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ABSTRACT

Context. Dynamically linking a meteor shower with its parent body can be challenging. This is in part due to the limits of the tools
available today (such as D-criteria) but is also due to the complex dynamics of meteoroid streams.
Aims. We choose a method to study chaos in meteoroid streams and apply it to the Geminid meteoroid stream.
Methods. We decided to draw chaos maps. Amongst the chaos indicators we studied, we show that the orthogonal fast Lyapunov
indicator is particularly well suited to our problem. The maps are drawn for three bin sizes, ranging from 10−1 to 10−4 m.
Results. We show the influence of mean-motion resonances with the Earth and with Venus, which tend to trap the largest particles.
The chaos maps present three distinct regimes in eccentricity, reflecting close encounters with the planets. We also study the effect
of non-gravitational forces. We determine a first approximation of the particle size rlim needed to counterbalance the resonances with
the diffusion due to the non-gravitational forces. We find that, for the Geminids, rlim lies in the range [3; 8] × 10−4 m. However, rlim
depends on the orbital phase space.

Key words. gravitation – chaos – meteorites, meteors, meteoroids – methods: numerical – celestial mechanics

1. Introduction

The Meteor Data Center of the International Astronomical Union
(IAU) currently lists 921 meteor showers1, most of which are
in the working list and are awaiting confirmation or more data.
According to this number, on average, 2.6 near-Earth objects per
day were active enough in the past 103–104 yr to produce such
showers. If this is confirmed, it would greatly impact our current
understanding of the Solar System. This prompted us to examine
how IAU meteor showers are determined.

Most methods used to find new meteor showers involve
computing the radiant and an orbit dissimilarity criterion
(D-criterion). D-criteria quantify the proximity of the orbits
of two objects. Many D-criteria have been developed (e.g.
Valsecchi et al. 1999; Jenniskens 2008; Rudawska et al. 2015)
but the DS H from Southworth & Hawkins (1963) is still largely
used today. However, this criterion has long been criticised for
its mathematical, physical, and statistical shortcomings (see e.g.
Drummond 1981; Valsecchi et al. 1999).

Rudawska & Jopek (2010) compared two criteria (the DS H
and the criterion described by Jopek et al. 2008), providing some
preliminary indications as to the validity of the two. However, to
our knowledge, no such study has been conducted for the entire
set of D-criteria: it is not known which should be avoided and
which are most suited to specific cases.

While D-criteria are not sufficient to identify a meteor
shower with absolute certainty, they can help us to identify can-
didates. We call those candidates meteor groups: a meteor group
is a set of meteors sharing a radiant and showing similar orbits.
In contrast, meteor showers are defined, according to the IAU,
1 https://www.ta3.sk/IAUC22DB/MDC2007/ visited in September
2022.

as a set of meteors coming from a single parent body, through
a meteoroid stream2. To prove that a given meteor group is in
fact a meteor shower, a statistical or dynamical analysis is some-
times performed (see e.g. Guennoun et al. 2019) but these are not
always conclusive.

Most dynamical analyses model meteoroids from a sus-
pected parent body and follow these particles through time
until they meet with the Earth (see e.g. Egal et al. 2021).
However, dynamical chaos has not been studied extensively, per-
haps because of the specificity of meteoroid dynamics (mainly
the non-gravitational forces that make for a non-conservative
problem).

Chaos could explain the difficulty in understanding the
dynamical evolution of the meteoroids and provide insights into
the formation of the meteoroid streams. The study of chaos is
often carried out using chaos maps. These maps can be found
as far back as 1990 (Markus 1990), and they have become a
standard means to describe chaotic and stable regions of a phase
space as a function of initial orbital elements. They are generally
drawn using a chaos indicator derived from the theory on Lya-
punov characteristic exponents (Benettin et al. 1980), and usually
for a specific type of body (e.g. moons or asteroids). Here, we
use this technique to explore meteoroids, and this contributes to
a new field of study.

Combined with other tools (radiant, D-criteria, statistical and
dynamical analysis), chaos maps could help us to prove whether
or not a meteor group is a meteor shower. For example, if a
meteor group is shown to come from a part of the map that never

2 “Definitions of Terms in Meteor Astronomy” from https://
www.iau.org/science/scientific_bodies/commissions/F1/
visited in October 2022.
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intersects the Earth, it cannot be a meteor shower, as no parent
body would explain that dynamic. Another example would be
a meteor group with a very small D-criterion in a very chaotic
region. If this hypothetical meteor group was a meteor shower,
its meteoroids would be scattered quickly because of the chaos.
Such a meteor shower would not survive for a long time, and so
if observations of this meteor group date back sufficiently far in
time, it is very unlikely to be a meteor shower.

Our aim is not to develop a new method to study chaos,
but to use well-known tools in a new field of study. We can
expect most meteoroids to be chaotic, as they are subjected
to many close encounters and are under the influence of non-
gravitational forces; our aim is to precisely quantify this chaos
and to investigate what drives the dynamics of meteoroids.

In Sect. 2, we outline the method used to draw meteoroid
stream chaos maps, and we explain our choice of chaos indica-
tor. In Sect. 3, we present an application of this method to the
Geminid meteoroid stream. More precisely, the maps drawn
for the Geminids show which resonances constrain the evo-
lution of the meteoroids. We also investigate the impact of
non-gravitational forces and study the role of eccentricity in the
definition of the Geminids.

2. Method

2.1. Chaos indicator

Chaos maps are drawn using an indicator that measures the
chaoticity of a given orbit. Various indicators and methods
(such as the analysis in frequency from Laskar 1990) are avail-
able to study chaos. Here, the indicator has to be suitable for
meteoroid analyses: meteoroid evolution is characterised by the
effects of non-gravitational forces. These forces greatly reduce
the timescale of meteoroid evolution, meaning that these objects
survive for a few thousand years at most (Liou & Zook 1997);
they also make the problem non-conservative.

The most common chaos indicators are based on the diver-
gence of two initially nearby orbits: a chaotic behaviour is
characterised by an exponential divergence, in contrast to the
linear divergence of a stable behaviour. The Lyapunov character-
istic exponents are based on this idea, but they use tangent vector
and variational equations instead of nearby orbits, as described
in Sect. 2.1.2. These Lyapunov characteristic exponents are the
basis of the indicators we study here.

These chaos indicators are either relative or absolute. The
former are generally used to draw a map over a wide area of the
phase space, while the latter are usually used to study a specific
object. Most chaos indicators could potentially be suitable for
our problem. For example, we could have considered indicators
such as the one proposed by Barrio (2005), but we restricted
ourselves to only a couple of Lyapunov-based indicators, as a
complete study is beyond the scope of this paper.

2.1.1. Choice of indicator

We compared the fast Lyapunov indicator (FLI) described in
Froeschlé et al. (1997), the modified FLI (mFLI) from Guzzo &
Lega (2015), the mean exponential growth factor of nearby orbits
(MEGNO) and mean MEGNO (mMEGNO) from Cincotta et al.
(2003), and the orthogonal fast Lyapunov indicator (OFLI) from
Fouchard et al. (2002). Below, we explain why we chose this last
indicator.

All indicators have strong arguments in favour of their study
and they have all been used successfully. However, none of them

were initially developed for short timescales (order of 103 yr) or
for objects under the influence of non-gravitational forces. It is
therefore necessary to verify whether or not they are suitable to
our problem.

The mFLI describes close encounters, which play an impor-
tant role in the dynamics of meteoroids. However, this indicator
is designed to study a specific encounter, and not the general
effect of these encounters on a relatively large region of the phase
space. A discussion with the authors led us to realise that this
indicator was not adapted to our problem.

The FLI, mFLI, and OFLI are relative: they measure the
chaoticity of an orbit, but only relative to others. The lower
their value, the more stable the orbit studied. The MEGNO is
the only absolute indicator presented here, with a value of two
being the threshold between chaos (>2) and stability ( ≤2). How-
ever, its oscillations make it ill-suited to a map, as its value at a
time t might not represent its general behaviour. Nevertheless,
the mMEGNO corrects for this problem, and seems to be gen-
erally preferred over the MEGNO for drawing maps. Comparing
the FLI and OFLI, the latter filters out an artificial effect: the
growth of the FLI due to differential rotation.

We compared the FLI, OFLI, and mMEGNO, examining the
evolution of the indicators during the integration of 12 parti-
cles from the Geminid meteoroid stream. This integration lasts
500 yr. We only took into account the gravitational forces from
all the planets. Figure 1 shows the comparison of the indica-
tors for two particles: one that experienced a close encounter
and therefore became chaotic, and another that remained sta-
ble and did not encounter a planet. We would like to point
out that this second particle is a rare case, and is only pre-
sented here for comparison, as the large majority of our particles
are unstable.

The blue rectangles in Fig. 1 represent the initialisation phase
of the FLI (light blue) and of the OFLI (darker blue). The initial-
isation phase ends when the value of the indicator first levels off.
The OFLI has a very short initialisation phase: it reaches its first
plateau in 0.6 yr, whereas that of the FLI takes between 37 and
58 yr depending on the particle (between 7.4% and 11.6% of the
total integration time). The definition of this initialisation phase
is less clear for the mMEGNO.

For the first particle, a black dashed line marks a close
encounter with the Earth (the particle’s distance to Earth
was smaller than its Hill radius). We wanted to test the
impact of a close encounter because meteoroids are charac-
terised by their numerous encounters with planets. This close
encounter happened just after the initialisation phase for the FLI
had ended.

We measured the effect of this close encounter on each indi-
cator. The three arrows illustrate the difference between the value
of the indicator prior to the encounter and its value at the end of
the integration. These Deltas show the effect of a close encounter
on the final value of the indicators. While the FLI and OFLI react
similarly (∆1 = 5.22 for the FLI and ∆2 = 4.76 for the OFLI), the
mMEGNO reacts less to this close encounter (∆3 = 1.65). It also
appears to react slower. Table 1 summarises the features of each
indicator.

All three indicators seem to respond correctly to the evolu-
tion of our particles. However, a choice has to be made as to
which indicator we use in our analysis. It seems the OFLI is both
quicker than the FLI to reach a first value after the initialisa-
tion phase and quicker than the mMEGNO to react to a close
encounter. As we work on short timescales with particles heav-
ily influenced by close encounters, we feel these arguments are
sufficient to favour the use of the OFLI.
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Table 1. Specificity of each indicator of chaos.

Indicator Relativity Sources of chaos Specificity

FLI Relative All Very well known
mFLI Relative Close encounter Precise study of one close encounter
OFLI Relative All Correction for differential rotation and quick start
MEGNO Absolute All Oscillations make it ill-suited for a map
mMEGNO Absolute All Reacts less to close encounters

Notes. Here, ‘All’ signifies that the indicator does not focus on any particular source of chaos.

Fig. 1. Comparison between the evolution of FLI, OFLI, and mMEGNO
for two particles, a chaotic particle (mMEGNO > 2) with a close
encounter with the Earth, and a stable particle (mMEGNO < 2) with-
out close encounters. The rectangles show the initialisation phase for
the FLI (larger, very light blue) and for the OFLI (smaller, light blue).
The vertical black dashed line marks the close encounter of the chaotic
particle with the Earth. The horizontal yellow dashed lines mark the
values of the indicators immediately before the encounter. These values
are compared with the final value of each indicator thanks to the arrows.
The precise values of ∆1, ∆2, and ∆3 are given in the text, with the over-
all interpretation.

2.1.2. Formula

The vector X represents the state vector (position and velocity) of
a particle. We name f the so-called force function that describes
the evolution of X. The tangent vector w plays a crucial role in
the computation of FLIs. Its evolution is described by:{

Ẋ = f (X, t) with X(t0) = X0,

ẇ = ∂ f
∂X (X, t).w with w(t0) = w0.

(1)

Specifically, the OFLI rests on w2, the orthogonal part of w
with respect to the variational flux:

w2 = w −
(Ẋ.w)Ẋ
||Ẋ||2

. (2)

And finally, we have

OFLI(t) = max
τ<t

(ln ∥w2∥). (3)

The evolution of the vector w was computed alongside the
evolution of the particles. The initial vector w0 was chosen per-
pendicular to the flux, as Lega & Froeschlé (2001) recommend,
and was derived from the gradient g of the two-body prob-
lem Hamiltonian and the initial state vector X0 of the particle
studied:

u = g −
(Ẋ0.g)Ẋ0

||Ẋ0||2
,

w0 =
u
||u||
.

(4)

2.2. Computational method

The integrator chosen was the RADAU order 15 from Everhart
(1985). The RADAU is characterised in part by its automated
computation of the length of each time increment. We used
the ephemeris INPOP from IMCCE (Fienga et al. 2009) and
added non-gravitational forces (Poynting-Roberston drag and
solar radiation pressure; see e.g. Vaubaillon et al. 2005).

The Geminid meteor shower is a well-known shower, dynam-
ically stable compared to streams from Jupiter-family comets.
This allows us to test our reasoning. We generated a high (>103)
number of particles with orbits similar to the Geminids. The par-
ticles were described by the initial time t0, their state vector X0 at
t0, and their radius r. We assumed a density of ρ = 1000 kg m−3

to compute the mass of the particle. We chose the year 2000 A.D
as the initial time, which corresponds to the Geminids current
orbit.

Two sets of initial conditions were processed. In both cases,
the mean anomaly was chosen randomly between 0◦ and 360◦
in order to evaluate the impact of this parameter on the chaos
map. The first set (IC1) was composed of 100 080 particles, cho-
sen so as to be relatively close to the ejection conditions of the
Geminids (see Table 2). The goal was to simulate a set of ini-
tial conditions just large enough to encompass the usual orbits of
Geminids. The second set (IC2, Table 3) mapped a larger part of
the phase space, and was composed of 99 720 particles. Thanks
to this second set, we obtained a broader view of the model and
investigated what happens on the borders of the Geminid stream.
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Table 2. Range of each heliocentric element of IC1 (500 yr of integra-
tion).

Element Min Max

a (AU) 1.25 1.3
e 0.888 0.892
i (◦) 21.675 22.675
ω (◦) 321.5 322.5
Ω (◦) 265.03 266.03

Table 3. Range of each heliocentric element of IC2 (1000 yr of
integration).

Element Min Max

a (AU) 1.2 1.35
e 0.8 0.95
i (◦) 20 24
ω (◦) 320 323
Ω (◦) 264 267

For both sets, each heliocentric orbital element of each parti-
cle was picked randomly in a chosen interval, as described in
Tables 2 and 3. This means that no orbital element is fixed:
they are all randomly chosen according to a uniform distribu-
tion. Such an approach was taken for example by Todorović &
Novaković (2015). Contrary to a uniform Cartesian mesh, this
method avoids the introduction of a parameter, the step of the
mesh. However, as seen in Gkolias et al. (2016), this non-uniform
distribution might blur some details, and so we performed an
integration with mesh-like initial conditions. We did not find any
improvement in the maps drawn from such initial conditions, and
so they are not presented here.

The particles were integrated for 500 yr for IC1 and for
1000 yr for IC2. We did not need to integrate them further,
because we were not simulating the entire lifespan of the
Geminids. The evolution of the position, speed, and OFLI of
the particles were recorded, as well as their close encounters
with planets (here, mainly the Earth). The encounters were
detected when the distance between the particle and the planet
was smaller than its Hill radius.

First, we worked with large particles (radius chosen ran-
domly between 10 and 100 mm), on which non-gravitational
forces (NGFs) have a negligible effect. We named these data sets
IC1 BIN10100 and IC2 BIN10100, depending on the initial con-
ditions used. Then, we also investigated the effect of the NGFs.
For this purpose, we replicated IC1 and IC2, changing only the
radius. It was picked randomly between 1 and 10 mm (BIN110)
and then between 0.1 and 1 mm (BIN011). We obtained six sets
of particles: IC1 BIN10100, IC2 BIN10100, IC1 BIN110, IC2
BIN110, IC1 BIN011, and IC2 BIN011, which are summarised
in Table 4.

3. Results

Maps are usually drawn as a function of initial orbital elements.
In our case, maps drawn as a function of the initial semi-major
axis and the initial eccentricity (a, e) of the particles are the only
ones presenting distinctive features, and these are therefore the
only ones discussed. In these maps, we only plot the value of

Table 4. Description of the six different sets of particles.

Small particles Medium particles Large particles
(0.1–1 mm) (1–10 mm) (10–100 mm)

IC1 IC1 BIN011 IC1 BIN110 IC1 BIN10100
IC2 IC2 BIN011 IC2 BIN110 IC2 BIN10100

Notes. See Tables 2 and 3 for explanation of IC1 and IC2.

Fig. 2. Maps from BIN10100. The arrows point to the dark lines visible
in the maps. The colours of the arrows are related to the mean-motion
resonances responsible for the line. One map is drawn from the IC1 data
set and the other from the IC2 data set (see titles).

semi-major axis and eccentricity for each particle, but the value
chosen randomly for each of the other elements is not presented.

As explained in the previous section, we tested the whole
range of possible values for the mean anomaly. Maps drawn from
this element are completely uniform, and so the mean anomaly
does not seem to impact the Geminids chaoticity.

3.1. Resonances

The first maps we drew (Fig. 2) are from IC1 BIN10100 and IC2
BIN10100. We note the difference in colour scale between the
two data sets: the chaos keeps rising after 500 yr. The small-
est values are similar, showing the long-term stability of some
particles.

The maps present several dark vertical lines, where the
chaoticity is much lower. Those lines are a perfect match to
the mean-motion resonances (MMRs) listed in Table 5. Three
of them are mostly present in the BIN10100 IC1 map, and are
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Table 5. MMR that fit with the structures observed.

Planet Order Semi-major axis
(AU)

Earth 2:3 1.31037
Earth 3:4 1.21141
Earth 5:7 1.25146
Earth 7:10 1.26843
Earth 9:13 1.27781
Mercury 1:6 1.27817

Table 6. MMR found by Ryabova and how they relate to our chaos
maps.

Planet Order Semi-major axis Chaos map
(AU)

Venus 1:2 1.14821 Out
Venus 2:5 1.33238 In (high e)
Venus 3:7 1.27249 In (high e)
Venus 4:9 1.24201 In (high e)
Earth 2:3 1.31037 In (middle e)
Earth 5:7 1.25146 In (middle e)

Jupiter 7:1 1.42130 Out

Notes. “Out” means the resonances cannot be found in our chaos maps
as their semi-major axis exceeds the bounds of our study. The other
resonances (“In”) can be seen either only at high eccentricity (“high e”)
or in the middle of the map (“middle e”).

slightly visible in BIN10100 IC2. Two more (the 2:3 and 3:4 with
the Earth) only appear in the BIN10100 IC2 map.

Two different MMRs fit the dark line at around 1.27 AU: the
resonance 1:6 with Mercury and the resonance 9:13 with the
Earth. As the Earth plays a determinant role in the evolution of
the Geminids, the resonance with the Earth seems more likely.
The line is also very thin, which matches with the low order of
the resonance with the Earth.

Ryabova (2022) studies resonances that play a role in the
evolution of the Geminids. The resonances she finds are listed
in Table 6. As noted in Table 6, some of them are outside
the bounds of our study, but the 2:3 and 5:7 MMRs with the
Earth are detected in the chaos maps. As for the 2:5, 3:7, and
4:9 MMRs with Venus found by Ryabova (2022), they are also
visible in our chaos maps, although less clearly: they appear only
at high eccentricity, as can be seen in Fig. 3.

Particles initially inside those MMRs are much less chaotic
than others. To understand why, in Fig. 3 (respectively Fig. 4),
we plot only particles meeting with Venus (respectively with
the Earth). These plots reveal the mechanism of stabilisation:
the particles initially inside the resonance do not meet with the
planet considered. A particle inside a MMR with the Earth, for
example, will be trapped there and kept from meeting with the
Earth. This will maintain its chaoticity at a relatively low level
compared to those that do meet with the Earth. In the same way,
a particle trapped in a MMR with Venus cannot meet with this
planet.

Using our method and in the specific case where the effect
of NGFs is negligible, we are able to replicate the findings of
Ryabova (2022), but we also find additional information on the
effect of MMR. This validates our approach. In Figs. 3 and 4,

Fig. 3. Maps from BIN10100 IC2. On the top panel, we point to some
resonances with Venus found by Ryabova (2022). On the bottom panel,
we only plot particles from BIN10100 IC2 that met with Venus.

Fig. 4. Map from BIN10100 IC2. We only plot particles that met with
the Earth.

we can also see the effect of eccentricity. At low eccentricity, the
particles cannot meet with the Earth or Venus. At higher eccen-
tricity, they are able to meet with the Earth and their chaoticity
rises. At even higher eccentricity, the particles can also meet
with Venus, and this is where the OFLI reaches its highest value.
We interpret this as finding the lower bound in eccentricity for
the Geminid meteor shower: meteoroids with too low an initial
eccentricity will never meet with the Earth and are therefore not
part of the shower. This allows us to check the data we already
have on Geminids: particles whose eccentricity is too low are
probably contaminants from another dynamical origin.
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Fig. 5. Maps from BIN011 (small particles). One map is drawn from the
IC1 data set and one from the IC2 data set (see titles).

3.2. Impact of non-gravitational forces

To investigate the impact of NGFs, we chose the data sets with
smaller radius (BIN110 and BIN011). Maps from BIN110 pro-
duce very similar results to the previous section. However, maps
from BIN011 (see Fig. 5) lack the dark vertical lines related to the
MMR we analysed; they only present a uniform background for
IC1 and the gradient in eccentricity for IC2 (see previous section
for explanation).

Analyses of the interaction between MMRs and NGFs have
been conducted before (Liou & Zook 1997). Here, to better
understand this effect, we studied the evolution of a few parti-
cles. We chose five particles from BIN10100 IC2 characterised
by their initial position with respect to the largest MMRs (2:3
and 3:4 with Earth). Particles n◦1 and 2 are well outside these
MMRs, particle n◦3 is close to them but not inside, and particles
n◦4 and 5 are initially inside the MMRs. We then selected the
clones of all of these particles in the BIN110 IC2 and BIN011
IC2 data sets. This allowed us to compare the evolution of par-
ticles that differ only from their radius, and thus to measure the
influence of MMRs and NGFs for each size. We plotted the evo-
lution of orbital elements and added grey lines that mark the
MMRs with the Earth (their respective size corresponds to the
size visible in the BIN10100 IC2 map).

The resulting Fig. 6 shows the strong diffusion of the small
particles from the NGFs, which prevents them from being cap-
tured by the MMR. This explains why they do not appear on the
BIN011 maps.

Particles of intermediate radius are influenced by MMRs but
their evolution becomes slightly blurred. This blurry aspect is

Fig. 6. Evolution of five particles, with various radii. We plot the evo-
lution of five particles from BIN10100 IC2 in the first panel and the
evolution of their clones from BIN110 IC2 and from BIN011 IC2 in the
other two panels, respectively (see titles). The grey lines represent the
MMR with the Earth.

even more pronounced in the evolution of small particles, with
some exotic points that do not seem to be aligned with the gen-
eral evolution of the orbital elements. This is due to the method
of computation of orbital elements: the integration computes the
state of each particle as a function of time. The orbital elements
are then computed using these data. Doing so, slight changes in
the velocity (due to the effect of NGFs) translates into relatively
significant changes in semi-major axis a. It is well known that a
changes drastically when performing such a rough conversion.

In summary, smaller particles lose energy and start to plum-
met towards the Sun, disregarding any resonances, while larger
ones might be locked out of close encounters with the Earth. This
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has probably a great impact on the distribution of objects in the
meteor shower: from Earth, we might see less large objects than
originally ejected, because they get captured. The semi-major
axes of small objects may also tend to be smaller than those of
large objects, even though they originally came from the same
parent body.

We wanted to know which value of the radius marks the
transition between those two behaviours. To this end, we used
histograms to find the limit radius: the distribution in semi-major
axis for the least chaotic particles (final OFLI smaller than 7)
present peaks at the MMR semi-major axes for the large par-
ticles, while it stays uniform for small particles. We compared
the distribution of particles whose radius is smaller than a radius
rlim with the distribution of particles whose radius is greater than
rlim to check whether or not rlim is indeed the limit radius we are
looking for.

In Fig. 7, with a limit radius of 8 × 10−4 m, we obtain the
expected result. The second panel in the same figure shows a
histogram for IC2 particles, with a radius inferior to the limit
chosen. No peak should be visible in this histogram, but one does
exist for the strongest MMR in our maps (2:3 with the Earth).
This MMR does not appear in the IC1 set, which explains the
discrepancy. To make sure the diffusion is stronger than this res-
onance, rlim must be decreased. On the last panel, we draw a new
histogram from IC2 with a limit radius of 3 × 10−4 m. This time,
the peak on the last MMR disappears for particles whose radius
is inferior to this new limit.

The limit radius could therefore be different for other show-
ers, depending on which resonances play a role in their evolution.
We point out that this radius limit is an estimation that could be
refined by a detailed theoretical analysis, but such an analysis is
beyond the scope of this paper.

4. Conclusion

We chose to study chaos in meteoroid streams by drawing chaos
maps. Meteoroid dynamics are characterised by a short integra-
tion time (of the order of 103 yr), many close encounters and
potentially strong effect from NGFs, contrary to many previous
applications for chaos maps. After analysing some chaos indi-
cators, we find the OFLI to be well suited to our problem. We
validated this choice by applying it to the Geminid meteoroid
stream. We are able to see the effect of some MMRs on the
Geminid meteor shower, obtaining very similar results to those
of Ryabova (2022). The maps also provided us with interesting
insights into how MMRs can trap large particles and prevent
them from meeting with planets.

We also show that Geminids are defined by an initial eccen-
tricity higher than approximately 0.84, because no close encoun-
ters with the Earth are found under this value. For even higher
values of eccentricity, the particles might meet with Venus in
addition to being able to meet with the Earth, adding a new
element of chaos.

The effect of NGFs on small meteoroids is also very visi-
ble in the chaos maps. We clearly see the effect of diffusion,
which completely overpowers the MMR for those small parti-
cles. Finally, we computed a first approximation of the radius
limit that quantifies the boundary between high diffusion and the
effect of MMR. This radius depends on the strength of the MMR
and we found 8 × 10−4 m and 3 × 10−4 m as first approximations.
In future works, we may refine them with an analytical study of
this phenomenon.

We also note that the number of large particles in the Gemi-
nid meteor shower is probably underestimated given the capture

Fig. 7. Histograms for the search in radius limit. On each graph, black
lines mark the MMRs. The histogram titled ‘IC1 – rlim = 0.8 mm’
counts particles from IC1 and compares those whose radius is inferior
to rlim with those whose radius is superior to rlim. The second histogram
counts particles from IC2 with a radius inferior to rlim. The last his-
togram also counts particles from IC2 but changes the value of the
radius limit to rlim = 3 × 10−4 m and compares particles whose radius
is lower than or superior to rlim.

of many of these particles in the MMRs. Small particles seem to
have a much smaller semi-major axis than large ones when they
encounter the Earth, which should be taken into account when
looking for parent bodies.

In future works, we will apply our method to other meteor
showers, as well as to some meteor groups.
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