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Abstract 

Ecological interactions can promote phenotypic diversification in sympatric species. While 

competition can enhance trait divergence, other ecological interactions may promote 

convergence in sympatric species. Within butterflies, evolutionary convergences in wing 

color patterns have been reported between distantly-related species, especially in females 

of palatable species, where mimetic color patterns are promoted by predator communities 

shared with defended species living in sympatry. Wing color patterns are also often 

involved in species recognition in butterflies, and divergence in this trait has been reported 

in closely-related species living in sympatry as a result of reproductive character 

displacement. Here, we investigate the effect of sympatry between species on the 

convergence vs. divergence of their wing color patterns in relation to phylogenetic 

distance, focusing on the iconic swallowtail butterflies (family Papilionidae). We 

developed a new unsupervised machine-learning-based method to estimate phenotypic 

distances among wing color patterns of 337 species, enabling us to finely quantify 

morphological diversity at the global scale among species, and allowing us to compute 

pairwise phenotypic distances between sympatric and allopatric species pairs. We found 

phenotypic convergence in sympatry, stronger among distantly related species, while 

divergence was weaker and restricted to closely-related males. The convergence was 

stronger among females than males, suggesting that differential selective pressures acting 

on the two sexes drove sexual dimorphism. Our results highlight the significant effect of 

ecological interactions driven by predation pressures on trait diversification in Papilionidae 

and provide evidence for the interaction between phylogenetic proximity and ecological 

interactions in sympatry, acting on macroevolutionary patterns of phenotypic 

diversification. 

Significance Statement 

Disentangling the effects of ecological and phylogenetic factors acting on trait evolution is 

challenging. Evolutionary convergences in color patterns are often documented for 

distantly-related species targeted by the same predators, promoting mimicry in prey 

species. Here, we investigated the global effect of sympatry on wing color pattern evolution 
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to assess the importance of ecological interactions on trait diversification. We developed a 

new machine learning tool to automatically quantify color pattern variations across the 

butterfly family Papilionidae. Living in sympatry clearly promoted convergence between 

distantly-related species, with a stronger effect on females, suggesting that differential 

selective pressures on the two sexes drove sexual dimorphism. We showcase the global 

signature of differential selective pressures on trait diversification across multiple species.  
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Introduction 

 

Species interactions are an important driver of phenotypic diversification at both 

microevolutionary and macroevolutionary scales, promoting either divergence or 

convergence in sympatry. While local species communities are strongly shaped by 

contingent historical factors, they may also be influenced by both habitat filtering and 

ecological interactions (e.g. as documented in oak communities, 1), thus impacting the 

evolution of their respective traits. Indeed, antagonistic and mutualistic interactions fuel 

the evolution of suites of traits involved in adaptation to specialized ecological niches, 

therefore overcoming the effect of common ancestry. Traits involved in interspecific 

interactions have often been shown to diverge in coexisting species, due to their 

partitioning into different niches (2–6). Phenotypic convergence can also be observed in 

sympatric species at large scales because of shared selective pressures (e.g. in Ithominii 

butterflies, 7).  

 

Importantly, the effect of species interactions on trait similarity within species communities 

depends on the degree of relatedness between sympatric species. For instance, interspecific 

competition for territory (4) or mates (8) can enhance phenotypic divergence between 

sympatric species, depending on their phylogenetic proximity. Indeed, closely-related 

species are more likely to occupy similar ecological niches and display a similar set of 

traits (9). Such resemblance may further increase interspecific sexual interactions and 

promote trait displacement in closely-related species (10, 11). Reproductive interferences 

may thus accelerate the evolutionary divergence of traits involved in species recognition 

between closely-related species living in sympatry (12, 13). Interspecific interactions such 

as mimicry, on the other hand, are more likely to filter species communities according to 

the similarity of their traits (7), so that species with ancestral similar color patterns are more 

likely to co-occur in sympatry. The advantage conferred by local resemblances within 

communities may also induce phenotypic convergence between phylogenetically-distant 

species (14). Here, we aim at testing for the relative effects of 1) convergence promoted by 

local adaptation vs. 2) divergence driven by competitive interactions on trait diversification 
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at the macroevolutionary scale. Because ecological interactions vary with the degree of 

phylogenetic proximity within species communities, we specifically test for the 

interactions between local ecological processes and phylogenetic relatedness to provide an 

assessment of the relative roles of historical and ecological factors as drivers of trait 

diversification at the global scale.  

 

Within butterflies, convergence in wing color pattern can induce countervailing effects 

between ecological interactions and phylogenetic distances. In unpalatable species, the 

evolution of mimetic color patterns in sympatry is promoted by predator learning and 

avoidance of prey harboring a known warning signal. This predator behavior generates 

positive density-dependent selection that favors the convergence of wing color patterns in 

sympatry, referred to as Müllerian mimicry (15, 16). The evolution of mimetic color 

patterns is also commonly observed in palatable species, referred to as the Batesian 

mimicry, where displaying a coloration close to that of the defended prey confers a strong 

advantage (17). Both Müllerian and Batesian mimicries were observed in butterflies (e.g.  

in the chemically-defended Heliconius species (18) and in the palatable Papilio species 

(19)) A striking example is the strong resemblance that can be observed between 

individuals from the unpalatable Papilio polytes and the chemically-defended Pachliopta 

aristolochiae (20), while these clades diverged about 50 million years ago.  

In addition, butterfly wing color pattern is involved in species recognition during mate 

choice, favoring divergence between closely-related species living in sympatry (21). This 

trade-off between natural and sexual selection is likely to have different consequences on 

the evolution of the color pattern in the two sexes. The slower flight of egg-loaded females, 

as well as their predictable behavior of laying eggs on specific host plants, may increase 

their predation risk and further promote Batesian mimicry in females (22, 23). 

Reproductive interference with other sympatric species may favor female preference for 

non-mimetic males, thereby promoting mimicry in females but not in males (24). Thus, the 

evolutionary trade-off between convergence on mimetic signals and divergence in mating 

cues may differ between sexes, driving the evolution of sexual dimorphism. What 

evolutionary force prevails on the diversification of butterfly color patterns? A global 
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pattern of sympatric divergence is expected, especially in males, if sexual selection linked 

to species recognition dominates, whereas recurrent convergence is predicted if natural 

selection imposed by predators plays a predominant role. 

 

Here, we investigate the effect of sympatry on the macroevolutionary trend of color pattern 

diversification in swallowtail butterflies (Papilionidae). The Papilionidae family is 

recognized as a textbook example of the evolution of mimetic color patterns (19) and 

sexual dimorphism, its ecology and geographic distribution are well documented, and 

phylogenetic relationships between species are well established (25), making it an ideal 

model to test the effect of local ecological processes on the general trend of trait evolution. 

We used 1,358 photographed individuals from 337 species of this family distributed 

throughout the world. Specifically, we aim at testing the opposite effect of mimicry and 

reproductive interference, and its interaction with phylogenetic proximity between 

interacting species. Wing color patterns in butterflies are complex traits composed of 

different features, such as stripes, spots, rays of different shapes and colors, which may 

have evolved in concert (26). To assess convergence and divergence in these complex color 

patterns, we develop a novel machine learning-based method to quantify subtle variations 

in wing color patterns. This quantification of color pattern variation then allows estimating 

the effect of geographic overlap between species on the evolution of wing color patterns 

displayed by males and females. We specifically test whether sympatric species have 

significantly 1) more or 2) less similar color patterns than expected based on their common 

ancestry, allowing to detect evolutionary convergence and divergence, respectively. 

Significant convergence in sympatry may indeed be consistent with a role for predator-

mediated selection promoting mimicry, while divergence may suggest an important effect 

of reproductive interference. Finally, because the relative effect of natural and sexual 
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selection may differ between sexes, we examine 3) the sex-specific effect of sympatry on 

color pattern evolution. 

 

 

Results 

 

1. Quantifying color pattern variation using an unsupervised method 

 

We quantified color pattern similarity within and among Papilionidae species without 

relying on any pre-existing human classification by developing an unsupervised similarity 

learning algorithm, based on the SimCLR method (a Simple Framework for Contrastive 

Learning of Visual Representations, 27). This method allows an objective quantification 

of color pattern variation between distantly related species that may differ greatly in wing 

shape and venation (see Methods section for detailed comparisons with existing methods). 

Similarity learning relies on modifications of the original images: the algorithm places the 

modified versions from the same image close together in the representation space, while 

modified versions from different images stand at larger distances. This unsupervised 

method allows partial control over the features used during classification: by cropping and 

rotations images to produce the modified images, we forced the model to ignore wing shape 

variations between species, while color pattern variations are used as discriminative 

features.  

 

We used 2,716 standardized photographs of the dorsal and ventral sides of Papilionidae 

butterflies and automatically separated the wings from the body. The model was then 

trained on the modified images of the four wings together standing on a neutral 

background. This training resulted in representation vectors of dimension 2,048 for each 

butterfly image, containing information about the features displayed in the image. We then 

used a Principal Component Analysis (PCA) to reduce the dimensionality to 20, while 

retaining approximately 80% of the variance. In certain species, several phenotypic forms 
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are described, so we carried out the examination at the form level. We plotted the mean 

phenotype for each form within species in the resulting morpho-space (Figure 1 a,b). As 

there is considerable sexual dimorphism in Papilionidae, we first performed independent 

analyses for males and females. As expected, interspecific distances were significantly 

much higher than intraspecific distances for both males and females, when studying either 

the dorsal or ventral side (Wilcoxon, p-value < 0.001 for males and p-value < 0.001 for 

females, Fig. S2), indicating that the model was able to successfully discriminate species 

based on phenotypic differences. Because the dorsal and ventral patterns were very similar 

for most species, we only show the analyses performed on the dorsal wing color patterns. 

While our method does not allow us to precisely identify the contribution of different wing 

features to the different PC axes, the first axis clearly discriminates between colored vs. 

white and black patterns. The gradient-based class activation mapping (Grad-CAM) for 

each picture then allows to pinpoint the pixels that were most used as discriminative 

features by the model (Figure 2). Elements of the pattern, such as stripes or color patches, 

show high activation, and were therefore used as discrimination criteria by the model. In 

most species displaying hindwing tails, the tails were not considered as discriminant 

features (e.g. Battus philenor, Graphium weiskei, Pachliopta aristolochiae, Papilio 

caiguanabus; Figure 2 c, d, g, h). However, in some species where the hindwing tails are 

particularly prominent (e.g. Lamproptera curius; Figure 2 m), the model did rely on the 

tails as a discriminant feature. Thus, our phenotypic quantification relied mostly on color 

pattern variation rather than wing shape, but still accounted for large, visually-discriminant, 

wing shape variations.  

 

2. Phylogenetic signal 

 

We then constructed a phylo-morphospace for each sex to describe the color pattern 

variation throughout the whole Papilionidae family (Figure 1 c,d). These morphospaces 

show the position of the average dorsal color pattern within each species, and a projection 

of the phylogenetic relationships among species using the principle of unscaled squared 

change parsimony, based on the most recent and complete swallowtail phylogeny (25). We 
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detected a significant phylogenetic signal on phenotypic variation in both males (K = 0.39, 

p-value < 0.001) and females (K = 0.32, p-value < 0.001). K values less than 1 for both 

sexes indicate that closely-related species were generally less phenotypically similar than 

expected under a Brownian motion model of phenotypic evolution. We fitted several 

models of multivariate trait evolution using the mvMorph package (28) and found that a 

lambda model, which accounts for the degree of phylogenetic signal, best fit our data 

(supplementary information 4).  

 

Mimicry between species, and especially female-limited mimicry documented in 

Papilionidae, is likely to account for the limited phylogenetic signal in color pattern 

evolution. To test the effect of interspecific mimicry on the macroevolutionary pattern of 
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wing color pattern diversification, we investigated the effect of sympatry between species 

on color pattern evolution depending on the level of phylogenetic relatedness. 
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Figure 1. Color pattern variations and phylogenetic relationships across Papilionidae 

butterflies. First row: Phenotypic variations captured by the unsupervised machine 

learning-based methods applied to our 2,716 pictures of Papilionidae. Independent PCA 

were carried out on (a) males and (b) females. Note that we used the mean phenotype by 

sex and by species and represented only the first two axes, explaining only 19.9% of the 

phenotypic variance. We display the actual picture of butterflies for randomly sampled 

species (with at least one species per genera) on the morphospace to observe how actual 

color pattern variation was separated by our method of phenotypic discrimination. Second 

row: Phylo-morpho space computed on the mean phenotype for each species in (c) males 

and (d) females. The phylo-morpho space is the projection of the morpho space coordinates 

on the first two axes of the morpho space principal components. Each colored dot 

represents the phenotype of a given species and the black lines show the projection of the 
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phylogenetic relationships among the species. The color code corresponds to the different 

genera, the color gradient corresponding to the location of the genus on the phylogeny. 
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Figure 2. Discriminant features used to build the morpho-space obtained using Grad-CAM 

mapping. We selected one or two species for several genera to give examples that cover 

different parts of the phenotypic space. Redder color indicates pixels that weigh the most 

in the activation of the neural network. From left to right, up to down: Allancastria cerisyi, 

Atrophaneura priapus, Battus philenor, Graphium weiskei, Mimoides euryleon, 

Ornithoptera priamus, Pachliopta aristolochiae, Papilio caiguabanus, Parides photinus, 

Parnassius nomion, Trogonoptera brookiana, Troides aeacus, Lamproptera curius, 

Troides andromache. 

 

3. Color pattern convergence is more frequent in sympatric species and increases 

with geographic overlap 

 

To disentangle the complex interactions between historical and ecological factors acting 

on phenotypic evolution, we fitted phylogenetic linear mixed models (PLMM) with 

phenotypic distance as the response variable and percentage of geographic overlap between 

species, phylogenetic distance and phylogenetic distance squared and their interaction as 

the predictors. We found a significant negative effect of the degree of geographic overlap 

on phenotypic distance (coefficient -0.012 p-value<0.001 for males and coefficient -0.015 

p-value<0.001 for females), meaning that as the degree of sympatry increases, phenotypic 

distance tends to decrease. We also found significant interactions between the geographic 

overlap and the phylogenetic distance. Full model results can be found in table S3 and S4 

in the supplementary information. Figure 3 then shows the variation in the relationship 

between overlap and phenotypic distance for three ranges of different phylogenetic 

distances (12.1 Myr, 51.87 Myr and 91.63 Myr - sum of branch lengths). Overall the slope 

of phenotypic distance in function of overlap becomes more negative with increasing 

phylogenetic distance for both males and females. However, for males, the slope is positive 
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at small phylogenetic distances, suggesting phenotypic divergence in males from closely-

related species living in sympatry.  

 

 

Figure 3. Complex interactions between the effect of phylogenetic distance and overlap 

on phenotypic distance. Heatmaps show predicted values of phenotypic distance in 

function of phylogenetic distance and percentage of overlap are shown for a) males and b) 

females. Example curves of predicted phenotypic distance in function of percentage of 

overlap for 3 arbitrarily chosen phylogenetic distances are shown for c) males and d) 

females. The 3 gray dotted lines for each heatmap show the phylogenetic distance chosen 

for the examples of curves of predicted phenotypic distance in function of percentage of 
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overlap - 1 and 4 are example curves for a phylogenetic distance of 12.1 Myr, 2 and 5 for 

51.87 Myr and 3 and 6 for 91.63 Myr (sum of branch lengths). 

 

To test for the overall effect of sympatry on phenotypic evolution, we then defined species 

that shared parts (≥20%) of their geographic range as sympatric, while all other species 

with non-overlapping distributions (<20%) were classified as allopatric. We then designed 

a permutation test to detect phenotypic convergence and divergence. 

 

We first established a null distribution by 1) computing the residuals of the regression 

between the phenotypic and phylogenetic distances for each pair of phenotypic forms 

(noting that multiple phenotypic forms may exist within species), and then 2) permuting 

these residuals along the phylogeny. We then tested for each pair of forms whether they 

were more or less similar than expected from the null distribution, interpreted as the 

signature corresponding to convergence and divergence, respectively. We quantified the 

strength of convergence and divergence from the difference between the observations and 

the generated null distribution. 

 

In males, out of the 29,402 pairs, we detected 256 convergent pairs and 193 divergent pairs, 

including 25 and 7 in sympatric pairs, respectively. In females, out of the 31,877 pairs, we 

detected 281 convergent pairs and 220 divergent pairs, including 55 and 7 in sympatric 

pairs, respectively. The relative number of detected convergence vs. divergence events was 

significantly greater in sympatric pairs as compared to allopatric pairs, for both males and 

females (χ²= 4.54, p-value < 0.05 and χ²= 25.37, p-value < 0.001, respectively). Overall, 

we found that sympatric pairs showed significant convergence in sympatry (p-value < 

0.001 for males and females, Figure 4a, b). We also found similar convergence in sympatry 

when using a simulation-based approach for sympatric vs. allopatric pairs (Fig. S7 and S8), 
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and this trend was confirmed using different cut-offs for the degree of geographic overlap 

used to define sympatric pairs (see supplementary 4). 

Focusing on detected convergence events, we did not find significant differences in 

convergence strength between sympatric and allopatric species pairs for males. In females, 

however, the convergence was significantly stronger in sympatric species pairs (Wilcoxon, 

W = 7448, p-value < 0.05). While we found convergence with overlap in males with the 

PLMMs, here we do not find a significantly higher convergence in sympatry vs allopatry 

for males using permutations. This stems from the significance threshold used for pairwise 

convergence/divergence assessment, which reduces the overall sympatric sample size 

compared to allopatric ones. Lower and less frequent convergence in males than females 

combined with reduced sample size due to the threshold may lead to the discrepancy of 

results for males between the two methods. The signal of convergence in sympatry found 
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in our global dataset suggests a differential effect of sympatry on the evolution of female 

compared to male phenotypes.  
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Figure 4. Detection of convergence and divergence events between sympatric and 

allopatric species pairs. Distribution of residual medians for (a) males and (b) females after 

100,000 permutations for sympatric pairs in blue and allopatric pairs in pink. The dashed 

blue vertical line corresponds to the observed median for the residuals of pairs of sympatric 

species, and the dashed pink vertical line corresponds to the observed median for the pairs 

of allopatric species. (c-f) Phenotypic convergence and divergence associations between 

pairs represented on the swallowtail phylogenetic tree with male convergence (c) and 

divergence (d) between pairs, and female convergence (e) and divergence (f) between 

pairs. Example of pairs of convergent and divergent species are plotted along the 

phylogeny: c-1: Mimoides lysithous, c-2: Papilio erostratus, c-3: Papilio hectorides, c-4: 

Parides photinus, c-5: Parides bunichus. d-1: Graphium antiphates, d-2: Graphium 

xenocles, d-3: Parnassius nomion, d-4: Parnassius stubbendorfii, d-5: Papilio pelaus, d-6: 

Papilio aristodemus. e-1: Graphium xenocles, e-2: Papilio protenor, e-3: Papilio 

erostratus, e-4: Papilio clytia, e-5: Parides photinus. f-1 : Graphium antiphates, f-2: 

Graphium xenocles, f-3: Parnassius nomion, f-4: Parnassius stubbendorfii, f-5: Papilio 

protenor, f-6: Papilio hipponous, f-7: Parides bunichus, f-8: Euryades corethrus. 

 

4. Evolution of sexual dimorphism driven by the evolution of female color pattern 

 

To investigate the evolutionary divergence between male and female phenotypes within 

species, we estimated sexual dimorphism by computing the Euclidean distances in PCA 

space between the two sexes within each species. We also computed the raw contrasts for 

each pair of sister species – male/male distance and female/female distance in sister species 

– and examined the relative divergence of male phenotypes vs female phenotypes using a 

index based on the ratio of raw contrasts (r): when r < 0, female phenotypes diverged more 

than male phenotypes in the same amount of time (Figure 5). We investigated the 

distribution of the relative divergence of color pattern in each sex in dimorphic species to 

test for the relative effect of selection generated by reproductive interference on male 

phenotypes vs. ecological selection in female phenotypes on the evolution of sexual 

dimorphism. Dimorphic species were defined as species with dimorphism value above 0.3. 
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We found that most dimorphic sister-species pairs did indeed have a value of r lower than 

expected from no sex-specific signal (p-value < 0.05, Fig. S9), indicating that the sexual 

dimorphism in color pattern mostly stems from the divergence of female phenotype. This 

confirms that female phenotypes generally diverge more than male ones resulting in sexual 

dimorphism driven by ecological selection acting on females.  

 

[Figure 5] 

Figure 5. Evolution of sexual dimorphism in color pattern throughout the family 

Papilionidae: contribution of divergence of male phenotype vs. female phenotype in the 

evolution of sexual dimorphism was estimated by comparing sister-species. a) Swallowtail 

phylogeny showing sister-species with the level of dimorphism (gray scale) and ratio of 

raw contrasts: (male/male distance over female/female distance) - 1 for positive values and 

– (female/female distance over male/male distance) - 1 for negative value for sister species 

so that relative divergence becomes more pronounced as the value diverges from 0. b) 

Distribution of the ratio of raw contrasts for sister species with the median indicated. c) 

Male and female specimens are shown for the two-sister species presenting the highest 

ratio: (1) Euryades corethrus above and Euryades duponchelii below, and for the two sister 

species presenting the lowest ratio: (2) Papilio meriones above and Papilio dardanus 

below. 

 

 

Discussion  

 

Using a novel machine learning-based method, we quantified color pattern variation at the 

global geographic scale in Papilionidae butterflies and uncovered a general trend of 

convergence among sympatric species. This method is not specific to butterflies and could 

be trained to quantify variation in the visual signal in any biological model. By tuning the 

modifications made during the training, the method can be trained to quantify shape, color, 
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and pattern similarity in diverse organisms, opening new research avenues for the study of 

phenotypic diversification. 

 

1. Uncovering discriminant features of visual signal  

 

In this study, we provide the first quantitative analysis of butterfly color pattern variation 

at a large phylogenetic scale by comparing highly divergent and complex color patterns. 

The complexity and extreme diversity of butterfly color patterns has led previous studies 

to simplify the problem. Some authors have discretized the patterns (22, 29, 30) by focusing 

on a few characters at a time (31, 32). This approach comes at the cost of losing part of the 

signal as well as its global integration. Other approaches that rely on aligning wing images 

to the color patterns themselves allow for powerful comparisons based on entire color 

patterns (33). However, the alignment is limited to closely similar patterns and wing 

shapes, preventing analyses at large evolutionary scales. Here, we circumvent these issues 

with a new machine learning method to automatically quantify color pattern variation 

among distantly-related species in an unsupervised manner, independent of any pre-

existing human classifications.  

 

This unsupervised and automated method allows comparing multiple color patterns 

between very distantly-related species, which may differ in wing shape due to other 

selective constraints - see Le Roy et. al. (2019) (34) for a review. We therefore designed 

our method to neglect minor wing shape variation (see Sup. Mat Figure 7 showing the 

limited effect of wing shape variation on our estimates of distances between color patterns). 

Nevertheless, wing shape variation is not independent of color pattern and contributes to 

the visual signals perceived by conspecifics and predators. Linke et al. (2022) (35) showed 

that wild blue tits can learn to associate both color pattern and hindwing tails with escape 

ability, highlighting the importance of salient shape features such as wing tails in the 

generalization performed by visual observers. Although our method reduces the impact of 

minor variations in wing shape, it still retains information about prominent discriminative 

parts of the wings such as large tails (Fig. 2). Our method thus provides a relevant 
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quantification of color pattern variation within and between species for studying how 

selection exerted by visual predators and/or conspecifics shapes the diversification of wing 

color patterns. 

 

Nevertheless, we only quantified visual signal similarity in the visible light range. Both 

butterflies and some of their avian predators are UV-sensitive, and some spots on 

Papilionidae wing patterns reflect UV wavelengths (e.g. in the white patches of Papilio 

glaucus, 36). Pigments or structural changes in the wing scale that result in UV reflectance 

generally also generate differences in the visible reflectance, but variations in UV 

reflectance may lead to conspicuous differences for UV-sensitive species that cannot be 

captured by our method. However, color pattern mimicry often involves convergence in 

the UV pattern as well (as shown in Papilio polytes, 37): ignoring the UV signal would 

thus not strongly alter the general trend of wing pattern convergence in Papilionidae.  

 

2. Significant interactions between historical and ecological factors acting on trait 

diversification 

 

By examining the evolution of color patterns throughout the whole Papilionidae family, 

we found increasing phenotypic similarity between species with increasing geographic 

overlap, when controlling for phylogenetic distance. Interestingly, we also found 

significant interactions between the effect of geographic overlap and phylogenetic distance. 

Phenotypic distance decreased more rapidly with geographic overlap at higher 

phylogenetic distances. Thus, the effect of sympatry on phenotypic convergence was 

greater in distantly related species, consistent with documented cases of Batesian mimicry 

in Papilionidae, with distantly-related pairs of species described as models and mimics. For 

closely-related males, the effect of the geographic overlap was actually opposite, with 

increased phenotypic divergence in closely-related species. This trend is consistent with 

the higher ratio of convergent pairs to divergent pairs in females as compared to males 

from sympatric species. 
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As expected, we found that sympatric pairs tended to be more closely related than allopatric 

pairs (Wilcoxon, males: p-value < 0.001, females: p-value < 0.001). This may stem from 

the history of species diversification, making recently diverged species more likely to occur 

in close geographic areas. Furthermore, recently diverged species may also tend to retain 

similar habitat affinities (phylogenetic niche conservatism) and species from a same clade 

thus frequently occupy similar geographic regions (38). Nevertheless, here we detected 

significant color pattern convergence in sympatric pairs despite this phylogenetic 

clustering, suggesting that local ecological processes might have fueled the evolution of 

traits. The use of geographic overlap as a proxy for sympatry between species has 

limitations, because species found in the same geographic location may still differ in 

phenology (39) or flight height (16), so that species sharing a similar geographic area do 

not necessarily occur in the same micro-habitat. Furthermore, we cannot directly assess 

whether trait convergence in sympatry is due to shared environmental conditions versus 

species interactions: alternative selective pressures due to climatic conditions for instance 

may promote similar color patterns in different species independently from a direct 

ecological interaction between these sympatric species. Nevertheless, the phylogenetic 

corrections account for trait similarities due to the combination of phylogenetic constraints 

or phylogenetic niche conservatism (40). The observed convergence is thus likely to be 

due to local selection exerted by predator behavior toward Papilionidae, where both 

defended and palatable species have been previously described to be involved in mimetic 

interactions (19). Further ecological studies on the local mimicry rings, including both 

Papilionidae and other butterfly families (e.g. Nymphalidae or Pieridae, 41), are now 

needed to formally conclude on the impact of predation on the evolution of convergent 

color patterns in sympatry. 

 

3. The effect of sympatry on phenotypic convergence and divergence 

 

Negative interactions in sympatry such as competition for resources and territory are often 

assumed to be the main driver of phenotypic evolution, in line with character displacement 

theory (2, 3). However, ecological interactions between sympatric species can also lead to 
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trait convergence (see Grether et al. 2009 (10) for a review). Here, we found an effect of 

sympatry on trait convergence between species, with a global trend of convergence in 

sympatric pairs and phenotypic similarity between species increasing with the degree of 

geographic overlap. Overall, of all the convergent pairs of sympatric species detected, 60% 

were previously reported in the literature as potential mimetic species (see the detailed list 

of all convergent and divergent sympatric pairs, and corresponding references in 

Supplementary Information). Despite our simplistic definition of sympatry, based on 

geographic range overlap without precise information on the shared microhabitat, our 

global-scale method was able to recover a large number of species pairs identified as 

mimetic in field studies. Indeed, female-limited Batesian mimicry has indeed long been 

documented in Papilionidae (20, 42), and our study recovers well-studied cases, such as 

the documented Batesian mimicry between Amazonian unpalatable Parides species, and 

their Papilio mimics – see for example the black pattern with conspicuous red spots in the 

unpalatable Parides photinus and its mimic Papilio erostratus (18) (Tab. S5). Interestingly, 

convergence was also detected within the genus Parides, for example between Parides 

photinus and Parides montezuma, supporting the hypothesis of a Müllerian mimicry ring 

within the genus Parides  (43). Convergence was also found between the Southeast Asian 

species Graphium xenocles and a form of Papilio clytia, both displaying white coloration 

with contrasting black venation and an orange spot on the hindwing. While it is likely that 

both species are palatable, they are both mentioned as being mimics of unpalatable Danaine 

species and thus may belong to the same mimicry ring. Surprisingly, we also found 

convergence in males of sympatric species pairs. First, there is convergence between males 

from species where convergence was also detected in females, for example in Parides 

photinus and Papilio erostratus described above. The convergence in male phenotypes 

may be due to Batesian mimicry, but it may also stem from correlated color pattern 

evolution between males and females within the same species, caused by developmental 

constraints. In some species, convergence has been detected among palatable species, 

without any evidence for mimicry with defended species. Instead, these convergent species 

exhibit color patterns composed of contrasting black bars on a clear background and orange 

and blue spots on the hindwing near the tails, such as in the convergent Papilio alexanor 
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and Iphiclides podalirius. This type of color pattern, combined with hindwing tails, may 

help to deflect predators away from the vital body parts (44). Such convergence in color 

patterns could thus be driven by cognitive biases of predators and associated behavior, but 

does not imply mutualistic or parasitic interactions between butterfly species. 

 

Such a strong convergence in coloration has also been documented in woodpeckers (45), 

where the effects of both abiotic factors and ecological interactions between sympatric 

species have been reported. Interestingly, a study focusing on color pattern variation in 

sympatric newt species revealed convergence in dorsal patterns involved in camouflage 

from predators and divergence in ventral colors, likely related to mate choice (8). In the 

Papilionidae, the dorsal wing color pattern is likely involved in interactions with both 

predators and mates. However, the global increase in convergence detected in sympatry 

suggests that selective pressures associated with predation outweigh reproductive character 

displacement in driving color pattern evolution, especially in females. This is illustrated in 

the PLMM analyses by the stronger effect of geographic overlap on phenotypic distance 

for more distantly related species pairs: in distantly related species, prezygotic isolation 

may be reinforced by multiple mating cues independent of color pattern, facilitating 

phenotypic convergence in sympatric species. In closely related species, however, the 

effect of increasing levels of geographic overlap is weaker, especially in males, where 

phenotypic divergence increases with the level of geographic overlap, consistent with the 

weaker signal of sympatric convergence detected in males compared to females. By 

revealing the important effect of sympatry on trait diversification at the macroevolutionary 

scale, our study suggests a correlation between local ecological processes and global trends 

of trait evolution. 

 

4. Sex-specific selection pressures and the evolution of sexual dimorphism 

 

In species where the level of parental investment in females is higher than in males, we 

expect increased selection on female choosiness (46) and visual discrimination abilities (as 

observed in mimetic butterflies such as Heliconius erato, 47). In Papilionidae, males 
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attempt to mate several times during their adult life, while females mate very early in life 

and remating is generally rare. Females spend most of their adult life searching for and 

laying eggs on suitable host plants. Therefore, the cost of mating with a heterospecific is 

probably higher for females than for males, leading to the evolution of female preference 

for non-mimetic males (24). In Papilionidae, we found significantly more and stronger 

cases of convergence in sympatry compared to allopatry for females, but not for males. 

This is consistent with the previously described high prevalence of female-limited Batesian 

mimicry in Papilionidae. For instance, in the genus Papilio, approximately 25% of species 

have mimetic females, while males generally display the ancestral color pattern (48). 

Overall, we found that female color patterns diverged more than male color patterns in 

sister species. Color pattern dimorphism appears to be driven mostly by natural selection 

acting on female phenotypes (22), but may also be favored by female preferences for males 

displaying ancestral phenotypes, limiting heterospecific interactions.  

 

Our method is, however, likely to fail for detecting some cases of sexual dimorphism 

driven by divergence in male phenotypes in sympatric species, implying UV reflectance: 

some sister species with partially overlapping geographic distributions, such as Iphiclides 

podalirius and I. feisthamelii, have very similar color patterns, but males differ in UV 

reflectance of some patches, while no such differences were detected in females (49). This 

divergence in male coloration could be due to selection caused by reproductive interference 

in these parapatric sister species. Our method aims at detecting sexual dimorphism 

generated by ecological interactions in sister species. This focus on sister species discards 

the effect of phylogenetic correction bias but prevents the detection of ancestral sexual 

dimorphism. For example, the striking sexual dimorphism observed in the genus 

Ornithoptera, in which males display brightly saturated green, blue, and orange colors 

while females are more melanic and cryptic, is not detected in our test as resulting from 

male divergence. Such ancestral sexual dimorphism that might stem from sexual selection 

acting on males is likely to be independent of reproductive interference between sympatric 

species. 
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Conclusion 

 

The method described here allowed to uncover global trends on a large phylogenetic scale, 

and is likely to stimulate new studies on the diversification of visual traits that have been 

difficult to compare so far. Our study of color pattern diversification in Papilionidae 

suggests a potentially important role for local ecological processes in sympatry in 

macroevolutionary patterns of trait diversification.  

 

Materials and Methods 

 

1. Sampling and standardized photographs 

We sampled specimens from the collection of the National Museum of Natural History 

(Paris) to cover most of the described Papilionidae species. We relied on the latest 

taxonomic reviews (50) and published dated species-level phylogeny (25) to scan the 

collections for the described species. We sampled 337 out of the 382 species shown in the 

phylogeny of Allio et al. (2021) (25). For each species, we selected two males and two 

females, whenever specimens were available. 17 species presented multiple phenotypic 

forms (2 in average for a total of 32 forms, which we sampled). Our sample thus consisted 

of 1,358 individuals, including 774 males (329 species) and 592 females (273 species; note 

that females are very rarely collected so that females were lacking for many species). The 

dorsal and ventral side of the sampled individuals were photographed under controlled 

LED light using a Nikon D90 (Camera lens: AF-S Micro Nikkor 60 mm 1:2.8G ED) under 

standardized conditions. For the statistical analysis, we retained only species for which we 

had at least one male and one female, resulting in a final sample size of 267 species, 292 

subspecies, and 296 unique phenotypic forms for males and 313 for females. 

2. Wing segmentation 

For each picture, the four wings were first digitally separated from the body and from the 

background of the pictures using a combination of machine learning-based segmentation 

and traditional image processing. The machine learning-based segmentation was 
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performed using a Mask-RCNN model, which learns to classify each pixel on the picture 

either as belonging to the region of interest or not and generates a segmentation mask based 

on this classification. First, a training database of 371 pictures was constituted, by manually 

cropping the four wings on each picture. A Mask-RCNN model was trained on two thirds 

of this database (247 pictures) using the PixelLib python library. The rest of the pictures 

were used to evaluate the segmentation using the intersection over union of masks metric 

(IOU) with a threshold of 0.9 to consider the prediction a true positive. The IOU with this 

threshold of 0.9 was 0.85, i.e. for 85% of the predicted masks, the mask was 90% or more 

in agreement with manual cropping. As the produced masks often kept a few background 

pixels at the edges of the wings, a supplementary step was added, using traditional image 

processing. After this post-processing step, the IOU with a threshold of 0.9 went up to 0.98, 

meaning that 98% of the predicted masks were consistent with 90% of the manually 

cropped images. However, in a few pictures, wing parts whose coloration closely matched 

the background color had to be manually eliminated. Finally, we obtained the masks for 

the four wings for each of the 2,716 standardized pictures, and generated images with a 

single wing on a white background. 

3. SimCLR training and evaluation 

Wing coloration is a complex character allowing to accurately measure the strength of 

convergence and divergence despite phylogenetic constraints, but accurately quantifying 

its variation is challenging. Most studies rely on character discretization (22, 29) or focus 

on a few elements of the color pattern (31, 32), and quantitative methods are scarce and 

require an alignment step of the wings to allow direct comparison (30, 33, 51), preventing 

comparisons at large evolutionary scales due to important differences in wing shape. 

Recently developed convolutional neural networks specialized for image analysis can 

perform image classification, segmentation of regions of interest, or even similarity 

learning, and have been successfully applied to wing color patterns in Lepidoptera (52–

54). However, these methods rely on supervised learning, which requires labels such as 

species classification, and thus introduces strong biases in phenotypic comparisons. Here, 

we develop an unsupervised machine learning-based method to quantify color pattern 
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similarity independent of phylogenetic information, allowing us to estimate the relative 

effect of species interactions in sympatry vs. shared ancestry. 

The SimCLR method 

 

The similarity of color patterns was quantified using the new unsupervised deep contrastive 

metric learning method SimCLR (27). This method is designed to provide a distance metric 

between images and can produce the images’ coordinates in a reduced dimensional space. 

Traditionally, supervised contrastive learning needs labels for the images to determine 

whether pairs of images are considered similar (positive pair, belonging to the same class) 

or dissimilar (negative pair, belonging to different classes), allowing the neural network to 

learn features making images similar or dissimilar by modifying the weight of neurons 

during training to obtain a smaller distance for positive pairs and a larger one for negative 

pairs. SimCLR does not require such labeling of the pairs but considers each image as their 

own class, using modified versions of the image to perform comparisons. These 

modifications, called image augmentations, include cropping, rotating, inverting, and color 

jittering, and are performed at a rate set by the user. Augmentations of the same initial 

image are considered as positive pairs, while augmentations of different images are 

considered as negative pairs. Metric learning is computed by minimizing a loss function 

(Normalized Temperature Cross Entropy Loss or NT-Xent loss). The loss is minimized by 

adjusting the weights of the neural network during learning to increase the cosine similarity 

within positive pairs and decrease it for negative pairs. The cosine similarity between two 

vectors 𝑢 and 𝑣 is defined as 𝑠𝑖𝑚(𝑢, 𝑣) =  
𝑢∙𝑣

∥𝑢∥∥𝑣∥
. For a positive pair (𝑖, 𝑗) in a batch of size 

𝑁, the NT-Xent loss is defined as: 

𝑙𝑖,𝑗 = − 𝑙𝑜𝑔  

𝑒𝑥𝑝 (
𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑗)

𝜏 ) 

∑ 1[𝑘≠𝑖]𝑒𝑥𝑝 (
𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)

𝜏 )2𝑁
𝑘=1  

  

where 1𝑘≠𝑖 ∈ {0,1} is an indicator function evaluating to 1 if 𝑘 ≠ 𝑖 and 𝜏 denotes a 

temperature parameter. 
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Image augmentations 

 

The choice of augmentations is crucial as it determines the features to which the method 

will be invariant. Thus, to study the variation in color pattern, we applied randomized 

cropping with a minimum size of 50% of the original image (invariance to size); rotation, 

horizontal and vertical flipping each with a probability of 50% (invariance to 

left/right/up/down or orientation); conversion to grayscale with a probability of 20% 

(invariance to pattern without taking color into account); and finally, no color jittering of 

any kind to account for the color hue, brightness, and saturation of the actual wings.  

 

Network’s architecture 

 

Based on Chen et al. (2020) (27), we chose a ResNet50 (residual neural network with 50 

convolutional layers) as the backbone of the network and then replaced the classification 

head with a SimCLR multilinear projection head. The Resnet50 backbone was initialized 

as pre-trained on the large ImageNet database to increase performance and compensate for 

the limited number of images in our own dataset. Three hyperparameters were optimized: 

the batch size, the number of training epochs and the temperature parameter. A grid search 

was performed to find the optimal parameter values, e.g., the parameters that lead to the 

best performance during evaluation. 

 

Evaluation & training 

 

After the training phase, the output of the last convolutional layer was used as the vector 

representation of the images, since it retains more information than the output of the 

multilinear projection head. The evaluation was based on a pre-training task aimed at 

classifying the vector representation of the images into different categories. To obtain 
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categories from our images without a priori, we classified our images into 16 clusters, 

using the HDBSCAN clustering method (55) on the vector representation obtained with a 

classical pre-trained convolutional neural network, VGG16 (56). The cluster labels were 

then used as class labels during classification. The backbone of the SimCLR method was 

also pre-trained on the same dataset. Unlike the SimCLR method, the vector 

representations from the VGG16 network did not provide a relative metric space. Finally, 

to assess if the pre-training biases the evaluation, we compared performance of the pre-

trained-only method, the pre-trained and fine-tuned during classification method, and the 

SimCLR trained method. A more detailed discussion of the evaluation of the method can 

be found in Supplementary Information 1. The method was implemented in Python, mainly 

using the Pytorch library for machine learning, and the Lightly library for SimCLR related 

augmentations, backbone, and loss function. Finally, the method was trained with a batch 

size of 128, several training epochs of 300 and a temperature of 0.5, obtaining an f1 score 

1.15% higher than the pre-trained-only model, a kappa score 1.19% higher, and a mean 

accuracy of 95% (84% for the pre-trained-only method). A PCA then allowed the 

dimensions of the representation vectors to be reduced from 2,048 to 20, while retaining 

approximately 80% of the variance. 

4. Explainability and quality control 

To identify the features of the images used for discrimination by the SimCLR method, we 

generated a gradient-weighted class activation mapping (Grad-CAM, 56) for the input 

images. This allows pinpointing pixels of the image generating the highest activation in the 

convolutional layers. To check for the reliability of the image embeddings, the distances 

between all image pairs were calculated. We then compared the distribution of intraspecific 

and interspecific pairwise distances to test whether images of butterflies belonging to the 

same species had a lower phenotypic distance than interspecific image pairs. 

5. Species geographical range 

For 125 out of the 267 species studied here, the geographical range was retrieved from the 

IUCN Red List Spatial Data & Mapping Resources (58) or from the Map Of Life project 

(59) using different datasets. When the geographic range could not be retrieved from these 
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sources because it was missing or incomplete (101 species) the geographic range was 

estimated from GBIF occurrences by generating a convex alpha hull with a buffer distance 

around the occurrences. GBIF occurrence data were downloaded and cleaned using the 

rgbif and CoordinateCleaner R packages (60) and species with fewer than 30 occurrences 

were discarded. For 45 species, geographical range could not be retrieved because of 

missing or too few GBIF data. These species were excluded from the analysis. Pairwise 

species overlap was calculated using the Jaccard index (area of the intersection of the 

ranges over area of the union of ranges). A pair of species was considered sympatric if their 

ranges overlapped by 20% or more, and allopatric if they did not. 

6. Detection and quantification of convergence and divergence using permutation tests 

Convergent and divergent pairs 

 

To detect and quantify convergence and divergence, we designed a permutation-based 

method similar to that described (61). Because many species have multiple forms, we 

computed the mean form phenotypes as the mean of the vectors of all specimens belonging 

to the same form. To assess the degree of phenotypic similarity independent of 

phylogenetic proximity, we performed a linear regression between pairwise phenotypic 

distances (computed as the Euclidean distance between the phenotypes) and pairwise 

phylogenetic distances. Negative residuals represent pairs for which the phenotypic 

distance is smaller than expected given the phylogenetic distance between species, which 

may indicate putative phenotypic convergence. Conversely, positive residuals indicate 

greater phenotypic divergence than expected from the phylogenetic distance. To determine 

the degree of wing color pattern convergence in the swallowtail phylogeny, we tested 

whether the studied pairs were more phenotypically similar than expected at random, while 

controlling for phylogenetic distances. We thus compared the residuals obtained above to 

a null distribution of residuals. The null distribution was generated by permuting the 

residuals associated with each species throughout the phylogeny. The permutations were 

performed using the Lapointe-Garland permutation method, in which pairs of trait values 

are exchanged with probability inversely proportional to their phylogenetic distance (62). 
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This permutation method allows correcting for non-independent and identically distributed 

data, therefore removing phylogenetically induced false positives and accounting for 

unbalanced phenotypic distribution. Residuals were permuted 100,000 times over the 

29,402 possible pairs for males and 31,877 for females. The p-value associated with 

phenotypic convergence for each pair was calculated as the proportion of permutations 

where the observed residuals was lower than the permuted residuals. We fixed the p-value 

at 1% and thus deemed convergence between a pair of phenotypic forms significant if 99% 

of the permuted residuals for this pair were higher than the observed residual. Conversely, 

to test for phenotypic divergence events, we performed the same permutation test but 

computed for each pair the proportion of permutations where the observed residual was 

greater than the permuted residual to obtain a p-value and fixed the p-value at 1%. 

Convergence and divergence strength were then quantified as the deviation of the observed 

residuals from the median computed in the generated null distribution. 

 

Sympatry and allopatry 

 

To assess the overall convergence or divergence of sympatric pairs, we computed the 

median of the permuted residuals for sympatric species pairs for each permutation. A p-

value was computed by counting the number of permutations in which the permuted 

median for sympatric pairs was greater than the observed median for sympatric pairs. To 

compare sympatry with allopatry, the same was done for allopatric pairs. 

 

7. Phylogenetic Linear Mixed Models (PLMM) 

 

To assess the effect of percent overlap on phenotypic distance while controlling for 

phylogenetic distance, we fitted PLMM at the species level with phenotypic distance as the 

response variable and percent overlap, phylogenetic distance and phylogenetic distance 

squared and their interactions as predictors. Additionally to these fixed effects, we fitted 

the identity of the species 1 of the pair and the species 2 of the pair as random effects while 
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linking each to the phylogeny, in order to take into account the non-independence of 

species in pairs in a standardized phylogenetic comparative framework. The quadratic term 

of phylogenetic distance squared was added to account for the nonlinearity of accumulation 

of phenotypic distance with respect to phylogenetic distance. Predictor variables were 

standardized prior to fitting, and PLMM models were fitted using the R package phyr (63). 

 

8. Dimorphism in sister species 

 

To assess which sex phenotype is driving the evolution of dimorphism, we determined 

which sex has diverged phenotypically more than the other in the same amount of time for 

each pair of sister species. We computed the Euclidean distance between the male 

phenotypic coordinates and the Euclidean distance between the female phenotypic 

coordinates of the two species in each pair, which correspond to the raw contrasts for males 

and females, respectively. To compare the two, we computed the ratio of contrasts 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑚𝑎𝑙𝑒𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1 ,𝑚𝑎𝑙𝑒𝑠𝑝𝑒𝑐𝑖𝑒𝑠 2)

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑓𝑒𝑚𝑎𝑙𝑒𝑠𝑝𝑒𝑐𝑖𝑒𝑠 1 ,𝑓𝑒𝑚𝑎𝑙𝑒𝑠𝑝𝑒𝑐𝑖𝑒𝑠 2)
=

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑚𝑎𝑙𝑒𝑠

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑒𝑚𝑎𝑙𝑒𝑠
 and the inverse 

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑚𝑎𝑙𝑒𝑠
 for each sister species. Because these quantities will be bounded by 0 

in one direction and unbounded in the positive values, we arbitrarily defined female biased 

divergence as negative and male biased divergence as positive in the following way: When 

females have diverged more we use −(
𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑒𝑚𝑎𝑙𝑒𝑠

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑚𝑎𝑙𝑒𝑠
− 1) and when male diverged 

more(
𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑚𝑎𝑙𝑒𝑠

𝑟𝑎𝑤 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝑓𝑒𝑚𝑎𝑙𝑒𝑠
) − 1. This allows us to compare divergence values for male 

biased and female biased phenotypic divergence, so that relative divergence becomes more 

pronounced as values diverge from 0 with female biased divergence in the negatives and 

male biased divergence in the positives. We assessed the level of dimorphism in each 

species by taking the Euclidean distance between males’ phenotypic coordinates and 

females phenotypic coordinates. 

 

To test whether this index is lower than expected if males and females diverged equally, 

we permuted phenotypes between sexes with equal probability, for each species. This 
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approach thus erases any sex-specific signal. We performed 10,000 permutations and 

recorded the median of the index for each permutation. We then compared the observed 

median of the actual index in our sister species pairs, with the distribution obtained and 

calculated the p-value as the frequency of permutations with a lower median index. 

 

Data availability 

 

All the code necessary for the python machine learning training and the R analysis, as well 

as the phenotypic coordinates in the morpho space are provided in the following Github: 

https://github.com/AgathePuissant/SimCLR_phenotypic_convergence. Specimen 

photographs are available upon request. 
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Supporting Information 

1. Evaluation of the method. Unsupervised deep learning is a powerful tool that allowed 

us to objectively quantify image similarity, without introducing biases due to human 

labelling – e.g., systematic classification such as species. However, we had to find a way 

to evaluate the neural network’s learning. The way to evaluate SimCLR’s learning is to 

design a downstream pretext task such as classification using only the embeddings learned 

from the images, allowing to assess if the information contained in the embeddings is 

enough to classify correctly. In our case, because of the few images per species and sex 

(from 1 to 5), we could not use species as labels for such a pretext task, because it led to 

systematic overfitting of the classifier. Instead, we found a workaround using clustering to 

create pseudo labels for the classification. Using a pretrained network, we clustered images 

into 16 groups, representing broad phenotypic groups, which we used as labels for 

classification. The pre-training being on the same database that our SimCLR method 

(ImageNet), the evaluation is not completely independent from the training. However, we 

do not dispose of a ground truth or enough images and so this workaround was the best 

way to evaluate the model. Moreover, we took care of comparing SimCLR only pre-trained 

with SimCLR further trained on our database, which showed improvement in performance, 

showing that we effectively learned information specific to our data. 

 

To assess the ability of the learnt embeddings to contain information  about independent 

taxonomic labels, we went up one taxonomic level and trained a classifier on the 

embeddings to classify species in the right genus. This way there is enough training data 

in each class to train a classifier, even if phenotypically diverse genera may pose a 

challenge to classification. We retrieve a mean accuracy of 70%, with a minimum of 45% 

for the Graphium genus (a highly diverse genus) and a maximum of 100% for 17 genus 

out of the 29. We retrieve a f1 score of 0.95 and a kappa score of 0.94, which indicates a 

good performance of the classifier. Below is a table detailing accuracy for each class (table 

S2) 
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 Pre-trained-only 
Pre-trained and 

fine-tuned 
SimCLR trained 

Mean accuracy 84% 87% 95% 

F1 score 0.84 0.88 0.97 

Kappa score 0.81 0.86 0.96 

Table. S1. Evaluation metrics for the classification network only pretrained on ImageNet, 

fine tuned on our butterfly pictures, and trained with SimCLR on our butterfly pictures. 

Mean accuracy is the mean percentage of correct prediction over all classes. F1 score is a 

measure between 0 and 1 with 1 being the value for a network that perfectly predicts 

classes, that takes into account both precision and recall, i.e. number of true positives and 

false positives. Kappa score is a parameter ranging from 0 to 1, estimating reliability while 

correcting for the number of classes. Kappa=1 is obtained when a network perfectly 

predicts classes. 

 

Class Accuracy(%) 

Parides 100 

Mimoides 100 

Battus 93.1 

Hypermnestra 100 
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Iphiclides 75 

Archon 100 

Sericinus 100 

Troides 100 

Teinopalpus 100 

Ornithoptera 84.9 

Protesilaus 100 

Pharmacophagus 100 

Trogonoptera 100 

Baronia 100 

Bhutanitis 100 

Allancastria 100 

Meandrusa 94.1 

Lamproptera 93.8 

Graphium 45 
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Parnassius 90.3 

Eurytides 81.9 

Luehdorfia 100 

Protographium 87.5 

Pachliopta 100 

Papilio 100 

Atrophaneura 66.7 

Zerynthia 100 

Cressida 88.4 

Euryades 85.7 

Table S2. Accuracy of classification of phenotypes into each genus, learned from SimCLR 

embeddings only.  
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Fig. S1. Network architecture made of a Resnet50 convolutional neural network backbone 

and a multilinear projection head. 

 

 

Fig. S2. Pairwise phenotypic Euclidean distances distribution computed from the 20-

dimensional morpho space coordinates, for interspecific pairs and intraspecific pairs 
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separately for a) males and b) females. The same test was repeated for every genus 

separately, and among the 30 represented genus the interspecific distances were majorly 

higher than intraspecific distances (male dorsal sides: 23, 2 genera non-significant, 6 

genera with only one species, females dorsal side: 17, 3 genus non-significant, 10 genera 

with only one species). 

 

 

Fig. S3. 2D T-SNE projection of the 2048-dimensional embeddings obtained from the 

trained SimCLR network. This projection clusters together embeddings that are close in 

the original space but does not conserve distances, and thus is only helpful to visualize 

clusters of phenotypes.  
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2. Impact of shape on phenotypic space. To investigate the impact of wing shape on the 

final phenotypic space, we generated a dataset constituted by the masks of the wings for 

each image, filled with random colors. We then trained the method in the exact same way 

using this dataset, and compared the phenotypic spaces obtained. The goal was to keep the 

wing shape but randomize color, allowing us to separate the impact of shape from the 

impact of color. We computed several multivariate correlation measures between the 

coordinates from the two different trainings using the MatrixCorrelations R package, 

ranging between -1 and 1. The correlation measures showed little correlation – the 

maximum value being 0.27 - between the two phenotypic spaces, meaning that the wing 

shape did not impact much the distance measures. 

 

Fig. S4. Various matrix similarity coefficients between the actual phenotypic space and the 

phenotypic space learned only using wing shape and randomizing colors. PSI : Procruste 

similarity between the two multidimensional datasets. Other statistics are listed in the 

MatrixCorrelation package. 
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3. Geographical patterns of diversity and phenotypic convergence and divergence. To 

test for spatial variation in color pattern disparity, computed as the average squared 

distance of phenotypes from the centroid of phenotypes, we then gathered the geographical 

range distribution at the species level for 225 out of the 267 species where both male and 

female phenotypes were sampled. By mapping the phenotypic disparity on the world map 

and comparing it with species richness, phylogenetic diversity (Fig. S5), we observed that 

the areas of highest disparity were in Europe and the Middle East. The spatial variation in 

disparity therefore did not match the documented hotspots of species richness: the 

correlation between the level of spatial pattern of disparity and the local phylogenetic 

diversity was indeed poor (Spearman rank correlation on males: 0.48, females: 0.49). 

Phylogenetic and morphological diversity indices were computed using the 

EcoPhyloMapper package in R. 
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Fig. S5: Geographical mapping of species richness (a), phylogenetic diversity (b), male 

phenotypic disparity (c), and female phenotypic disparity (d).  
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Fig. S6: Geographical mapping of the detected convergence and divergence. Convergent 

and divergent areas are the intersection between range areas of the pair detected convergent 

or divergent. The color bar represents the maximum convergence and divergence strength. 

a) Mapping of male maximum convergence strength b) Mapping of male maximum 

divergence strength c) Mapping of female maximum convergence strength d) Mapping of 

female maximum divergence strength 

 

4.Simulation based approach using the mvMorph package. Using the mvMorph 

package, we fit multivariate models of evolution to our 20 dimensional trait data provided 

by our machine learning algorithm. We fit a brownian motion model, a Ornstein-

Uhlenbeck model and an Early Burst model and evaluated the best fitting model using GIC 

value. We also fitted a lambda model in order to test for a model that accounts for the 

significant phylogenetic signal detected in our data. For females, the brownian motion 

model and the lambda model were the best fitting one (lambda-BM : delta GIC = 0.002, 
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OU-BM : delta GIC = 2.53, EB-BM : delta GIC = 2.002). For males, the Ornstein-

Uhlenbeck model was the best fitting one but very close to the BM model (lambda-OU : 

delta GIC = 1.872, BM-OU : delta GIC = 1.878, EB-OU = 3.879). 

As the OU and BM/lambda models were very close in terms of GIC (delta GIC<2), and 

the OU model is not justified in our case as it is very unlikely that there exists a single 

optimum phenotype for the whole Papilionidae family at the global scale, as well as the 

impossibility to estimate OU parameters in such high dimensions, we selected the lambda 

model to simulate our traits so as to still account for phylogenetic signal. 

 

We thus simulated trait evolution with the model estimated parameters on the lambda 

transformed tree for 10000 simulations.  

We then compared the observed pairwise mean phenotypic distance for sympatric species 

standardized by the overall mean pairwise phenotypic distance across all species, with the 

same statistic in our simulations.  

When assuming that sympatry implies at least 20 % of overlap in geographic distribution 

between the two species (as in the analyses reported in our initial manuscript), we found 

similar results: significatively smaller phenotypic distances were observed in sympatry 

compared to simulations for females (p<0.01), but for males the signal was less strong and 

not significant at the 5% level but close (p=0.06).  

When changing the arbitrary cut-off to assign species pairs to the sympatric and allopatric 

group, we observed the same trend. Assuming increased levels of overlap to assign species 

to the sympatric group, makes the test more significant for both males and females, in line 

with the results obtained on the degree of overlap in the PLMM analyses. 
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Fig. S7: Distribution of null model simulated mean standardized distances for males after 

10,000 simulations for sympatric pairs in blue and allopatric pairs in pink. The dashed blue 

vertical line corresponds to the observed mean standardized distance of pairs of sympatric 

species, and the dashed pink vertical line corresponds to the observed mean standardized 

distance of pairs of allopatric species. (for a sympatry cutoff of 20% : p=0.06, 30% : 

p=0.07, 40% : p<0.05, 50% : p<0.05) 
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Fig. S8: Distribution of null model simulated mean standardized distances for females after 

10,000 simulations for sympatric pairs in blue and allopatric pairs in pink. The dashed blue 

vertical line corresponds to the observed mean standardized distance of pairs of sympatric 

species, and the dashed pink vertical line corresponds to the observed mean standardized 

distance of pairs of allopatric species. (for a sympatry cutoff of 20% : p<0.01, 30% : 

p<0.01, 40% : p<0.001, 50% : p<0.01) 

 

5. Phylogenetic Linear Mixed Models (PLMM) results 

We fitted the following model for males and females separately (random effects are in 

brackets): 

Phenotypic distance ~ Overlap + Phylogenetic distance + Phylogenetic distance² + 

Overlap*Phylogenetic distance + Overlap*Phylogenetic distance² + (Species 1) + (Species 

2) 
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Where for each data point (pair of species) a link is made to the phylogeny to account for 

phylogenetic relatedness. Predictor variable were standardized prior to fitting. 

The quadratic term of phylogenetic distance was added to account for non-linear 

accumulation of phenotypic distance regarding phylogenetic distance, following Tobias et. 

al. (2014 - Nature). A negative term indicates a deceleration of the increase of phenotypic 

distance with phylogenetic distance (hump-shaped curve). 

Variable Coefficient p-value 

Overlap -0.01156030 < 2.2e-16 

Phylogenetic distance 0.00478737 0.1895 

Range 

overlap:Phylogenetic 

distance 

0.00920400 1.559e-09 

Phylogenetic distance² -0.04647549 < 2.2e-16 

Range 

overlap:Phylogenetic 

distance² 

0.00481016 1.360e-11 

Random effect Variance p-value (LRT test) 

Lineage 1 0.0010229 < 2.2e-16 

Lineage 2 0.0019745 < 2.2e-16 

 Table S3: PLMM results for males 
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Variable Coefficient p-value 

Overlap -0.01541798 < 2.2e-16 

Phylogenetic distance 0.00574119 0.1167 

Range overlap:Phylogenetic 

distance 

0.00899770 4.56e-09 

Phylogenetic distance² -0.03948247 < 2.2e-16 

Range overlap:Phylogenetic 

distance² 

0.00372303 2.02e-07 

Random effect Variance p-value (LRT test) 

Lineage 1 0.0008321 < 2.2e-16 

Lineage 2 0.0014118 < 2.2e-16 

Table S4: PLMM results for females. 

 

6. Permutations of phenotypes among sex 

 

Following van der Bilj et. al. (Evolution Letters, 2020), we permuted the phenotypes 

between sexes for each species and obtained an expected distribution of the median of our 

divergence index (r) under the assumption of no sex-specific signal (Fig. S9). The red 

vertical line shows the observed median of r in the pairs of sister species of our dataset. 
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Fig. S9: Distribution of expected median of the divergence index from 10,000 

permutations. 

 

7. The impact of phylogenetic correction on detection of convergence and divergence 

events 

As we detected significant phylogenetic signals on wing color variations, we used a linear 

regression to account for the effect of phylogenetic distances in our analyses. We found 

that convergent pairs were more distantly related compared to divergent pairs, and that 

convergence strength was higher than divergence strength. Nevertheless, this phylogenetic 

correction might bias our detection of convergence and divergence events. When closely-

related species display a strong phenotypic similarity, it is challenging to disentangle the 
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effect of shared ancestry from selection promoting color pattern convergence. Conversely, 

when distantly-related species display very different phenotypes, the relative effects of 

phylogenetic distance from divergence due to selection are confounding. The necessary 

phylogenetic correction therefore limits the detection of (1) convergence events among 

closely-related species, and (2) divergence among distantly-related species. The greater 

number of convergence events detected in our study among distantly- vs. closely-related 

species might stem from decreased reproductive interferences in phylogenetically distant 

mimetic species but might also stem from the bias induced by the phylogenetic correction. 

Nevertheless, the significantly greater strength of convergence as compared to divergence 

in sympatry estimated from our analyses despite phylogenetic correction suggests that 

natural selection promoting convergence in sympatric species is a significant evolutionary 

force interacting with neutral divergence. Moreover, the PLMM analysis show similar 

results regarding phylogenetic distances. Other measurements of convergence, such as the 

C1 statistic (36), are also a distance based statistic with permutations to assess significance 

have the same phylogenetic bias. This C1 statistics was recently used to assess convergence 

among models and mimics within communities (Basu et. al. 2022, Proceedings of the 

National Academy of Sciences) but is more computationally intensive than our method. 

When computing the C1 statistic for our convergent pairs and comparing our convergent 

strength, we found similar results.  

 


