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Lay summary 

Immune and inflammatory gene signatures may be associated with an increased sensitivity 

to immunotherapy in patients with advanced hepatocellular carcinoma. We show in the 

present study that the use of artificial intelligence based pathology allows to predict the 

activation of these signatures directly from histology. 
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Abstract 

 

Background and aims 

Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene 

signatures are likely to be more sensitive to immunotherapy, however the use of such 

signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence 

(AI) on whole-slide digital histological Images (WSI), to develop models able to predict the 

activation of 6 immune gene signatures. 

 

Methods 

AI Models were trained and validated in 2 different series of patients with HCC treated by 

surgical resection. Gene expression was investigated using RNA sequencing or NanoString 

technology. Three deep-learning approaches were investigated: patch-based, classic MIL 

and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all 

gene signatures.. 

 

Results 

The CLAM model showed the best overall performance in the discovery series. Its best-fold 

areas under the curve (AUC) for the prediction of tumors with upregulation of the immune 

gene signatures ranged from 0.74 to 0.87. The different models generalized well in the 

validation dataset with AUCs ranging from 0.81 to 0.91. Pathological analysis of highly 

predictive tissue areas showed enrichment in inflammatory cells, plasma cells, and 

neutrophils. 

 

Conclusion 

We have developed and validated AI based pathology models able to predict the activation 

of several immune and inflammatory genes signatures. Our approach also provides insights 

on the morphological features that impact the model predictions. This proof-of-concept study 

shows that AI based pathology could represent a novel type of biomarker that will ease the 

translation of our biological knowledge of HCC into clinical practice.  
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Introduction 

Hepatocellular carcinoma (HCC) remains one of the leading causes of cancer related deaths 

worldwide and a global health challenge.[1] The vast majority (80–90%) of cases develop in 

patients with chronic liver disease or cirrhosis and the main risk factors are viral hepatitis, 

alcohol intake or metabolic syndrome.[1] Particular treatments, such as surgical resection, 

percutaneous ablation or liver transplantation, offer a chance of cure. However, more than 

two thirds of patients present with advanced disease and are therefore not eligible for these 

strategies.[2]   

The landscape of therapeutic options is however rapidly evolving, and several drugs 

(including lenvatinib, cabozantinib, regaorafenib or ramucirumab) have recently been 

approved. [3–6] Immunotherapy also holds great promise to improve clinical outcomes.  The 

combination of atezolizumab, an anti-PDL1 (Programmed death Ligand 1) monoclonal 

antibody, and bevacizumab, an anti-angiogenic agent, was shown to be superior to 

sorafenib and is now the standard of care for patients with advanced disease.[7] Other 

clinical trials testing immunomodulating agents, such as nivolumab, have turned out to be 

negative.[8] Durable responses are however observed with these drugs, and there are 

several clinical trials underway investigating their use in other clinical settings than advanced 

disease.[1] A fast and accurate identification of patients likely to respond is therefore a 

critical issue. In this line, by investigating HCC samples of advanced patients treated by 

nivolumab, Sangro et al. showed that several immune-related gene signatures were 

associated with survival.[9] These findings have also been very recently confirmed by Haber 

et al. who showed that upregulation in Interferon gamma signaling  and antigen presentation 

was able to predict the overall response rate of patients with HCC treated by nivolumab or 

pembrolizumab.[10] These signatures noticeably include immune checkpoint inhibitors 

(LAG3, CD274-PDL1), cytolytic effectors (GZMA, PRF1), and molecules involved in antigen 

processing/presentation (HLA-DMA, HLA-DMB) and immune cells recruitment (CXCL9, 

CXCL10, IFNG) .  

These results are consistent with data from other human solid cancers and suggest that 

such molecular biomarkers may help to 1) identify the potential responders to 

immunomodulating approaches and 2) spare side effects for patients that are not likely to 

benefit from these strategies.[11] Their use in a clinical setting is however challenging, as 

they require access to molecular biology platforms for nucleic acid extraction  and their 

processing/sequencing. They also are highly dependent on the quality of samples, and 

prone to standardization issues. 
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On the other hand, histological slides are easily available from pathology departments. It is 

well-established that they contain an extensive amount of information that allow definitive 

diagnosis and clinical outcome prediction. The advent of digital pathology and artificial 

intelligence (AI) also allows to standardize their analysis and extract meaningful 

morphological features that are not easily accessible to the human eye.[12–15] 

We thus aimed, using AI-based pathology, to develop deep learning models able to predict 

the activation of 6 immune gene signatures associated with response to immunotherapy in 

patients with HCC. 
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Material and methods 

Patients and samples 

For our discovery series, we used The Cancer Genome Atlas public data set (TCGA-LIHC). 

It consists of patients with primary HCC treated by surgical resection in more than 20 

different clinical centers.[16] The inclusion criteria were as follows: 1) unequivocal 

morphological features of HCC (all slides were reviewed by a pathologist specializing in liver 

disease (JC), and cases with features suggestive of combined hepatocellular-

cholangiocarcinoma were excluded), 2) one or more available digital histological slides from 

formalin fixed-paraffin embedded (FFPE) material and 3) available gene expression profiling 

(obtained by RNA sequencing).  Data and slides were accessed and downloaded in March 

2020. 

The validation series consisted of primary HCC samples developed in patients treated by 

surgical resection in Henri Mondor University Hospital (Créteil, France). Inclusion criteria 

were : 1) surgical resection performed between 2010-2019, 2) histological diagnosis of HCC 

confirmed by a liver pathologist (JC) and 3) available slides and tissue blocks for gene 

expression experiments. For seven patients, pre-operative biopsies were available and 

included to test the models on this type of samples. The study was performed according to 

the declaration of Helsinki and was approved by an institutional review board (CPP Ile de 

France V). All necessary written informed consents were obtained from the patients.  

The overall flow-chart of the study is presented on Figure 1.  

 

RNA sequencing data processing and clustering analysis in the discovery series 

The Fragments Per Kilobase Million (FPKM) counts selected from the TCGA-LIHC project 

were processed for normalization due to non linear bias induced by genomic screening. Log 

2 transformation was then applied after adding 1 to the FPKM matrix. The Z-score approach 

was chosen for gene-wise standardization.  

We further aimed to investigate the 6 immune gene signatures that were previously shown to 

be associated, in patients with advanced HCC, with improved response and survival rates 

after treatment by the anti-PD 1 monoclonal antibody nivolumab : “6-Gene Interferon 

Gamma” (6G IFNg) (CXCL10, CXCL9, HLA-DRA, IDO1, IFNG, STAT1) [17], “Gajewski 13-

Gene Inflammatory” (Gajewski 13G) (CCL2, CCL3, CCL4, CD8A, CXCL10, CXCL9, GZMK, 
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HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, ICOS, IRF1, CCL3 was not included in the 

Nanostring Panel so we also removed it from the discovery series) [18],  “Inflammatory” 

(CD274 / PD-L1, CD8A, LAG3, STAT1) [9], “Interferon Gamma Biology” (IFNg biology) 

(CCL5, CD27, CXCL9, CXCR6, IDO1, STAT1) [17], “Ribas 10-Gene Interferon Gamma” 

(Ribas 10G) (CCR5, CXCL10, CXCL11, CXCL9, GZMA, HLA-DRA, IDO1, IFNG, PRF1, 

STAT1) [17] and “T-cell Exhaustion” (CD274/PD-L1, CD276, CD8A, LAG3, PDCD1LG2, 

TIGIT) [17] signatures. For each gene signature, we performed hierarchical clustering of 

samples using Ward2 algorithm[19] (implemented as Ward.D2 in R stats package) and 

Euclidean distance. [19][20] We flattened the dendrogram into 3 clusters, namely Cluster 

High, Cluster Median and Cluster Low, and then merged the latter two clusters as Cluster 

Median/Low. Heatmaps with clustered dendrograms were used for visual validation. 

mRNA extraction and gene expression analysis in the validation series  

For each HCC sample, 5 µm-thick sections were cut from FFPE blocks. Tumor tissue was 

then macro-dissected and total RNAs were further isolated using the Recover All™ Total 

Nucleic Acid Isolation Kit (Invitrogen, Thermo Fisher Scientific), according to manufacturer’s 

instructions. They were monitored to ensure their quality, purity and integrity using an Agilent 

2100 Bioanalyzer device with the Pico assay (Agilent, Santa Clara, CA, USA). Samples with 

a DV200 (percentage of RNA fragments above 200 nucleotides) >30% were further 

considered adequate for analysis. 

 

Gene expression analysis in the validation series  

Gene expression was analyzed using the NanoString Immuno-Oncology 360 panel 

(NanoString Technologies, Seattle, USA) that includes a set of more than 700 genes 

involved in the main biological pathways of human immunity. These experiments were 

performed by the Genomics platform of Institut Curie (Paris, France). Total RNAs were used 

as templates. A human Universal Reference RNA including a no-template control (water) 

and 10 cell lines were also hybridized in parallel with the HCC samples. NanoString positive 

and negative controls were also added to samples as spikes in controls. After an overnight 

hybridization at 65°C, samples were processed on the NanoString nCounter preparation 

station (NanoString Technologies) to immobilize biotinylated hybrids and remove probes in 

excess. The nCounter Digital Analyzer was used to scan the cartridges at maximum 

resolution (fields of view n=555), count the fluorescent barcodes and quantify RNA 

molecules. Normalization was performed against the geometric mean of 20 housekeeping 
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genes in combination with a positive control normalization which uses the geometric mean of 

six synthetic positive targets.  

As performed for the discovery series, gene expression values were log2-transformed and 

the Z-Score approach was further applied for gene-wise standardization.  For each gene 

signature, hierarchical clustering with Ward2 algorithm and Euclidean distance was then 

performed. HCC samples were then labelled as Cluster High or Cluster Median/Low. 

Slides preprocessing and tessellation, color normalization and data augmentation 

Slides from the discovery set were stained with hematein-eosin and encoded in svs format 

while slides from the validation series were stained with hematein-eosin-saffron and 

encoded in ndpi format. Tissue regions were then exhaustively split into patches of 256×256 

pixels at 20X  using the OpenSlide library in Python. Tumor regions were annotated by an 

expert pathologist in polygonal Regions of Interest (ROIs) using the open source QuPath 

software.[21]. Patches were extracted from the intersection area of the tissue regions and 

the tumor regions. Staining conversion, color normalization and data augmentation protocols 

were assessed (Supplemental Material and Methods). 

Deep-learning models 

Baseline model: patch based workflow with ShuffleNet 

A detailed description of all steps involved in the models development is provided in the 

Supplemental Material and Methods, and our code is publicly available 

(https://github.com/qinghezeng/Histo2GeneSignatures). For our baseline model, we re-

implemented a patch-based strategy in Python (Figure 2) 

(https://github.com/jnkather/DeepHistology/tree/v0.2). For the training and cross validation, 

500 patches were randomly collected from each slide, with each patch inheriting the label of 

the WSI. Cluster Median/Low training patches were downsampled to match the same 

number of Cluster High training patches. We then trained a ShuffleNet, which was pre-

trained on ImageNet. With Cluster High as the positive class, optimal patch-level thresholds 

were computed using the receiver operating characteristic (ROC) curves on test patches. 

For inference, all patches extracted from a WSI were predicted by our trained ShuffleNet and 

classified as Cluster High or Low/Median using the optimal threshold determined on the 

discovery series. The slide level score was calculated by dividing the number of Cluster High 

patches by the total number of patches in that slide. 
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Slide based models: MIL and CLAM  

Apart from the patch-based approach, we also investigated multiple-instance learning (MIL) 

approaches (Figure 3). MIL is a weakly-supervised learning paradigm in which data is 

arranged in bags of instances. In the binary MIL assumption, a bag is labelled as 1) negative 

if all the instances inside are negative or 2) positive if it contains one or more positive 

instances. Based on this assumption, if there are one or more Cluster High patches in the 

slide, the tumor slide will be classified as Cluster High. Provided with the WSI-level label 

(and tumor ROIs in the experiments with annotations), the MIL models have the ability to 

predict labels for unseen slides by taking account of the most predictive patches. We 

investigated two MIL approaches, namely classic MIL and Clustering-constrained Attention 

Multiple Instance Learning (CLAM).[22] 

For both strategies, the first stage consists in feature extraction using a modified ResNet50 

model pretrained on ImageNet (Figure 3). Each of the Ni patches from a given WSI was 

encoded as a 1024-dimensional feature, allowing the possibility to load all the patches of the 

WSI into the GPU memory simultaneously. For the classic MIL approach, we used the 

implementation in the CLAM work (code available at https://github.com/mahmoodlab/CLAM). 

A first fully-connected (FC) layer further reduced the features to 512 dimensions, and the 

second FC layer was used as a classifier to generate 2-class score for each patch. A max-

pooling function was then applied on the Cluster High class to select the top-1 patch and 

normalize its scores to WSI-level probabilities by softmax.  

CLAM is a recently reported more sophisticated MIL approach specifically designed for 

digital pathology (code available at https://github.com/mahmoodlab/CLAM). [22] Its attention 

mechanism helps the model to focus on representative patches automatically. The same 

ResNet50 network was used for the patch encoding, and, as performed for the classic MIL 

workflow, the feature vectors were reduced to 512 dimensions for each slide. A FC layer with 

softmax activation function was used as a classifier to generate 2-class WSI-level 

probabilities.  

For all models investigated, training was performed using a 10-fold Monte Carlo cross-

validation strategy. For each fold, the discovery series was randomly partitioned into training 

(60% of cases) / validation (20%) / test (20%) sets. The whole validation series was used for 

external validation. Performance was further assessed using ROC curves.   For each gene 

signature, we determined the optimal thresholds by selecting the cutoff with the highest 

Youden index. In case of multiple optimal thresholds, the one closer to the median was 

selected. 
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Attention maps generation and pathological reviewing 

CLAM is able to produce interpretable heat maps that allow users to visualize, within each 

WSI, the relative contribution of every tissue area to the model’s predictions.[22,23] These 

heat maps thus allow pathologists to determine which histological and cytological features 

are associated with a high predictive value. 

For each gene signature, an attention score was learned by CLAM for each patch and 

converted into percentiles. For each WSI, the percentiles were then normalized to [0, 1] with 

1 being the most predictive and 0 being the most non-informative. The normalized scores 

were represented with a colormap (red for 1 and blue for 0), and reconstructed into a 

heatmap according to the spatial location of the corresponding patches.  We extracted, for 

each tumor correctly classified as Cluster High and each gene signature, the top 8 image 

patches classified as highly predictive and the top 8 patches considered non-informative by 

the model. They were further reviewed by two pathologists (JC and CTN).  The following 

histological and cytological features were systematically recorded: tumor cells, blood, 

vessels, immune cells (lymphocytes, neutrophils, eosinophils, plasma cells), steatosis, clear 

cells, atypia, fibrosis, eosinophilic inclusions, cholestasis, hyperchromasia, sarcomatoid 

changes, multinucleated cells, necrosis, steatohepatitic pattern, vascular spaces, 

microtrabecular, macrotrabecular, compact and pseudoglandular growth patterns 

(Supplemental Table 1).  

Differences between highly predictive and non-informative image tiles were analyzed using 

Fisher's exact test. The degree of inter-observer agreement was assessed with Cohen 

Kappa statistics.   
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Results 

Unsupervised hierarchical clustering of samples from the discovery series 

A total of 336 cases from the TCGA dataset met our inclusion criteria (349 slides from 336 

tumors). The main clinical, biological and pathological features of the patients and tumors 

are presented in Supplemental Table 2. They were common for a series of patients with 

HCC treated by surgical resection. Median age at surgery was 61 years and a male 

predominance was observed (sex ratio 68%, 228/336). The main risk factors were alcohol 

consumption (35%, 111/318) and hepatitis B (32%, 101/318).  Microvascular invasion was 

identified in 29% of the tumors (83/285). As expected in a series of patients treated by 

surgery, a low rate of significantly fibrotic livers was observed (Ishak score 5-6, 37%, 74/198). 

We first performed unsupervised clustering analysis on RNA sequencing data for all 6 gene 

signatures.  Three distinct sample clusters (High, Median and Low) were observed for each 

gene signature (Figure 4). We further aimed to identify samples belonging to the cluster 

displaying the highest expression of the gene signatures investigated, as they are likely to 

constitute the subset of HCC that are the most sensitive to immunotherapy.[9] Tumors 

belonging to Cluster “High” for 6G Interferon Gamma, Gajewski 13-Gene Inflammatory, 

Inflammatory, Interferon Gamma Biology, Ribas 10G Interferon Gamma, and T-cell 

Exhaustion signatures represented 13% (44/336), 14% (48/336), 12% (41/336), 11% 

(36/336), 12% (40/336) and 11% (36/336) of the cases, respectively (Supplemental Table 

3). A significant overlap in samples classified as Cluster High was observed (25 cases 

belonged to Cluster High for all signatures investigated).  We investigated the associations 

between clusters and clinical and pathological features of the patients and tumors 

(Supplemental Table 4). We observed significant associations (p<0.05) between Cluster 

High and: higher AFP serum levels (all 6 gene signatures), Hepatitis C Virus infection (all 

signatures except Interferon Gamma Biology), non-tumor liver fibrosis (Ishak score 5-6) 

(Ribas 10G) and G4 histological grade (Inflammatory).  

 

Development of deep-learning models for the prediction of HCC with activation of 

immune gene signatures 

The 349 WSIs from the TCGA series were downloaded and we first extracted ~1,000,000 

and 4,982,872 tiles (256 x 256 pixels) for the patch-based and classic MIL/CLAM models, 

respectively. The WSIs were processed as is, meaning that all patches from both the tumor 
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and the adjacent non-tumor parenchyma were analyzed. These image tiles were further fed, 

along with their corresponding immune cluster labels, into our 3 different models. 

Training was performed using a 10-fold Monte Carlo strategy and, for each model and gene 

signature, each fold AUC was computed. We observed that the 3 different models showed a 

relatively weak overall performance (Supplemental Table 5). The mean AUC ranged from 

0.490 to 0.666, 0.516 to 0.577, and from 0.555 to 0.632 for the patch based approach, MIL 

and CLAM, respectively (Supplemental Table 5). The highest performance was achieved 

for the Gajewski 13G signature (mean AUC 0.577 and 0.632 for MIL and CLAM, 

respectively). We hypothesized that these suboptimal results were explained, at least in part, 

by the existence of irrelevant noise/patterns in the non-tumor tissue included in the WSIs. 

We thus modified our strategy, and an expert pathologist (JC) annotated the tumor areas for 

each of the 349 TCGA WSIs available. The models were re-trained on patches extracted 

from the manually delineated tumor areas (total of ~600,000 and 2,926,135 patches for the 

patch-based and classic MIL/CLAM, respectively).  This approach yielded better 

performances with best-fold AUCs ranging from 0.661 to 0.783, 0.677 to 0.893 and 0.780 to 

0.914 for the patch-based approach, the classic MIL and the CLAM models, respectively 

(Table 1). AUCs were higher for Gajewski 13G and IFNg biology signatures. Among our 3 

different approaches, the CLAM model showed an overall superior performance (Table 1). 

The results (ROC curves and confusion matrix for the optimal threshold) for the best fold 

models obtained with CLAM on the 6 gene signatures are displayed on Figure 4.  

 

External validation of the models 

Deep learning systems are prone to overfit to the data they are trained on and external 

validation is critical. We thus aimed to validate our models in a completely independent 

series of samples with different 1) gene expression profiling technology (NanoString Panel 

vs RNA sequencing), 2) staining protocols (hematein-eosin-saffron vs hematein-eosin), and 

3) WSI image format (.ndpi vs .svs).  The fields of view were also slightly different (~128x128 

μm², ~0.5 μm/pixel vs ~115x115 μm², ~0.45 μm/pixel). A total of 139 patients treated by 

surgical resection in Henri Mondor University Hospital were included (Figure 1). The most 

frequent risk factors for liver disease were alcohol intake (31%, 43/138), HBV (hepatitis C 

virus) (24%, 34/138) and HCV (hepatitis C virus) (24%, 33/138) infection (Supplemental 

Table 6). Disease stage, according to the Barcelona Clinic of Liver Cancer (BCLC) system, 
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was 0/A in 78% of the patients and B/C in 22% of the patients. As observed in the discovery 

series, the frequency of cirrhosis was also low (35%, 34/97). 

After mRNA extraction and gene expression analysis using the NanoString Pan Cancer 

Immuno-Oncology 360 panel, we performed unsupervised hierarchical clustering on all 

samples. Tumors belonging to Cluster “High” for 6G IFNg, Gajewski 13G, Inflammatory, 

IFNg Biology, Ribas 10G, and T-cell Exhaustion signatures represented 14% (20/139), 30% 

(42/139), 9% (13/139), 16% (22/139), 12% (17/139) and 6% (8/139) of the cases, 

respectively. (Supplemental Table 7). As observed in the discovery series, an overlap 

among cases classified as Cluster High was identified (8 cases belonged to Cluster High for 

all signatures investigated).  Cases classified as Cluster High were associated with the 

following clinical, biological and pathological features : poor differentiation (except Gajewski 

13G), HCV infection (Gajewski 13G p=0.03), higher age at surgery (6G IFNg p=0.006, Ribas 

10G p=0.03), higher AFP serum levels (Inflammatory p=0.02, T cell exhaustion p=0.002) 

and lower tumor size (Gajewski 13G p=0.002) (Supplemental Table 8). 

As performed for the discovery series, all tumor areas from the 139 WSIs were annotated by 

a pathologist. A total of 1555984 tiles were thus extracted and fed to the trained CLAM 

models developed in the TCGA dataset. Samples were classified as Cluster High or 

Median/low using the optimal thresholds identified on the TCGA test splits.  

We were able to validate their performance with AUCs of 0.817, 0.810, 0.850, 0.823, 0.810 

and 0.921 for 6G IFNg, Gajewski 13G, Inflammatory, IFNg biology, Ribas 10G and T cell 

exhaustion gene signatures, respectively. (Table 2) The ROC curves and confusion matrices 

are displayed on Figure 5. We also investigated 3 different techniques that may increase the 

overall performance of our models: 1) conversion of our hematein-eosin-saffron slides to 

hematein-eosin (staining used in the discovery series), 2) color normalization and 3) data 

augmentation techniques (during training) (Supplemental material and methods). We did 

not observe any significant improvement (Supplemental Table 9-11). 

Finally, we were able to analyze pre-operative biopsies from 7 cases. Slides were processed 

using our best-fold CLAM models and we observed that tumor immune cluster were 

accurately predicted in 38 out of the 42 cases (7 cases X 6 gene signatures) (Supplemental 

Figure 1). 
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Generation of heatmaps and pathological review of areas with high predictive value 

In order to have a better understanding of the morphological and biological features involved 

in the classification process, we extracted, for each gene signature, the top 8 most predictive 

and the top 8 non informative patches from all tumors accurately classified as Cluster High 

(examples in Figure 6). A total of 1264 image tiles were thus reviewed and 23 histological 

and cytological features were recorded for each tile. Inter-observer agreement between the 

two pathologists was substantial with Cohen Kappa values ranging from 0.69 to 0.88. We 

observed highly significant differences between highly predictive and non-informative areas 

for the following signatures: 

-6G IFNg: presence of lymphocytes (p<0.0001), neutrophils (p<0.0001) and plasma cells 

(p=0.0007) and lack of blood (p=<0.0001), tumor cells (p<0.0001), steatosis (p=0.03), 

fibrosis (p=0.007), and macrotrabecular (p=0.003) and compact (p=0.03) tumor growth 

patterns. 

-IFNg: presence of lymphocytes (p<0.0001), neutrophils (p<0.0001) and plasma cells 

(p=0.007) and lack of tumor cells (p<0.0001), steatosis (p<0.0001), fibrosis (p<0.0001) and 

compact growth pattern (p<0.0001).  

-Ribas 10G: presence of lymphocytes (p<0.0001), neutrophils (p=0.003) and plasma cells 

(p=0.001) and lack of tumor cells (p<0.0001), steatosis (p=0.006), fibrosis (p<0.0001) and 

compact growth pattern (p<0.0001) and atypia (p=0.01). 

No significant associations were observed for the remaining 3 gene signatures: Gajewski 

13G, Inflammatory and T cell exhaustion (Supplemental Table 12).  

We finally compared the frequency of the 23 pathological features on the most predictive 

patches between the 6 signatures investigated and observed several significant differences 

(Supplemental Table 13). Altogether, these findings shows that the morphological 

characteristics captured by the models are, at least in part, different. 
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Discussion 

Numerous gene signatures or transcriptomic subgroups have been proposed to better select 

patients that may benefit from particular targeted therapies.[11] The use of such biomarkers 

however require molecular biology and bioinformatics expertise, and very few are used in 

clinical practice. 

We show, in this proof-of-concept study, that deep learning applied to digital histological 

slides has the ability to predict several immune gene signatures related to response to 

immunotherapy.[9] Although the relevance of these signatures remain to be prospectively 

validated, our results demonstrate that AI-based pathology is a promising approach to 

extract clinically and biologically significant information  from  WSIs of HCC.[15,24–28] 

We investigated 3 different deep-learning approaches, and showed that the CLAM network 

yielded the best overall performance. In addition to the patch based approach and the 

classic MIL, CLAM uses an attention-based learning process to automatically identify 

particular areas of high diagnostic value within the WSI.[22,23] It involves an adaptive 

weighting for each image area, and the model can thus make more granular and flexible 

predictions. This feature allows to automatically lower the impact of irrelevant tissue patches 

and may contribute, at least in part, to the higher performance of this method. Although this 

type of model is designed to reduce the need for manual annotations, we show that tumor 

areas delineation by a pathologist results in a significant improvement for all gene signatures 

investigated.  We may hypothesize that the negative impact of irrelevant noise/patterns from 

the adjacent non-tumor parenchyma was avoided by the use of expert driven annotations. 

These findings underscore the importance of human-machine interactions for the 

development of highly efficient AI-based pathology. 

The processing of surgical and biopsy samples is complex with several critical steps 

(embedding, cutting, staining, and scanning) that may impact the overall quality of the slide. 

Models can easily overfit and thus learn noise or fluctuations that are specific to the training 

dataset, explaining that they most often do not generalize well on external datasets. 

Technical protocols for gene expression analyses also include multiple steps that are 

impacted by experimental conditions (RNA extraction, reverse transcription, and 

amplification, for example) and may introduce nonlinear effects. The identification of robust 

tumor subgroups across different technological platforms thus remains challenging. These 

issues explain why, although numerous studies using deep-learning on digital slides have 

been recently published, the majority of the proposed models were not validated on true 

independent series of samples processed by different histological and molecular protocols. 
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We thus believe that one of the strengths of our work is the validation to which the various 

models investigated have been subjected. We were indeed able to validate our different 

models on a completely independent data set that included 1) patients treated in a different 

center, 2) slides stained with different protocols and encoded in a different format and 3) 

gene expression experiments performed using a different technology. The performance of 

our classifiers, as assessed by the AUC, was also in most cases >0.80, which is usually 

considered “excellent”.[29] 

By changing the classification thresholds, sensitivity and specificity of our AI-based 

pathology assays can also be modulated according to particular clinical settings/needs. 

Deep-learning  models with thresholds allowing high sensitivity can indeed be used to pre-

screen patients and further trigger confirmatory gene expression profiling in case of a 

positive prediction. Even with suboptimal specificity, such assays may have the ability to 

speed up diagnostic workflows.  

The next step for the implementation of such models will be their broad validation on HCC 

biopsies (the only type of samples available for patients with advanced disease). Our 

preliminary results are encouraging, however the investigation of larger series will be 

mandatory to determine if such samples are suitable for this type of AI-driven analyses. It 

may be challenging as they are rarely performed due to the existence of diagnostic non-

invasive criteria. There is however a renewed interest in biopsy, in particular in the context of 

clinical trials, and several studies have shown that their analysis can provide meaningful 

molecular and prognostic information.[30]  We may thus be able to perform a large scale 

validation of our models  on this type of samples within the foreseeable future.  Trials 

investigating in neodjuvant immunotherapy may also encourage us to reconsider the 

practice of biopsy even in the context of small, resectable tumors. Several drugs, including 

immunomodulatory molecules, are  currently being tested in the adjuvant setting (after 

surgical resection) and our models may help to identify the patients most  likely to benefit 

from these approaches.[31–34]  

In order for AI-based algorithms to be used in daily practice, they must be prospectively 

validated in ‘real life” clinical workflows to show that they are able to provide useful 

information in a timely manner. Indeed, model development is the first step of an overall 

process that includes several technical (image acquisition/storage, reproducibility and 

robustness), regulatory (quality control framework, data privacy), and clinical (demonstration 

of improved clinical outcomes) barriers.  Improvements in the error/misclassification rates 

are also critical for the adoption of model such as ours. 
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Convolutional neural networks consist of multiple layers of complex mathematical 

computation, and deep-learning models are thus often considered as black boxes. We took 

advantage of a particular feature of the CLAM method to generate attention maps and 

analyze the areas with a high predictive value. It does not provide true explainability but 

highlights tiles that may contain relevant information.  For 3 signatures related to interferon 

gamma signaling, we were able to show that classification as Cluster High relied on tiles 

containing lymphocytes, neutrophils and plasma cells. These observations are consistent 

with the function of the genes included, as molecules encoded by genes such as IFNG, 

CXCL10 or CXCL11 are known to promote the recruitment of various immune cells subsets.  

We did not identify any histological features associated with the 3 remaining signatures, 

suggesting that the models are also able to capture morphological characteristics that are 

not easily accessible to the human eye. We believe that the use of explainable models is key 

to provide the required trust of pathologists and physicians, and thus ease their 

implementation in clinical practice. The analysis of tissue areas associated with particular 

predictions may also lead to new scientific discoveries. 

In conclusion, we have developed and validated deep-learning based models able to predict 

the activation of several immune gene signatures that may be associated with improved 

response to immunotherapy in patients with HCC. These approaches could represent a 

novel type of biomarker that will ease the translation of our biological knowledge of HCC into 

clinical practice. 
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Tables 

Table 1. Performances of the models in the discovery series, using annotated WSIs 
(best-fold and mean AUCs).  
AUC: Area Under the ROC Curve, sd: standard deviation. 
 

 Patch-based approach Classic MIL CLAM 

Gene signature Best fold  Mean ± sd Best fold  Mean  ± sd Best fold  Mean ± sd 

6G Interferon Gamma 0.661 0.560 ± 0.067 0.758 0.630 ± 0.078 0.780 0.635 ± 0.097 

Gajewski 13G Inflammatory 0.809 0.688 ± 0.062 0.893 0.694 ± 0.125 0.914 0.728 ± 0.096 

Inflammatory 0.706 0.580 ± 0.077 0.806 0.641 ± 0.123 0.796 0.665 ± 0.081 

Interferon Gamma  biology 0.783 0.561 ± 0.119 0.677 0.610 ± 0.051 0.822 0.674 ± 0.102 

Ribas 10G Inflammatory 0.727 0.640 ± 0.074 0.726 0.618 ± 0.065 0.806 0.669 ± 0.067 

T cell exhaustion 0.661 0.543 ± 0.073 0.788 0.606 ± 0.086 0.788 0.577 ± 0.092 
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Table 2. Performances (Area Under the ROC Curve) of the best-fold models in the 
validation series, using annotated WSI.  
 
 

Gene signature CLAM AUC 

6G Interferon Gamma 0.817 

Gajewski 13G Inflammatory 0.810 

Inflammatory 0.850 

Interferon Gamma  biology 0.823 

Ribas 10G Inflammatory 0.810 

T cell exhaustion 0.921 
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Figure Legends 

Figure 1. Flow-chart of the study. Expression of genes included in the 6 signatures was 

investigated in 336 HCC samples from the discovery series (TCGA) using RNA sequencing 

data and unsupervised clustering. Cases were labelled as Cluster High or Median/Low and 

the different approaches were trained using the available 349 WSIs and the associated 

immune labels. The best models were further validated in 139 tumors developed in patients 

treated in Henri Mondor University Hospital. For these samples, the gene expression was 

investigated using the NanoString Pan Cancer IO360 panel.   

 

Figure 2. Workflow for patch-based strategy. During the training, 500 

patches are randomly sampled from each WSI. The Cluster Median/Low training set is then 

randomly downsampled to match the amount of Cluster High patches. The equalized training 

sets are used to finetune a ShuffleNet pre-trained on ImageNet, with an optimal patch-

level threshold calculated from the receiver operating characteristic (ROC) curve. For 

the inference, the class of all the patches extracted from the annotated tissue regions 

are predicted by the trained ShuffleNet and further binarized using the previous threshold. 

The percentage of Cluster High patches is the probability of this WSI to be Cluster High.  

 

Figure 3. Workflow for multiple instance learning strategy. CLAM and classic MIL  share 

the same preprocessing steps of tessellation and feature extraction. A 1024-dimensional 

feature embedding is extracted from each patch by a ResNet50 trained on ImageNet. The 

output of the deep learning network is a WSI-level probability that is thereafter binarized into 

Cluster High or Cluster Median/Low. Ni: patch number in a WSI. FC: fully connected layer. 

⨂: attention-based pooling, composed of element-wise multiplication and sum along the first 

axis. 

 

 

Figure 4. Development of deep-learning models in the discovery series dataset 

(TCGA). For the 6 each gene signatures, Clustering heatmaps, receiver operating 

characteristic (ROC) curves and confusion matrices on the test set using the best-fold model 

are provided (optimal threshold: 0.149, 0.288, 0.169, 0.277, 0.152, 0.187, respectively). 

 

Figure 5. Validation of best-fold deep-learning models in the validation series 

(Mondor). For the 6 gene signatures, Clustering heatmaps, receiver operating characteristic 
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(ROC) curves and confusion matrices are provided (best-fold models using the optimal 

thresholds determined on  the TCGA series). 

Figure 6. Pathological reviewing of highly predictive tiles. Microscopic examination of 

highly predictive tiles showed enrichment of particular immune-related features. Examples 

for  6G Interferon Gamma and Interferon Gamma Biology signatures are provided in panels 

A and B, respectively. Tiles associated with 6G Interferon Gamma included lymphocytes 

(yellow arrows) and plasma cells (white arrows) We also identified enrichment in neutrophils 

on tiles associated with Interferon Gamma Biology (red arrows). 
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