̃ i
K

Ω i
K

= ωeq(r i+1
eq )−3/2, (29)

where r i+1
eq denotes the next equatorial radius expressed in the

current scaling, R i+1
eq /R i

eq. Because the mass tends to increase
from one iteration to the next, we can easily check that Ω̃ i

K <

Ωi+1
K and therefore that the sequence we define verifies

Ω̃ i
eq

Ω i+1
K

= ω̃ i
eq

Ω i
K

Ωi+1
K

= ωeq
Ω̃ i

K

Ω i
K

Ω i
K

Ωi+1
K

< ωeq < 1 (30)

for a given iteration i. Moreover, as long as the sequence of
equatorial radii converges towards a finite limit R ∞eq , the ratio of
successive radii converges towards, r ∞eq = 1, thus proving with
Eq. (29) that the adaptive rotation rate we defined asymptotically
approaches the user-specified value,

lim
i→∞

ω̃ i
eq = ωeq. (31)

While this new definition seems to have all the desired prop-
erties (cf. Eqs. (30) and (31)), it must be noted that the latter
requires the evaluation of R i+1

eq at iteration i. Although anticipat-
ing the next equatorial radius is generally not possible in such an
iterative procedure, an interesting feature in RUBIS enables cal-
culating it exactly. Because the effective potential only varies by
an additive constant from one iteration to the next (cf. Eq. (6)),
it may be pointed out that the difference

δΦ ≡ Φeff(ζ = 1) − Φeff(ζ = 0)
= ΦG(Req, π/2) + ΦC(Req, π/2) − ΦG(0, π/2) (32)

does not change. We note that the constant δΦ is known from the
first iteration, after having solved Poisson’s equation. We now
place ourselves at iteration i and try to anticipate the content of

this equation at iteration i + 1. Scaled by the current reference
potential GMi/R i

eq, the above equation becomes

δφi = φg(r i+1
eq , π/2) − φg(0, π/2) −

∫ r i+1
eq

0
x
[
Ωi(xR i

eq)/Ω i
K

]2
dx,

(33)

where we expressed the centrifugal potential using Eq. (3) and
defined δφi = δΦ ×

(
GMi/R i

eq

)−1
. In this equation, the scaled

rotation profile Ωi(s) depends on the iteration because its equa-
torial value changes with i (cf. Eq. (28)). The way the whole
profile changes with its equatorial value in RUBIS can simply
be described with the following scaling relation:

Ωi(s) = Ω̃ i
eq × ω(s/R i

eq), (34)

where ω designates the dimensionless profile such that ω(1) = 1.
Injecting this expression into Eq. (33) and replacing Ω̃ i

eq/Ω
i

K
using Eq. (29), we obtain

δφi = φg(r i+1
eq , π/2)−φg(0, π/2)−

ω 2
eq

(r i+1
eq )3

∫ r i+1
eq

0
xω2(x) dx. (35)

Rescaling the x variable in the integral so that it varies
between 0 and 1, we deduce the final relation,

δφi = φg(r i+1
eq , π/2) − φg(0, π/2) −

Rω 2
eq

r i+1
eq

, (36)

with R a constant fixed by the choice of the rotation profile,

R =

∫ 1

0
xω2(x) dx. (37)

For instance, the choice of a uniform rotation profile leads to
ω(x) = 1 and thus R = 1/2, while choosing a Lorentzian profile
(cf. Eq. (22)) yields

ω(x) =
1 + α

1 + αx2 ⇒ R =
1 + α

2
. (38)

Equation (36) is merely an equation of the type f (r i+1
eq ) =

δφi which can be solved numerically for r i+1
eq using Newton’s

method and noting that

d f
dr

=
∂φg

∂r

∣∣∣∣∣∣
θ=π/2

+ R

(ωeq

r

)2
(39)

is known. Once r i+1
eq is found, the adaptive rotation rate follows

immediately from Eq. (29).
In practice, this modification has a negligible numerical cost,

but offers a substantial gain in performance, both in terms of
stability and convergence speed. Figure 4 quantifies the benefits
of this modification to the program by comparing the number
of iterations required for convergence in the fixed and adaptive
rotation rate approaches. While the first method requires more
and more iterations as Ω increases and finally does not converge
beyond 0.8ΩK, the adaptive approach reaches the desired crite-
rion in a quasi-constant number of steps (about 25) regardless of
the rotation speed.

In terms of stability, it is possible to reach speeds that are
extremely close to the critical rotation rate. Figure 5 shows the
cross section of an N = 3 polytrope at Ω = 0.9999ΩK. At
this speed, the last isopotential approaches the saddle point very
closely thus leading to a well-defined cusp at the equator. A
high truncation order is required (L = 500) in order to properly
resolve this region.
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Fig. 4. Number of iterations needed to reach the convergence criterion (in this case
∣∣∣(Rpol/Req)i+1 − (Rpol/Req)i

∣∣∣ < 10−11) for the fixed rotation rate
approach (red hue curves) and adaptive method (blue tint curves) presented in Sect. 3.3 (the radial and angular resolutions chosen were N = 1000
and L = 101, respectively). For each approach, the degree of convergence as a function of iteration number is shown for three rotation rates. In
the fixed-rotation approach, a transient phase in which the rotation speed gradually increases must be included at the beginning. In the case of the
adaptive method, the three curves overlap.

Fig. 5. Deformation of an N = 3 polytrope at 99.99% of the critical rotation rate. The left side of the figure shows the shape of the level surfaces
and their colour reflects the value of the effective potential. The right side shows the mass distribution in the model.

4. Tests

As was pointed out in previous sections, the method developed
here preserves the polytropic relation between ρ and P. We here-
after compare the deformations and structures obtained using
the present method, and in some cases, the resultant pulsation
modes, with those generated by independent methods, namely
the approaches developed in Rieutord et al. (2005), in the
ESTER code (Espinosa Lara & Rieutord 2013; Rieutord et al.
2016), and in the Concentric MacLaurin Spheroids (CMS)
method (Hubbard 2012, 2013).

4.1. Polytropes

A particularly relevant and well-studied class of models to
test are polytropes. Indeed, polytropes with indices of N =

1.5 and 3 have been used as a first approximations of con-
vective and radiative regions in stars (e.g., Eddington 1926;
Chandrasekhar 1939), while an index of 1 has been used to
model the envelope of planetary models such as Jupiter (e.g.,
Stevenson 1982). Furthermore, the pulsation modes of such
models have been calculated to a great accuracy by various
authors (Christensen-Dalsgaard & Mullan 1994; Lignières et al.
2006; Reese et al. 2006; Ballot et al. 2010) and may be used
as reference to test new methods. In addition to this, rotating
polytropes preserve their barotropic relation, so that the central
assumption of the present method is exactly verified for these
particular models. Therefore, very small differences are expected
compared to other deformation methods.

The polytropes generated using the present method have a
uniform radial grid with 1001 points and a colatitude grid of
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Fig. 6. Differences on level surfaces of the 0.8ΩK polytropic models. The mappings were again normalised by the equatorial radius. The inset
centred on the origin, where the differences are the greatest, is only 0.01Req wide.

101 points distributed along a Gauss-Legendre collocation grid.
The models generated using the Rieutord et al. (2005) method
are discretised using spectral methods in both the radial and lat-
itudinal directions. A resolution of 81 points was used in the
radial direction and 51 spherical harmonics (with even ` values
ranging from 0 to 100) for the horizontal structure.

In order to account for the differences between the two meth-
ods, we chose to compare the positions of the level surfaces in a
fast-rotating N = 3 polytrope. More specifically, we considered
a uniform rotation at rate of 0.8ΩK. This meant interpolating the
Rieutord et al. (2005) model to find the 1001 corresponding level
surfaces as it is initially calculated using a mapping based on
Bonazzola et al. (1998). Figure 6 shows the result of this com-
parison, that is, the value of the differences

δr(ζ, θ) = rR05(ζ, θ) − rRUBIS(ζ, θ) (40)

inside the deformed models. The maximum differences are about
10−9, and, in most of the model, they are well below this value,
thus confirming the excellent agreement of the two methods. The
most central (and pronounced) differences here are the result of
the solving method used for Poisson’s equation. In RUBIS, this
equation is solved on r2 rather than r for regularity purposes,
which may explain the 10−9 variations in ΦG in this region,
although the deformation is very small in practice.

One of the goals of the method presented here is to pro-
duce models that may be used for accurate pulsation calcula-
tions. We therefore compared the pulsation frequencies of the
most rapidly rotating model from Reese et al. (2006), that is,
an N = 3 polytrope rotating at Ω = 0.58946223ΩK gener-
ated using the Rieutord et al. (2005) method, with those of an
equivalent model produced with the present method. This time,
we increased the radial resolution of the model with the present
method to n = 2000 points using an unevenly spaced grid. The
successive ζ positions (or r positions of the precursor 1D model)

are given by

ζi = sin
(

(i − 1)π
2(n − 1)

)
, 1 ≤ i ≤ n. (41)

This grid has a roughly uniform spacing of ∼ π
2n around ζ = 0

and a dense spacing that scales as 1/n2 near ζ = 1, thus mak-
ing it suitable for p-mode calculations. Figure 7 show the rela-
tive frequency differences between the two models. These dif-
ferences are about 10−7, except for the lowest-frequency modes,
thus confirming that the present method is fully able to produce
accurate models that are suitable for seismic calculations.

4.2. ESTER models

While RUBIS has been shown to reliably reproduce the struc-
ture of 2D polytropic models, its underlying assumptions suggest
that the same cannot be said for more realistic structures. This is
evaluated in this section. In particular, we compare structures
derived from RUBIS and those derived from the ESTER code,
which satisfy an energy balance in addition to the hydrostatic
equilibrium. However, before this, we first make use of ESTER
to verify the relevance of RUBIS’ central assumption, namely
the conservation of the barotropic relation during the deforma-
tion process. To this end, we compared the relation between the
density and pressure in a rotating star obtained with ESTER and
its non-rotating equivalent. However, there is an important aspect
to consider in order to do this accurately. It was mentioned ear-
lier that a deformation that preserves the barotropic relation does
not conserve the mass of the model for the simple reason that its
volume increases. Thus, it is to be expected that the density val-
ues in models of the same mass with and without rotation are
not directly comparable. More precisely, the non-rotating model
should be denser because its volume is smaller. This apparent
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Fig. 7. Relative frequency differences between pulsation calculations in
the N = 3, Ω = 0.58946223ΩK polytrope from Reese et al. (2006) and
an equivalent model from the present method as a function of the oscil-
lation frequency (expressed in units of the Keplerian rotation rate, ΩK).
The different colours indicate the harmonic degree of the oscillation
modes that are carried over from the non-rotating case. All azimuthal
orders (|m| ≤ `) are provided for each degree.

Table 3. Differences between the 2D ESTER and RUBIS models for
various global properties.

Model Req Rpol Rpol/Req ΩK
(1011 cm) (1011 cm) (10−6 rad.s−1)

ESTER 1.459 1.100 0.7537 292.4
RUBIS 1.437 1.087 0.7566 299.3

problem can readily be solved: rather than comparing a rotating
model with a static model of the same mass, one simply needs to
compare it with the model that will have the same mass after a
deformation that preserves ρ(P), that is, deformed with RUBIS.
Here, the difficulty arises from the impossibility of imposing the
same rotation profile, RUBIS being limited to conservative rota-
tion profiles, whereas the ESTER profiles are fully differential
(i.e. non-conservative). To account for the change in mass, at
least partly, we compared an ESTER model with a model that
reaches the same mass after having been deformed using a uni-
form rotation profile with Ω = ΩESTER

eq , where ΩESTER
eq is the

equatorial rotation rate from ESTER. Most of the deformation
should be taken into account in this way, although the differences
δΩ between the two rotation profiles are part of the limitations to
be kept in mind. This is confirmed by the relatively small differ-
ence in flattening between the two models (cf. Table 3). Nonethe-
less, larger differences remain on the polar and equatorial radii,
thus affecting the Keplerian break-up rotation rate, as also shown
in Table 3.

In Fig. 8 we compare the pairs (ρ, P) from a 2 M� ESTER
model with a differential rotation verifying ΩESTER

eq = 0.8ΩK
with the relation ρ(P) from a 1D model of mass 1.977127 M�.

Fig. 8. Comparison of the 1D relation ρ(P) in a 1.977127 M� star with-
out rotation (grey curve) and the pairs (ρ, P) from a 2 M� star obtained
by ESTER using a differential rotation profile, the equatorial speed of
which is Ωeq = 0.8ΩK (blue dots). The brackets indicate that the relation
ρ(P) shown here for the 1D model also corresponds to the relation in the
model deformed by RUBIS using the uniform rotation speed Ω = 0.8ΩK
(the mass of the model then reaches 2 M�).

When deformed by RUBIS using a uniform rotation profile with
Ω = 0.8ΩK, the latter leads to a 2 M� model that by construc-
tion verifies the same relation between density and pressure. In
Fig. 8 two major properties stand out. First, although there is no
relation in the functional sense between ρ and P in the model
deformed by ESTER, all pairs (ρ, P) seem to align on the same
curve. A high zoom level is necessary to reveal some thickness
in this point distribution, resulting from angular differences. It
thus highlights the relevance of assuming the existence of such a
relation even to approximate more realistic cases, where energy
transfer is taken into account. Moreover, this relation does not
seem to be just any relation: the (ρ, P) pairs almost perfectly
overlap with the ρ(P) relation of the non-rotating model. This
observation is central and constitutes a major motivation for
developing a code such as RUBIS. A closer inspection of the
two structures reveals some differences, as we discuss below.

A drawback of Fig. 8 is that it does not reveal the regions
of the star in which potential structural differences may arise.
In order to compare the structures, they need to be interpolated
to the same pressure values8, the problem being that the meth-
ods used by ESTER and RUBIS do not use the same conven-
tion when defining the pseudo-radial variable, ζ. To do this, it
is first necessary to interpolate the pressure as a function of ζ
and θ in the ESTER model using the fact that it is defined on a
multi-domain Gauss-Lobatto grid. We then find at which pairs
(ζESTER, θ) the pressure values in the RUBIS model correspond,

8 It might be tempting to interpolate the two models to the same isopo-
tential lines, but we recall that such lines do not exist in ESTER models
given its non-conservative rotation profile.
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Fig. 9. Relative and absolute density differences between RUBIS and ESTER. Left panel: relative density differences between the models computed
with RUBIS and ESTER at given pressure values. The latter are placed according to the position in which these pressure values are met in the
RUBIS deformation. The zoomed-in frame helps to reveal the differences in the most superficial layers at the equator. Right panel: same as the left
panel, but for the absolute differences in density (expressed this time in units of M/R3

eq).

keeping in mind that the latter are defined at a fixed ζRUBIS.
We now interpolate the ESTER density in order to evaluate it
at (ζESTER, θ) and we define

δPρ(ζRUBIS) = ρ(ζRUBIS) − ρ(ζESTER, θ). (42)

Here, the notation δP indicates a difference at fixed pressure
value, more specifically, the one that is found at ζRUBIS. The
quantity δPρ therefore contains the deviations from barotropy
obtained in the ESTER model, deviations that can be located
physically. We note that it also possible to define normalised dif-
ferences, δPρ/ρ, which are represented along with δPρ in Fig. 9.

The figure shows that the normalised differences remain
below 1% in the innermost half of the star. However, they rapidly
increase near the surface, eventually reaching 10% in the ionisa-
tion region (on the equator), which is reflected in the red stripe
in the zoomed-in frame. The largest relative differences exceed
one-third and are located in the most superficial layers of the
model (dark red curve around the star).

The absolute differences, on the other hand, offer an alterna-
tive picture. Near the centre, where we find nearly solid rotation,
the differences first take the form of a nearly spherical function.
Beyond a certain layer, however, these differences exhibit angu-
lar variations and reflect a more general differential rotation in
the ESTER model. The absolute differences then rapidly tend
towards 0.

These differences can mainly be attributed to two factors.
First, as mentioned above, the two models do not have the same
rotation profile. Some of these differences might be taken into
account by defining a best-fitting conservative profile as

Ω(s) =

∫ Z(s)
0 ρΩESTER(z, s) dz∫ Z(s)

0 ρ(z, s) dz
, (43)

with Z(s) the position of the surface at a distance s from the rota-
tion axis. However, this factor alone does not explain all of the

observed differences, and we can also expect that the thermal
structure, verifying a more complex equilibrium in the ESTER
model, is only approximately reproduced by a model deformed
with RUBIS. Although the hydrostatic and thermal structures
can be seen as uncorrelated as long as the equation of state is not
specified, in the sense that an infinite number of thermal struc-
tures and equations of state can lead to the same equilibrium, it
is obviously not the case for a model aiming to verify an energy
transfer equilibrium. We can therefore expect such differences
between RUBIS and ESTER.

In practice, the two representations given in Fig. 9 have their
own relevance depending on the model’s usage. For example, the
high relative differences on the surface can be expected to play
an important role when calculating high-degree pressure modes.
On the other hand, gravity modes or global quantities sensitive
to mass distribution such as gravitational moments may be more
sensitive to the second representation.

In the following, we account for the impact of these differ-
ences on the oscillation frequencies of the models. Using the
Two-dimensional Oscillation Program (TOP; Reese et al. 2006,
2009), we computed and identified the oscillation modes cor-
responding to the ˜̀ = 0, 1, ñ = 9, 23 acoustic island modes.
We recall that island modes are the rotating counterparts to low-
degree acoustic modes. They focus on a period ray orbit that
circumvents the equator. The quantum number ñ corresponds to
the number of nodes along the orbit’s path whereas ˜̀ is the num-
ber of nodes parallel to the orbit (cf. Lignières & Georgeot 2008;
Reese 2008; and Pasek et al. 2012 for a more detailed definition
of ˜̀ and ñ and their link with usual spherical quantum numbers).
The frequency differences, δω, defined as

δω = ωESTER − ωRUBIS, (44)

are represented in the upper panel of Fig. 10 as a function of the
azimuthal order m for the ˜̀ = 0 and ˜̀ = 1 oscillation modes.

The first point to highlight is that the differences are not
distributed around zero, but exhibit a clear negative offset. The
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Fig. 10. Frequency differences in µHz (upper panel), as defined in
Eq. (44), along with their normalised counterparts (lower panel) intro-
duced in Eq. (45). These differences are shown as a function of the
azimuthal order, m, for the ˜̀ = 0 (blue shades) and ˜̀ = 1 (red shades)
island modes. The colour shade indicates the mode’s pseudo-radial
order, ñ (higher orders correspond to darker colours).

reason for this is the different frequency scales resulting from the
differences in radii (cf. Table 3). This is confirmed by the fact
that the differences increase with ñ, as indicated by the colour
shades in Fig. 10. It also explains the trend as a function of the
azimuthal order m. Indeed, in our convention, modes with nega-
tive m values are prograde and therefore have higher frequencies.
This then highlights the difference in frequency scale.

When we now normalise the frequencies to account for these
scaling effects as well as for the order of magnitude of the
frequency differences, we obtain the differences shown in the
lower panel of Fig. 10. These differences may be expressed as
follows:

δσ

σ
=

 ωESTER

Ω ESTER
K

−
ωRUBIS

Ω RUBIS
K

  ωESTER

Ω ESTER
K

−1

. (45)

The negative offset has mostly been removed, along with
the previously observed trend with ñ. This representation also
reveals that the normalised frequency differences are of a few
thousandths. They are considerably higher than in the case of a
comparison between barotropic models with the same rotation
profiles (cf. Fig. 7).

It is also interesting to note that the trend as a function of
m has been reversed. Indeed, by removing the scaling effects,
this highlights more subtle effects that are related to the rota-
tion profiles of the two models, as we now explain. Following
Reese et al. (2021), the rotational splittings in ESTER can be
expressed (neglecting the Coriolis force) as

ω−m − ω+m ' 2mΩeff , (46)

where

Ωeff =

∫
V

Ω(r, θ)K(r, θ) dV, (47)

is a weighted average of Ω, and K is a (mode-dependent) rota-
tion kernel, defined as

K(r, θ) =
1
2

 ρ|ξ+m|
2∫

V
ρ|ξ+m|

2 dV
+

ρ|ξ−m|
2∫

V
ρ|ξ−m|

2 dV

 , (48)

where |ξ±m| designates the retrograde (+m) (or prograde (−m))
mode amplitude.

Because the rotation profile is differential in the ESTER
model, the value of Ωeff is likely to differ from Ωeq. Moreover,
because Ω(r, θ) tends to be higher than Ωeq in the regions probed
by K(r, θ), it is to be expected that

ω+m − ω−m > 2mΩeq, (49)

where we made use of Eq. (46). In contrast, the model deformed
by RUBIS rotates uniformly, thus leading to

ω+m − ω−m ' 2mΩeq. (50)

By comparing the non-dimensional version of the two above
equations, and recalling that the non-dimensional equatorial
rotation rate is the same in both models, we obtain

δ(σ−m − σm) ' 2mδΩeff/ΩK, (51)

where

δΩeff =

∫
V

(Ω(r, θ) −Ωeq)K(r, θ) dV > 0. (52)

Regarding the structure of the modes themselves, we com-
pare in Fig. 11 the following oscillation modes obtained in the
RUBIS and ESTER models: (ñ, l̃,m) = (13, 1, 2) and (13, 0, 1)
(cf. upper and lower panels). The first comparison shows a typ-
ical example of a mode that is almost identical in the RUBIS
and ESTER models, and the second comparison exhibits clear
differences in the two modes. More specifically the mode in the
ESTER model is considerably altered by an avoided crossing,
while its impact is just beginning to emerge in its counterpart
in the RUBIS model. Overall, the oscillation modes that possess
well-defined structures are very similar, and even some avoided
crossings are well reproduced in both models.
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Fig. 11. Two oscillation modes (upper and lower parts of the figure) in the RUBIS and ESTER models (left and right sides). The mode at the top
is an ˜̀ = 1, m = 2 antisymmetric (with respect to the equator) mode, and the mode at the bottom corresponds to ˜̀ = 0, m = 1. The oscillation
frequency of each mode is indicated in units of ΩK.

4.3. Model of Jupiter

To illustrate the capabilities of RUBIS in deforming plane-
tary models, we considered the centrifugal deformation of a
model of Jupiter. This specific case is very interesting in prac-
tice, whether to determine Jupiter’s structure by fitting its grav-
itational moments (Hubbard 2012, 2013; Debras & Chabrier
2018) or to interpret oscillation modes obtained through
projects following the Jovian Oscillations through Velocity
Images At several Longitudes (JOVIAL) project (Gonçalves
et al. 2019).

In order to illustrate the capabilities of RUBIS in deforming
planetary models, we considered a Jupiter model provided by the
Code d’Evolution Planetaire Adaptatif et Modulaire (CEPAM;
Guillot & Morel 1995). This model presents a strong density dis-
continuity due to the presence of a solid core (causing a change
of ∼75% in density), making it an ideal application to test the
program’s stability. In Fig. 12 we represent the mass distribu-
tion in the Jovian model when imposing a solid rotation rate
of Ω ' 0.298656ΩK, which corresponds to the rotation rate
used in Debras & Chabrier (2018). The most central disconti-

nuity, which corresponds to the solid core, is clearly visible in
the colour change. A more discrete discontinuity caused by the
metallic to molecular phase change in the envelope is highlighted
with a white contour. Finally, the code continues to converge
even for Jovian models exceeding 0.9ΩK, although their con-
crete applications become somewhat uncertain.

Another advantage of using RUBIS for deforming planetary
models lies in the excellent accuracy it provides at a very low
numerical cost. This is illustrated here through a classic prob-
lem of Jovian science: the calculation of gravitational moments
able to satisfy the observational constraints of Juno. Based on
numerous flybys of the planet (Bolton et al. 2017), the probe is
able to provide very reliable estimates of Jupiter’s gravitational
moments (cf. Table 4), defined as

J` = −
1

MR `
eq

∫
V

r`ρ(r, θ)P`(cos θ) dV, (53)

where P` designates the `th Legendre polynomial, and therefore
to account for the departures from a spherically symmetric mat-
ter distribution caused by the rotation.
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Fig. 12. Mass distribution in a Jovian model after imposing a uniform
rotation at Ω ' 0.298656ΩK using RUBIS. The white contours indicate
the location of the model’s discontinuities.

Table 4. Gravitational moments of Jupiter measured by Juno after 17
Jovian passes (Durante et al. 2020).

Measured values 3σ uncertainties

J2 × 102 1.46965735 0.00000017
J4 × 104 −5.866085 0.000024
J6 × 105 3.42007 0.00067
J8 × 106 −2.422 0.021
J10 × 107 1.81 0.67
J12 × 108 6.2 19.0

However, a considerable difficulty in comparing these obser-
vational values with those of Jovian models is the accuracy
that deformation codes can achieve for these moments. A clas-
sic benchmark to test this is the calculation of the gravitational
moments of the N = 1 polytrope with the deformation param-
eter q = ω2 = 0.089195487 because they can be calculated
analytically. We provide in Table 5 a comparison of these ana-
lytical values and the numerical estimates from several methods:
the Theory of Figure (ToF) to order q3, the CMS method using
512 spheroids, and the method presented here. The studies from
which these values are taken can be found below the table. We
facilitate the comparison between columns by indicating in red
the digits that do not match the analytical values.

In order to reach an optimal accuracy, we used a radial grid
of 10 000 points with a Gauss-Legendre grid of 101 points in
the angular direction for a maximum harmonic degree L of 100.
Numerical errors on the moments were assessed via the variance
resulting from more than 100 runs with slight variations in the
radial grid. Digits that are correct on average but may change
between runs are indicated in grey in Table 5.

The results are quite impressive. Whereas the ToF method
leads to an absolute error of about 10−5−10−6 and the CMS

method has a relative error of 10−4, RUBIS exhibits an abso-
lute error of about 10−13 that is reduced to 10−14−10−16 when
considering the average estimates. Moreover, this accuracy can
be achieved at a fairly low numerical cost. For instance, the
RUBIS deformation process described here was performed using
a 1.9 GHz Intel Core i7-8665U CPU with four-cores (eight-
threads) processor, running in 33.9 s on average and requiring
4.1 GB of memory.

Finally, we emphasise that, compared to other meth-
ods such as the Consistent Level Curves (CLC) method,
which can achieve arbitrarily high accuracy on the moments
(Wisdom & Hubbard 2016), RUBIS was designed to be able to
take into account density discontinuities in a consistent man-
ner. Its ability to overcome the difficulties faced by CMS when
increasing the number of spheroids (Debras & Chabrier 2018)
and thus guarantee very high accuracy even for the first moments
makes it a reasonable choice when searching for Jovian models
subject to the constraints of Juno.

5. Conclusion

We presented RUBIS, a fully Python-based centrifugal defor-
mation program that can be accessed from this GitHub
repository9. The program takes in an input 1D (spherically
symmetric) model and returns its deformed counterpart by
applying a conservative rotation profile specified by the user.
More specifically, the code only needs the density profile as a
function of radial distance, ρ(r), from the reference model in
addition to the surface pressure, P0, in order to perform the
deformation. The program is particularly lightweight because of
the central assumption, which consists in preserving the relation
between density and pressure when going from the 1D to the 2D
structure. The latter makes it possible, in particular, to avoid the
standard complications arising from energy conservation in the
resulting model (Jackson 1970; Roxburgh 2004; Jackson et al.
2005; MacGregor et al. 2007). In this sense, the method is anal-
ogous to the one presented by Roxburgh (2006), but it is simpler
because it does not require the calculation of the first adiabatic
exponent, Γ1, during the deformation process, thus bypassing the
need to explicitly specify an equation of state.

As a result, the only equation solved by the program in
practice is Poisson’s equation, ∆ΦG = 4πGρ, thereby leading
to very fast computation times even when high angular accu-
racy is required, thus making it a potentially valuable tool for
multidimensional evolutionary applications. Another feature of
the method is its excellent stability, which enables the deforma-
tion of models at speeds very close to the critical rotation rate.
Finally, the code was designed to allow both stellar and planetary
models to be deformed by dealing with potential discontinuities
in the density profile. This is made possible by solving Poisson’s
equation in spheroidal rather than spherical coordinates when-
ever a discontinuity is present.

By design, RUBIS is able to reach a high degree of accuracy
when deforming polytropic structures, making them well suited
to the calculation of oscillation frequencies. We also showed that
the centrifugal deformations derived from RUBIS keep a cer-
tain degree of relevance even when approximating more com-
plex baroclinic structures, and this even when they exhibit a
differential rather than conservative rotation profile. Although
observationally significant differences appear when comparing
pulsation frequencies from RUBIS models with those of more
realistic models, they nonetheless remain accurate to a few tenths

9 https://github.com/pierrehoudayer/RUBIS
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Table 5. Gravitational moments of the N = 1 polytrope found by different methods, compared with the analytical values.

Analytical values (?) ToF, 3rd order (∗) CMS, Nsph = 512 (†) CMS, Nsph = 512 (‡) RUBIS

q 0.089195487 0.089195487 0.089195487 0.089195487 0.089195487
J2 × 102 1.3988511 1.3994099 1.3989253 1.3989239 1.3988511
J4 × 104 −5.3182810 −5.3871087 −5.3187997 −5.3187912 −5.3182810
J6 × 105 3.0118323 3.9972442 3.0122356 3.0122298 3.0118323
J8 × 106 −2.1321157 – −2.1324628 −2.1324581 −2.1321157
J10 × 107 1.7406712 – 1.7409925 – 1.7406711
J12 × 108 −1.5682195 – −1.5685327 – −1.5682195
J14 × 109 1.5180992 – 1.5184156 – 1.5180980

Notes. Red decimals indicate inaccurate digits, and grey decimals indicate digits subject to numerical error (see text).
References. (?)Wisdom & Hubbard (2016), (∗)Hubbard (1975), Zharkov & Trubitsyn (1978), (†)Hubbard (2013), (‡)Debras & Chabrier (2018).

of a percent when scaling effects have been taking into account.
This is useful for providing a first estimate of stellar parameters
when interpreting observed pulsation spectra, which can then
guide more costly searches using more realistic models. Finally,
we also demonstrated the ability of the program to deform dis-
continuous structures such as planetary models and illustrated
its accuracy when calculating gravitational moments. The results
are promising compared to the existing alternatives and highlight
the viability of RUBIS as a model adjustment tool for fitting the
measurements coming from the Juno probe.
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Appendix A: Poisson’s equation and derivation of
the interface conditions in spheroidal
coordinates

We briefly retrace the derivation of Eq. (20) as well as the bound-
ary conditions (A.11) and (A.18), while clarifying the notations
associated with the coupling integrals P``

′

·· . First of all, Eq. (18)
can quickly be retrieved using the fact that ∆ΦG = ∇ · ∇ΦG,
which in curvilinear coordinates is written as (using Einstein’s
summation convention)

∆ΦG =
∂i

( √
|g| ∂iΦG

)
√
|g|

=
∂i

(
gi j

√
|g| ∂ jΦG

)
√
|g|

. (A.1)

Here, gi j denotes the covariant components of the metric tensor,
and g is its determinant. Since ∂ϕΦG = 0, the only components
needed are gζζ = (r2 + r2

θ )(r2r2
ζ )−1, gζθ = gθζ = −rθ(r2rζ)−1 and

gθθ = r−2, in addition to g = r4r2
ζ sin2 θ. Multiplying by r2rζ , the

sum then results in four terms

r2rζ∆ΦG = ∂ζ

 r2 + r2
θ

rζ
∂ζΦG

 − ∂ζ (rθ∂θΦG)

−
1

sin θ
∂θ

(
rθ sin θ∂ζΦG

)
+

1
sin θ

∂θ
(
rζ sin θ∂θΦG

)
.

(A.2)

Expanding the last three terms and replacing ∆ΦG by its
actual value according to Poisson’s equation, 4πGρ, leads to

∂ζ

 r2 + r2
θ

rζ
∂ζΦG

−2rθ∂2
ζθΦG−∆Sr ∂ζΦG +rζ∆SΦG = 4πGr2rζρ,

(A.3)

with ∆S ≡ sin−1 θ∂θ (sin θ∂θ) = ∂2
θθ + cot θ∂θ. We recognise

Eq. (18). Decomposing the gravitational potential over the (nor-
mal) Legendre polynomials,

ΦG(ζ, θ) =

∞∑
`′=0

Φ`′

G(ζ)P`′ (cos θ), (A.4)

we now obtain
∞∑
`′=0

∂ζ

 r2 + r2
θ

rζ
P`′∂ζΦ

`′

G


− [2rθ∂θP`′ + ∆Sr P`′ ] ∂ζΦ`′

G

− `′(`′ + 1)rζP`′Φ
`′

G = 4πGr2rζρ (A.5)

using the fact that ∆SP` = −`(` + 1)P`.
Since

∫ −1
−1 P`(µ)P`′ (µ) dµ = δ``′ , we can project this equation

onto the `th polynomial, which leads to
L∑

`′=0

∂ζ
(
P``

′

ζζ ∂ζΦ
`′

G

)
− P``

′

ζθ ∂ζΦ
`′

G − P
``′

θθ Φ`′

G = 4πG(r2rζ)` ρ (A.6)

by introducing the coupling integrals,

P``
′

ζζ =

∫ 1

−1

r2 + r2
θ

rζ
P`P`′ d(cos θ), (A.7)

P``
′

ζθ =

∫ 1

−1
[2rθP`∂θP`′ + ∆Sr P`P`′ ] d(cos θ), (A.8)

P``
′

θθ = `′(`′ + 1)
∫ 1

−1
rζP`P`′ d(cos θ) (A.9)

and the following r2rζ decomposition:

r2rζ =

∞∑
`′=0

(r2rζ)`′P`′ (cos θ), (A.10)

thus proving Eq.(20). It must noted that the spectral decom-
position of ρ does not appear since it only depends
on ζ.

Now looking at the boundary conditions to impose on the
domain interfaces, the two quantities that need to be continuous
are ΦG and its gradient. The continuity of ΦG leads to the first
condition on Φ`

G, that is, its continuity,(
Φ`

G

)−
=

(
Φ`

G

)+
, (A.11)

where “-” and “+” superscripts denote quantities below and
above the interface. In order to find a second boundary condi-
tion, the gradient of ΦG must first be re-expressed from the natu-
ral basis (bζ , bθ) to an orthogonal basis such as the spherical one
(êr, êθ),

∇ΦG = ∂ζΦG bζ + ∂θΦG bθ

=
∂ζΦG

rζ
êr +

1
r

(
∂θΦG −

rθ
rζ
∂ζΦG

)
êθ, (A.12)

by using the relations

bζ =
1
rζ

êr −
rθ
rrζ

êθ, (A.13)

bθ =
1
r

êθ. (A.14)

In order for this gradient to be continuous, both ∂ζΦG/rζ and
∂θΦG − (rθ/rζ)∂ζΦG must be preserved across the interface. At
this point, it can be noted that the interface must necessarily fol-
low an isobar for the pressure gradients to compensate on both
sides. Because isobars and isopotentials coincide, this surface
corresponds to a constant value of ζ between 0 and 1, denoted
ζ∗. Moreover, both r (for obvious reasons) and ΦG (from the
first boundary condition) are continuous through this surface.
Therefore, evaluating the θ derivative at ζ∗ on both sides leads
to

r−θ (ζ∗, θ) = r+
θ (ζ∗, θ) (A.15)

∂θΦ
−
G(ζ∗, θ) = ∂θΦ

+
G(ζ∗, θ). (A.16)

Therefore, both rθ and ∂θΦG are continuous, and preserving
∂θΦG−(rθ/rζ)∂ζΦG is equivalent to preserving ∂ζΦG/rζ . We now
express this condition on the Φ`

G. We have

∂ζΦG

rζ
=

∞∑
`′=0

∂ζΦ
`′

G

rζ
P`′ , (A.17)

and projecting this decomposition on the `th polynomial leads to
the second boundary condition,

∞∑
`′=0

(
P``

′

BC

)− (
∂ζΦ

`′

G

)−
=

∞∑
`′=0

(
P``

′

BC

)+ (
∂ζΦ

`′

G

)+
, (A.18)

with

P``
′

BC =

∫ 1

−1

1
rζ

P`P`′ d(cos θ). (A.19)
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