
HAL Id: hal-04220131
https://hal.sorbonne-universite.fr/hal-04220131

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Effects of secured DNS transport on resolver
performance

Etienne Le Louet, Antoine Blin, Julien Sopena, Ahmed Amamou, Kamel
Haddadou

To cite this version:
Etienne Le Louet, Antoine Blin, Julien Sopena, Ahmed Amamou, Kamel Haddadou. Effects of se-
cured DNS transport on resolver performance. 2023 IEEE Symposium on Computers and Commu-
nications (ISCC), Jul 2023, Gammarth, Tunisia. pp.238-244, �10.1109/ISCC58397.2023.10217887�.
�hal-04220131�

https://hal.sorbonne-universite.fr/hal-04220131
https://hal.archives-ouvertes.fr


Effects of secured DNS transport on resolver
performance

Etienne LE LOUËT∗† Antoine BLIN∗ Julien SOPENA† Ahmed AMAMOU∗ Kamel HADDADOU∗

GANDI, Paris, France∗ - Sorbonne Université, CNRS, LIP6, F-75005 Paris, France†

Abstract—Designed 40 years ago, DNS is still a core component
of internet: billions of DNS queries are processed each day
to resolve domain names to IP addresses. Originally designed
for performances and scalability, its transport protocol is unen-
crypted, leading to security flaws. Recently, secure protocols have
emerged, but the question of their scalability and sustainability
remains open. In this paper we study the cost of switching
from the legacy DNS transport to the newer ones, by first
characterising the shape of the traffic between clients and secured
public resolvers. Then, we replicate said traffic, to measure the
added cost of each protocol. We found that, while connections
usually stayed open, many closures and openings were made
in some cases. Comparing these profiles over different DNS
transports, we observe that switching from the legacy protocol to
a more secure one can lead to an important performance penalty.

I. INTRODUCTION

Introduced in 1983, the Domain Name System (DNS) is a
core component of the Internet, as nearly every communication
on it is preceded by at least one DNS query. It had originally
been developed with a focus on performance and scalability
by using UDP as transport to achieve both the lowest laten-
cies and server load, but concerns regarding confidentiality
and integrity have since emerged. New standards, DNS-over-
TLS (DoT) [9] and DNS-over-HTTPS (DoH) [7], have been
proposed within the IETF to secure DNS by encrypting queries
and responses using TLS. While these new standards provide
both confidentiality and integrity, the question of their cost
remains opened, as there is no information on the energeti-
cal or environmental sustainability of transitioning all DNS
traffic from the old protocols to the new ones. In this paper,
we propose an estimation of the additional server resources
required to transition from a non-encrypted, non-connected,
DNS protocol to a secure but costly protocol, by observing
how existing secured DNS client use the service and measuring
the added cost of these protocols in a controlled environment.

First, we conducted a characterisation of the behaviour
of DoH clients and public resolvers, in order to gather the
different patterns and settings applied by both entities in
their use of the secured protocols (number of connection
openings, connection duration, number of queries allowed per
connection...). We noticed that, while they tend to try and keep
a single connection alive, browsers can, in certain cases close
and re-open them very frequently.

Then, we realised multiple benchmarks using two secured
resolvers in order to, first, compute their performance base-
line when using the unconnected legacy UDP protocol, then

to measure the hardware resources consumption of each of
the steps (connection establishment and upkeep, as well as
message processing) of the new DNS protocols. We observe
that while the additional memory consumption generated by
the use of the new secured protocols is noticeable, the rate
of increase is not important enough to be a problem in terms
of scalability. In terms of CPU overhead, transitioning from
UDP to DoH can lead to a 70% decrease in performances (for
relatively long-lived TCP connections). The cost of encryption
is in large part added by the TLS key exchange. For DoH (the
most popular protocol) the cost of implementing the HTTP/2
layers lead to a performance penalty.

The rest of the paper is organised as follows: sections II
and III describe the technical background and related work,
section IV proposes a characterisation of client and resolver
behaviour in order to understand the shape of the traffic near
the resolvers, section V proposes a benchmark and an analysis
of server side performances and in section VI, we conclude.

II. TECHNICAL BACKGROUND

Client Resolver

DNS Response
UDP

DNS Query
UDP

Client Resolver

2

TCP (SYN)

TCP (SYN+ACK)

1

4

DNS Query
TCP (ACK)

DNS Response
TCP

3

TCP (FIN)

TCP (ACK)

TCP (FIN + ACK)

CloseNotify
TLS

TCP

TCP (FIN)

TCP (ACK)
TCP (FIN + ACK)

Client Resolver

TCP (SYN)

TCP (SYN+ACK)

1

2

ServerHello
TLS
TCP

ClientHello
TLS

TCP ACK

4

3

7

DNS response
TLS

TCP

DNS query
TLS

TCP5

6

CloseNotify
TLS

TCP

TCP (FIN)

TCP (ACK)
TCP (FIN + ACK)

Client Resolver

TCP (SYN)

TCP (SYN+ACK)

1

2

ServerHello
TLS
TCP

ClientHello
TLS

TCP ACK

4

3

TLS

TCP

HTTP/2 HEADERS

TLS

TCP

DNS query
HTTP/2 DATA

6

TLS

TCP

HTTP/2 HEADERS

TLS

TCP

DNS response
HTTP/2 DATA

75

8

7

Figure 1: Comparison of DNS over UDP, TCP, TLS and HTTP/2

From a high-level point of view, DNS is a registry service
queried by a client to resolve the IP address corresponding
to a domain name. It has been implemented as a tree-like
database, in which multiple servers hold only a fraction of
the information : looking for information on it is therefore



a depth-first search starting from the root. However, if every
client looking to translate a domain name to an IP address were
to realise such a process, it would result in prohibitive latencies
and an overload on the servers closest to the root; that is why
iterating through the tree is delegated to resolvers, servers
which, upon receiving a query from a client, can answer it
either from their cache, that will have a higher hit rate since
it likely received the same request from another client earlier,
or by doing the resolution themselves.

In contrast to the other, historically text-based, web pro-
tocols, the DNS message protocol has been implemented
using binary message format in order to target the highest
performances. Both UDP and TCP have been selected as
transports. The first one, UDP, is connection-less (Figure 1 a),
and provides high performances at the cost of reliability and
message payload size. As such, it is the recommended protocol
to transport standard DNS queries (which represents most of
the DNS traffic). The second one, TCP, requires the exchange
of three messages (arrows 1 through 3 on figures 1 b c d) to
establish a connection, before sending any DNS messages. It
has been mostly used to transport special DNS messages (zone
transfers) that do not fit into an UDP datagram. As these legacy
DNS transport protocols are unsecured, DNS is vulnerable to
a variety of attacks detailed in section III. Several secured
protocols have been proposed to deal with the aforementioned
security flaws.

The first one, DoT [9], uses a TLS connection [14] to
provide both integrity and confidentiality. It relies on a TCP
connection to establish a TLS session between the client and
the server. Two messages (arrows 3 and 4 in figure 1 c)
are exchanged between both endpoints to derive, from their
respective pairs of asymmetric keys, a symmetric key used to
encrypt the DNS binary messages. During this process, the
client also validates the identity of the resolver by using the
latter’s digital certificate.

DoH has been proposed as an alternative to offer a secure
DNS transport. It relies on HTTP/2 [2] to carry the DNS
messages, and may be seen as an additional layer built on
top of TLS. Once a session is established (arrows 3 through 4
in fig 1), the multiple streams of the HTTP/2 protocol are used
to transport DNS queries, either directly in their binary format
as the body of an HTTP POST query (arrows 5, 6, 7 and 8
in figure 1 d), or as the base64-encoded URL parameter of a
GET query (as it is less common it is not considered here).

Originally designed for performance, the legacy DNS proto-
col doesn’t offer any security guarantees. To prevent data leaks
and corruption, new protocols based on existing technologies
used to guarantee security on the web have been pushed in
order to secure DNS. Switching from a connection-less un-
encrypted protocol to connected ones making extensive use
of cryptography seems to go against the original goals that
drove to the development of DNS, therefore, the cost of this
transition must be analysed.

III. RELATED WORKS

We classify the works related to DNS security in three
categories: works that focus on describing and proposing
mitigations for different security flaws, works that aim to
compare the client-side cost of secured DNS protocols, and
finally, works that focus on evaluating their adoption.

a) Security issues and guarantees: When studying the
security of an information system, three properties are to be
considered : confidentiality, integrity and availability.

Confidentiality: DoUDP and DoTCP did not offer any kind
of confidentiality for messages, meaning that any malicious
actor could use captured DNS message to breach a user’s
privacy [3]. DoT and DoH circumvent this flaw by using the
TLS protocol to carry their messages, therefore guaranteeing
confidentiality. However, several studies have shown that some
characteristics of DNS traffic can be exploited to, in some
cases, de-anonymize encrypted DNS traffic. In [15], Siby et
al show that, despite its use of encryption, it is still possible
to determine the content of a DoH flow containing un-padded
queries and responses, by using traffic analysis techniques.
In [5], Bushart and Roshow show that even state-of-the-
art padding strategies are weak against some traffic analysis
attacks. However, it is worth noting that the models used in
these attacks can only de-anonymize DNS flows they were
previously trained on (usually popular websites), and that
techniques such as arbitrarily delaying queries and responses,
or the use of proxy networks such as TOR can be powerful
mitigations against these attacks. Furthermore, these attacks
require both a constant update of the model used to target
websites in order to cope with their modification, and the
knowledge of the source of the traffic, as clients have different
behaviours regarding inter-query timings and message size.

Integrity: The DNS protocol did not initially offer mech-
anisms guaranteeing the integrity of data, meaning that an
adversary could edit a DNS response, thus redirecting a
client towards fraudulent services [11]. DNSSEC was later
standardised, and guarantees the integrity of data exchanged
between the resolver and name servers. On the other hand,
the data exchanges between client and resolver still use the
legacy protocol, leaving them vulnerable to the aforementioned
attacks. As TLS guarantees the integrity of the messages
it transports, using DoT or DoH in combination with a
trusted resolver that validates the integrity of records by using
DNSSEC, can protect against this category of attacks.

Availability: The two aforementioned properties are nec-
essary but not sufficient to fully protect a client. DNS is
one of the most commonly filtered protocols (by governments
or ISPs [10]). DoT, which uses port 853 by default can
be easily blocked by port-based filters, while DoH is not,
as it relies on a widely used protocol. It is still vulnerable
to fingerprinting techniques, able to detect whether or not
an encrypted flow contains DoH queries and response, like
Vekshin et al prototyped in [16]. However, as we said earlier,
these techniques requires models trained on a variety of clients,



resolver and traffic shape that require constant updating, so it
is unrealistic to expect them to be used globally.

Despite the remaining security limitations, the benefits pro-
vided by DoT and DoH complete the efforts first undertaken
with the introduction of DNSSEC.

b) Client-side performance: Various studies focus on the
client-side cost of DoT or DoH: Hounsel et al. [8] compare
the page load times using different combinations of DNS
transports, network types and public resolvers. Boettger et
al. [4] also compare the resolution times and protocol overhead
of different secure DNS transports when using persistent or
non-persistent connections. These studies find that connection
reuse is beneficial for the client, and that secure DNS adds no
noticeable cost to clients, except on some cellular networks.

c) Protocol Adoption: In [6] Garcìa et al analyse both the
number of available DNS-over-encryption resolvers, as well
as the use of DNS-over-encryption by various users. While
the amount of DoH traffic had stayed stationary, representing
about 1% of the current DNS traffic, the number of available
DoH server is steadily growing, leaving the question of
energetic sustainability, if their use is generalised, opened.

IV. BEHAVIOUR OF CLIENTS AND RESOLVERS

As the newer DNS transports are connection based, new
questions arise: while the protocol defines how to query the
service, it doesn’t specify how the underlying connections
should be managed by both the client and resolver. The
sequence of connections opening and requests sent is mostly
controlled by the client, but to focus only on the client’s
behaviour is not enough, as the server has the choice to accept,
reject, close or keep said connections opened.

The objective of this experiment is to characterise the shape
of the traffic between already existing clients and publicly
available resolvers, so we can generate similar traffic when
measuring server-side performance. In section IV-A we de-
scribe the experimental setup used for the measurements while
section IV-B contains an analysis of the different behaviours
observed from the clients and the resolvers.

A. Experimental setup

We selected, as clients, two web browsers: Firefox v91.5
and Chromium v101.01, as it is possible to configure them
to emit all their DNS traffic over HTTPS instead of relying
on the host OS’s services (which would, in the vast majority
of cases result in unsecured DNS traffic). However, there are
other software than web browsers that generate DNS traffic,
and, in the majority of cases, said traffic is unsecured. A
new category of software, called proxies, has emerged to
resolve this issue. They capture all DNS queries emitted by
software on the system, and transmit them to a configured
resolver over a secured channel. This means that, by installing
and configuring it, all software transparently benefits from
a secured DNS channel to a trusted resolver, that is shared
among all running applications, which saves both client and
server resources when compared to a model in which each
client individually implements secured DNS transports. As

DoH has gained more traction than DoT, it is the only secured
DNS transport available in web-browsers. Therefore, for the
following experiments, all DNS traffic we generate is based on
DoH. For the public resolvers, we chose three major players
widely used by the public: Quad9, Google and Cloudflare. We
gather the list of websites used for the resolution through a
public list of domains names [18], filtered to keep the ones
that still have an A record corresponding to a server accepting
HTTP traffic. In order to generate the appropriate traffic we
configured the browser to use the selected DoH resolver, and
then we loaded a JavaScript script making HTTP requests at
various rate (one every 50 ms, 1000 ms and 60 000 ms) during
a period of 30 minutes. To generate traffic using DNScrypt-
proxy, we used a C program making DNS resolutions at the
same rates as the ones configured for the browser, using the
system’s configured resolver, which, in this case, is DNSCrypt-
proxy. We characterise the shape of the traffic by measuring,
for each connection, its duration, the number of queries that
were sent on it, as well as the origin (client or the server) and
method (FIN or RST) of the its closure.

B. Results

Figure 2: Connection use by Chromium and DNSCrypt-proxy for a set of
resolver and query delays

Figure 2 presents, for each combination of software, inter-
query delay and public resolver, the number and length of



connections to the resolver established by the client (for
example, on fig 2(a), the top-right figure presents the number
and length of TCP connections that chromium established
towards the quad9 resolver. The horizontal axis of each sub-
figure represents the time in the experiment, and a connection
is presented as by a coloured rectangle, its leftmost and
rightmost edges mark its start and end date respectively.
Connections shorter than a second are represented by a cross.
For example, we observe that, when the inter-query delay is
50ms, DNScrypt-proxy established only one connection to the
quad9 resolver (figure 2(b), top-right). On the other hand, we
observe that, with the same inter-query delay of 50ms, Firefox
established a lot of short-lived (less than 1s) to the quad9
resolver (figure 2(a), top-right). We only elected to present
chromium’s profile, as Firefox’s is similar.

a) DNScrypt-proxy: DNScrypt-proxy generates the least
aggressive load towards the server. Indeed, its main behaviour
is to open and keep opened a single TCP connection that it
will use to perform all requests, regardless of intensity of the
traffic generated. In addition, an internal timer is set to trigger
the close of the TCP connection when it is unused, freeing
servers resources (bottom row on figure 2b).

b) Web browsers: The browsers have a more aggressive
usage of DNS resources: at the beginning of the sessions,
they try to maximise the probability of having a successful
connection to the DNS server by opening several connections
in parallel to the same server, likely to speed up the early
resolutions that browsers usually do, (figure 2a), leading to an
increase in server resources usage. The following use of these
opened connections depends on the intensity of the traffic.
When the traffic has a low intensity, with a request frequency
lower than 1 query per second (see the bottom two rows of
figure 2a), a single connection is mainly used to handle the
traffic, the remaining connections eventually being closed. We
sometimes observe connection closures, forcing a re-opening
(1000ms delay row on Figure 2a), or multiple connections at
the same time (1000ms and 60 000ms delay rows on figure 2a),
but these events are not numerous enough during the lifetime
of an experiment to be significant. Under a DNS traffic with
a high intensity (above 1 query per second) the connection
pattern of the web browsers changes drastically. Not only does
the browser fails to generate the traffic we ask for, we also
observe connections being opened and closed in sequence,
with every connection shutdown originating from the client
(see top row on figure 2a) and each connection being used
to carry few to no requests. From a server perspective, such
behaviour represents the worst case, as, with each connection
opening being costly, this leads to huge resource consumption.

c) Resolvers: Clients are not the sole responsible for the
connection patterns. The resolvers have the choice to accept or
deny the connections and the traffic issued from the clients. We
have observed that Google has the most permissive resolver
configuration of those we tested, as we didn’t observe any
limitation in terms of number of connections, their duration
and the number of queries per second (QPS) or per connection.
Quad9 closes unused connection after around 20 seconds of

inactivity (figure2a, bottom-right). Cloudflare does not impose
any restriction on the connection duration, but limits the
maximum number of requests per connection to 10 000 (figure
2b, top-left).

The intended behaviour of clients and resolvers seems to be
to keep one TCP/TLS connections alive while they are used.

V. SERVER SIDE PERFORMANCE

Moving from UDP, an unconnected protocol historically
used for communication between clients and resolvers, to
more complex connected ones can lead to an increase in
consumption of hardware resources on the resolver side.
Indeed, while the handling by the resolver of DNS queries
transported in a UDP datagram simply requires receiving the
datagram and then sending another one containing the answer
once the resolution is completed, the use of session-based
protocols is more complex, as they require the establishment
of a session and the management of the state associated with
it, in order to receive queries and emit responses.

Questions about scalability and resource consumption arise
regarding the cost of these additional steps. In order to
properly evaluate their cost, we realised a series of synthetic
benchmarks, first using DNS over UDP (DoUDP) as a base-
line, then DNS over TCP (DoTCP), DNS over TLS (DoT),
and DNS over HTTPS (DoH). While it offers no privacy
guarantees, measuring how DoTCP performs is still interesting
because, as we have seen previously in section II, both secured
protocols have been built on top of TCP. Thus, the comparison
between DoUDP and DoTCP is a good performance indicator
of the cost added by the TCP connection. Using the same
approach, comparing DoTCP and DoT allow us to measure the
performance cost of the TLS session establishment and traffic
encryption, and comparing DoT with DoH gives us insights
about the cost of the added HTTP/2 layers.

In section V-A, we describe the experimental environment
of our benchmarks. Section V-B presents the results of a
benchmark of the legacy UDP-based protocol, while Sec-
tions V-C, V-D and V-E describe the multiple synthetic bench-
marks we realised to characterise the costs of the different
steps of the connection-based protocols.

A. Experimental setup

We elected to run our benchmarks on a DNS architecture
deployed on the Grid5000 [1] platform. Our test bed is
composed of 22 Dell PowerEdge R640, each of them having
an 18-core CPU with a base clock of 2.2 GHz and a turbo
frequency of 3.9 GHz, 96 GiB of RAM and a 25 Gbps NIC,
all connected together through the same switch. We run our
resolver on one of those machines, use twenty of them as our
clients and the remaining one as experiment monitor in charge
of deploying and running the various actors and measurement
tools on their respective machines.

We selected two resolvers implementations to test: Knot-
Resolver, as it is used by important industry players (most
notably Cloudflare) and dnsdist, that is not a resolver per se,
but acts as a proxy and load balancer between a client and



another resolver, it can either answer from its cache, or forward
the query to another resolver. Since it is compatible with
both DoH and DoT, it allows to modernise an existing DNS
infrastructure by adding support for these protocols without
modifying the existing software. As we need a very high
number of clients to reach 100% load on one core in our
setup, we configure both software to only run on a single core
of our resolver machine using Linux cgroups.

As we aim to focus on the resolver-side cost of tran-
sitioning from a legacy UDP based protocol to a session-
based protocols for the client to resolver connections, we
decided to exclude the cost of retrieving the records from the
hierarchy of DNS name servers from the resolving process,
to avoid measurements noise that could occur when querying
external uncontrolled name servers. At the beginning of each
experiment, we fill the cache of knot or dnsdist with the DNS
records that will be queried, all subsequent clients queries
resulting in a cache HIT. To reduce experimental variability
as much as possible, all of the 2000 queried domain names
have the same length and fake TLD.

Traffic is generated using Flamethrower [12], a DNS bench-
marking utility compatible with all benchmarked protocols.
We patched its code so it would be able to keep the underlying
connections opened for a configurable duration, as the default
behaviour was to close them once it sent a batch of queries.
When benchmarking DoH, we send our queries in the body
of a POST HTTP/2 query, as we detected that it was how
our clients operated. A fork of Flamethrower including these
changes is available on github [13].

B. Baseline

As it is the legacy, most widely used and the most efficient
transport for DNS, measuring how UDP performs gives us
a baseline in terms of performances. Therefore, we bench-
mark our resolvers by sending as many requests as possible,
stopping only when we started recording systematic losses.
At best, knot answered 115 000 QPS out of the 120 000
QPS sent by our clients, while dnsdist answered 225 000
QPS, out of the 240 000 sent. We investigated these losses
and noticed that they were due to a saturation of the CPU,
both resolvers being unable to process queries at such a rate,
leading to the kernel-side UDP reception buffer filling up and
packets having to be discarded. We explain the difference in
performances of almost 50% between knot and dnsdist by the
fact that dnsdist is a proxy and load balancer whose purpose is
to pass queries to an upstream server as efficiently as possible,
therefore having very few things to do when receiving a query
other than answering it from its cache or forwarding it, while
knot most likely has to do more processing, even in the case
of a cache hit (query policy, response padding).

C. Memory usage of keeping connections alive

Transitioning from UDP, a connection-less protocol, to
connection-based ones raises the question of the maximum
number of connections a resolver can handle. Therefore, we
have devised an experiment aiming to measure the limits (in

terms of memory) of the number of connections that can be
handled by a server.

For each protocol we tested (DoTCP, DoT and DoH), we
used Flamethrower to generate as many connections towards
our resolver as possible, spread across our 20 machines.
We configured both clients so that they would not close
established connections, and increased the kernel-side limits
on the number of outgoing or incoming connections. We
measure two separate values: the Resident Set Size (amount of
memory used by the process present in physical RAM) of the
resolver, and the total amount of memory used on the machine.
By calculating the difference between these two values, we are
able to estimate the amount of memory used by the kernel.
There was an option in dnsdist allowing for the release of
memory linked idle connections, which we chose to deactivate
as our interest lied in estimating how much memory an active
connection would consume.

(a) Knot-resolver

(b) dnsdist

Figure 3: Memory usage of the resolvers relative to the number of connections

Figure 3 shows, for each protocol, the total physical memory
used relative to the number of connections. At the top (in red)
is the resident set size of the resolver, in the middle (in black)
is memory used by the kernel, and, at the bottom (in grey)
is the amount of memory when the server is idle, presented
for reference. The memory used by the kernel is the same
in every experiment, which is consistent with the fact that
the kernel only handles TCP connections, the common part
between the three protocols. For both resolvers, we observe
an increase in memory consumption when switching from
DoTCP to DoT, as the handling of TLS sessions requires
additional state, handled by the resolver. When switching from
DoT to DoH, we can notice a difference in behaviour between
both resolvers. When considering knot-resolver, we see a clear
increase in memory consumption between DoT and DoH, due
to the fact that the DoH stack of knot-resolver is built upon
its TLS stack. Therefore the memory consumed by HTTP2’s
protocol layers are added to the memory consumed by the TLS



layer. For Dnsdist, we observe that DoH has a lower memory
consumption than DoT. While this seems counter-intuitive, it
is consistent with the memory consumption per connection
and protocol announced in its documentation. As the number
of simultaneous connections never reaches 400 000 in the
following experiments, we conclude that memory consumption
won’t be the limiting factor in our setup.

D. Cost of handling queries

Figure 4: Queries per second handled by both resolvers when connections last
all experiment

While the use of these new connected protocols seems to
cause no issue regarding memory consumption, it can induce
a CPU overhead due to the additional steps required when
handling messages. These can be broken down into two parts
: First, the connection establishment, and then, the handling of
individual messages (see section II). The experiment described
here aimed to estimate the cost of handling individual queries.

In order to measure the additional cost per request, we must
take into consideration the number of simultaneously opened
connections over which requests are sent. To do this, we sent
a fixed amount of traffic over a variable number of already
opened connections. The total fixed amount of queries sent,
as well as the minimum number of connections was chosen
to ensure that the CPU utilisation of the resolver process and
the frequency of the core it ran on, were as high as possible.
We ran into an issue when using Flamethrower, meaning we
could not exceed a certain number of queries per second with
DoH, so the number of queries per second sent are not the
same between DoH and DoT / DoTCP. However, all tested
configurations allowed us to reach 100% CPU use, which
means that this issue does not affect the validity of our results.

Each point on Figure 4 represents the average number
of queries per second that were successfully answered by
the tested resolver, with bars presenting the minimum and
maximum value reached, for a specific protocol and a specific
number of connections. We also represented the max traffic
handled with UDP for comparison purposes. For every con-
nected protocol there is a performance drop when compared to
UDP, due to the management of the state associated with the
connections. We observe a noticeable performance between
DoTCP any DoT, for dnsdist only while for knot-resolver
performances are the same. Since knot-resolver has to execute
more tasks than dnsdist upon receiving a DNS query (as
discussed in section V-B), the additional cost of symmetric
encryption is absorbed by the cost of handling DNS queries,

and as dnsdist has less work to do upon receiving a query, the
cost per message added by symmetric encryption has a bigger
impact. When comparing DoH to other protocols, we notice,
for both resolvers, a huge drop in performances (by a factor
of two), explained by the added cost of the HTTP/2 protocol
layers. For every protocol, we observe that performances tend
to drop when the number of connection increases (up to a
40% decrease when considering dnsdist over DoH), except
for dnsdist over TCP.

E. Overhead of establishing connections

cx/s cx/s No conns cx/s cx/s No conns

Figure 5: Queries per second handled per resolver and protocol according to
number of connections per second

In the following experiment, we measure the cost of opening
and closing connections for each protocol. We use the same
experimental parameters as the one used in the previous
experiment (figure 4) to plot the point corresponding to 1000
connections, taking into account connection establishment and
tear down. Thus, by comparing this experiment and the previ-
ous one, we can infer the overhead of connection establishment
(TCP connection establishment, TLS key exchange). We run
two sets of experiments, one in which connections last 30s,
the other in which connections last 1s (to match the long and
short-lived connections we observe in IV). This means that,
in the first experiment, 33 connection establishments occur
every second, while in the second experiment 1000 connection
establishments occur every second. We run an additional batch
of experiments to reproduce the very short-lived connections
also observed in section IV.

The results of the experiment are presented in Figure 5 with
the number of queries per second handled by the resolver
for each combination of resolver, protocol, and connection
duration. We also plotted the maximum queries per second
we reached in the previous experiment (figure 4) as a baseline
for comparison. In general for knot and dnsdist resolvers we
observe the same performance variations between protocols
but with different orders of magnitude : When few connection
establishments occur (connections last for 30s), we observe a
20% decrease in performances for TCP and DoT, relative to
when no connections establishment occur. for TCP and DOT
lose around 20% performances. However, we do not observe
this performance loss for DoH, as the CPU cost of query
management still is the bottleneck.



When the frequency of connection establishments increases
(connections last for 1 second), the performances of TCP do
not change, while both encrypted protocols see a decrease in
performances due to the added cost of the TLS key exchange.

When connections are used for one query only, the cost
of establishing TCP connections induces a collapse of perfor-
mances for all protocols.

KNOT DNSDIST
Protocol 1 q/cx 1000 cx/s 33 cx/s 1 q/cx 1000 cx/s 33 cx/s

UDP 0.12 kWh 0.05 kWh
DoTCP 3.11 0.34 0.33 3.08 0.085 0.08

DoT 8.98 0.52 0.28 9.46 0.30 0.12
DoH 9.675 0.775 0.46 9.85 0.74 0.2

Table I: Estimation, in kWh of the energy consumed by running 10k qps for
one day using the measured profiles

For all of the experiments we measured the energy con-
sumption of the resolver, first at idle, then during the experi-
ment, when one core is fully loaded, and the difference gives
us the lower bound of the energy consumed by these protocols.
In order to compare these protocols we compute the cost for
one request and use this cost to obtain the energy consumed,
in kWh, of handling 10k qps for a day (results in table I).

If connection use is fair (30s) the use of secured protocols is
worth considering, even though it increases energy consump-
tion by a factor of two for DoT and four for DoH, but when we
consider a higher load, in which connection openings occur
more frequently the use of such protocols become more costly
(up to 15 times for DoH at 1s), or un-sustainable in the case of
aggressive connection opening (0.05 kWh versus 9.85 kWh).

VI. CONCLUSION

DNS is still at the core of today’s internet. Originally
designed for performances, using an un-encrypted connection-
less protocol, growing concerns about security have led to the
standardisation of secured protocols. In this article, we studied
the resolver-side cost of transitioning to such protocols.

We benchmarked public resolvers using various DoH clients
to gather profiles. We found that all entities tried to main-
tain connections opened but that, when faced with a high
load, browsers became unstable and we observed of a very
high number of small connections. Then, we measured the
additional cost of each step of the connected protocols (DNS
over TCP, DoT, DoH). We observed that transitioning from
the legacy protocol to a secured one lead to, at minimum, a
division of the performances by two, due to TCP connection
establishment, TLS key exchange and message encryption,
and that the performance loss was even more noticeable
when considering the switch to DoH because of the protocol
layers added by HTTP/2, which, when considering the fact
that the use of this protocol seems to be pushed by the
industry, is contradictory with DNS’s initial objectives of
efficiency. Furthermore, in the case in which connection are
short, performances take an even bigger hit, which can lead
to a large increase in the number of resolvers as well as their
energy consumption, leading in turn to a higher operating and
environmental cost. As it is, switching 100% of the DNS traffic

to DoH is not sustainable. To realise this transition, it will be
necessary to ensure that clients can keep their connections
alive as much as possible, and to use less costly protocols
than HTTP/2, that still retain its ability to go through firewalls.
Therefore, it could be interesting in the future to look at the
still in development, QUIC-based HTTP/3.

VII. ACKNOWLEDGMENTS

This work is supported by the ENE5AI project
(DOS0185314/DOS0185315/DOS0185931/DOS0185932),
the FOG SLA project (DOS0168403/00-DOS0168405/00)
and the ANRT (CIFRE n°2022/0178)

REFERENCES

[1] D. Balouek et al. “Adding Virtualization Capabilities
to the Grid’5000 Testbed”. In: Cloud Computing and
Services Science. 2013.

[2] M. Belshe, R. Peon, and M. Thomson. Hypertext Trans-
fer Protocol Version 2 (HTTP/2). RFC 7540.

[3] S. Bortzmeyer. DNS Privacy Considerations. RFC
7626.

[4] Timm Böttger et al. “An Empirical Study of the Cost
of DNS-over-HTTPS”. In: Internet Measurement Con-
ference (IMC ’19). 2019.

[5] Bushart and Rossow. “Padding Ain’t Enough: Assessing
the Privacy Guarantees of Encrypted DNS”. In: 10th
USENIX Workshop on Free and Open Communications
on the Internet, FOCI 2020.

[6] S. Garcia et al. “Large scale measurement on the
adoption of encrypted DNS”. In: arXiv preprint
arXiv:2107.04436 (2021).

[7] P. Hoffman and P. McManus. DNS Queries over HTTPS
(DoH). RFC 8484.

[8] Austin Hounsel et al. “Comparing the Effects of DNS,
DoT, and DoH on Web Performance”. In: Web Confer-
ence 2020 (WWW ’20). 2020.

[9] Z. Hu et al. Specification for DNS over Transport Layer
Security (TLS). RFC 7858.

[10] G. Lowe, P. Winters, and M. Marcus. “The great DNS
wall of China”. In: MS, New York University (2007).

[11] I. M. M. Dissanayake. “DNS Cache Poisoning: A
Review on its Technique and Countermeasures”. In: Na-
tional Information Technology Conference (NITC ’18).

[12] ns1labs. flamethrower. URL: github.com/DNS-OARC/
flamethrower.

[13] Etienne Le Louët ns1labs. flamethrower. URL: github.
com/etienne-lelouet/flamethrower.

[14] E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol Version 1.3. RFC 8446.

[15] S. Siby et al. “Encrypted DNS ==> Privacy? A Traffic
Analysis Perspective”. In: The Network and Distributed
System Security Symposium (NDSS ’20).

[16] D. Vekshin, K. Hynek, and T. Cejka. “DoH Insight:
Detecting DNS over HTTPS by Machine Learning”. In:
15th International Conference on Availability, Reliabil-
ity and Security (ARES ’20).

github.com/DNS-OARC/flamethrower
github.com/DNS-OARC/flamethrower
github.com/etienne-lelouet/flamethrower
github.com/etienne-lelouet/flamethrower

	Introduction
	Technical background
	Related works
	Behaviour of clients and resolvers
	Experimental setup
	Results

	Server side performance
	Experimental setup
	Baseline
	Memory usage of keeping connections alive
	Cost of handling queries
	Overhead of establishing connections

	Conclusion
	Acknowledgments

