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The role of ozone as a mediator in the relation between heat
waves and mortality in 15 French urban agglomerations

Anna Alari, Chen Chen, Lara Schwarz, Kristen Hansen, Basile Chaix, Tarik Benmarhnia

Abstract

Heat and tropospheric 0zone have acute impact on premature deaths. Warm temperature affects
the photochemical processes in ozone formation suggesting ozone as a mediator to the acute
health effect of heat on mortality. We assembled a summertime daily time-series dataset of 15
French agglomerations during 2000 and 2015 to decompose the acute total effect of heat wave
on mortality into natural direct and indirect effects using regression-based product method
under the potential outcomes framework. For each agglomeration, we estimated the effect of
heat wave on mortality using a quasi-Poisson model with adjustment for covariates like lagged
NO:z concentration, and modeled ozone with a linear regression of heat wave and the same set
of covariates. We pooled estimates across agglomerations using random-effect models. We also
provide R syntax to reproduce or replicate our analysis. Most agglomerations demonstrated
evidence of mediation by ozone, with the pooled natural indirect effect being 1.03(95%
confidence interval (CI): 1.02 to 1.05), 1.03(95% CI: 1.01 to 1.04), and 1.02(95% CI: 1.00 to
1.07) for non-accidental, cardiovascular, and respiratory mortality, respectively. We found
evidence of mediation effect by ozone in the association between heat wave and mortality in

France, which varied by geographical location and cause of mortality.



Introduction

Extreme temperature and ground level ozone are major environmental determinants of
population health, both driving increases in premature deaths. Short term health effects of
exposure to extreme heat have been largely described in the literature (1-6) and include
cardiovascular and respiratory diseases. Similarly, short-term exposure to ozone, even at low
concentrations, has been consistently shown to have negative health consequences, as it can
cause a large range of cardiovascular and respiratory complications induced notably by
oxidative stress, exacerbating existing health conditions and leading to premature death (7,8).

Heat waves and high ozone concentrations frequently co-occur as they are linked by complex
atmospheric and chemical patterns. Specifically, warm temperature influences the generation
of tropospheric ozone as hot sunny days can trigger photochemical processes (in junction with
ozone precursors such as NOX) that are at the basis of ozone formation. There has been debate
in the literature about the role of ozone as a confounder, modifier, or mediator in the
epidemiologic association between temperature and mortality (9,10). Confounding bias is
defined as the presence of a cause that is shared by the exposure X and the outcome Y, which
results in an open backdoor path between X and Y (11); in this context, given that air pollution
does not influence on the short term the daily ambient temperature, there is no rationale for
considering any air pollutant as a true confounder when ambient temperature is the exposure of
interest in short-term relation to a given health outcome. Alternatively, a number of recent
studies have focused on the possible synergistic effect (or joint effects) of hot temperature and
ozone on population health (12-19). Indeed, the simultaneous exposure to high temperature and
ozone is likely to make individuals more susceptible to the effects of both environmental
stressors; this is often considered through the inclusion of an interaction term or by considering
different temperature strata in exposure-response model (12-16). These studies considering
ozone as an effect measure modifier of heat-related health effects have denoted synergistic

associations that often vary by region of study (12,17-19).

Finally, ozone has also been proposed to be a causal intermediate in the relationship between
temperature and mortality, since it is affected by temperature and it can also impact mortality
(9,10). If ozone is part of the causal pathway between exposure and outcome, the total effect of
temperature on mortality should be decomposed into an indirect effect, which operates through
the ozone-effect component, and a direct effect, which consist in the temperature effect aside

from the ozone-mediated effect (10). To the best of our knowledge, the role of ozone as a



mediator in the relationship between heat and health has not been investigated as no studies
assessed such mechanism with empirical data. However, a better understanding of these
dynamics would be particularly important to inform policy actions during a heat wave, as, in
the context of climate change, heat wave episodes are likely to occur more frequently and at
higher intensity (20) and, concurrently, ozone concentrations are expected to increase in most
urbanized areas (21-24); therefore, the potential health impact of this simultaneous exposure

will become increasingly common.

During the last decades, mitigations strategies that have been commonly adopted by various
countries and various cities worldwide are based on two independent systems, heat-health
warning systems (HHWSSs), which target heat wave episodes as a specific dangerous event for
human health (25-28), and systems of air quality alerts (AQA), which aim at preventing adverse
health events associated with episodes of extreme air pollutant levels (29-35). A deeper
understanding of the relationship between high temperature, ozone and mortality (and the
variability across cities) is crucial to better adapt public-health policy measures implemented in

the framework of these two systems.

By decomposing the effects of heat on mortality into direct and indirect effects by a causal
mediation analysis, we can understand how ozone plays a role in the heat-mortality relationship
and determine whether some urban agglomerations would particularly benefit from specific
actions to prevent ozone formation during heat waves. With this purpose, we provide a state-
of-art causal mediation analysis to decompose the total effect of heat waves on mortality in
France during the summer periods from 2000 to 2015.

Methods

Study population

Populations from 15 major urban agglomerations in different regions of France were studied
for the summer period from June 1% to September 30" for the years 2000 to 2015 (which
corresponds to the dates HHWSs in France are active). Urban populations ranged from 227,151
inhabitants in the agglomeration of Clermont-Ferrand to 6.66 millions inhabitants in Paris in
2010. The selected cities provide a representative panel of different climate profiles existing in
France, namely the oceanic, the temperate-oceanic, the semi-continental and the Mediterranean
climate (Figure 1). The list of the urban agglomerations studied and their main demographic,

geographic and climatic information are summarized in Table 1.
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Outcome data

Daily mortality data for each urban agglomeration for the period from 2000 to 2015 were
obtained from the French National Institute of Health and Medical Research (CepiDC). Daily
mortality in the whole population was analyzed for the following causes: all non-accidental
mortality (ICD10: A00-R99), cardiovascular causes (ICD10: 100-199), and respiratory causes
(ICD10: J00-J99).

Main Definition of Heat Wave Exposure

Daily hourly minimal and maximal temperatures in degree Celsius (°C) were provided by the
French national meteorological service Météo-France for one reference station in each urban
agglomeration, generally located at the airport station (see Table 2) (36). In order to identify
heat waves for each urban agglomeration, we referred to the official method used by Météo-
France to define heat waves which is used to activate heat warning systems in France. Heat
waves were defined as periods where the mean daily temperature exceeded the 97.5" percentile
of the local (within each urban agglomeration) mean temperature distribution over the entire
year (initial threshold) for at least three consecutive days, and for which at least one day
recorded a mean daily temperature above the 99.5" percentile of the local temperature
distribution for the entire year (peak threshold) (36,37). As sensitivity analyses, we also

considered additional heat wave definitions (see details below).

Air pollution data

We considered NO; as a confounder between ozone and mortality as NO2 level is one of the
main precursors of tropospheric ozone formation. Two sources of air quality data for the 2000-
2015 period were utilized. First, daily ozone and NO, concentrations in ug/m*® were obtained
from the open and publicly accessible database of the European Environmental Agency (EEA)
(38). The EEA’s air quality database contains multi-annual time series of air quality
measurement data obtained by the regional entities in charge of monitoring air pollution in each
participating countries (including all European Union Member States, as well as EEA
cooperating and other reporting countries), which are committed to transmitting their data to
the agency. For all urban agglomerations included in the study, relevant stations were selected
by only considering stations which monitor pollutants at the hourly level. Information of daily
average concentrations for each urban agglomeration were then obtained by averaging hourly



data from all the stations within each urban agglomeration. EEA’s data were extracted using
the R package saqgetr (39).
Second, data from the original source of the network of urban background monitors managed

by local French air quality surveillance organizations (https://atmo-france.org/) were also
available for the all urban agglomerations included in the study, for the entire study period for
ozone but only for the period going from the year 2007 until the year 2015 for NO. Thus, this
data was used for validation and for imputation of missing data.

Statistical Analysis

Our analysis focused on the summer period, defined as the period from June 1% to September
30", A formal causal mediation analysis through a regression-based approach was carried out
to understand to what extent the association between heat wave (the exposure) and mortality
(the outcome) is mediated by ozone (the mediator). This mediation analysis allows to
decompose the total effect (TE) of heat wave on different causes of mortality into its natural
direct effect (NDE, the effect of the exposure to heat waves on mortality at a level of ozone
concentrations observed during non-heat wave events) and its natural indirect effect through
the mediator variable (NIE, the effect of the exposure to heat wave which operates through
ozone).

Under the counterfactual (or potential outcomes) framework, the NDE is the contrast between
mortality risk on heat wave and non-heat wave days holding ozone levels at the value they take
on non-heat wave days. The NIE in contrast compares the mortality risk when ozone is at levels
observed on heat wave days versus non heat wave days, holding the exposure to a heat wave.
In other words, the NIE represents the risk of death when exposure to heat wave is held constant
and ozone changes by 1 unit increase to what it would have been for a change in the absence of
heat wave.

In order to estimate the NDE and the NIE, two multilevel regression models were fitted
following “the Product method” formalized by Baron and Kenny in 1986 (40) and adapted more
recently under the potential outcome framework (41-43). For each city, a quasi-Poisson
regression (allowing for over-dispersion) was first used for the outcome model, which models
daily mortality () as a function of heat wave episodes (hw), ozone concentration levels (03)
and a set of covariates c including day of week, bank holidays, calendar month, and two
temporal indicators, one for the day of the season going from 1 at the 1% of June until 122 for

30" of September (with 4 degrees of freedom), one for long-term trend (with 4 degrees of


https://atmo-france.org/

freedom) to address potential confounding by long-term trends at a time scale of approximately
4 years (44-47). Among confounding factors which can influence both daily mortality and
ozone formation (being one of its precursors), average nitrogen dioxide (NOz) concentrations

levels of the 2 previous days were also included in the set of covariate c.

E[Y|hw, 03,c] = exp (6o + 01hw + 6,03 + 2 Ouc) (1)

Then the mediator model was estimated through a linear regression linking 0zone concentration

levels to heat wave exposure and to the same set of covariates.
_ )
E[o3|hw,c] = By + B1Aiw + ) BncC

The natural direct effect is given by the exponential of the coefficient 6, associated to the heat

wave variable (hw) in the outcome regression model:

NDE = exp(6,) 3)

while de NIE is given by the exponential of the product of the coefficient 8, and the coefficient

B, associated to the heat wave variable (hw) in the mediator model:

NIE = exp(6,f,) 4)
The TE will be given then by the product of these two components.

Sensitivity analyses accounting for potential exposure-mediator interaction were performed
through the four-way decomposition method in order to verify whether the overall effect of the
temperature on mortality can be decomposed into four components: the portion of the effect
that is due to neither mediation nor interaction (the controlled direct effect, CDE), the portion
due to just interaction (but not mediation, the reference interaction), the one due to both
mediation and interaction (the mediated interaction), and the proportion due to just mediation
(but not interaction, the pure indirect effect) (48). In the absence of an exposure-mediator
interaction, like in the model presented above, the natural direct effect (NDE) coincides with

the controlled direct effect (CDE) and they can be interpreted interchangeably.

When interpreting TEs, NIEs and NDEs we assumed no unmeasured confounding or mediator-
outcome confounder affected by the exposure.



TEs, NDEs and NIEs, expressed in terms of Relative Risk (RR), and their 95% Confidence
Intervals (Cls) were computed using bootstrapping procedures (700 replications). Urban
agglomeration-specific estimates were then combined in a meta-analysis using random-effect
models in order to obtain pooled estimates. The presence of heterogeneity was tested and
reported using an I2 statistic, which describes the percentage of variation across agglomeration-
specific estimates that is due to heterogeneity rather than chance (49).

Finally, the proportion mediated (PM) was calculated for each urban agglomeration to quantify
the contribution of ozone in the excess risk of mortality during heat wave days, using the

following formula:

PM = RRypg(RRyiz —1)/(RRypg * RRyjp — 1) (5)

We also conducted additional sensitivity analyses (see details in Web Appendix) in which we:
i) restricted heat wave and non-heat wave days with overlapping ozone values; ii) removed the
year 2003 because of the major heat wave impacting France and iii) explored other heat wave

definitions.

All analysis were conducted using the R programming language, version 3.6.1 (R Foundation
for Statistical Computing, Vienna, Austria) in the integrated development environment of
RStudio (RStudio, PBC, Boston, Massachusetts), using the package metafor for meta-analysis
and forest plot (50).



Results

During the study period, mean temperatures for the period from June to September varied
considerably between urban agglomerations, from a mean value of 16.7 °C in the Rouen
agglomeration to a value of 23.3 °C in the Marseille agglomeration. The initial threshold values
triggering the beginning of a heat wave and corresponding to the 97.5™ percentile of the
distribution of temperature values within each urban agglomeration and during the full year
varied from a minimum of 21.0 °C in Le Havre agglomeration to a maximum of 27.3 °C in
Marseille agglomeration (Table 2). The highest value for the peak threshold (99.5™ percentile)
was reached in Lyon (29.19 °C), while the lowest corresponded again to Le Havre
agglomeration (23.99 °C). Complete information about the number of observed days (after
selection of summer months and exclusion of day with missing data for mean temperature,
ozone and NOz concentrations), about temperature values and the number of heat-wave days
for each urban agglomeration are provided in Table 2. Temperature distributions for each urban
agglomeration are also represented in Figure 2Erreur ! Source du renvoi introuvable.. Daily
concentrations for ozone varied from an average of 50.1 pg/m? in Rouen agglomeration to 77.64
ug/m? in Nice agglomeration. Ozone concentrations values and distributions for each urban

agglomeration are provided in Table 2 and in Figure 3.

A total of 450,727 deaths from non-accidental causes were recorded during summer periods
from 2000 until 2015, across all the urban agglomerations considered; 117,047 of them were
due to cardiovascular causes and 25,438 were due to respiratory causes. For each urban
agglomeration, daily mortality was higher during days experiencing a heat wave episode than
during normal days (Table 3 and Web Figures 1-3). In a large urban center such as Paris, daily
mortality was 2-fold or almost 3-fold higher (for respiratory mortality) during heat-waves
compared to the other days of the summer (see Table 3). In medium and small size
agglomerations (all the agglomerations considered except Paris, Lyon and Marseille) the mean
difference in daily mortality between heat-wave days and non-heat-wave days was 3 deaths for
non-accidental causes, 1 death for cardiovascular causes, while the mean difference for

respiratory mortality was below 1.
Mediation analysis
Non-accidental mortality

After adjustment for calendar variables and ozone and lagged NO- concentrations, associations

between the occurrence of a heat waves and non-accidental mortality were identified in all
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urban agglomerations, with a RR¢ varying from 1.91 in Paris (95% CI: 1.38 to 2.45) to a small
RR¢ for Montpellier (1.18, 95% CI: 0.99 to 1.36) (Web Table 1 and Figure 4a). The estimated
NDEs showed a stronger effect in Paris (RRnee=1.81, 95% CI: 1.31 to 2.30) and Bordeaux
(RRnee=1.57, 95% CI: 1.33 to 1.81) agglomerations and a weaker effect with 95% CI
overlapping the value of 1 in Montpellier agglomeration (RRnge=1.15, 95% CI: 0.97 to 1.34).
As showed in Figure 4b, the pooled estimate for NDE among all urban agglomerations was
1.33 (95% CI: 1.26 to 1.40), with some heterogeneity across urban agglomerations (1> =
47.06%). A weak mediation effect was observed in almost all urban agglomerations, except
for Nancy, Bordeaux and Le Havre (Figure 4c). Several RRs estimated for NIE showed large
confidence intervals, in particular among agglomeration with oceanic climate profile (i.e. Le
Havre, Nantes, Rennes, Rouen). The pooled RR for NIE was estimated to be 1.03 (95% CI:
1.02 to 1.05), with substantial heterogeneity across locations (12=63.31%). The proportion of
risk mediated by the exposure to ozone for non-accidental mortality varied from 31% in Nantes
to 5% in Nice (Web Table 1).

Cardiovascular Mortality

Results on cardiovascular mortality confirmed an effect of heat wave exposure as well as a
mediation effect through ozone for some urban agglomerations (see Web Table 2 and Figure
4). TE and NDE estimates were higher than for non-accidental mortality (for example for
Clermont-Ferrand [RR=1.89, 95% CI: 1.45 to 2.32] and for Paris [RRt«=1.99 95% CI: 1.38 to
2.59]) but, for several urban agglomerations, more imprecise (Web Table 2). Consequently,
the pooled estimate for NDE was higher than the one obtained for non-accidental mortality
(1.38, 95% CI: 1.26 to 1.51) but with a larger confidence interval, which is due to the smaller
number of cardiovascular deaths. Some heterogeneity across agglomerations was also observed
for this estimate (1°=53.30%).

The estimates for NIE on cardiovascular deaths were weak and not statistically different from
1 for almost all the urban agglomerations except Le Havre (RRnie= 1.16, 95% CI: 1.03, 1.28)
and Nantes (RRnie= 1.11, 95% CI: 1.02, 1.21), Paris (RRnie= 1.06, 95% CI: 1.01, 1.10), Toulouse
(RRnie=1.07, 95% CI: 1.02, 1.13) and Grenoble (RRnie= 1.08, 95% CI: 1.02, 1.15). Similarly to
non-accidental mortality, the pooled value for NIE for cardiovascular mortality was 1.03, with
a 95% CI going from 1.01 to 1.04 and moderate heterogeneity across locations (12=44.87%).
The proportion of cardiovascular mortality risk mediated by ozone varied from 42% in Le
Havre to 11% in Paris (Web Table 2).



Respiratory Mortality

Associations between the occurrence of heat waves and respiratory mortality were detected
only in some, more populated, urban agglomerations, namely Paris (RR«=2.30, 95% CI: 1.63
t0 2.98), Lyon (RRt=2.38, 95% CI: 1.74 to 3.03), Bordeaux (RRt=2.35, 95% CI: 1.52 to 3.18),
Marseille (RR=1.40, 95% CI: 1.02 to 1.77) and Toulouse (RR=1.56, 95% CI: 1.06 to 2.06)
agglomerations, as well as in one smaller agglomeration like Strasbourg (RR%=2.09, 95% CI.:
1.45 to 2.73) (Web Table 3 and Figure 4g). Estimates for NDEs were generally more
imprecise for this mortality cause than for the two others, and they were generally not
statistically different for 1, except for the aforementioned agglomerations (Figure 4h). The
pooled RR for the NDE was estimated to be 1.67, with a 95% CI going from 1.47 to 1.86, and
weak heterogeneity was observed across urban agglomerations (12=17.01%). Mediation effects
were detected only in Nantes (RRnie=1.29, 95% CI: 1.05 to 1.52), Lyon (RRnie=1.16, 95% CI:
1.07, 1.25) and in Paris (RRnie=1.08, 95% CI: 1.03 to 1.13). The proportion of respiratory
mortality risk mediated through ozone in these agglomerations was 14% in Paris, 23% in Lyon
and 57% in Nantes. The pooled RR estimated for the NIE was 1.04 (95% IC: 1.00 to 1.07), with
some heterogeneity across locations (12=44.66%). We tested the presence of a possible
exposure-mediator interaction and no evidence of an interaction effect was found for any of the
three causes of mortality. Description and results for sensitivity analyses are included in Web
Appendix, Web Tables 4-7 and Web Figures 4-10.
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Discussion

Our analysis showed that the effect of heat waves on mortality may be partially mediated
through ozone with important variability across French urban agglomerations. In some
agglomerations, like Nantes, mediation through ozone accounted for 31% of the total risk
associated with heat wave exposure on non-accidental mortality, for 35% on cardiovascular
mortality and for up to 57% on respiratory mortality. In contrast, in few urban agglomerations
like Nancy, evidence of a mediation effect of heat wave exposure through ozone was not found
for cardiovascular, respiratory mortality risk, or non-accidental mortality risk. Some
heterogeneity was found across different locations studied in the decomposition of the total
effect of heat wave on non-accidental and cardiovascular mortality, while heterogeneity was

less important when considering respiratory mortality.

These results are valuable for several reasons. First, from an etiological point of view,
understanding the mechanisms driving the effect of high temperatures on population health
through ozone has important implications for risk assessment; it allows to better understand the
excess of mortality observed during heat waves. Both extreme temperatures and exposure to
ozone concentrations have been shown to have adverse health effects and several
epidemiological studies confirmed that mortality or morbidity risk associated with extreme
temperatures is larger on days with elevated ozone concentrations (12,15,19,51,52). Our results
regarding total effects are comparable to previous studies conducted in France focusing on the
effects of extreme heat and mortality (1,36,44). Our mediation analysis contributes to a better
understanding of this phenomenon by suggesting that, as a secondary pollutant that is generated
by photochemical processes occurring during warm days, ozone can be considered a causal
intermediate between heat waves and population health (10). Understanding where and when
theses mechanisms operate can help to determine the proportion of mortality/morbidity due to
heat exposure itself and which portion is attributable to ozone concentrations exposure. This
could be particularly important not only for etiological reasons, but also in the perspective of
adapting public health interventions. National early warning systems and HHWSs have been
widely developed in the last decades (28). HHWSs use weather-based forecasting to predict the
occurrence of a heat wave event in order to alert stakeholders and trigger preventing measures
to inform the general public and protect vulnerable populations. The definition of a heat wave
varies by region and country according to geographic, population and climatic characteristics,
and it can be settled on different event-duration criteria and based on threshold values for

temperature or on biometeorological index value that have significant health effects (25-27).
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Even though evaluations of the effectiveness of HHWSs are still scarce in the literature (25,53),
some studies reported a reduction in health impacts of heat waves following their
implementation (54-56), while other reported limited effects (53). Moreover, systems of air
quality alerts (AQA) have been widely adopted in various big cities in different countries in
order to prevent adverse health events associated with episodes of extreme air pollutant levels
(defined as “air pollution episodes”), which are identified through specific threshold values
(57). These systems are focused on reducing emissions on days when air pollution
concentrations exceed a given threshold and, despite their widespread acceptance, evidence
about their impacts on population health is still limited (29-34). Preventive actions for the
reduction of ozone precursors (e.g. traffic related emissions) where a mediation effect is
detected can help mitigating the total effects of heat waves on population health (58).

Results of our study showed some spatial variation among studied cities. There are a few
possible reasons to explain such heterogeneity. First, ozone formation during heat wave may
vary across cities depending on several factors. Indeed, ozone formation is based on complex
photochemical process and is directly linked to the presence of NO2 and the oxidation of volatile
organic compounds (VOC). For a given NO2 concentration, ozone production rates can vary
significantly depending on the VOC presence (59) and the level of sunlight which varies
considerably across cities in France. Other factors, like wind intensity and direction, can also
drive tropospheric ozone concentrations in urban environments (60). Second, health effects of
0zone exposure may vary across cities due to differences in several socio-demographic factors
that have been shown to shape population vulnerability to air pollution. In particular, older
individuals and communities with low socio-economic status have been shown to be

particularly susceptible to ozone (61-64).

Some limitations have to be pointed out. First, we focused on the official climatologic heat
wave definition which corresponds to a small number of heat waves. This impacted the
statistical power of our analysis, especially for small-size urban agglomerations and for some
specific causes of mortality. This may explain the absence of a precise mediation effect detected
on respiratory mortality in most of the urban agglomerations studied. Second, we did not take
into account a possible lag structure for heat wave effects and we did not consider the effect of
a continuous variable for temperature, which would likely have a non-linear relation with
mortality. However, the choice of considering heat waves as a binary exposure (heat wave and
non-heat wave days) is more pertinent when referring to the policy approach generally adopted
in HHWSs. Finally, our observations were at the urban-agglomeration scale and a finer spatial
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resolution would allow more precise and reliable estimations; indeed, we only considered city-
level exposures and we had no access to the information about individual exposures that people

actually experience.

Some factors, which could not be integrated in our analysis, would be interesting to consider
for future research: for example, the potential benefit on mortality of the French HHWS started
in 2004 could be considered and integrated in the analysis, as well as a possible difference in
the health effect of heat waves according to their timing during the season, for which a heat
wave occurring at the beginning of the summer may not have the same effect on the population

health than one occurring at the end of the summer (65,66).
Conclusion

Using empirical data, this study decomposed the total effect of heat wave on mortality in 15
urban agglomerations in France in summers from 2000 until 2015. Our results show that the
effect of heat waves on mortality is partially mediated through ozone; this means that heat
waves impact human health not only by exposing populations to extreme hot temperatures, but
also by generating higher ozone concentrations. This is the first epidemiological study which
empirically assesses which proportion of mortality is due to exposure to heat itself and which
portion is attributable to ozone concentrations exposure. Further studies in other countries with
different climate profiles and population susceptibilities would be useful to better understand

the role of ozone as a mediator in the relationship between heat waves and mortality.
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Tables

Table 1. Main demographic, geographic and climatic information for the 15 French urban

agglomerations included in the study, 2000-2015.

Weather
station Longitude N Population
Urban Agglomeration (Météo- go Latitude (°)  Altitude (m)  municipalities P
) ; (2010)
France in the area
name)
Oceanic climate
Bordeaux Bordeaux 057 44 16 22 651,902
Merignac
Le Havre —
Le Havre Cap de la 0.13 49 70 16 241,037
Héve
Nantes-
Nantes Bougenais® -1.55 47 20 27 601,460
Rennes Saint-
Rennes Jacques? -1.68 48 35 4 240,769
Rouen Rouen-Boos? 1.08 49 22 42 447,009
Temperate-oceanic climate
Paris ot 2.33 48 60 124 6,666,103
ontsouris
Toulouse Toulouse 1.43 43 146 51 764,268
Blagnac?
Semi-continental climate
Clermont-Ferrand Clermont- 3.08 45 365 16 227,151
Ferrand
Grenoble Grenoble? 5.72 45 212 46 472,741
Lyon Lyon-Bron? 4.85 45 166 18 1,038,916
Nancy Nancy-Essey? 6.2; 48 222 38 331,903
Strasbourg Strasbourg — 7.75 48 144 20 440,426
Entzheim?
Mediterranean climate
Marseille Aeroport de 5.4; 43 20 8 970,751
Marignane
Montpellier Montpellier? 3.88 43 35 22 390,962
Nice Nice? 7.25 43 10 4 435,428

a Airport stations



Table 2. Temperature and Ozone Distribution Values in 15 urban agglomerations in
France, 2000-2015.

Urban o Temperature N Heat Ozone
Agglomeration Waves

25 Perc Mean 75 Perc 97.5 Perc®  99.5 Perc? 25 Perc Mean 75 Perc

Bordeaux 1927 | 1795 20.29 223 25.34 28.17 26 52.44 65.02 76.18
Le Havre 1943 | 15.26 16.97 18.2 21.00 23.99 23 514 60.67 68.09
Nantes 1950 | 16.33 1842 20.23 23.25 26.16 24 50.22 62.75 72.59
Rennes 1909 159 1793 19.75 22.35 25.30 32 42.07 541 62.82
Rouen 1950 | 1454 16.72 18.46 21.53 24.07 25 38.24 50.1 60.06
Paris 1950 | 16.67 19.18 21.36 24.60 27.50 27 40.24 5258 62.78
Toulouse 1950 18.7 2118 23.61 26.20 28.46 29 545 66.82 77.79
Cormon 1044 | 1635 19 215 2470  27.84 | 24 | 5317 6523 76.07
Grenoble 1935 16.3 18.76 21.35 24.05 26.30 36 4221 57.83 71.98
Lyon 1950 18 20.71 23.38 26.45 29.19 32 46.44 6152 753
Nancy 1948 15.7 18.2  20.76 23.60 26.30 32 38.84 52.01 62.28
Strasbourg 1947 16.3 18.79 21.35 24.14 26.81 38 4152 56.51 69.95
Marseille 1948 | 21.18 2325 25.32 27.35 28.89 35 59.62 70.45 80.98
Montpellier 1937 20.7 22,62 246 26.84 28.34 28 625 73.17 837
Nice 1948 | 21.25 2296 247 26.50 28.04 26 66.13 77.64 89.11

&nitial Threshold

b peak Threshold




Table 3: Summer period? daily mortality for each French urban agglomeration® during normal days and during days experiencing a heat

wave episode, 2000-2015.

Urban
agglomeration

Non-accidental Causes

Cardiovascular Causes

Respiratory Causes

Non-Heat-Wave
Days
Min Mean Max

Heat-Wave Days
Min Mean Max

Non-Heat-Wave
Days
Min Mean Max

Heat-Wave Days
Min Mean Max

Non-Heat-Wave
Days
Min Mean Max

Heat-Wave Days
Min Mean Max

Temperate-
oceanic climate

Paris 60 98.2 286 [ 100 2075 724 8 2358 56 13 5048 179 0 5.45 20 2 14.52 52
Toulouse 2 11.01 34 6 1462 24 0 2.97 11 0 4.24 9 0 0.56 5 0 0.9 3
Semi-continental
climate
Clermont 0 5.17 15 4 8.04 16 0 1.46 7 0 2.63 6 0 0.28 3 0 0.38 2
Grenoble 0 7.23 19 3 9.47 16 0 2.01 11 0 2.86 8 0 0.35 4 0 0.72 4
Lyon 4 16.97 36 11 2778 75 0 4.43 14 2 7.09 22 0 0.89 5 0 241 7
Nancy 0 6.29 16 0 9.31 24 0 1.66 7 0 2.66 10 0 0.41 4 0 0.84 4
Strasbourg 1 7.86 18 1232 22 0 2.21 9 0 3.45 7 0 0.44 6 0 0.95 3
Oceanic climate
Bordeaux 2 1154 25 7 1858 36 0 3.26 13 3 5.81 12 0 0.66 5 0 1.65 6
Le-Havre 0 5.28 14 2 6.96 15 0 1.37 8 0 2 6 0 0.29 3 0 0.52 2
Nantes 1 9.48 23 7 12.88 32 0 2.58 11 0 3.54 10 0 0.51 6 0 1.04 4
Rennes 0 3.57 12 2 5.03 9 0 1.07 5 0 1.58 6 0 0.24 3 0 0.48 3
Rouen 1 9.03 23 6 13.72 28 0 2.49 12 0 3.4 8 0 0.5 5 0 0.96 3
Mediterranean
climate
Marseille 7 20.09 39 12 2489 40 0 5.6 17 2 6.29 14 0 1.26 7 0 1.89 5
Montpellier 0 5.83 17 2 6.93 14 0 1.64 8 0 1.79 7 0 0.32 3 0 0.5 2
Nice 2 11.14 24 4 15.27 33 0 3.06 10 0 4.08 11 0 0.65 5 0 1 3

2 from the 1% of June until the 30" of September

b ranked according to their climate profile




Figures Titles

Figure 1. Maps of France and the urban agglomerations studied for the period going
from 2000 until 2015.

Figure 2. Temperature distributions for each city during summer months (from the
1st of June until the 30th of September) for the study period (2000-2015). French

agglomerations are ranked according to their climate profile.

Figure 3. Ozone concentrations distributions for each city during summer months
(from the 1st of June until the 30th of September) for the study period (2000-2015)

French agglomerations are ranked according to their climate profile.

Figure 4. Agglomeration-estimates and pooled estimates for Non-accidental,

Cardiovascular and Respiratory Mortality in France, 2000-2015.

Panels A, D and G show estimates for Total Effect (TE) of Heat Wave on Non-
accidental, Cardiovascular and Respiratory Mortality, respectively.

Panels B, E and H show estimates for Natural Direct Effect (NDE) of Heat Wave on
Non-accidental, Cardiovascular and Respiratory Mortality, respectively.

Panels C, F and | show estimates for Natural Indirect Effect (NIE) of Heat Wave on

Non-accidental, Cardiovascular and Respiratory Mortality, respectively.
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Web Figure 1. Daily number of deaths for non-accidental causes during heat wave days

and non-heat-wave days.
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Web Figure 2. Daily number of deaths for cardiovascular causes during heat wave days
and non-heat-wave days
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Web Figure 3. Daily number of deaths for respiratory causes during heat wave days and
non-heat-wave days.

paris toulouse clermant grenoble
50 - : B- - 3- - 4- - -
40- 4- . 3- .
30- 3- S — 2 : 5
20- - 2- 1- .
10- | 1- 1-
0- : 0- ! 0- —_— 0- :
lyon nancy strasbourg bordeaux
- 4- - G- - G- -
G- 2] . - -
4 . 4- 4- .
- 2- L] L] ™
E 2- q- 2- 2-
I
o 0° | 0- | 0- | 0- . Heat Wave
g B No
o lehavre nantes rennes rouen
IE_ 3- L G- L] 3- - - 5- - * Yes
o 4- .
r z- . 4- : 2- . - o
1- . 2- 1- . 27
—1_
n- — 0- a 0- — 0- :
marseille montpellier nice

3- O 5- O
R-

= G



Web Table 1. Decomposition of the Total Effects (TEs) of Heat Waves on Non-accidental
mortality into Natural Direct Effects (NDEs) and Natural Indirect Effects (NIEs) through
Os and Proportion of the TE mediated by O3z (PM).

Urban Agglomeration | TE 95%Cl | NDE 905%Cl | NIE 95%Cl | PM
Temperate-Oceanic climate
Paris| 191 [ 138 | 245 ]| 181 [ 131, 230 ]| 105 [ 1.02 , 1.09 ]| 11%
Toulouse| 134 [ 119 149 1] 128 [ 113 , 142 ][ 105 [ 1.02 , 1.08 ]| 20%
Semi-continental climate
Clermont-Ferrand | 155 [ 1.30 | 1.79 ]| 149 [ 125 , 1.73 ]| 1.04 [ 1.00 , 1.07 ]| 10%
Grenoble| 129 [ 1.13 146 || 122 [ 107 , 1.38 ]| 106 [ 1.03 , 1.09 ]| 25%
Lyon| 152 [ 126 178 ]| 145 [ 121 , 170 ]| 1.04 [ 1.02 , 1.07 ]| 13%
Nancy| 1.37 [ 113 , 162 ]| 137 [ 112 , 162 ]| 100 [ 098 , 1.03 ]| 2%
Strasbourg| 151 [ 137 165 ]| 146 [ 132 , 161 ]| 103 [ 1.00 , 1.06 ]| 8%
Oceanic climate
Bordeaux| 159 [ 135 | 182 ]| 157 [ 133 , 181 ]| 1.02 [ 099 , 1.04 1| 4%
Le-Havre| 127 [ 1.03 151 ]| 124 [ 100 , 148 ]| 1.02 [ 097 , 108 ]| 11%
Nantes| 1.32 [ 1.06 | 158 1| 122 [ 098 , 146 ]| 1.08 [ 1.03 , 113 ]| 31%
Rennes| 142 [ 120 164 || 134 [ 112, 156 ]| 1.06 [ 1.01 , 112 ]| 20%
Rouen| 148 [ 124 173 1| 137 [ 116 , 158 ]| 1.08 [ 1.04 , 112 ]| 23%
Mediterranean climate
Marseille| 121 [ 110 131 ]| 118 [ 1.09 , 128 ]| 1.02 [ 1.01 , 1.03 ]| 10%
Montpellier| 1.18 [ 099 | 136 ]| 115 [ 097 , 134 ]| 1.02 [ 1.00 , 1.04 1| 11%
Nice| 1.38 [ 117 | 158 ]| 133 [ 116 , 156 ]| 1.01 [ 1.00 , 1.03 ]| 5%




Web Table 2. Decomposition of the Total Effects (TEs) of Heat Waves on Cardiovascular
mortality into Natural Direct Effects (NDEs) and Natural Indirect Effects (NIEs) through
Os and Proportion of the TE mediated by O3z (PM).

Urban Agglomeration \ TE 95% Cl \ NDE 95% Cl NIE 95% Cl | PM
Temperate-Oceanic climate
Paris| 199 [ 138 | 259 ]| 187 [ 133,241 ] 106 [ 101, 110 ]| 1%
Toulouse| 142 [ 116 168 1| 132 [ 1.07 , 157 ]| 107 [ 102, 113 ]| 23%
Semi-continental climate
Clermont-Ferrand| 1.89 [ 145 | 232 ]| 189 [ 146 , 233 ]| 100 [ 094 , 1.06 ]| 0%
Grenoble| 142 [ 113 [ 171 ]| 131 [ 104 , 158 ]| 108 [ 1.02 , 115 ]| 27%
Lyon| 150 [ 1.16 183 ]| 143 [ 111,176 ]| 1.04 [ 100 , 1.08 ]| 12%
Nancy| 154 [ 114 195 1| 155 [ 115, 195 ] 100 [ 094 , 1.05 ]| -2%
Strasbourg| 147 [ 121 172 1| 149 [ 121 , 177 ]| 099 [ 094 , 1.04 ]| -3%
Oceanic climate
Bordeaux| 1.71 [ 143 | 200 ]| 173 [ 143 , 202 ]| 099 [ 095, 1.04 ]| -1%
Le-Havre| 145 [ 095 196 ]| 125 [ 082, 168 ]| 116 [ 103 , 128 ]| 42%
Nantes| 138 [ 097 178 ]| 123 [ 085, 162 ]| 111 [ 1.02 , 121 ]| 35%
Rennes| 151 [ 093 208 ]| 144 [ 087 , 202 ]| 104 [ 094 , 114 ]| 11%
Rouen| 142 [ 105 178 1] 130 [ 095, 165]] 1.08 [ 100, 117 ]| 27%
Mediterranean climate
Marseile| 111 [ 096 127 1| 109 [ 094 , 124 ]| 102 [ 100 , 1.04 1| 17%
Montpellier| 109 [ 073 14571 108 [ 072, 145 ]| 101 [ 097 , 105 1| 3%
Nice] 128 [ 097 160 ]| 127 [ 096, 158 1] 101 [ 098, 1.03 ]| 4%




Web Table 3. Decomposition of the Total Effects (TEs) of Heat Waves on Respiratory
mortality into Natural Direct Effects (NDEs) and Natural Indirect Effects (NIEs) through
Os and Proportion of the TE mediated by O3z (PM).

Urban Agglomeration | TE 95%Cl | NDE 95%Cl | NI 95%Cl | PMM
Temperate-Oceanic climate
Paris| 230 [ 163 298 || 212 [ 148 , 276 ]| 1.08 [ 1.03 , 113 ]| 14%
Toulouse| 156 [ 1.06 206 ]| 155 [ 1.02 , 208 ]| 1.00 [ 090 , 111 ]| -1%
Semi-continental climate
Clermont-Ferrand | 124 [ 036 | 212 ]| 127 [ 034 , 220 ]| 098 [ 083 , 112 ]| 0%
Grenoble| 190 [ 108 273 7| 193 [ 107 , 279 ]| 099 [ 085 , 113 ]| -2%
Lyon| 238 [ 174 303 ]| 207 [ 148 , 267 ]| 116 [ 107 , 125 ]| 23%
Nancy| 1.77 [ 097 258 ]| 190 [ 1.02 , 278 ]| 093 [ 0.82 , 1.04 ]| -16%
Strasbourg| 2.09 [ 145 273 1] 209 [ 135, 283 ] 099 [ 087 , 111 ]| -2%
Oceanic climate
Bordeaux| 2.35 [ 152 | 318 ]| 222 [ 141 , 303 ]| 1.04 [ 095 , 114 1| 7%
Le-Havre| 212 [ 074 | 350 1| 225 [ 074 , 375 ]| 095 [ 074 , 115 ]| -11%
Nantes| 164 [ 090 | 238 || 129 [ 069 , 1.88 ]| 129 [ 1.05 , 152 || 57%
Rennes| 1.75 [ 074 276 1| 166 [ 066 , 266 ]| 105 [ 084 , 126 ]| 12%
Rouen| 1.75 [ 095 255 1| 159 [ 077 , 240 ]| 1.09 [ 092 , 1.28 ]| 24%
Mediterranean climate
Marseille| 140 [ 102 177 ]| 136 [ 100, 172 ]| 102 [ 099 , 1.05 ]| 8%
Montpellier| 145 [ 077 | 213 1| 131 [ 071 , 191 ]| 110 [ 099 , 120 ]| 26%
Nice| 158 [ 097 218 1| 157 [ 096 , 218 ]| 100 [ 094 , 1.05 ]| 0%




Web Appendix

We conducted several sensitivity analyses. First, we summarized the distribution of ozone
concentrations and correlations between temperature and ozone in heatwave days and non-
heatwave days in Table S4 and Figure S4. Ozone concentrations are higher in heatwave days
than non-heatwave days, with varying overlap between them for each city. The correlations
between ozone and temperature are relatively low.

We then restricted our analyses to days with ozone levels that were observed in both heatwave
and non-heatwave days. In other words, we removed days with ozone larger than the smaller
value of maximum ozone concentrations in heatwave and in non-heatwave days, as well as
days with ozone smaller than the larger value of minimum ozone concentrations in heatwave
and in non-heatwave days. Table S5 and Figure S5 summarized the distribution of ozone
concentrations by heatwave day in this subset. The overlap in 0zone concentration between
heatwave and non-heatwave days increase after applying this restriction. Estimates of pooled
effects across cities were smaller than the main analysis, especially for total and natural direct
effects, but directions and significances of estimates were the same (Figure S6). Removing
extreme ozone concentrations lacking overlap between heatwave and non-heatwave days
reduced the estimated direct effect of heatwave but had minimal impact on the estimated
indirect effect of heatwave through ozone.

Then, we conducted sensitivity analysis by removing data from the year 2003 due to the
major heat wave in France. Table S6 and Figure S7 summarized the distribution of ozone
concentrations by heatwave in this subset. Estimates of pooled effects across cities were
smaller than the main analysis, especially for total effect and natural direct effect, but
directions and significances of estimates were similar (Figure S8). Although extreme
heatwave events have a huge impact on the estimated direct effect, it has minimal impact on
the effect of heatwave mediated through ozone.

Finally, we conducted sensitivity analyses with two new definitions of heat waves (or extreme
heat events): single day with temperature higher than 95 percentile of the entire study period,
and single day with temperature higher than 97.5" percentile of the entire study period. Table
S7 provides summary of summer days defined as heatwave day for each city under three
definitions. As expected, we saw the highest number of heatwave days in 95" percentile
definition, followed by the 97.5" percentile definition and main analysis definition, when the
criteria for heatwave day become stricter. Estimates of pooled effects across cities were
smaller than the main analysis, especially for total effect and natural direct effect, but
directions and significances of estimates were similar (Figure S9 and S10). Although different
definitions of heatwave change the direct and total effect estimated between heatwave and
adverse health outcomes, they did not change our overall conclusions.



Web Table 4. Distribution of ozone concentrations and correlations between temperature

and ozone in heatwave days and non-heatwave days for main analysis dataset.
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Web Table 5. Distribution of ozone concentrations and correlations between temperature
and ozone in heatwave days and non-heatwave days for subset analysis restricted to days

with ozone concentration that exists in both heatwave and non-heatwave days.

Temperature and Ozone statistics by heatwave per City
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Web Table 6. Distribution of ozone concentrations and correlations between temperature
and ozone in heatwave days and non-heatwave days for subset analysis after removing
data from the year 2003.

Temperature and Ozone statistics by heatwave per City
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Web Table 7. Number of heat wave days by different definitions of heat wave (Heat wave
is the main analysis definition, Heat wave 95 is the single day 95™ percentile definition,
and Heat wave 975 is the single day 97.5™ percentile definition).
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Web Figure 4. Distribution of ozone concentrations for each city during summer months
in heatwave days and non-heatwave days for main analysis dataset.
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Web Figure 5. Distribution of ozone concentrations for each city during summer months
in heatwave days and non-heatwave days for subset analysis restricted to days with ozone
concentration that exists in both heatwave and non-heatwave days.
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Web Figure 6. City-estimates and pooled estimates for Total Effect (TE), Natural Direct
Effect (NDE) and Natural Indirect Effect (NIE) of Heat Wave on Non-accidental,
Cardiovascular and Respiratory Mortality for subset analysis restricted to days with
ozone concentration that exists in both heatwave and non-heatwave days.
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Web Figure 7. Distribution of ozone concentrations for each city during summer months
in heatwave days and non-heatwave days for subset analysis after removing data from the
year 2003.
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Web Figure 8. City-estimates and pooled estimates for Total Effect (TE), Natural Direct
Effect (NDE) and Natural Indirect Effect (NIE) of Heat Wave on Non-accidental,
Cardiovascular and Respiratory Mortality for subset analysis after removing data from

the year 2003.
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Web Figure 9. City-estimates and pooled estimates for Total Effect (TE), Natural Direct
Effect (NDE) and Natural Indirect Effect (NIE) of Heat Wave on Non-accidental,
Cardiovascular and Respiratory Mortality with heat wave defined as single day with
temperature higher than 95" percentile of the entire study period.
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Web Figure 10. City-estimates and pooled estimates for Total Effect (TE), Natural Direct
Effect (NDE) and Natural Indirect Effect (NIE) of Heat Wave on Non-accidental,
Cardiovascular and Respiratory Mortality with heat wave defined as single day with
temperature higher than 97.5™ percentile of the entire study period.
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