Yin-Yang spiraling transition of a confined buckled elastic sheet

Stéphanie Deboeuf, Suzie Protière, and Eytan Katzav

TABLE I. Properties of the elastic sheet: the different samples of polyester (polyethylene terephtalate), their Young modulus E, thickness t, width W, length L_0 (and their bending moduli B are computed); and of the confining geometry: the gap h. The number of realizations repeated for the same control parameters is indicated. Polyesters A, B and C have the same Young modulus E = 2.5GPa, while polyesters 1, 2 and 3 have E = 4.0GPa and polyester α has E = 5.0GPa.

Material	E (GPa)	$t \ (\mu m)$	W (cm)	L_0 (cm)	h (mm)	B (J)	Nb of realizations
Polyester A	2.5	60	20	23.5	10	510^{-5}	4
Polyester 1	4.0	75	20	20	10	210^{-4}	3
Polyester B	2.5	90	20	23.5	[5:5:40]	210^{-4}	3
Polyester 2	4.0	100	5,10,20	5,10,20	10, 20, 40	410^{-4}	3
Polyester α	5.0	120	20	23.5	[5:5:40]	910^{-4}	3
Polyester 3	4.0	125	20	20	10	810^{-4}	3
Polyester C	2.5	340	20	23.5	30, 35	10^{-2}	4

FIG. 1. Notations for a bi-laterally constrained elastic sheet: the sheet is parameterized by the local slope $\theta(s)$ of the centerline of a cross-section normal to the z direction at each curvilinear position $s \in [0, L_0]$, of cartesian coordinates (x(s), y(s)). L_0 is the total length of the sheet, Δ is the compression distance, $L = L_0 - \Delta$ is the horizontal distance, along the x axe, between the two opposite ends of the sheet, h is the vertical gap. $H = (L - \Sigma \ell)/2n$ is the projected length per free segment, while $\Sigma \ell$ is the total length of the line contacts (here $\Sigma \ell = \ell_1 + \ell_2 + \ell_3$).

FIG. 2. Typical curvature $\ddot{\theta}$ for the two configurations: *n* motifs versus Yin-Yang pattern.