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Dynamical stabilization is the ability of a 1 statically diverging stationary state to gain stability by 2 periodically modulating its physical properties in time. 3 This phenomenon is getting recent interest because it 4 is one of the exploited feature of Floquet engineer-5 ing that develops new exotic states of matter in the 6 quantum realm. Nowadays, dynamical stabilization is 7 done by applying periodic modulations much faster 8 than the natural diverging time of the Floquet systems, 9 allowing for some effective stationary equations to be 10 used instead of the original dynamical system to ratio-11 nalize the phenomenon. In this work, by combining 12 theoretical models and precision desktop experiments, 13 we show that it is possible to dynamically stabilize a 14 system, in a "synchronized" fashion, by periodically 15 injecting the right amount of external action in a pulse 16 wave manner. Interestingly, the Initial Value Problem 17 underlying this fundamental stability problem is related 18 to the Boundary Value Problem underlying the deter-19 mination of bound states and discrete energy levels of a 20 particle in a finite potential well, a well-known problem 21 in quantum mechanics. This analogy offers a universal 22 semi-analytical design tool to dynamically stabilize a

Introduction

Floquet engineering is a passive technique that enables to shape the effective potential energy landscape of a physical system by periodically varying its geometrical or mechanical properties in time [START_REF] Holtaus | Floquet engineering with quasienergy bands of periodically driven optical lattices[END_REF]2]. This technique is widely used in physics because it can cause particles or systems to move to new stable equilibrium configurational states that would otherwise not exist when no periodic modulations are applied. For example, by periodically varying gravitational acceleration through the use of a mechanical shaker, naturally collapsing inverted pendulums can be dynamically stabilized [START_REF] Smith | Experimental study of an inverted pendulum[END_REF][START_REF] Acheson | Upside-down pendulums[END_REF] and the direction of buoyancy can be inverted so that boats start to float upside-down [START_REF] Apffel | Floating under a levitating liquid[END_REF]. This idea of dynamical stabilization also allows to trap naturally diverging charged particles in periodically varying electromagnetic fields [START_REF] Wolfgang | Electromagnetic traps for charged and neutral particles[END_REF] which is the key mechanism of mass spectrometers. Using a driving laser with periodic pulses, Floquet engineering is also exploited to generate new electronic properties in a solid, turning insulator into a metal or a metal into a superconductor [START_REF] Chávez-Cervantes | Charge density wave melting in one-dimensional wires with femtosecond subgap excitation[END_REF].

The fundamental model to rationalize those dynamical phenomena is the one of a single 1 degree-offreedom (d.o.f.) mass in a potential energy landscape that is periodically modulated in time [START_REF] Lazarus | Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential[END_REF][START_REF] Grandi | Enhancing and controlling parametric instabilities in mechanical systems[END_REF]. Floquet engineering assumes that the time scale of modulation is much shorter than the natural time scales of the moving mass so that averaging techniques and separation of time scales can be used and the concept of a resulting effective potential energy landscape is applicable [START_REF] Bukov | Universal highfrequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering[END_REF].

In this framework, the principle of dynamical stabilization, firstly rationalized by Kapitza in 1951 [START_REF] Stephenson | XX. On induced stability[END_REF][START_REF] Kapitza | Dynamical stability of a pendulum when its point of suspension vibrates, and pendulum with a vibrating suspension[END_REF], is that a naturally diverging mass in a potential with a negative local curvature can be dynamically stabilized by periodically modulating the curvature, as soon as the modulations are fast enough with respect to the diverging speed and the curvature is at least positive, i.e., the mass is oscillating in a potential well, for some time over the period.

The stability diagram of the aforementioned 1 d.o.f. Periodically Oscillating-Diverging System (P.O.D.S.) is easy to compute and consists of alternating stability and instability tongues in the modulation parameter space. Kapitza's averaging techniques allow to rationalize one asymptotic limit of the first stability tongue of a P.O.D.S., but the rest of the stability diagram, where the diverging and the modulation time scales are of same order of magnitude, has been overlooked, especially from a physical point of view. We believe it is important to gain physical insights in this regime that we coin "synchronized stabilization" since, not only it represents an important theoretical asymptotic limit that could be of practical importance for Floquet engineering, but it also embraces a fundamental problem in physics, that is not addressed with Kapitza's approach: what is the minimal amount of external action (external potential energy added over time) periodically needed to dynamically stabilize a mass. In this paper, we answer those questions on a 1 degree of freedom P.O.D.S. model with a square wave modulation function (in this case, the stability diagram is analytically defined) that we study both experimentally and numerically.

When trying to dynamically stabilize the mass but spending most of the period in a diverging state, we found that stabilization still exists but in discrete and narrow regions of the modulation parameter space which correspond to the tips of the stability tongues of our P.O.D.S. In this asymptotic limit, it means only a discrete set of square-wave modulation functions exists for which the oscillations of the perturbed mass would 99 remain bounded about its equilibrium position. More-100 over, after proper scaling, those marginally stable oscil-101 lations can be described by a single periodic carrier 102 function whose modal shape depends on the order of 103 the stability tongue we consider. Interestingly, the loca-104 tion of the tips and the shape of the periodic carrier can 105 be pseudo-analytically obtained by solving an eigen-106 value problem with varying coefficients in an infinitely 107 large elementary time-cell (mathematically analog to 108 the one of a particle in a finite potential well which 109 is a famous problem in quantum physics [START_REF] Messiah | Quantum Mechanics[END_REF]) instead 110 of classically solving the original initial value prob-111 lem. Finally, by re-introducing the diverging period, it 112 turns out the "quantum" analog problem leads to mas-113 ter curves in the whole modulation parameter space 114 that are always located in the stability tongues of the 115 P.O.D.S. This offers design opportunities that we val-116 idate experimentally with the dynamical stabilization 117 of an electromagnetic pendulum.
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In Sect. 2, we introduce the P.O.D.S. model of a 1 119 d.o.f. mass in a potential energy landscape that vary 120 periodically in time in a square wave fashion, alto-121 gether with its model experiment that is the dynami-122 cal stabilization of an electromagnetic inverted pendu-123 lum developed in our laboratory. In Sect. 3, thanks to 124 numerical experiments, we rationalize the physics of 125 the dynamically stabilized mass for modulation func-126 tions located at the tips of the stability tongues. Based 127 on the results of Sect. 3, we propose in Sect. 4 a pseudo-128 analytical method to derive master curves that belong 129 to the stability tongues whatever the chosen modula-130 tion parameters of the P.O.D.S. Thanks to this prop-131 erty, we show that we can use those pseudo-analytical 132 master curves to easily find the modulation parameters 133 required to dynamically stabilize the aforementioned 134 electromagnetic inverted pendulum.

u n c o r r e c t e d p r o o f

New physical insights in dynamical stabilization Fig. 1 One degree of freedom model of a Periodically Oscillating-Diverging System (P.O.D.S.) with a square wave periodic potential energy V(q, t) = V (t) × (1 + q 2q 4 ). a Mass in a potential energy landscape that periodically "jumps" between V(q) = V D × (1 + q 2q 4 ) in blue line and

V(q) = E ×(1+q 2 -q 4 ) in red line with E = V D + V . Here, V D = -1 and V = 2. b Square wave modulation function V (t)
in the classic quadratic form: 

143 T ( q) = 1 2 I q2 ( 
V(q, t) = V (t) × (1 + q 2 -q 4 ) (+Cste) (2) 
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where To predict the motion of the mass parameterized by q(t) and q(t) in such a potential energy, one can derive the Hamilton equations. To do so, we introduce the generalized impulsion p(t) = ∂L(q, q, t)/∂ q = I q where L(q, q, t) = T ( q) -V(q, t)

V (t) = V D + V (t)
= 1 2 I q2 -(V D + V (t))(1 + q 2 -q 4 ) (3) 
is the Lagrangian of the dynamical system. Introducing the time-dependent Hamiltonian H(q, p, t) = p q -L(q, q, t)

= 1 2 I q2 + (V D + V (t))(1 + q 2 -q 4 ) (4) 
one can derive the nonlinear equations of motion

˙ q(t) p(t) = ∂H ∂ p -∂H ∂q = p/I -(V D + V (t))(2q -4q 3 ) (5)
The trivial fixed point (q * , p * ) = (0, 0) is a solution of the nonlinear equations of motion whatever the physical parameters of the system and the linearized equation of motion about (q * , p * ) = (0, 0) reads simply

˙ q(t) p(t) = 0 1 /I -2(V D + V (t)) 0 q(t) p(t) (6) 
which can be rewritten in the form of a second-order linear differential equation whose evolution function varies, depending on when we are during a period

q(t) + 2 I (V D + V )q(t) = 0 during T O q(t) + 2 I V D q(t) = 0 d u r i n g T D ( 7 
)
According to Lyapunov's definition and introducing the state vector X(t) = {q(t), p(t)} T , we can assess the mass is dynamically stable (or Lyapunov stable) about The zero-order property of a P.O.D.S. like the one depicted in Fig. 1 is the symmetry of the potential energy landscape with respect to the generalized coordinate q(t) parameterizing the mass. This is the case with the electromagnetic pendulum of Fig. 2a since the geometry, electromagnetic forces F(i) and weight mg are all symmetric with respect to the angle θ(t) = q(t). A direct consequence is that the upright vertical position of the mass θ(t) = 0 is an equilibrium configuration whatever the loading parameter F(i).

X * = {q * , p * } T = {0, 0} T if it exists δ(ε) > 0 such that, if X(0) -X * < ε, we have X(t) -X * < δ for all time. If X(t) -X * → 0 for t → ∞,
The first-order property of a P.O.D.S. is to periodically vary between a negative and positive local curvature of the potential about the equilibrium position q(t) = 0. This is indeed a property of the electromagnetic pendulum that is illustrated in Fig. 2b which shows the evolution of the natural time scale of the perturbed pendulum about its upright equilibrium position for various value of the control parameter i. When i = 0, the electromagnet is OFF and when one initially brings the pendulum upright, the mass is exponentially diverging from the equilibrium θ(t) = 0 with a typical time scale 1/ω(0) = 0.09 s (red star, Fig. 2b where we put a minus sign for ω(0) to highlight that the mass is diverging) that is very close to the theoretical value √ L/g = 0.08 s. Above a critical current i c ≈ 0.17 A, the upright equilibrium position starts to be stable. From i c to i ≈ 0.4 A, the mass is neutrally stable and although the perturbed pendulum oscillates back to θ(t) ≈ 0, it is difficult to properly define a time scale for the oscillations (green stars, Fig. 2b). Above i ≈ 0.4 A, the perturbed pendulum performs damped oscillations before coming back to θ(t) = 0, the angular frequency ω(i) is reproducibly measurable blue stars, Fig. 2b and fairly independent on the strength of the initial perturbations, i.e., the electromagnetic forces F(i) appear constant in the vicinity of the mass. at first order by the linear equations of motion Eq. ( 7)
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where the generalized coordinate q(t) is the angle θ(t) the damping time scale, the perturbed oscillations can be fairly modeled by the undamped linearized equation θ(t) + ω(0.48) 2 θ(t) = 0 with ω(0.48) = 19.5 rad/s as inferred from Fig. 2b. By identification, it comes E = V D + V = 1 2 I ω(0.48) 2 = 3.24 mJ in Eq. ( 7) so that V = 4.28 mJ. We recall the solution of Eq. ( 7) can be sought in the Floquet form θ(t) = (t)e st + ¯ (t)e -st where (t) = (t + T ) is a T -periodic complex eigenfunction and s is a complex eigenvalue called the Floquet exponent [START_REF] Lazarus | Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential[END_REF][START_REF] Calico | Control of time-periodic systems[END_REF][START_REF] Bentvelsen | Modal and stability analysis of structures in periodic elastic states: application to the Ziegler column[END_REF]. In the case of a square-wave modulation function, Eq. ( 7) is called the Meissner equation and the Floquet exponent can be analytically solved [START_REF] Grandi | Enhancing and controlling parametric instabilities in mechanical systems[END_REF][START_REF] Van Der Pol | II. On the stability of the solutions of Mathieu's equation[END_REF][START_REF] Sato | Correction of stability curves in Hill-Meissner's equation[END_REF]. The blue color regions with max( (±s)) = 0 in Fig. 3 indicate quasi-periodic oscillating solutions θ(t) about θ(t) = 0, i.e., a neutrally stable mass when the white regions where max( (±s)) > 0 point out to infinitely amplified response, i.e., a mass that should dynamically repel from θ(t) = 0 whatever the initial conditions.

Figure 3 shows a remarkable agreement between experimental and numerical results, without fitting parameters. We easily recognize the white parametric instability tongues typical of Floquet systems like P.O.D.S. Those tongues of parametric pumping appear, for T D → 0, at particular ratios between the period of modulation T O ≈ T and the natural period of the system 2π/ω(0.48), following kT O /(4π/ω(0.48)) where k is a positive integer value that represents the number of the tongue. Interestingly, it is easy to observe highly sub-harmonic instability tongues (tongues with large k) using a P.O.D.S., whereas it is well known that triggering parametric pumping above k = 1 is usually complicated in macroscopic Floquet systems where the modulation of local curvature of potential energy is limited and dissipation is intrinsically important [START_REF] Grandi | Enhancing and controlling parametric instabilities in mechanical systems[END_REF]. In this paper, we are not interested in the classic Kapitza limit T O 2π/ω(0.48) (very left part of Fig. 3), but rather in the blue stability "tongues" that verify T O ≈ 2π/ω(0.48). Moreover, we think the limit T D → T , i.e., the tips of the stability tongues are of fundamental interest because (i) they are the counterpart of the tips of the instability tongues and unlike them, they remain even in the presence of dissipation (see Appendix 2), (ii) they correspond to the periodic modulation functions with minimal input action V (t)dt to stabilize a naturally diverging system. In the next section, we explore the tips of the stabilization tongues numerically as they are impossible to reach experimentally using the macroscopic setup presented here. 4a shows 369 the evolution of a neutrally stable generalized coordi-370 nate q(t) over three period for q(0) = 0.1 × 10 -10 Fig. 5 Basin of attraction of the fixed point (q * , p * ) = (0, 0) showing the initial conditions (q(0), p(0)) for which the nonlinear response of Eq. ( 5) is neutrally stable. We place ourselves at the tip of the first stability tongue of Fig. 3 for T O = 0.052794 s and q(0) = -0.2 × 10 -10 s -1 when Fig. 4b shows the evolution of the associated Hamiltonian H(q, p, t) =

1 2 I q2 +(V D + V (t))(1+q 2 -q 4 )
as a function of time as well as the evolution of the square-wave modulation function V (t) = V D + V (t) in green line. When approaching the tip of the stability tongue, the basin of attraction drastically shrinks about the equilibrium point (q * , p * ) = (0, 0) as shown in the phase space of Fig. 5 for the first stability tongue for T O = 0.052794 s. As a consequence, the generalized coordinate q(t) and impulsion p(t) start to be small with respect to V (t) and the Hamiltonian starts to be independent on them such that H(q, p, t) ≈ H(t) ≈ V (t) = V D + V (t) where V (t) approaches a Dirac comb when T D /T → 1. Another consequence of the initial input energy having to be very small for the mass to be stabilized at the tip of the tongues is that all the neutrally stable responses can be predicted by the linearized Eqs. ( 6)-( 7), as illustrated in Fig. 4a (black and green curves perfectly overlap). According to Floquet theory, it means the oscillatory motion can actually be decomposed in the Floquet form [START_REF] Calico | Control of time-periodic systems[END_REF], θ(t) = (t)e j (s)t + ¯ (t)e -j (s)t (since the response is stable, we have (s) = 0), where the carrier eigenfunction (t) = (t + T ) is a T -periodic function that is shown in green dotted line in Fig. 4a.

From Figs. 4 and5, the dynamical stabilization at the tip of the stability tongues can be physically understood by a process that repeats on each period. When V (t) < 0 during T D /2, the local curvature of the potential energy is negative and the mass diverges. Then, V (t) becomes positive during T O and so is the local curvature so that the mass is oscillating. The dura-u n c o r r e c t e d p r o o f New physical insights in dynamical stabilization tion T O and the value of input potential energy V are such that, at the moment V (t) becomes negative again, the state of the mass (q(t), q(t)) is almost the time reversal of the state of this mass T O seconds ago.

As a consequence, when V (t) becomes negative again during T D /2, the motion of the mass decays up to a state (q(t), q(t)) very close to the one we had T seconds ago. In fine, the modulation function V (t) is such, that the system almost loses its memory after each period and as a consequence, the mass periodically repeats the same motion, albeit with a different amplitude reminiscent of the quasi-periodic nature of the motion. Since in Figs. 4 and The width of the tip of the stability tongues starts to shrink drastically as T D → T , nevertheless this width will ever exist in the Meissner equation of motion [START_REF] Chávez-Cervantes | Charge density wave melting in one-dimensional wires with femtosecond subgap excitation[END_REF].

Figure 6 illustrates what is going on when one navigates in the tip of a stability tongue. Figure 6a,b shows the influence of a perturbation on oscillating time T O (here, we add 1 µs) and input energy V (we add 10 nJ), respectively, on the response of Fig. 4a. We see that the qualitative shape of the neutrally stable responses, that we can decompose in the Floquet form θ(t) = (t)e j (s)t + ¯ (t)e -j (s)t , is still a successive repetition of a scaled version of a similar Floquet eigenfunction (t), although the scaling on each successive periods is chronologically different. This can be understood because, when moving in the tip of a stability tongue, the imaginary part of the Floquet exponent (s), which is responsible for the modulation of (t) The qualitative behavior highlighted in the previous 457 section suggests that we work in a fix elementary time 458 cell instead of the classic dynamical vision that consists 459 in looking at the state variables as time is passing. This 460 is what we do in Fig. 7a where we have superposed in 461 color lines the 20 first periods of the various neutrally 462 stable q(t) of Figs. 4 and6 on a single elementary cell 463 between -T /2 and T /2 (we recall the stability of the 464 mass is not altered by a phase difference of the mod-465 ulation function V (t)). We also report in black line on 466 that figure the periodic eigenfunctions (t) of Fig. 6a 467 that we recall is almost not influenced by where we are 468 located in the tip of the stability tongue. We see that all 469 the responses are similar but differ from a scaling factor 470 so that, if we were to represent an infinity of periods 471 of a given point at the tip of the stability tongue, the 472 T /2, we lost information about the actual response q(t) 493 that is a sequence of scaled (t) periods after periods and we lost track of the width of the tip of the stability region or the basin of attraction, but we will be able to derive a boundary problem to analytically predict the triplet (T O , V, E) and (t) that stabilize the mass for T O T .

The first step for this is to note that, since E = V D + V , the linearized equation of motion [START_REF] Chávez-Cervantes | Charge density wave melting in one-dimensional wires with femtosecond subgap excitation[END_REF] can be recast in the form of a linear eigenvalue problem with a variable coefficient in the elementary periodic cell

           - I 2 d 2 dt 2 + 0 (t) = E (t) for |t| < T O 2 - I 2 d 2 dt 2 + V (t) = E (t) for T O 2 < |t| < T 2 ( 8 
)
where because of the normalization of (t) and its compact form on [-T /2, T /2], we will assume the boundary conditions (-T /2) = (T /2) = 0. As we go closer to the tip of the stability tongue, the compacity of (t) is ever more pronounced and T T O so that we are encouraged to get rid of the diverging modulating time and write equation ( 8) on an infinite elementary time cell

- I 2 d 2 dt 2 + U(t) (t) = E (t) (9) 
with

     U(t) =0 for |t| < T O 2 U(t) = V for |t| > T O 2 and (-∞) = (+∞) = 0.
Doing so, the variable T (or T D ) is no more visible in Eq. ( 9), but the latter is now a famous Sturm-Liouville problem that can be analytically solved (Appendix 3 describes the theoretical process to compute E and (t)). In fact, Eq. ( 9) is the sort of mathematical equation that underly the quantum eigenvalue problem that consists in finding the energy levels and stationary wave functions of a particle confined in a finite potential well [START_REF] Messiah | Quantum Mechanics[END_REF]. To confirm that this boundary value problem is the one that relates T O , V , E and (t) close to the tip of the stability tongue in the infinite elementary time cell, we apply it to the numerical data we showed in Fig. 7. Taking T O = 0.052794 s and V = 4.28 mJ (we fix the elementary action S = T O × V shown in red in Fig. 7), we find an eigenvalue E 0 = 3.24 mJ and an eigenvector 0 (t) that matches the ones we found in Collapse of the trajectories q(t) of a on the Floquet eigenfunction (t) and evolution of the associated modulation function V (t) (equivalent to H(q, p, t)). The eigenfunction 1 (t) and eigenvalue E 1 of Eq. ( 9) are reported on the figure Fig. 7b. Note that the eigenfunction 0 (t) of Eq. ( 9) is 534 theoretically between -∞ and +∞ and not between 535 -T /2 and T /2 like the Floquet eigenfunction, but both 536 functions are similar after the same normalization.
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Figure 8 shows the neutrally stable response q(t) with its associated modulation function V (t). Taking T O = 0.21365 s and V = 4.28 mJ in the eigenvalue problem of Eq. ( 9), we find an eigenvalue E 1 = 3.24 mJ and an eigenfunction 1 (t) that indeed correspond to the results, we obtained from the original Initial Value Problem as shown in Fig. 8b. Unlike the previous case at the tip of the first stability tongue, E 1 and 1 (t) are the second eigenvalues and eigenfunctions of Eq. ( 9).

In the next section, we will generalize our approach to the whole space of the square-wave modulation functions V (t) in order to rationalize the synchronized dynamical stabilization of our P.O.D.S.

Master curves for the stability tongues

From an initial value problem to a boundary value problem

Using the boundary conditions (-∞) = (+∞) = 0 and the matching conditions between the differentiable solutions of Eq. ( 9) inside and outside the well in the elementary time cell, one can establish two explicit continuity conditions, for symmetric and antisymmetric solutions (t), that relate E, T O and V (Appendix 3 or [START_REF] Messiah | Quantum Mechanics[END_REF]). Those continuity conditions cannot be satisfied for an arbitrary value of E. In the case of finite V with E < V , i.e., for V D < 0 which is the framework of P.O.D.S., the "energy levels" E i , eigenvalues of Eq. ( 9), and associated "bound states" i (t), eigenfunctions of Eq. ( 9), are discrete. Interestingly, there always exists at least one couple (E 0 , 0 (t)) even if the time well U(t) is very shallow.

By normalizing the potential height V and energy levels E by 8T 2 O /I , the normalized quantities

Ṽ = V 8 I T 2 O and Ẽ = E 8 I T 2 O ( 10 
)
are giving explicitly the relation between the allowed triplets ( V, E, T O ) as [START_REF] Stephenson | XX. On induced stability[END_REF] for symmetric and antisymmetric bound states, respectively. Those explicit master curves are shown in Fig. 9a in black and orange lines for symmetric and antisymmetric solutions, respectively. Each point on those curves represents an eigenvalue E i for a given potential U(t) (defined by a couple ( V, T O )) in Eq. ( 9). Those 596 eigenvalues are associated with an eigenfunction i (t) (in black in Fig. 9b,c) with a red area for |t| < T O /2 where E i > U(t) and blue areas for |t| > T O /2 where E i < U(t). On top of this potential U(t), we show the allowed bound states (E i , i (t)) where the origin of the local y-axis of the plotted i (t) coincides with the associated energy levels E i .

Ṽ = Ẽ | cos( Ẽ/4)| and Ṽ = Ẽ | sin( Ẽ/4)| ( 
597 that read 598              i (t) =Ge σ t for t < - T O 2 i (t) =A cos(ωt) + B sin(ωt) for|t| ≤ T O 2 i (t) =He -σ t for t > T O 2 599 ( 12 
)
A horizontal line in the master curves of Fig. 9a corresponds to a constant Ṽ , i.e., a given U(t). If 0 ≤ Ṽ < 2π , only one bound state is allowed. This is the case of Fig. 9b (represented by a green cross in Fig. 9a where we fixed I = m L 2 = 0.1076 g m 2 , T O = 0.052794 s and V = 4.28 mJ. The bound state (E 0 , o (t)) shown in Fig. 9b is the one we reported in Fig. 7 that allowed us to predict the modulation function V (t) and the Floquet eigenfunction at the tip of the first instability tongue. For 2π ≤ Ṽ < 4π , two bound states are allowed. This is for example the case of Fig. 9c (represented by a blue and red cross in Fig. 9a where we took T O = 0.21365 s this time. The second eigenmode (E 1 , 1 (t)) that is shown in red in Fig. 9c) is the one we reported in Fig. 8 that allowed us to predict the modulation function and the Floquet carrier of the response at the tip of the second stability region.

Interestingly, we see that this potential U(t) has a fundamental bound state (E 0 = 0.895 mJ, 0 (t)), shown in blue line in Fig. 9c). Following our previous assumptions, it means that for a long diverging time T D T O , the modulation function V (t) with V = 4.28 mJ and T O = 0.21365 s should be able to dynamically stabilize the mass not only for E 1 = 3.24 mJ as in Fig, 8 but also for E 0 = 0.895 mJ. And the Floquet eigenfunction of the associated neutrally stable response should approximate 0 (t). This is indeed what we observe in Fig. 16 (Appendix 4). The mathematical problem of a particle in a finite potential well, summarized in the Liouville equation ( 9), is therefore a very good design tool to predict the modulation function that would stabilize the mass of the P.O.D.S governed by Eqs. ( 5)-( 7) in the limit where T D T O . We recall we have dropped the time scale T (or T D ) in Eq. ( 8) to use Eq. ( 9) that has analytical solutions shown in Fig. 9. In the next subsection, we study the relevance of the analytical master curves of Fig. 9 in the original time-periodic Initial Value Problem Eqs. ( 5)- [START_REF] Chávez-Cervantes | Charge density wave melting in one-dimensional wires with femtosecond subgap excitation[END_REF] where T is present. To continue rationalizing the stability behavior of the 659 trivial fixed point (q(t), q(t)) = (0, 0) of the square- 7) can be recast in the dimensionless form

       q(τ ) + Ẽ 16 q(τ ) = 0 for |τ | < 1 q(τ ) - Ṽ - Ẽ 16 q(τ ) = 0 for 1 < |τ | < T /T O (13) 
where ( ) now means derivative with respect to dimensionless time τ . The normalized energies ˜ V and Ẽ are already introduced in Eq. [START_REF] Bukov | Universal highfrequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering[END_REF]. Figure 10a, b shows in blue regions, for T O /T = 0.3 (T D /T = 0.7) and T O /T = 0.75 (T D /T = 0.25), respectively, the couples ( ˜ V , Ẽ) for which the real part of the two Floquet exponents is equal to zero, i.e., the mass is oscillating about (q(t), q(t)) = (0, 0) and therefore, there exists a basin of attraction for which (q(t), q(t)) = (0, 0) is dynamically stable in the nonlinear equation of motion Eq. ( 5). Interestingly, we see that the master curves previously defined in Eq. ( 9) for 0 < E < V are indeed a good approximation of the stability tongues of the P.O.D.S. when T D /T → 1 and V D < 0 (the part of the stability tongues where V D > 0 or E > V is given in Fig. 17, Appendix 5).

Moreover, it turns out these master curves are inside the stability tongues whatever T D /T when 0 < E < V , i.e., the master curves correspond to the only triplets (T O , V, E) that theoretically lead to a dynamically stable (q(t), q(t)) = (0, 0) whatever the period T . In practice, it means one just needs to fix V , E and T O according to Eq. ( 11) in the square-wave modulation function V (t) described in Fig. 1 to theoretically assure that the mass will be stable. From there, the more the diverging time T D , the smaller the width of the tongue and basin of attraction, so the harder it is to actually stabilize the mass. Another interesting result is that the total number N of possible stability tongues for a given Ṽ = 8 V T 2 O /I is simply determined by the floor function

N = Ṽ 2π + 1 ( 1 4 )709
which is a very useful design law for synchronized dynamical stabilization. Also, in the case of an infinite well, i.e., V → +∞, we have the simple result indeed a very good analytical warm start to dynamically stabilize a naturally diverging equilibrium in a synchronized fashion. Note that we were unable to observe the second stability region for T D /T = 0.7, certainly because the width of the stability tongue, and therefore, the size of the basin of attraction was already too small. To observe this second stability region, we needed to reduce the diverging time. In Fig. 10b, we plot in blue circle some stable experimental data points for various T O , a fixed T D /T = 0.25 and a minimal current i = 0.4 A so that the inverted pendulum is oscillating with a minimal frequency ω(i) = 16 rad/s according to Fig. 2 (it is the highest slope we can do in the ( Ṽ , Ẽ) space). Again, the inverted pendulum is dynamically stabilized when we are close to the master curves. Because T D /T is smaller than in Fig. 10a, the width of the stability region (and the size of the basin of attraction about (q(t), q(t)) = (0, 0)) is larger and it is therefore easier to stabilize the system in a synchronized fashion. An experimental example of a synchronized stabilization in mode 2 is shown in Fig. 11 for a set of parameters indicated in the ( Ẽ, Ṽ ) space of Fig. 10b. We consider the electromagnetic pendulum is stabilized because, as shown in Fig 11a, even after 132 periods of modulation, the angular response of the pendulum does not exceed 1 degree which can be considered as experimental noise. Figure 11b shows a zoom on three periods as well as the experimental modulation function V (t) that we considered to visualize when the electromagnets are ON leading to a positive V (t) (this corresponds to the red regions). Given that T D /T = 0.25, we are far from the tip of the stability regions and the experimental response does not yet resemble the second stationary bound state of a particle in a finite potential well. However, we recognize a second mode because of the anti-symmetric shape and the fact that the response is having two stationary points per period.

Ẽi → 2πi (15) 

Conclusions

In this article, we have studied the local stability of a mass in a potential whose local curvature varies with time in a square wave fashion between a negative and positive value. This is a fundamental model to understand dynamical stabilization, which is a well-known concept in physics that notably explains the stabilization of an inverted pendulum in a local electromagnetic This work presents new physical insights on the concept of dynamical stabilization and uncovers a new class of dynamical systems similar in spirit to the time-crystals dynamics [START_REF] Shapere | Regularizations of time-crystal dynamics[END_REF]. We have shown a way to discretize the set of periodic modulation functions allowed to dynamically stabilize the equilibrium of a time-periodic system. According to the mathematics of second-order differential equations with periodic coefficients [START_REF] Magnus | Courier Corporation[END_REF][START_REF] Richards | Analysis of Periodically Time-Varying Systems[END_REF], one should be able to discretize this set, not only by modulating a stiffness force, or the local curvature of the potential energy, as it was shown in this article, but also by modulating viscous forces in a way that still needs to be determined.

We focused here on a 1 degree of freedom P.O.D.S. with a square wave periodic modulation function. We should next investigate whether the aforementioned fundamental results could be generalized with more degrees of freedom and other modulation functions (some numerical results qualitatively similar to the one described in this article have been already seen on a P.O.D.S with a harmonic modulation function [START_REF] Lazarus | Discrete dynamical stabilization of a naturally diverging mass in a harmonically time-varying potential[END_REF]).

The theoretical argument in this study is mainly apprehended using a numerical and experimental approach.

We believe a rigorous theoretical framework such as optimal control theory [START_REF] Kirk | Optimal Control Theory: An Introduction[END_REF] could help in a near future to rationalize the intimate mathematical relation that seems to exist between the "optimal" dynamical stabi-lization of a naturally diverging mass in a time-periodic 831 potential energy landscape, modeled by an initial value 832 problem, and the physics of a particle confined in finite 833 potential wells, that can be treated as a boundary value 834 problem. Notably, investigating whether other mathe-835 matical features of the stationary Schrödinger equation 836 such as superposition, quantum tunneling or entangle-837 ment could have some interpretations in the dynamics 838 of P.O.D.S. would be useful to gain a deeper under-839 standing of quantum analogs [START_REF] Perrard | Self-organization into quantized eigenstates of a classical wave-driven particle[END_REF][START_REF] Bush | Pilot-wave hydrodynamics[END_REF]. 13 where the influence of damping is shown in pink regions (here ξ = 0.05). The influence of viscous damping is a well-known narrowing of the tip of the instability tongues. Interestingly, the tip of the stability tongues does not disappear when viscous damping is added. Although Eq. ( 16) seems more accurate than the undamped version Eq. ( 7) that we use in this article because our electromagnetic pendulum is indeed damped during T O , the undamped stability diagram seems in better agreement with our experimental data.

      q(t) + 2ξ 2E I q(t) + 2E I q(t) = 0 during T O q(t) + 2V D I q(t) = 0 during T D 893 ( 
The thing is that there is a paradox when trying to predict the stable motions of the electromagnetic pendulum governed by the damped time-periodic Eq. ( 16). The upright electromagnetic pendulum is indeed doing damped oscillations when the electromagnets are ON and is diverging when the electromagnets are OFF. But if the electromagnets are turned ON during T O and OFF during T D in a piecewise constant periodic fashion, Eq. ( 16) will always predict that q(t) → 0 when t → ∞ in the case of stable couples (T O , T D ). However, in the experiment, the upright pendulum will always oscillate with a finite amplitude even for very long time, because although damped during T O , the latter is periodically diverging during T D so the slightest and T O /2. So, the wave function can be considered to be made up of different wave functions at different ranges of t, depending on whether t is inside or outside of the box. Therefore, the wave function can be defined as: 

(t) =      1 , if t < -T O /2 2 , if -T O /2 < t < T O /2 3 , if t > T O /2
Equation ( 18) is a linear second-order differential equation with E > 0, so it has the general solution

2 (t) = A sin (kt) + B cos (kt) (20) 
where k = √ 2E/I is a real number and A and B can be any complex numbers.

Wave function outside the box

For the region outside the box, U(t) = V , Eq. ( 17) reduces to

- I 2 d 2 1 (t) dt 2 = (E -V ) 1 (t). ( 21 
)
There are two possible families of solutions depending on whether E is greater than V (the particle is free) or E is less than V (the particle is bound in the potential). In this analysis, we focus on the latter (E < V ), so 965 the general solution is an exponential of the shape 

971

where H and I can be any complex numbers. For the expression of 1 (t) in Eq. ( 22), we see that as Eq. ( 23) as t goes to +∞, the I term goes to infinity.

976

In order for the wave function to be square integrable, Finally, the finite square-wave potential well is sym-989 metric (Fig. 14), so symmetry can be exploited to 990 reduce the necessary calculations. This means that the 991 system in Eq. ( 24) has two sorts of solutions: symmetric 992 and antisymmetric solutions. a Evolution of the generalized coordinate q(t) and Floquet eigenfunction (t). b Collapse of the trajectories q(t) of a on the Floquet eigenfunction (t) and evolution of the associated modulation function V (t) (equivalent to H(q, p, t)). The eigenfunction 0 (t) and eigenvalue E 0 of Eq. ( 9) are reported on the figure It is interesting to mention that the resolution pre-1037 viously showed is also the mathematical resolution of 1038 the classical problem of a particle trapped in a finite 1039 potential well in quantum mechanics [START_REF] Messiah | Quantum Mechanics[END_REF][START_REF] Griffiths | Introduction to Quantum 1159 Mechanics[END_REF].

1 ) 144 with

 1144 I the moment of inertia of the mass. Let us also 145 assume the mass is in a potential energy (adding a con-146 stant does not change the physics of the mass)

  147

  is a square function illus-149 trated in Fig. 1b, V D < 0 and V (t) = V (t + T ) 150 with T = T O + T D the period. During T D , the "diverg-151 ing time", we have V (t) = 0 and the potential looks 152 like the one in blue line in Fig. 1a, whereas during T O , 153 the "oscillating time", V (t) = V and the poten-154 tial corresponds to the red line in Fig. 1a. It is clear 155 from Fig. 1 that in the static case V (t) = V for 156 all t, the mass would be stable about the equilibrium 157 q = 0 only if V > |V D |, i.e., the mass is in a poten-158 tial energy with a local positive curvature about q = 0. 159 But in the dynamical case V (t) = V (t + T ), it 160 should be possible to periodically have moments when 161 V < |V D | and still be locally stable. The question of 162 stability then becomes intricate, and one needs to start 163 looking at the equation of motion of the mass.

Fig. 2

 2 Fig. 2 Characterization of the experimental P.O.D.S. a Sketch of the experimental setup: an inverted pendulum in a symmetric electromagnetic field controlled by the electrical current i(t). b Natural time scale ω(i) of the transverse response of the upright pendulum when subjected to a perturbation for various values of the control parameter i (a minus sign means a characteristic diverging time when a positive ω(i) corresponds to an angular frequency of the oscillatory motion)

213 2 . 2

 22 Experimental PODS: the dynamic stabilization of 214 an inverted pendulum 215 The 1 degree-of-freedom P.O.D.S. we built in the 216 laboratory is an electromagnetic inverted pendulum 217 (Fig. 2a). It consists of a metallic marble of mass 218 m = 28 g that is attached to a plexiglass rod of length 219 L = 6.2 cm and mass m rod = 1.5 g (we neglect the 220 mass of the rod in our calculations of moment of iner-221 tia I ). The rod is then constrained to rotate only in one 222 plane as shown with the picture of the experimental 223 setup in Fig. 12 of Appendix 1. Finally, the mass is sym-224 metrically placed below an electromagnet. When some 225 electrical current i passes through the electromagnet, 226 the latter can attract the metallic bob of the pendulum 227 thanks to electromagnetic forces F(i) in the opposite 228 direction of weight mg where g = 9.81 m/s 2 is the 229 gravitational acceleration. The motion of the electromagnetic pendulum, that is constrained to move in a plane, is fully parameterized by the angle θ(t) between the vertical axis and the almost weightless rigid bar.

Fig. 3

 3 Fig. 3 Numerical and experimental stability diagram of the upright vertical pendulum when the current is modulated with a square-wave T -periodic function: i = 0 during T D and i = 0.48 A during T O with T = T O + T D . Blue regions represent dynamically stable (T O , T D ) when white regions represent unstable ones. Blue and red dots represent stable and unstable experimental data points, respectively

297 and I = m L 2 =

 2 1.076 × 10 -4 kg.m 2 . During T D , 298 i = 0 A and the diverging mass of the upright inverted 299 pendulum is governed by θ(t)ω(0) 2 θ(t) = 0 with 300 ω(0) = -11.1 rad/s as shown in Fig. 2b (see Appendix3011 and movie 1 in [14]). By identification, it comes 302 V D = -1 2 I ω(0) 2 = -1.04 mJ in Eq. (7). During 303 T O , i = 0.48 A and the perturbed upright pendu-304 lum is doing damped oscillations about θ(t) = 0 305 (see Appendix 1 and movie 2 in [14]). Because we 306 consider T O that are relatively small as compared to 307

Fig. 4

 4 Fig.[START_REF] Acheson | Upside-down pendulums[END_REF] Numerical response at the tip of the first stability tongue of Fig.3for T O = 0.052794 s and T D /T = 0.95. a First three periods of the neutrally stable generalized coordinate q(t) for q(0) = 0.1 × 10 -10 and q(0) = -0.2 × 10 -10 s -1 . Nonlinear and linear responses are in black and green full line, respectively. The dotted green lines are the Floquet eigenfunctions of the linear response. b Hamiltonian of the nonlinear response and modulated function V (t). The average input potential V is shown in orange

  Figure

  5 we are at the tip of the first stability tongue, the mass has the time to do only one oscillation during T O , i.e., q(t) is changing sign only once. Because of this particular physical behavior at the tip of the stability tongues and to contrast with the classic Kapitza stabilization, we coin this phenomenon synchronized dynamical stabilization. An interesting property of this synchronized stabilization is shown in Fig. 4b in orange line where we represent the average input potential energy < V >= S × f = ( V × T O ) × (1/T ) where S is the input elementary action and f is the frequency of modulation. When in static, i.e., for V (t) = V for all t, one needs V > |V D | = 1.04 mJ to stabilize the naturally diverging system, here one needs in average only < V >= 0.213 mJ to dynamically stabilize the mass. In theory, it seems there is no reason one cannot aim for smaller < V >, at the cost of an even smaller basin of attraction and a tip of stability tongue with a smaller width.

Fig. 6

 6 Fig. 6 Influence of a perturbation in time or energy on the time evolution of the neutrally stable response of Fig. 4. a Perturbation of 1 µs on the oscillating time T O . b Perturbation of 10 nJ on the input energy V

Fig. 7

 7 Fig. 7 Numerical response of Figs. 4, 5, 6 and 7 at the tip of the first stability tongue for T O = 0.052794 s and T D /T = 0.95 visualized in the elementary time cell -T /2 < t < T /2. aEvolution of the generalized coordinate q(t) and Floquet eigenfunction (t). b Collapse of the trajectories q(t) of a on the Floquet eigenfunction (t) and evolution of the associated modulation function V (t) (equivalent to H(q, p, t)). The eigenfunction 0 (t) and eigenvalue E 0 of Eq. (9) are reported on the figure

Fig. 8

 8 Fig.8Numerical response at the tip of the second stability tongue of Fig.3for T O = 0.21365 s and T D /T = 0.8 visualized in the elementary time cell -T /2 < t < T /2. a Evolution of the generalized coordinate q(t) and Floquet eigenfunction (t). b Collapse of the trajectories q(t) of a on the Floquet eigenfunction (t) and evolution of the associated modulation function V (t) (equivalent to H(q, p, t)). The eigenfunction 1 (t) and eigenvalue E 1 of Eq. (9) are reported on the figure

538

  Figs. 4, 5, 6 and 7 was symmetric. Again, upon the 551

Fig. 9

 9 Fig. 9 Energy levels of a particle in a finite potential well. a Possible values of ( V, E) for a mass with moment of inertia I and energy E ≤ V in a potential well of depth V and width T O . b Eigenvalue E 0 and eigenfunction 0 (t) for a finite well U (t) with height V = 4.28 mJ and width T O = 0.052794 s. c A finite potential well U (t) with height V = 4.28 mJ and width T O = 0.21365 s has two "bound states" (E 0 , 0 (t)) and (E 1 , 1 (t))

600

  Figure 9b and c shows the classic "quantum" rep-

Fig. 10

 10 Fig. 10 Stability diagram of the trivial state (q(t), q(t)) = (0, 0) of the square-wave P.O.D.S. governed by Eqs. (5)-(7) in the dimensionless ( Ṽ , Ẽ) space. Blue regions indicate that a basin of attraction exist for which the mass is neutrally stable about (0, 0) when white regions show an unstable trivial state. Black and orange lines are the symmetric and antisymmetric master curves from the Liouville eigenproblem in Eq. (9) where we assumed T D → T with T = T O + T D . The red line is the limit E = V , i.e., V D = 0. Blue and red circles represent stable and unstable experimental data points, respectively. a T D /T = 0.7. b T D /T = 0.25

  Fig. 9a. The difference now with the Sturm-Liouville 664

u n c o

  r r e c t e d p r o o f A. A. Grandi et al.

Fig. 11 Fig. 2 ,

 112 Fig. 11 Experimental response and modulation function for T O = 309 ms, T D /T = 0.25, E = 14.8 mJ and V = 2.8 mJ (the experimental point is indicated in the ( Ẽ, Ṽ ) space in Fig. 10b. a Angular response of the inverted pendulum against time. b Zoom on three periods showing the modulation function V (t) as well as the angular response as a function of time

  u n c o r r e c t e d p r o o fNew physical insights in dynamical stabilization field that we experimentally studied. We showed that stabilization "à la Kapitza", at the heart of Floquet engineering in solid-state physics, that consists in applying a modulation time scale much faster than the natural time scales of the modulated system, is not the only way to dynamically stabilize the mass. An alternative is to stabilize in a "synchronized" fashion by periodically injecting the right amount of potential energy during the right time, i.e., the right elementary action. Doing so, one should be able to let the mass diverges for a relatively important time, i.e., minimize the total potential action required to dynamically stabilize a diverging mass. Interestingly, the Initial Value Problem inherent to this fundamental stability problem is related to the Boundary Value Problem underlying the determination of bound states and energy levels of a particle in a finite potential well, a famous problem in quantum mechanics. This analogy offers a semi-analytical design tool for the evaluation of the discrete set of piecewise constant modulation functions that will "optimally" stabilize the mass. Those results are also corroborated by numerical and experimental examples.
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Fig. 12

 12 Fig. 12 Electromagnetic inverted pendulum. a Planar inverted pendulum of length L with a metallic marble that is symmetrically placed under an attracting electromagnet whose attracting force depends on the imposed electrical current i. Experimental responses of the inverted electromagnetic pendulum for differ-



  

  16) 894 on a given period T = T D + T O , with I = m L 2 = and E = V D + V = 1 2 I ω(0.48) 2 = 3.24 mJ. The stability diagram in the modulation parameter space (T O , T D ) is given in Fig.

Fig. 13

 13 Fig. 13 Numerical stability diagrams of the upright vertical electromagnetic pendulum governed by Eq. (16) when the current i(t) is modulated with a piecewise constant T -periodic function. During T D , i = 0 and the upright pendulum is diverging with a natural time scale 1/ω(0) where ω(0) = 11.1 rad/s. During T O , i = 0.48 A and the pendulum is oscillating with a natural frequency ω(0.48) = 19.5 rad/s. Blue regions represent dynamically stable (T O , T D ) for the damped (ξ = 0.05) and undamped (ξ = 0) scenario. Pink regions represent dynamically stable and unstable (T O , T D ) for the damped and undamped case, respectively. White regions represent unstable couple (T O , T D ) for both ξ = 0 and ξ = 0.05 imperfection that remains after the damped oscillations 924

1 2 d 2 2

 122 Wave function inside the boxFor the region inside the box, U(t) = 0, Eq. (17) reduces to-I (t) dt 2 = E 2 (t).

Fig. 14

 14 Fig. 14 Finite square wave potential well of length T O and potential depth V

966 1 (

 1 t) = Fe -αt + Ge αt , (22) 967 where α = √ 2( V -E)/I is a real number and F 968 and G can be any complex numbers. Similarly, for the 969 other region outside the box: 970 3 (x) = He -αx + I e αx ,

972 5 . 3

 53 Wave function for the bound state 973

974t

  goes to -∞, the F term goes to infinity. Likewise, in 975

977 1 (

 1 we must set F = I = 0. 978 Next, we know that the overall (t) function must 979 be continuous and differentiable. These requirements 980 are translated as boundary conditions on the differential 981 equations previously derived. So, the values of the wave 982 functions and their first derivatives must match up at the 983-T O /2) = 2 (-T O /2), 2 (T O /2) = 3 (T O /2) Ge -αT O /2 = -A sin (kT O /2) + B cos (kT O /2) He -αT O /2 = A sin (kT O /2) + B cos (kT O /2) αGe -αT O /2 = Bk sin (kT O /2) + Ak cos (kT O /2)α He -αT O /2 = Bk sin (kT O /2) -Ak cos (kT O /2)
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 531 Symmetric solutions 994 To have a symmetric solution, we need to impose A = 0 995 and G = H . Equation(24) reduces to 996 He -αT O /2 = B cos (kT O /2) α He -αT O /2 = Bk sin (kT O /2) u n c o r r e c t e d p r o o f New physical insights in dynamical stabilization

Fig. 15

 15 Fig.[START_REF] Calico | Control of time-periodic systems[END_REF] Master equations to deduce the discrete energy levels E i and the corresponding wave function i (t). a Square wave potential fixed at u 2 0 = 5 gives two intersection points of the master curves which translates into two energy levels E 1,2 and the corresponding wave function 1,2 (t) represented in blue and green.

Fig. 16

 16 Fig. 16 Neutrally stable response for I = m L 2 = 0.1076 g.m 2 , V = 4.28 mJ, E = 0.895 mJ, T O = 0.21365 s and T D = 0.8 s visualized in the elementary time cell -T /2 < t < T /2 with T = T O + T D .a Evolution of the generalized coordinate q(t) and Floquet eigenfunction (t). b Collapse of the trajectories q(t) of a on the Floquet eigenfunction (t) and evolution of the associated modulation function V (t) (equivalent to H(q, p, t)). The eigenfunction 0 (t) and eigenvalue E 0 of Eq. (9) are reported on the figure
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Appendix 1: Experimental P.O.D.S

854

In this appendix, we present in detail the experimental 855 P.O.D.S built in the laboratory. In Fig. 12a, the metal-856 lic marble has a mass m = 28 g that is attached to 857 a plexiglass rod of length L = 6.2 cm. The rod is 858 then connected to another rod allowing it to rotate 859 only in one plane. The marble is centered below the 860 electromagnet (with typical holding force of 1000 N). 861 Thanks to a Controllino card, we can turn ON and OFF 862 the electromagnet in a very controlled and accurate 863 manner in time. For the recording of the experimen-864 tal responses, we place the electromagnetic inverted 865 pendulum in front of a white LED to enhance the con-866 trast and record the motion of the metallic marble with 867 a Basler camera CMOS with 150 frames per second. 868 The electromagnet is connected to a generator where 869 we can select the value of the electrical current i. The 870 electrical current is responsible of the intensity of the 871 electromagnetic force near the inverted pendulum. The 872 stronger the value of i, the stronger the electromagnetic 873 field. By turning ON the electromagnet, the electro-874 magnetic force will modify the effective gravitational 875 Eq. ( 7) so that the linearized equation of motion about 891 the trivial fixed point (q(t), q(t)) = (0, 0) is now T O and potential depth V (Fig. 14) can be written as and taking the ratio gives

which is the energy equation for the symmetric solutions.

Antisymmetric solutions

For the antisymmetric solutions, we need to have B = 0 and G = -H . Equation( 24) reduces to

and taking the ratio gives

which is the energy equation for the antisymmetric solutions.

Master equations

The energy equations [START_REF] Haller | Micro-chaos in digital control[END_REF][START_REF] Griffiths | Introduction to Quantum 1159 Mechanics[END_REF] cannot be solved analytically. Nevertheless, if we introduce the dimensionless variables u = αT O /2 and v = kT O /2, we obtain the following master equations

where

. So, for a fixed square-wave potential ( V, T O ), the intersections (v i ) solution of Eq. ( 27) let us infer the discrete energy levels

Then, having the values of E i we can deduce the values of α i and k i and infer the wave function i (t).

Figure 15 shows two examples of application for the master equations (27). In Fig. 15a, the potential barrier V and the length of the box T O gives u 2 0 = 5. Then, by solving the master equations ( 27) we obtain two intersections points (v 1 , v 2 ). Then, we deduce the two discrete energy levels E 1,2 and the corresponding wave functions 1,2 (t) for this giving square-wave potential (represented in blue and green, respectively, in Fig. 15a). The resolution of the Liouville eigenvalue problem Eq. ( 9) suggested that for I = 0.1076 g m 2 , V = 4.28 mJ and T O = 0.21365 s, a modulation function with E = 0.895 mJ would stabilize the mass even when the diverging time T D is large. This result is summarized in Fig. 9 that showed the "bound states" and "energy levels" of the particle confined in a finite potential well for T O = 0.21365 s and V = 4.28 mJ. In Fig. 16, we show the response of the mass governed by the linear Initial Value Problem Eq. ( 7) when using the modulation function V (t) suggested by the eigenvalue problem Eq. ( 9). In Fig. 16a, the 100th first periods of the dynamical response q(t) are superposed in the elementary time cell [-T /2, T /2] alongside with its Floquet eigenfunction (t) shown in black thin line. As predicted by the Boundary Value Problem, the response is neutrally stable even if T D is large. Moreover, upon the correct scaling, one can collapse all the trajectories on a single curve in [-T /2, T /2] that is the Floquet eigenfunction (t) of the response as shown in Fig. 16b where we also plot the piecewise constant modulation function V (t) (that is very close to the total energy of the mass) in green line. The eigenvalue and eigenfunction of Eq. ( 9) are also reported in this figure. As expected, they match with the outcome of our Initial Value Problem. The Boundary Value Problem Eq. ( 9) is therefore a good design tool to predict what modulation function will dynamically stabilize the mass even for a between only positive values, in a square-wave fashion in our case. What we see in Fig. 17 is then the classic instability tongues (white regions) of the Meissner equation Eq. ( 13) that has been extensively studied in the literature [START_REF] Grandi | Enhancing and controlling parametric instabilities in mechanical systems[END_REF][START_REF] Van Der Pol | II. On the stability of the solutions of Mathieu's equation[END_REF][START_REF] Sato | Correction of stability curves in Hill-Meissner's equation[END_REF][START_REF] Richards | Analysis of Periodically Time-Varying Systems[END_REF].