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Abstract: Thanks to the latest advancements in wavefront shaping, optical methods have8

proven crucial to achieve imaging and control light in multiply scattering media, like biological9

tissues. However, the stability times of living biological specimens often prevent such methods10

from gaining insights into relevant functioning mechanisms in cellular and organ systems.11

Here we present a recursive and online optimization routine, borrowed from time series12

analysis, to optimally track the transmission matrix of dynamic scattering media over arbitrarily13

long timescales. While preserving the advantages of both optimization-based routines and14

transmission-matrix measurements, it operates in a memory-efficient manner. Because it can15

be readily implemented in existing wavefront shaping setups, featuring amplitude and/or phase16

modulation and phase-resolved or intensity-only acquisition, it paves the way for efficient optical17

investigations of living biological specimens.18

© 2023 Optica Publishing Group19

1. Introduction20

Optical methods are an irreplaceable tool to investigate biological media. They deliver images at21

numerous contrast mechanisms [1], and can activate injected biomolecules [2] and fluorescent22

markers [3]. However, precisely delivering light in space and time through biological tissues is23

not straightforward, as photons get multiply scattered by heterogeneities of tissues, limiting their24

penetration depth [4].25

Another current challenge lies in tracking the scattering behaviour of living specimens, with26

decorrelation times up to only a few ms [5]. This proves crucial to understand the functioning27

mechanisms of cells and organisms, which requires their observation at extremely different28

timescales, from nanoseconds (at a molecular level) to minutes (for organ systems) [6]. The need29

for fast data acquisitions results, in turn, in measurements with inherently low signal-to-noise30

ratios (SNRs), and requires solving long and multidimensional time series [7], whose prohibitive31

size can make their evaluation problematic.32

Wavefront shaping techniques have established themselves as the tools of choice to guide33

light in scattering media [8]. The transmission of arbitrary fields [9], point-spread-function34

(PSF) engineering [10], imaging [11], as well as tuning energy transmission through scattering35

media [12], become all accessible if the transmission or reflection matrix of the medium is36

measured [8,13]. In what follows, we will generically refer to transmission and reflection matrices37

as ’transfer matrices’. Conventional methods to retrieve the transfer matrix yield sub-optimal38

solutions in noisy environments [8]. Those optimization routines which can compensate for noise39

in the transfer matrix [14] require storing in memory the whole history of past measurements,40

making them unsuited with long streams of data.41

Iterative, optimization-based, sequential algorithms to focus through scattering media yield an42

increase in the focus intensity already at their early iterations, which makes them the preferred43

option on dynamic media. Importantly, they are cast as recursive procedures, i.e., computing44

the new estimate of the solution only requires the previous estimate and the new data point.45



Unfortunately, their stochastic nature makes optimization over a set of output modes less46

reliable and the transmission of arbitrary fields prohibitive. Moreover, these procedures rely on47

maximizing a given metric, limiting light control to one predefined task. Various implementations48

derived from genetic algorithms [15,16] have shown better resilience to noise than sequential49

algorithms, however at the cost of a higher computational complexity and careful choice of50

several adjustable parameters.51

In signal processing, communications and finance, where most datasets are multidimensional52

time series, the recursive least-squares (RLS) algorithm has played a central role for system53

identification and prediction [17–19]. It allows optimal learning of linear predictors in an54

online manner—predictors are updated every time a new piece of data is sequentially made55

available, however past data do not need to be stored in memory. Consequently, its computational56

complexity is independent of the length of the time series, so iterations can be run over and over,57

ideally at the same rate as data acquisition (real-time operation).58

Here, we demonstrate that the RLS algorithm represents a valuable tool to optimally estimate59

the transfer matrix of dynamic scattering media online and recursively. The least-squares60

optimization ensures resilience to noise. The algorithm is provided with a tunable memory,61

such that the dynamics of the scattering medium is accounted for. By doing so only the most62

reliable data points, i.e., those acquired within the stability time of the medium, are used63

during the optimization. We justify how the RLS model can fit a wide variety of dynamic64

mechanisms happening in scattering media. Its performance is showcased with both simulated65

and experimental results, tracking the transmission matrix and the time-gated reflection matrix at66

realistic noise levels and well-controlled stability times, upon translating the scattering medium67

across the incident beam. We further show how light optimization can be achieved with binary68

amplitude or phase modulation and with phase-resolved or intensity-only measurements. Based69

on its computational complexity, we discuss its feasibility for light control in living biological70

specimens at large fields of view. Its simple implementation and the low number of adjustable71

parameters (whose choice is motivated in the next sections) make our proposed method readily72

applicable in existing wavefront shaping setups.73

2. Methods74

The method bears similarities with conventional routines for the measurement of the transfer75

matrix, and its working principle is graphically summarized in Fig. 1(a). However, here we allow76

the transfer matrix 𝑿𝑡 ∈ C𝑀×𝑁 of the scattering medium to be dynamic, where we have denoted77

the number of output and input degrees of freedom with 𝑀 and 𝑁 , respectively. At every time78

step 𝑡, while probing the medium with the input 𝒂𝑡 ∈ C𝑁 and collecting the corresponding output79

𝒚𝑡 = 𝑿𝑡 𝒂𝑡 ∈ C𝑀 , we aim to solve the optimization problem 𝑿̂𝑡 = arg min𝑿 𝑡
L𝑡 (𝑿𝑡 ), with80

L𝑡 (𝑿𝑡 ) ≡
𝑡∑︁

𝜏=1

(
𝜆𝑡−𝜏 | |𝒚𝜏 − 𝑿𝑡 𝒂𝜏 | |2

)
+ 𝛿𝜆𝑡 | |𝑿𝑡 | |2𝐹 , (1)

and where | | · | | and | | · | |𝐹 denote the 𝐿2-norm of a vector and the Frobenius norm of a matrix,81

respectively. Although for sake of generality the inputs and the outputs are assumed to be complex,82

we will also report an implementation where they are real, meaning that only the amplitude of83

the input beam is modulated and the intensity of the output fields is measured. Equation (1)84

is a linear least-squares loss function, featuring Tikhonov regularization via the regularization85

constant 𝛿. Note, however, that each data-fidelity term | |𝒚𝜏 − 𝑿𝑡 𝒂𝜏 | |2 is exponentially weighted86

in time, such that the old pieces of data (corresponding to 𝜏 ≪ 𝑡) are less relevant than the87

most recent ones in the current estimation of the transfer matrix at time 𝑡. In other words, the88

forgetting factor 𝜆 ≤ 1 endows the algorithm with a memory, which allows it to cope with89

dynamic transfer matrices—at every time step 𝑡, the optimization problem is solved anew, using90
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Fig. 1. Graphical summary of the RLS estimation technique and experimental
implementations. (a) A sequence of input fields, modulated in amplitude and/or in
phase (here Hadamard modulation patterns are shown), interacts with a dynamic
scattering medium with unknown transfer matrix. Each (input, output) pair is used
to update recursively the estimation of the dynamic transfer matrix, minimizing a
regularized linear least-squares loss function, where each data-fidelity term is weighted
via the coefficient 𝜆𝑡−𝜏 . (b) At every time step, upon optimizing the coefficient 𝜆, the
current estimate of the transfer matrix can be used to achieve arbitrary light control
through the scattering medium (here, a focus and a donut-shaped beam are displayed).
(c) We demonstrated our method with a setup in transmission mode, for the retrieval of
the transmission matrix (left), and with an OCT setup, for the retrieval of the time-gated
reflection matrix (right). L: laser source; HWP: half-wave plate; (P)BS: (polarizing)
beam-splitter; SLM: liquid-crystal-based spatial light modulator; OBJ: objective lens;
TL: tube lens; P: polarizer; M: mirror; CAM: camera.

the whole history of past data, where more contribution is given to newest data. Evidently, in the91

case of a static scattering medium, all measurements can be equally trusted, thus Eq. (1) reduces92

to a typical regularized linear least-squares problem upon setting 𝜆 = 1. Once 𝜆 and 𝛿 are fixed,93

the least-squares problem has a unique solution, provided the inputs are linearly independent,94

which is the case in conventional transfer-matrix measurements, where the inputs are drawn from95

the Hadamard basis of order 𝑁 .96

The choice of exponential weights for Eq. (1) is motivated by the physics of our problem.97

We aim to follow the evolution of the transfer matrix of dynamic scattering media, subjected to98

uncorrelated variations, whereby the total transferred power fraction is constant in time. These99



conditions apply in a wide variety of dynamic mechanisms in scattering media investigated100

with visible and near-infrared light, e.g. whenever their inner scatterers move due to functional101

changes [5, 20], or even when the sample drifts away from its initial position, suggesting that our102

method can also be used as an online calibration tool of imaging systems. In all these situations,103

the transfer matrix can indeed be described by the time series [21],104

𝑿𝑡 =
𝜎𝑿√︃

𝜎2
𝑿 + 𝜎2

𝑷

(𝑿𝑡−1 + 𝑷𝑡 ) , (2)

where we assume that both the transfer matrix and the perturbation matrix 𝑷𝑡 are random105

variables independently drawn from complex Gaussian distributions with zero mean and constant106

variance 𝜎2
𝑿 and 𝜎2

𝑷, respectively [22]. Equation (2) denotes an autoregressive model of order 1,107

AR(1), whose autocovariance is proportional to (𝜎𝑿/
√︃
𝜎2
𝑿 + 𝜎2

𝑷)
𝑡 , justifying our exponentially108

weighted model of Eq. (1). When focusing through dynamic scattering media following Eq. (2),109

the stability time of the enhancement is proportional to 𝜎−2
𝑷 [21]. This means that the optimal110

weight 𝜆 should follow the same dependence, thus in principle requiring the knowledge of the111

rate of change of the scattering medium. A strategy for automatically tuning the forgetting factor112

will be discussed in section 4.113

Crucially, minimizing the loss function of Eq. (1) does not require storing the whole history of114

past data. This becomes apparent if we recall that the linear least-squares estimate of 𝑿𝑡 , 𝑿̂𝑡 ,115

satisfies the normal equations,116

𝑪𝑡 𝑿̂
𝐻

𝑡 = 𝑲𝑡 , (3)

with the covariance matrix of inputs and the cross-covariance matrix at time 𝑡 respectively defined117

as,118

𝑪𝑡 ≡
𝑡∑︁

𝜏=1

(
𝜆𝑡−𝜏𝒂𝜏𝒂

𝐻
𝜏

)
+ 𝛿𝜆𝑡 𝑰𝑁 ∈ C𝑁×𝑁 (4a)

119

𝑲𝑡 ≡
𝑡∑︁

𝜏=1
𝜆𝑡−𝜏𝒂𝜏 𝒚

𝐻
𝜏 ∈ C𝑁×𝑀 , (4b)

with 𝑰𝑁 denoting the identity matrix of order 𝑁 and the superscript 𝐻 standing for Hermitian120

transposition. The quantities calculated in Eqs. (4) can be both estimated recursively, as follows:121

𝑪𝑡 = 𝜆𝑪𝑡−1 + 𝒂𝑡 𝒂
𝐻
𝑡 (5a)

122

𝑲𝑡 = 𝜆𝑲𝑡−1 + 𝒂𝑡 𝒚
𝐻
𝑡 . (5b)

123

Equations (5) mean the loss defined in Eq. (1) can be minimized from the new piece of data124

(𝒂𝑡 , 𝒚𝑡 ) and the previous estimates of the covariance and cross-covariance matrices, whose sizes125

are independent of the amount of past data. It becomes now clear how the RLS algorithm126

combines the benefits of transfer-matrix-based and optimization approaches. Using a recursive127

procedure, a typical asset of, e.g., the continuous sequential algorithm (CSA), the partitioning128

algorithm [21], or more computationally intense genetic algorithms [15], the full 𝑿𝑡 is estimated129

in parallel at all output pixels, thereby preserving all light-control capabilities allowed by the130

knowledge of the transfer matrix [10–12,14] [Fig. 1(b)]. In principle, the transfer matrix could131

be obtained from Eq. (3) as 𝑿̂𝑡 = 𝑲𝐻
𝑡 (𝑪−1

𝑡 )𝐻 . However, in what follows we will implement132

the inverse QR-decomposition-based RLS (abbreviated as inverse QRD-RLS) algorithm [23].133

Because it avoids matrix inversions and it always preserves the non-negativeness of the covariance134

matrix, it possesses higher numerical stability than directly inverting Eq. (3). Overall, it boils135



down to performing a QR decomposition of a matrix constructed from the new data and the136

previous estimate of the square root of the inverse covariance matrix. This results in few lines of137

code which can be readily implemented in any programming language using standard libraries or138

built-in functions (see the box Algorithm 1 and the corresponding code available at Ref. [24]).139

As can be seen from Eq. (1) and Algorithm 1, the regularization constant 𝛿 is used to construct140

the initial estimate of the square root of the inverse correlation matrix, hence it mostly impacts141

the convergence speed at early iterations. In section 4, the choice of its value will be discussed.142

Algorithm 1: Inverse QRD-RLS update
Initializations: 𝑿̂0 = 0, (𝑪−1

0 )1/2 = 𝛿−1/2𝑰𝑁

Input: New input pattern 𝒂𝑡 , new output pattern 𝒚𝑡 , previous estimate of the transfer
matrix 𝑿̂𝑡−1, previous estimate of the square root of the inverse covariance matrix
(𝑪−1

𝑡−1)1/2, forgetting factor 𝜆
/* Construction of the matrix 𝑼 */

1 𝑼 =


1 𝜆−1/2𝒂𝐻𝑡 (𝑪−1

𝑡−1)1/2

0 𝜆−1/2 (𝑪−1
𝑡−1)1/2


/* QR decomposition of 𝑼𝐻

*/

2 𝑼𝐻 = 𝑸𝑽𝐻

3 𝑽 =


𝑣11 0𝐻

𝒗21 (𝑪−1
𝑡 )1/2


/* Update of the transfer matrix */

4 𝑿̂𝑡 = 𝑿̂𝑡−1 + (𝒚𝑡 − 𝑿̂𝑡−1𝒂𝑡 )𝒗𝐻21𝑣
−1
11

5 return 𝑿̂𝑡 and (𝑪−1
𝑡 )1/2

3. Experiments143

Figure 1(c) shows the sketches of the experimental implementations used to demonstrate our144

method. Both are based on phase-shifting digital holography to retrieve the complex output fields145

𝒚𝑡 after interacting with a multiply scattering medium. The medium is an opaque deposit of ZnO146

nanoparticles (size < 100 nm, relative transmittance ∼0.15), whose thickness (20 µm) is 5 to147

7 transport mean free paths, ensuring full mixing of its optical modes at the output. The input148

fields are shaped via a reflective, phase-only and liquid-crystal-based spatial light modulator149

(SLM, Meadowlark Optics HSP512L-1064) and focused on the scattering medium with an150

objective with a numerical aperture of 0.4 (Olympus PLN20X). A region-of-interest containing151

∼80 speckle grains is imaged onto a CCD camera (Manta G-046B, Allied Vision) via a tube lens,152

yielding a pixel size of 0.2 µm at the CCD plane. Before impinging onto the SLM, part of the153

beam is redirected along a reference arm with a polarizing beam splitter (PBS), and subsequently154

recombined with the scattered beam through a beam splitter (BS). The relative power of the two155

beams, yielding the maximum interference contrast, is adjusted via two half-wave plates, one156

along the common path and one along the reference arm, while a polarizer in front of the camera157

filters out any potential residual ballistic component traveling along with the scattered beam.158

In the experiments in transmission [Fig. 1(c), left], the beam exiting the scattering medium159

is collected at a distance of ∼1.5 mm, where a fully developed speckle pattern was observed,160

with another Olympus PLN20X 0.4 NA objective. The light source (MaiTai HP Ti:Sapphire161

laser, Spectra-Physics) is set to monochromatic operation mode at a wavelength of 808 nm. The162

experiments in reflection [Fig. 1(c), right] reproduce a typical optical coherence tomography163



(OCT) setup, whereby ultrashort pulses (with a central wavelength of 808 nm and a duration of164

100 fs) are sent through the scattering medium and the backscattered, elongated pulses are gated165

at a time delay set by a delay line along the reference arm.166

Dynamics is introduced by transversally translating the scattering medium across the incident167

beam, with independent and randomly distributed Gaussian steps, whose standard deviation168

determines the stability time of the medium. More details on it will be provided in the next169

section.170

4. Results171

Figure 2 summarizes the performance of the RLS algorithm for the online estimation of the172

transmission matrix. The beam incident onto the SLM is modulated according to the Hadamard173

patterns with 𝑁 = 64 pixels. Every time an input 𝒂𝑡 is sent through the scattering medium and the174

corresponding output field 𝒚𝑡 is measured, the inverse QRD-RLS update routine of Algorithm175

1 is executed, yielding an estimate 𝑿̂𝑡 of the transfer matrix. Note, that this procedure can be176

continuously repeated—after sending the 𝑁-th input, the first Hadamard vector or any other177

known input pattern can be sent. As long as the scattering medium is static, probing it with the178

same input multiple times corresponds to oversampling the unknown 𝑁 × 𝑀 coefficients of its179

transfer matrix, thereby improving their estimation. It is indeed known that the covariance of the180

estimated transfer matrix is inversely proportional to 𝑪−1
𝑡 , thus decreasing as 𝑡−1 [17]. Since the181

true value 𝑿𝑡 is unknown, the quality of our reconstruction is evaluated via the intensity of a focus182

produced behind the scattering medium. We report the intensity enhancement, relative to the183

average intensity of a non-optimized speckle pattern [8]. The learning curve for a static scattering184

medium, obtained from the RLS algorithm, is shown as an orange trace in Fig. 2(a). The temporal185

axis is expressed in units of 𝑇𝑇𝑀 , which is defined as the time needed to update the estimation of186

transfer matrix 𝑁 times. In other words, a conventional transfer matrix experiment lasts 𝑇𝑇𝑀 .187

Equivalently, a normalized time of 2 means the oversampling ratio is 2. To showcase the beneficial188

effect of oversampling, the blue trace shows the performance of a conventional transfer-matrix189

measurement, lasting until 𝑡/𝑇𝑇𝑀 = 1, thus using 𝑁 measurements. At times 𝑡/𝑇𝑇𝑀 ≤ 1, the190

two approaches are equivalent—data are not oversampled. At later times, however, one can take191

advantage of the whole history of past data to build an estimate more resilient against noise. Our192

values of the enhancement, when compared to the number of input degrees of freedom 𝑁 , are on193

a par with previously reported measurements with no oversampling [13, 25, 26].194

The same procedure is repeated with dynamic scattering media. By duly tuning the amplitude195

of their movements, we achieve different stability times 𝑇𝑠𝑡𝑎𝑏 (also expressed in units of 𝑇𝑇𝑀 ).196

These are estimated as the time constant of an exponential function fitting the tails of the blue197

traces. Note, that the scattering medium is dynamic for the whole duration of the experiments. At198

oversampling ratios in the range 3-4, we increase the focus intensity by a factor between 1.5 and 2,199

compared to the values after a conventional transfer-matrix approach. Upon decreasing 𝑇𝑠𝑡𝑎𝑏, the200

oversampling ratio decreases too, and the performances of the two approaches gradually match,201

however the RLS estimation always operates in a memory-efficient manner. With dynamic media,202

forgetting factors 𝜆 < 1 should be used. In our experiments featuring 𝑇𝑠𝑡𝑎𝑏 in the range 1-4,203

we have chosen 1 − 𝜆 ≈ 10−5, achieving a good compromise between tracking capability and204

numerical stability. Interestingly, it has been shown that the optimal forgetting factor heavily205

depends on the number of unknown parameters 𝑁 which, fortunately, is under user control [27].206

Furthermore, the structure of Algorithm 1 suggests that each inverse QRD-RLS iteration may207

be run at a different value of 𝜆, allowing the user to pick the one yielding the best performance208

in an online manner, i.e., with no need to restart the optimization anew and using the current209

enhancement as a feedback to tune the next value of 𝜆. Trivially, the optimal value for static media210

is instead 𝜆 = 1. The best regularization constant 𝛿 depends on the SNR of the measurements. In211

our experiments, the fact that the RLS algorithm is on a par with the conventional transfer-matrix212



approach at 𝑡/𝑇𝑇𝑀 ≤ 1 and 𝑇𝑇𝑀 < 𝑇𝑠𝑡𝑎𝑏 suggests that the selected regularization constant (here213

𝛿 = 1) is optimized for the best performance.214

In order to test the suitability of the cost function in Eq. (1) and the model in Eq. (2) to our215

experimental settings, the experiments at the top row of Fig. 2 are reproduced with numerical216

simulations, following the AR(1) model of Eq. (2) [Figs. 2(d)-(f)]. We simulated a finite SNR by217

corrupting the outputs 𝒚𝑡 , with average power 𝜎2
𝒚 , with additive white complex Gaussian noise218

with variance 𝜎2
noise and setting the simulated SNR as SNRsim ≡ 𝜎2

𝒚 /𝜎2
noise. In experiments, the219

noise was estimated from the standard deviation of the intensity enhancement at 𝑡/𝑇𝑇𝑀 > 1 in220

Fig. 2(a), while the signal level was calculated as the average intensity of non-optimized speckle221

patterns, with the ratio between the two yielding the experimental SNR, SNRexp. At comparable222

values of stability times and SNRexp and SNRsim [noted in Figs. 2(a) and (d), respectively,223

for a static medium], quantitative agreement is overall obtained. For example, if the SNR is224

increased by a factor of 2 doubling the number of phase-stepped images for field reconstruction,225

the experimental performance is the one plotted as an inset in Fig. 2(a). The same trend is226

retrieved by simulating measurements with halved 𝜎2
noise [inset in Fig. 2(d)].

Transfer matrix RLS estimation of the transfer matrix

(a) (b) (c)

(d) (e) (f)
SNRsim ∼ 1.5 

SNRsim ∼ 3.1 

SNRexp ∼ 3.3 

SNRexp ∼ 1.7 

Fig. 2. Enhancement of the intensity at one output pixel produced through a scattering
medium, as a function time. 𝑇𝑇𝑀 is the time to optimize over all the 𝑁 = 64 degrees
of freedom once. Blue points: conventional transfer-matrix measurement, lasting
until 𝑡/𝑇𝑇𝑀 = 1. Its estimate is held constant for later times, allowing the extraction
of the stability time 𝑇𝑠𝑡𝑎𝑏 of the scattering medium via exponential fitting (dashed
dark blue traces). Note that, when a finite 𝑇𝑠𝑡𝑎𝑏 is reported, the scattering medium
is dynamic for the whole duration of the experiment. Orange points: RLS estimation
of the transfer matrix. (a)-(c): experimental results, averaged over 9 realizations of
a focus produced at the center of the camera field of view, upon measuring different
regions of the scattering medium. (d)-(f): corresponding simulations at comparable
𝑇𝑠𝑡𝑎𝑏. The insets in panels (a), (d) show the same results obtained after doubling the
SNR, yielding an improvement of the enhancement by a factor of ∼

√
2. The SNR is

noted in panels (a) and (d) for the case of a static medium.
227

Analogous results, plotted in Fig. 3, are obtained with the non-invasive OCT setup on the228

right-hand side of Fig. 1(c), setting the time delay yielding the maximum average gated intensity.229

In this instance, the transfer matrix is the time-gated reflection matrix [28]. The two learning230

curves corresponding to the retrieval of the transfer matrix are compared to a conventional231



optimization routine, which can recursively track the changes in the scattering medium, namely232

the CSA (in cyan). After blocking the beam along the reference arm, we implement a version233

of the CSA modulating half of the SLM pixels (corresponding to the +1 or -1 entries of the234

𝑁 Hadamard patterns) at each iteration, yielding the best interference contrast (thus bearing235

similarities to the partitioning algorithm too [21]). It displays comparable performances to a236

conventional transfer-matrix measurement with a static medium [although convergence is reached237

later, owing to its stochastic nature, Fig. 3(a)], and it shows solid tracking capabilities in dynamic238

environments [Figs. 3(b)-(c)]. Still, the resilience to noise of the inverse QRD-RLS algorithm239

makes it the preferred choice in this setting too, achieving an intensity twice as high as the one240

obtained with the CSA. The bottom row of Fig. 3 shows the corresponding focal spots produced241

by each algorithm at the last time step.

Transfer matrix RLS estimation of the transfer matrix Continuous sequential algorithm

(a) (b) (c)

Intensity (log)

Fig. 3. Enhancement of the intensity at one output pixel produced in a scattering
medium, as a function time. 𝑇𝑇𝑀 is the time to optimize over all the 𝑁 = 256 degrees
of freedom once. Blue points: conventional transfer-matrix measurement, lasting until
𝑡/𝑇𝑇𝑀 = 1. Its estimate is held constant for later times, allowing the extraction of the
stability time 𝑇𝑠𝑡𝑎𝑏 of the scattering medium via exponential fitting (dashed dark blue
traces). When a finite 𝑇𝑠𝑡𝑎𝑏 is reported, the scattering medium is dynamic for the
whole duration of the experiment. Orange points: RLS estimation of the transfer matrix.
Cyan points: optimization via the continuous sequential algorithm (CSA). (a)-(c):
experimental tracking performance, averaged over 8 realizations of foci produced across
the full camera field of view, whence the higher variability than in Fig. 2. The bottom
row displays typical images of the focus at the last time step, for each algorithm and
each value of 𝑇𝑠𝑡𝑎𝑏 (in a common logarithmic scale to ease visibility and comparison).
All the images show one realization only, and not an average of the 8 realizations. Note
that the foci produced by the transfer matrix and RLS algorithms stand on a higher
speckle background than those obtained from the CSA because of the superposition
with the static reference field needed for interferometric phase estimation. We have
accordingly accounted for this aspect when estimating the enhancements reported in
the top row. The length of the white scale bars is 5 µm. The data underlying this figure
are available in Dataset 1 at Ref. [29].

242

Because our proposed routine retrieves the coefficients of the transfer matrix at all output pixels243

simultaneously, its applications go beyond focusing. Figure 4 showcases two light-control tasks,244

through dynamic scattering media, enabled by the recursive and online estimation of the transfer245

matrix. The first one is maximal energy transmission, upon sending the leading singular vector246



of the transfer matrix (top row) [12], and the second one consists in arbitrarily shaping a PSF247

(bottom row), here in a donut shape [10]. As expected, these trends replicate the performance on248

the focusing task of Fig. 2.249

Point-spread-function engineering
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Fig. 4. Light control through dynamic scattering media goes beyond focusing. (a)-
(c): Enhancement of the total transmittance across the full field of view through a
scattering medium, as a function time and for different stability times 𝑇𝑠𝑡𝑎𝑏. 𝑇𝑇𝑀 is
the time to optimize over all the 𝑁 degrees of freedom once. Blue points: conventional
transfer-matrix measurement, lasting until 𝑡/𝑇𝑇𝑀 = 1. Its estimate is held constant for
later times, allowing the extraction of the stability time 𝑇𝑠𝑡𝑎𝑏 of the scattering medium
via exponential fitting (dashed dark blue traces). When a finite 𝑇𝑠𝑡𝑎𝑏 is reported, the
scattering medium is dynamic for the whole duration of the experiment. Orange points:
RLS estimation of the transfer matrix. Here we used 𝑁 = 64 and 𝑀 = 49. (d)-(f):
normalized error in the estimation of the transfer matrix of the scattering medium, used
to project a donut-shaped beam at the output plane. The same color legend as in (a)-(c)
applies. In each set of results, the bottom row displays typical camera images at the last
time step. Simulated results.

The most important asset to characterize dynamic scattering media is the wavefront shaping250

device. Digital micromirror devices (DMD) offer a valuable alternative to liquid-crystal-based251

arrays and microelectromechanical systems (MEMS) modulators in terms of cost (∼1 kUSD),252

pixel count (>105) and operating frequencies (>10 kHz). Despite their binary amplitude253

modulation, several strategies have been devised to enable light control through scattering254

media. Lee holography [30,31] and superpixel-based related methods [32] achieve phase and255

amplitude control, at the expense of a more involved setup and a relatively low light efficiency,256

as they rely on an analog spatial filter. Aiming for a simple and non-invasive implementation257

suitable for real-life applications, Bayesian algorithms have been proposed to solve the phase258

retrieval problem 𝒚𝑡 = |𝑿𝑡 𝒂𝑡 |2 (with | · | denoting the element-wise modulus operation), i.e.,259

recover the transfer matrix from intensity-only measurements and binary amplitude modulation260

of the inputs, thus transferring the hardware complexity to the software. Examples include261

the phase retrieval Variational Bayes Expectation-Maximization (prVBEM) [33,34] algorithm,262

the phase retrieval Swept Approximate Message Passing (prSAMP) [35] algorithms, and their263



corresponding compressive version, named phase retrieval Generalized AMP (prGAMP) [36].264

However, their complexities are of order O(𝑡2) per iteration, preventing their application to265

real-time online learning of long (𝑡 ≫ 𝑁) and multidimensional time series.266

In what follows, we show how to implement the RLS estimation technique using non-invasive,267

intensity-only measurements and binary amplitude modulation of the inputs. When performing268

wavefront shaping experiments with a DMD, light control is restricted to opening or blocking the269

modes of the scattering medium, so to achieve the desired output patterns. Hence, the knowledge270

of the complex-valued transfer matrix is of limited use. We now build on the contribution by Tao271

and colleagues [37]. They regard each binary input 𝒂𝑡 ∈ {0, 1}𝑁 as the sum of the first Hadamard272

vector 𝒉1 = {1}𝑁 , referred to as “reference”, with any other Hadamard vector 𝒉𝑡 ∈ {+1,−1}𝑁 ,273

namely 𝒂𝑡 = (𝒉1 + 𝒉𝑡 )/2. In a similar fashion to inline digital holography, in the output pixels274

where the reference intensity is larger than the response to an average input, the phase retrieval275

equation can be linearized. They derive the following linear approximation,276

1
2
|𝑿𝑡𝒉1 | ◦

(
|𝑿𝑡 𝒂𝑡 |2 ⊘ |𝑿𝑡𝒉1 |2 − 1

)
≈ Re{𝑿𝑡 }𝒉𝑡 , (6)

where ◦ and ⊘ denote element-wise vector multiplication and division, respectively, 1 ≡ {1}𝑀277

and Re{·} stands for real part. Note, that the condition for a proper linearization is met, assuming278

the output pixels are independent, with a probability279

P(𝐼 > ⟨𝐼⟩) =
∫ ∞

⟨𝐼 ⟩
𝑝(𝐼)𝑑𝐼 = 𝑒−1 ≈ 40% , (7)

where we have used the probability distribution of the speckle intensity, 𝑝(𝐼) ≡ exp (−𝐼/⟨𝐼⟩) /⟨𝐼⟩280

[38]. As all the terms in its left-hand side 𝒚̃𝑡 are known, we can recursively solve Eq. (6)281

for Re{𝑿𝑡 }, minimizing a loss function like the one in Eq. (1), and interpreting 𝒉𝑡 and 𝒚̃𝑡 as282

real inputs and outputs, respectively. The real (or, equivalently, imaginary) part of the transfer283

matrix is all is needed to focus at any output pixel where the linear approximation holds. The284

corresponding results in Fig. 5 indeed show the same trend as in Figs. 2, 3 and 4. Here,285

the enhancement is expressed relative to the maximum enhancement achievable with binary286

amplitude modulation ≈ 1 + (𝑁/2 − 1)/𝜋 [39]. Feedback-based routines, like the binary version287

of the CSA [39] (plotted in cyan in Fig. 5), are highly impacted by experimental noise, as they288

rely on one single output value. In contrast, exploiting the past data allows us to provide solutions289

more resilient to noise.290

To gain more insight into the performance of our experimental system, its throughput is291

estimated with the parameters from [13], namely 𝑀 = 256 and 4 phase-shifted intensity images292

to evaluate each output field. In Fig. 6 we plot, as a function of the number of input modes 𝑁 ,293

the time to update the optimal focusing pattern from one new piece of data, therefore comprising294

one (complex) output measurement, the update of the transfer matrix and the computation295

of the optimal input pattern. For a sufficiently low number of input modes (𝑁 ≤ 256 in our296

implementation), the bottleneck is set by the refresh rate of the SLM—we indeed recover297

a baseline at ∼50 ms, which is consistent with the response time ≳ 10 ms reported by the298

manufacturer. With increasing values of 𝑁 , the update of the transfer matrix and the computation299

of the optimal pattern take a non-negligible time at each iteration, hence an onset at 𝑁 ∼ 256 is300

observed. In a conventional transfer-matrix measurement (blue line and data points) performed301

with Hadamard inputs, an additional O(𝑁2) is required to bring the optimal focusing pattern302

from the Hadamard to the canonical basis. The inverse QRD-RLS estimation technique (orange303

line and data points), based on Algorithm 1, would run with a O(𝑁3) complexity, as it involves304

a QR decomposition [41], but we retrieve a lower power dependence (∼2.6) owing to the low305

number of data points above the onset. We should, however, recall that Algorithm 1 has been306

implemented to enjoy superior numerical stability. A typical RLS algorithm propagating the307



Fig. 5. Enhancement of the intensity produced at one output pixel through a scattering
medium, as a function time and for different stability times 𝑇𝑠𝑡𝑎𝑏 . By using the linear
approximation of Eq. (6) (valid across ∼40% of the output pixels), we achieve wavefront
shaping from intensity-only images. 𝑇𝑇𝑀 is the time to optimize over all the 𝑁 degrees
of freedom once. Blue points: conventional transfer-matrix measurement, lasting until
𝑡/𝑇𝑇𝑀 = 1. Its estimate is held constant for later times, allowing the extraction of the
stability time 𝑇𝑠𝑡𝑎𝑏 of the scattering medium via exponential fitting (dashed dark blue
traces). When a finite 𝑇𝑠𝑡𝑎𝑏 is reported, the scattering medium is dynamic for the
whole duration of the experiment. Orange points: RLS estimation of the transfer matrix.
Cyan points: continuous sequential algorithm (CSA), plotted on a different scale on the
right-hand vertical axis. To reproduce noisy measurements with suboptimal detector
performance, all simulated intensities 𝐼 were corrupted with additive Gaussian noise
with a standard deviation of 20

√
𝐼 [40]. Simulated results.

inverse covariance matrix instead of its square root would require 𝑁2 operations, thus matching308

the performance of a conventional transfer-matrix measurement. Owing to its updating routine,309

the iteration time of the CSA (cyan line and data points) is not impacted by the number of input310

modes, however its performance is limited in dynamic and noisy environments as shown above.311

As a final remark we stress that online optimization is run on the CPU of an Intel Core i7-6700312

processor with 4 cores, a clock speed of 3.4 GHz and 16 GB RAM, thus yielding the onset313

at 𝑁 ∼ 256. Therefore our experiments optimize over 𝑁 ≤ 256 modes. Such figures do not314

represent a bottleneck for real-time and online wavefront shaping at high enhancements. The315

number 𝑁 can be definitely increased on a high-performance computing platform, for example316

implementing the RLS algorithm on a FPGA [42] (as was already done in [25] with a conventional317

continuous optimization algorithm for focusing through dynamic scattering media), or on a318

GPU [43].319

5. Outlook320

We have presented a recursive and online optimization procedure for the estimation of the transfer321

matrix of dynamic scattering media, combining the benefits of optimization-based routines and322

transfer-matrix measurements in wavefront shaping. Experimental and numerical demonstrations323

have been provided on conventional wavefront shaping setups and for different light-control tasks,324

noise levels and stability times. Its most intriguing feature is the possibility to optimize multi-325

and high-dimensional transfer matrices, without the need to store the history of past data in326

memory. Therefore, we foresee our method to turn out pivotal whenever the scattering behaviour327

of living biological specimens has to be tracked at various timescales.328

In our proof-of-principle experiments, all optical modes change with the same rate, therefore329

they share the same oversampling ratio. However, when imaging large fields of view (∼ 104µm2)330
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Fig. 6. Time required to update the optimal focusing pattern from one new piece of
data, estimated in the experimental setup of Fig. 1(c) right, as a function of the number
of input modes. Four phase-stepped intensity images are combined to estimate each
output field across a field of view of 𝑀 = 256 pixels. Blue points and line: conventional
transfer-matrix measurement; orange: RLS estimation of the transfer matrix; cyan:
continuous sequential algorithm (CSA). Each point is an average of 4096 measurements,
such that the standard deviation of the mean is always within the marker size.

in biological media, timescales differing by factors as large as 100 are accessible. For example,331

the modes induced by blood flowing decorrelate in less than 10 ms (>100 Hz), while breathing332

modes can last as long as 800 ms (1.25 Hz) in mice [5]. As as result of that, the slowest modes333

enjoy an oversampling ratio close to 100. This means that, compared to an offline least-square334

estimation of the transfer matrix, a factor of 100 is saved in memory, which can be ultimately used335

to enlarge the field of view by 2 orders of magnitude. Using the latest MEMS modulators, 𝑁 =336

600 modes can be optimized at a rate of 60 kHz in 10 ms, thus allowing the transfer matrix to be337

estimated at 𝑀 ∼ 1.6 · 106 output pixels in parallel, assuming 16 GB RAM and double-precision338

floating-point format (16 B per complex matrix element). This is illustrated in Fig. 7(a), where339

the feasibility region for offline least-squares is shaded in blue and depends on the oversampling340

ratio. On the other hand, using the RLS estimation means oversampling does not play a role, so341

its feasibility region is much larger (orange shaded area). If we also consider that, in ultrafast342

wavefront shaping systems like [25], the SNR approaches 1, at an oversampling ratio of 100 the343

RLS estimation of the transfer matrix yields an improvement of the focus intensity by a factor of344

2, compared to a conventional transfer-matrix measurement with no oversampling [Fig. 7(b)].345

Focusing deep inside scattering media, at locations characterized by a specific stability time,346

may become a reality, thanks to the recent advancements in optimal light control, exploiting the347

knowledge of the transfer matrix measured at different times [44, 45].348

Besides sharing the same stability times, all the optical modes considered here are also349

unpredictable, as they feature random and independent increments according to Eq. (2). Should350

one possess prior knowledge on the medium dynamics, the RLS estimation may even be employed351

to predict future scattering behaviours as well as informing the user on the next most informative352

inputs to optimize information retrieval [46]. For example, breathing modes and heartbeat are353

known to induce revivals of correlations [5]. Such behaviour was neither reproduced in our354

experiments, nor accounted for in our model. In this context, the investigation of dynamic355

biological tissues would benefit from an implementation of the RLS algorithm dealing with356

quasi-periodic measurements.357

We would finally like to remind that the effectiveness of the RLS algorithm is enabled358

by the linear relationship between the input and output patterns. Linearity is guaranteed by359

light-matter interaction via elastic scattering and thanks to our measurement scheme, allowing360

quantitative phase estimation of the output fields. When a non-linear transfer function was361

involved (Fig. 5), a linear approximation was made, at the cost of reduced performance. Towards362



the recursive optimization of non-linear functions, a kernel version of the RLS algorithm has been363

proposed [47,48]. It relies on performing linear regressions in a higher (> 𝑁) dimensional feature364

space, approximating the non-linear function. Its implementation, although more complicated365

than its linear counterpart, would be worth investigating, as it would unlock online learning of366

the transfer matrix of dynamic scattering media for a wide variety of contrast mechanisms, from367

fluorescence to non-linear coherent scattering.

Feasible for
offline LS
estimation

Feasible for
online RLS
estimation

Limit for 16 GB RAM

(a) (b)

0.5
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1.5
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Fig. 7. (a) Feasibility regions of the offline least-squares algorithm (blue shaded
area) and of the RLS algorithm (orange shaded area), on the plane spanned by the
oversampling ratio and the field of view. (b) Evolution of the enhancement as a function
of the oversampling ratio (relative to the value at oversampling = 1) at SNR = 1. Points:
simulations; line: exponential fit.
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