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DNA in viral capsids, plant leaves in buds, and geological folds are examples in nature of tightly
packed low-dimensional objects. However, the general equations describing their deformations and
stresses are challenging. We report experimental and theoretical results of a model configuration
of compression of a confined elastic sheet, which can be conceptualized as a 1D line inside a 2D
rectangular box. In this configuration, the two opposite ends of a planar sheet are pushed closer,
while being confined in the orthogonal direction by two walls separated by a given gap. Similar
compaction of sheets has been previously studied, and was shown to buckle into quasi-periodic
motifs. In our experiments, we observed a new phenomenon, namely the spontaneous instability
of the sheet, leading to localization into a single Yin-Yang pattern. The linearized Euler Elastica
theory of elastic rods, together with global energy considerations, allow us to predict the symmetry-
breaking of the sheet in terms of the number of motifs, compression distance, and tangential force.
Surprisingly, the appearance of the Yin-Yang pattern does not require friction, although it influences
the threshold of the instability.

Packing problems in confined geometries
have attracted significant attention due to
their relevance in science, engineering and
technology. There is an attempt to optimize
the available space while maintaining the sta-
bility and integrity of the packed objects. A
useful classification of packing problems is via
the dimensionalities of the packed objects d
and of the confining container D. A classical
case is when D = d, such as in sphere packing
or granular matter [1, 2]. Not of less inter-
est are lower dimensional objects, which can
strongly deform due to high rotations, leading
to non-linear geometrical deformations. 1D
fibers [3] or 1D rods in 2D or 3D contain-
ers [4–8] are ubiquitous in nature, such as
DNA in viral capsids [9, 10] or spider-capture
silk inside droplets [11]. Similarly, a 2D plate
in a 3D container [12] exhibits interesting
phases, which are relevant in plant leaves in
buds [13, 14] or geological folds [15]. However,
the general equations describing deformations
and stresses of tightly packed sheets or rods
are challenging to solve [16–18].
In this Letter, we study a model system con-

sisting of a compressed elastic sheet, which can
be conceived as a 1D line inside a 2D rectan-
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gular box. The two opposite ends of a sheet
are moved closer, while confined in the or-
thogonal direction by two walls separated by
a given gap. A similar compaction was stud-
ied by Roman and Pocheau [19], but the gap
between the two walls was decreased, while
keeping the lateral length fixed. One can won-
der whether the reported quasi-periodic buck-
led motifs [19–21] remain when the direction
of compression is modified [22–31] and if this
influences the stability diagram of the sheet.
Surprisingly, we observe a spontaneous insta-
bility of the sheet, leading to the formation of a
single Yin-Yang pattern, not reported before.
Interestingly, this pattern is common to other
confined configurations [32–36]. We measure
experimentally both mechanical and geomet-
rical properties of the sheet, during the lateral
compression process. We also develop a the-
oretical description based on the Euler Elas-
tica theory of elastic rods, and inspired by the
work of Chai [25]. We demonstrate that the
linearized theory describes well some regimes
and properties and we identify the mechanisms
necessary for the emergence of the spiraling
instability. The appearance of the Yin-Yang
pattern does not require friction, although the
latter influences the threshold of the instabil-
ity.

The experiment [Fig. 1(a)] consists of the
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FIG. 1. (a) Scheme of the experiment of buckling of a planar sheet under bilateral constraints: the
length, width and thickness of the sheet are L0, W and t; the confining box is of height h and length
L = L0 −∆. A force sensor measures the tangential force T . (b)-(c) Tangential force T as a function
of the compression ∆ for two sets of experimental parameters: h = 10mm, W = 20cm; (b) L0 = 10cm,
t = 100µm, E = 4GPa; (c) L0 = 23.5cm, t = 120µm, E = 5GPa. Colored circles correspond to pictures
in (d)-(e), where sheet profiles at different compression distances ∆ for the two configurations in (b)-(c)
are shown. Between 1 and nmax motifs are observed, before the spiraling of the sheet (the Yin-Yang
pattern) which is the final pattern observed in the experiments. The continuous and dashes lines are the
experimental and theoretical predictions (using the linearized Elastica (2)), respectively.

compression of a planar sheet under bilat-
eral confinement inside a limited box of height
h ∼ 1cm and lateral length L = L0 − ∆ ∼
10cm, where ∆ measures that compression
(h/L ∼ 0.1). Polyester (polyethylene tereph-
talate) sheets are characterized by a Young
modulus E ∼ 1GPa, length L0 ∼ 10cm, width
W ∼ 10cm and thickness t ∼ 100µm (L0/t ≫
1, h/t ≫ 1). The bending modulus is deter-
mined by B = Et3/12(1−ν2) ∈ [10−5, 10−2]J,
where ν ≃ 0.4 is the Poisson ratio. See the
Supplemental Material for a table of the ex-
perimental parameters [37]. The morphology
of the sheet is observed to be uniform along
the z direction (namely along the width of
the sheet), such that the experiment can be
modeled as the compression of a 1D rod in a
2D rectangle. In essence, the lack of curva-
ture along the z direction allows pure bending
strains without stretching. Initially, the sheet
is lying along the bottom wall, namely along
y = 0. The sheet ends are clamped during the
whole experiment.

During one realization, the gap height h
is kept constant, while the compression dis-
tance ∆ is slowly increased, at a velocity of
around 0.5mm/s. From one realization to an-
other, the experimental control parameters t,
W , L0, E and h are varied and several real-
izations are repeated for the same control pa-
rameters to investigate both the experimen-
tal reproducibility and the system multista-
bility. A force sensor (Sensel Measurement,
Futek LSB200 model) measures the tangen-
tial (compressive or tensile) force T exerted
along the x direction, to which both elasticity
and friction contribute. We denote the normal
force exerted along the y direction by N . Si-
multaneously, pictures of the sheet profile are
taken (NIKON D80 camera with 105mm ob-
jective).

As soon as we impose ∆ 6= 0 (Fig. 1),
compressive tangential forces T > 0 appear
[Figs. 1(b) and (c)] and the sheet buckles
[Figs. 1(d) and (e)]. As a result, the sheet
comes into contact with the top wall, lead-
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ing to a response different from free buck-
ling (without constraint) [38]. With further
compression, the contacts with the walls ex-
tend, changing from point to line contacts.
This leads to a hierarchical process, where the
line contacts behave like shorter rod segments,
which in turn buckle, and so on [Figs. 1(d)
and (e)]. After the first buckling event, one
motif is observed, made of two anti-symmetric
free segments (a free segment being limited
by contacts at both ends) and three con-
tacts. Later, more motifs are formed when the
longest line contact buckles, such that after n
buckling events, the sheet exhibits n motifs,
made of 2n free segments and 2n+1 contacts.
The pattern of line contacts and free segments
is roughly periodic with more or less identical
line contacts, free segments and motifs, due
to metastability and friction forces. At each
bucking event, when n changes to n + 1 mo-
tifs, the tangential force T suddenly drops to a
smaller value exhibiting a snap-through insta-
bility. In between buckling events, T increases
continuously while increasing the compression
distance ∆ [Figs. 1(b) and (c)].

Instead of an ever-repeating sequence,
as usually observed [19–31], these buckling
events stop, when the sheet shows a strong
symmetry-breaking. We observe that after
nmax buckling events, the free segment located
closest to the compressed end deforms strongly
and non-linearly, by taking an S-shape [pur-
ple curves, Figs. 1(d) and (e)], that leads fi-
nally to the Yin-Yang pattern [orange curves,
Figs. 1(d) and (e)]. Meanwhile, the tangential
force T changes its behaviour - after reach-
ing a maximum Tmax at ∆max, T continuously
decreases to a small value [purple data points,
Figs. 1(b) and (c)]. The final step is a last drop
of T , corresponding to a last snap-through in-
stability, which occurs when the S-shape spi-
rals instantaneously, making all the other pre-
vious motifs disappear, and thus leaves the
Yin-Yang pattern as the ultimate state [orange
data points, Figs. 1(b) and (c)]. See the Sup-
plemental Material for a video showing both
the sheet profile and the tangential force dur-
ing the compression [37].

We now wish to describe the sheet’s pro-
file and the evolution of the force during its
compression. We can parameterize the sheet

by the local slope θ(s) of the centerline of a
cross-section normal to the z direction at each
curvilinear position s ∈ [0, L0]. See the Sup-
plemental Material for a scheme indicating the
notations [37]. This rod is modelled by the Eu-
ler Elastica equation, which can be written for
each free segment as

BWθ̈(s) = −T sin θ(s) +N cos θ(s), (1)

where T and N are the tangential and nor-
mal forces exerted on the rod along the x and
y axes respectively. Considering θ(s) ≪ 1,
Eq. (1) can be linearized, leading to

BWy′′′′(x) = −Ty′′(x). (2)

The assumptions underlying Eq. (2) are satis-
fied for moderate compression distances (∆ ≪
L0), but unjustified for large values of ∆,
where any local slope θ reaches, and even ex-
ceeds, π/2. Note that describing the sheet us-
ing y(x) in Eq. (2) cannot parameterize the
S-shape or the Yin-Yang pattern where the lo-
cal slope θ is not small, and hence y(x) is no
longer a function.
Additionally, the length conservation, for n

identical free segments can be expressed as

∆ ≃ n

∫ H

0

y′2(x)dx, (3)

where H = (L − Σ ℓ)/2n is the projected
length per free segment, with Σ ℓ being the
total length of the line contacts.
Solving the differential Eq. (2) with its bound-
ary conditions and imposing the length con-
servation (3), allows to obtain analytically the
profile y(x) and the force-compression relation
T (∆). Note that this analysis changes slightly
for different situations: no contact, point con-
tacts or line contacts.
When there is no contact, the tangential

force T is proportional to the buckling force
threshold TL0

, times (2π)2 for clamped bound-
ary conditions, just like in free buckling [38],
namely

TL0
=

BW

L2
0

. (4)

When the sheet is in contact with the walls
(n = 1), the transition between point and line
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FIG. 2. (a) Tangential force T as a function of the compression distance ∆ for a given elastic sheet
(W = 20cm, L0 = 23.5cm, t = 120µm, E = 5GPa) at different values of the gap h in the main panel,
while dimensionless data T/(BW/h2)(∆/L0) are plotted in the inset. The dashes curves are predictions
from Eqs (6) and (7), while dotted lines are predictions of ∆max and Tmax from Eqs. (13) and (14).
(b) Maximal number of motifs nmax observed before the spiraling of the sheet as a function of h/L0

and power law of exponent −5/6 [Eq. (12)]. The circles were averaged for different W, t,E and B at a
constant L0 = 23.5cm, while the squares correspond to different L0. (c) Experimental measurements
of the maximal compressive tangential force Tmax ( 6= t,W,L0 and h indicated in legends) as a function
of the prediction TYin−Yang [Eq. (14)], while the raw data Tmax(h) are plotted in the inset. (d) Phase
diagram that summarizes the possible configurations of the buckled elastic sheet (from 1 to 4 motifs and
the S-shape/Yin-Yang state) in the plane of dimensionless bilateral constraints h/L0 and ∆/L0. The
dashed and solid lines are predictions from Eq. (8) for several values of n (from 1 to 4) and Eq. (13)
respectively. The shaded area around each dashed line represents an uncertainty region based on Eq. (7),
which originates from the different possible patterns of line contacts.

contacts occurs when TL2
0 ≃ (4π)2BW (as-

suming contacts of identical lengths), so that
already when ∆ and T are moderate, the point
contacts become line contacts. It turns out
that point contacts do not appear anymore
when n ≥ 2: all the contacts are immediately
lines after each buckling event [Fig. 1(e)] [25].

Since line contacts occur much more often, we
will focus on this configuration in the follow-
ing.
Assuming n identical motifs, the shape of a

free segment is given by

y(x) = h [2πx/H − sin (2πx/H)] /2π (5)
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with TH2 = (2π)2BW and

T (∆) ≃
BW

h2

(

4π∆

3hn

)2

. (6)

Note that the projected length of a single free
segment, H , changes during the process. It
decreases from L0/2n, by ∆/2n, due to com-
pression, and by Σ ℓ/2n, due to the elongation
of line contacts.
The mode transition occurs when the line

contact of maximal length ℓ buckles, when
T ℓ2 = (2π)2BW . Therefore, different spatial
patterns of line contacts may lead to differ-
ent thresholds of mode transitions, even for
the same total length Σ ℓ. Hence, the mode
transition thresholds n(∆) cannot be uniquely
predicted nor experimentally reproduced, be-
cause they are sensitive to the precise sequence
of the buckling events. However, these thresh-
olds are bounded by

n+ 2n2 ≤
∆

L0

2

3

(

h

L0

)

−2

≤ n+ 4n2. (7)

The lower boundary corresponds to the case
of a single line contact (ℓ = Σ ℓ), while the
upper boundary corresponds to (2n+ 1) con-
tacts of identical lengths (ℓ = Σ ℓ/(2n + 1)).
An intermediate case is possible when each se-
quence of two line contacts separated by a free
segment is duplicated 2n times, corresponding
to a perfectly symmetric pattern (ℓ = Σ ℓ/2n),
for which

∆

L0

= 6n2

(

h

L0

)2

. (8)

Thus, in the perfect symmetric and periodic
case, one gets

n =

⌊

√

∆L0

6h2

⌋

, (9)

where ⌊.⌋ is the floor function.
Concerning the morphology, the agreement

of the linear approximation [Eqs. (5) and (9)]
with experiments is quite good, as shown for
two configurations in Fig. 1(d) and 1(e) for
moderate values of ∆, especially when the mo-
tifs are fairly regular [Fig. 1(d)].

Concerning the force, the analytical expres-
sion (6) for T (∆), with the number of mo-
tifs n that lies within the bounds given by
Eq. (7), quantitatively describes the experi-
ments (without adjustment), as can be seen
in Fig. 2(a) for a given elastic sheet and dif-
ferent values of the gap h. Obviously, Eq. (6)
does not capture the experimental measure-
ment of T (∆) for ∆ ≥ ∆max, where the sheet
profiles are not properly captured by the lin-
earized theory.
Combining Eqs. (6) and (9) highlights the

characteristic force scale

Th =
BW

h2
, (10)

that becomes relevant in bilaterally con-
strained systems, and which replaces TL0

that
is pertinent for free buckling. Indeed, the inset
of Fig. 2(a) shows that rescaling T by Th and
∆ by L0 allows to gather all curves.
Experimentally, the maximal number of mo-

tifs nmax before the appearance of the Yin-
yang pattern decreases with h and increases
with L0 [Fig. 2(b)]. However, nmax is inde-
pendent of all the other control parameters
varied here (W, t, E). In order to understand
nmax, we compare the bending energy, mea-

sured by BW
∫ L0

0
θ̈2(s)ds/2, of the configura-

tion composed of n motifs of typical curva-
ture θ̈ ≈ n2h/L2

0 (denoted by En) and the
bending energy of a single Yin-Yang pattern
of typical curvature θ̈ ≈ L0/nh

2 (denoted by
EYin−Yang). See the Supplemental Material for
a scheme [37]. One finds

EYin−Yang

En
∝

1

n6

(

L0

h

)5

. (11)

We expect a transition between the two pat-
terns (for n = nmax) when the energy
EYin−Yang falls below En, leading to the scal-
ing law

nmax ∝

(

h

L0

)

−5/6

, (12)

which is valid for small h/L0 and nmax = 1
valid for large h/L0. This prediction is consis-
tent with our experimental measurements, as
shown in Fig. 2(b), with a prefactor 0.3. We
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observe that nmax reaches 1 for h/L0 ≥ 0.2,
this value appearing to be the characteristic
aspect ratio between small and large h/L0.
Being interested in the compression distance

∆max at which nmax is reached, we obtain from
Eqs. (8) and (12) the scaling law

∆max

L0

∝

(

h

L0

)1/3

, (13)

valid for small h/L0.
Based on these results [Eqs. (6), (12) and

(13)], we obtain for the maximal force Tmax,
which appears before the Yin-Yang transition,
Tmax ∝ TYin−Yang for small h/L0, where

TYin−Yang =
BW

L
1/3
0 h5/3

(14)

is the characteristic force scale of the Yin-yang
pattern. However, Tmax ∝ TL0

for large val-
ues of h/L0. This scaling law is compared, in
the main panel of Fig. 2(c), with our experi-
mental measurements, corresponding to differ-
ent values of t, W , L0 and h: the agreement
is excellent, with a multiplicative constant 37;
while raw data sets Tmax(h) are shown in the
inset. Note that Tmax saturates at large values
of h/L0.
Fig. 2(d) shows the phase diagram of a con-

fined elastic sheet, as a function of the lat-
eral constraint h/L0 and the compression con-
straint ∆/L0. The states with n = 1, 2, 3, 4
motifs and the S-shape/Yin-Yang states are
plotted as triangles and circles respectively.
Several realizations with the same control pa-
rameters are presented in order to show the
multistability of this system and the exper-
imental reproducibility. This phase diagram
does not depend on the properties of the elas-
tic sheet, except for L0. The dashed lines
are predictions [Eq. (8)] based on the lin-
earized Euler Elastica, assuming perfectly pe-
riodic segments. The shaded area around each
dashed line represents an uncertainty region
[Eq. (7)], which originates from the different
possible patterns of line contacts. The solid
line represents the predicted threshold for the
non-linear deformation of the sheet [Eq. (13)],
with the prefactor 0.44, determined from the
previous experimental constants. All these

mode transitions experimentally reported are
well described by our predictions.

In this Letter, we studied the response of a
thin sheet compressed from the side in a re-
stricted volume. In particular, we provide a
full phase diagram of the equilibrium state of
a 1D line in a 2D container. We show that
a pure elastic linear analysis provides a good
qualitative and even quantitative description
of the various mode transitions that the sys-
tem exhibits. However, it fails to capture the
transition to the Yin-Yang regime. Instead,
a global energy consideration allows to deter-
mine this transition. We demonstrate the rel-
evance of three force scales in bilaterally con-
strained buckling of an elastic sheet, namely:
TL0

for free buckling, Th for buckling in a con-
fined box, and most interestingly TYin−Yang

for the transition towards the single Yin-Yang
pattern.

The phase diagram we report applies to
any 1D elastic sheet restricted to a 2D con-
tainer, including the results reported in Ro-
man et al. [19–21], where the container was
compressed from above. The phenomenol-
ogy of that system was apparently different,
namely the modes were symmetric and most
importantly the Yin-Yang regime was not ob-
served. Our new phase diagram can explain
this difference. First, typical initial condi-
tions and the compression protocol used in [19]
avoid altogether the Yin-Yang regime. Sec-
ond, the presence of friction tends to enhance
the symmetry breaking between the buckled
segments, when the sheet is compressed from
the side.

It would be interesting to extend our anal-
ysis to a full non-linear theory, particularly
in order to describe the evolution at the Yin-
Yang transition. Another important challenge
is to consider the role of friction [7, 24, 39–41].
In particular, friction can block the sheet in
places where the normal force exceeds a cer-
tain threshold, thus creating a smaller sub-
system that continues to be compressed while
screening the compressive forces from the rest
of the sheet. A solid description of this system
may lead to a better understanding of systems
that are composed of multiple layers [42–45]
and energy harvesting in bi-stable or multi-
stable composites [29].
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Sébastien Neukirch for scientific discussions.

[1] O. Pouliquen, M. Belzons, and M. Nicolas,
Fluctuating particle motion during shear in-
duced granular compaction, Phys. Rev. Lett.
91, 014301 (2003).

[2] D. Cantor, M. Cárdenas-Barrantes,
I. Preechawuttipong, M. Renouf, and
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