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ASYMPTOTICS FOR THE GREEN’S FUNCTIONS OF A TRANSIENT
REFLECTED BROWNIAN MOTION IN A WEDGE

SANDRO FRANCESCHI, IRINA KOURKOVA, AND MAXENCE PETIT

Abstract. We consider a transient Brownian motion reflected obliquely in a two-dimensional wedge.
A precise asymptotic expansion of Green’s functions is found in all directions.

To this end, we first determine a kernel functional equation connecting the Laplace transforms of
the Green’s functions. We then extend the Laplace transforms analytically and study its singularities.
We obtain the asymptotics applying the saddle point method to the inverse Laplace transform on
the Riemann surface generated by the kernel.

1. Introduction

Context. Since its introduction in the 1980s, reflected Brownian motion in a cone has been extensively
studied [29,31,45], particularly due to its deep links with queuing systems as an approximate model in
heavy traffic [27,41]. Seminal work has determined the recurrent or transient nature of this process in
dimension two [34,46] and in higher dimensions [3,4,6,8]. The literature on the stationary distribution
in the recurrent case, in particular the study of the asymptotics, is wide and vast [10,11,23,28,40,42].
Numerical methods have been explored in [7,9] and explicit expressions for the stationary density have
been given in [1, 2, 12, 19, 21, 24, 25, 33]. The transient case, which is less studied, is also considered
by several articles which study the escape probability along the axes [20], the absorption probability
at the vertex [15,26], or the corresponding Green’s functions [14,22].

In this article, we consider a transient obliquely reflected Brownian motion in a cone of angle
β ∈ (0, π) with two different reflection laws from two boundary rays of the cone. We denote by
g̃(ρ cos(ω), ρ sin(ω)) the Green’s function of this process in polar coordinates; Green’s functions are used
to study the distribution of time that the process spends at a point on the cone. The article determines
the asymptotics of g̃(ρ cos(ω), ρ sin(ω)) as ρ → ∞ and ω → ω0 for any given angle ω0 ∈ [0, β]. See
Theorem 1 when ω0 ∈ (0, β) and Theorem 2 when ω0 = 0 or β. This extends results of [14] in
two aspects. Firstly, asymptotic results are obtained in any convex two-dimensional cone with two
different reflection laws from its boundaries. While in [14] the authors are able to easily calculate an
explicit Laplace transform of the Green’s function for the half plane, the same is certainly not true for
RBM in the cone. Laplace transforms of Green functions in this case are expressed in [22] in terms of
integrals as solutions of Riemann boundary problems. Secondly, Theorem 1 provides Green function’s
asymptotics for any direction of the cone and not only along straight rays as in [14], namely when
the angle ω above tends to a given angle ω0. The asymptotics depend on the rate of convergence of
ω → ω0 and enables us to determine the Martin boundary of the process.

In [23] the asymptotics of the stationary distribution for recurrent Brownian motion in a cone is
found along all regular directions ω0 ∈ (0, β), while some special directions ω0 were left open for
future work. The asymptotics are obtained by studying the singularities and applying the saddle
point method to the inverse Laplace transform of the stationary distribution. This article applies the
approach of [23] to Green’s functions and provides new techniques which enable us to treat all special
directions where the asymptotics depend of the convergence rate of ω to ω0 rather to that of r tending
towards infinity. This is the case when ω0 = 0 or β (see Theorem 2), and also when the saddle point
meets a pole of the boundary Laplace transform (see Theorem 3).

This project has received funding from Agence Nationale de la Recherche, ANR JCJC programme under the Grant
Agreement ANR-22-CE40-0002.
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The tools used in this paper are inspired by methods introduced by Malyshev [39], who studied
the asymptotic of the stationary distribution for random walks in the quarter plane. Articles studying
asymptotics in line with Malshev’s approach include [36], which studies the Martin boundary of random
walks in the quadrant; [37], which extends these methods to the join-the-shorter-queue issue; and [35],
which studies the asymptotics of the occupation measure for random walks in the quarter plane with
drift absorbed at the axes. Fayolle and Iasnogorodski [16] also developed a method to determine explicit
expressions for generating functions using the Riemann and Carleman boundary value problems. Then,
in the seminal book [17], Fayolle, Iansogorodski and Malyshev merged their analytic approach for
random walks in the quadrant. The work [23] was the first to extend their approach to continuous
stochastic processes in the quadrant to compute asymptotics of stationary distributions, and [14] was
the first one to study the asymptotics of Green’s functions using this analytic approach.

Figure 1. The cone of angle β, the reflection angles δ and ε and the drift µ̃ with its
direction θ. The point z̃ with polar coordinates ρ and ω is displayed.

Main results. We consider an obliquely reflected standard Brownian motion in a cone of angle
β ∈ (0, π) starting from z̃0, with reflection angles δ ∈ (0, π) and ε ∈ (0, π) and of drift µ̃ of angle
θ ∈ (0, β) with the horizontal axis, see Figure 1. We assume that

δ + ε < β + π.

This well known condition ensures that the process is a semi-martingale reflected Brownian motion
[47, 48]. The reflected Brownian motion will be properly defined in the next section. The process is
transient since we have assumed that θ ∈ (0, β) which means that the drift belongs to the cone. If we
assume that p̃t is the transition probability of this process, the Green’s function is defined for z̃ inside
the cone by

(1.1) g̃(z̃) =

∫ ∞
0

p̃t(z̃0, z̃)dt.

For ω ∈ (0, β) and ρ > 0 we will denote z̃ = (ρ cosω, ρ sinω) the polar coordinates in the cone. Note
that the tilde symbol ˜ stands for quantities linked to the standard reflected Brownian motion in the
β-cone. The same notation without the tilde symbol will stand for the corresponding process in the
quadrant R2

+.
In the next remark we explain how to go from a standard Brownian motion reflected in a convex

cone to a reflected Brownian motion reflected in a quadrant by adjusting the covariance matrix. This
will be useful because our strategy of proof is to first establish our results in the quadrant for a general
covariance matrix, and then to extend the results to all convex cones. The proof of the main Theorems
1, 2 and 3 stated below in the case of a cone can be found at the very end of Section 11 and are based
on Theorems 4, 5 and 6, which determine the asymptotics in the case of a quadrant.

Remark 1.1 (Equivalence between cones and quadrant). There is a bijective equivalence between the
following two families of models:

• Standard reflected Brownian motions (i.e. identity covariance matrix) in any convex cone of
angle β ∈ (0, π),
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• Reflected Brownian motions in a quadrant of any covariance matrix of the form(
1 − cosβ

− cosβ 1

)
.

In Section 11 this equivalence is established by means of a simple linear transformation defined in (11.2).
Therefore, all the results established for one of these two families can be applied directly to the other
family.

Furthermore, any reflected Brownian motion in a general convex cone and with a general covariance
matrix can always be reduced via a simple linear transformation to a Brownian motion of one of the
two families of models mentioned above (see Remark 1.3 below).

Before presenting our results in more detail, we pause to make the following remark.

Remark 1.2 (Notation). Throughout this article, we will use the symbol ∼ to express an asymptotic
expansion of a function. If for some functions f and gk we state that f(x) ∼

∑n
k=1 gk(x) when x→ x0,

then gk(x) = o(gk−1(x)) and f(x)−
∑n

k=1 gk(x) = o(gn(x)) when x→ x0.

We now state the main result of the article. We define the angles

ω∗ := θ − 2δ and ω∗∗ := θ + 2ϵ.

Note that ω∗ < θ < ω∗∗.

Theorem 1 (Asymptotics in the general case). We consider a standard reflected Brownian motion in
a wedge of opening β, with reflection angles δ and ε and a drift µ̃ of angle θ (see Figure 1). Then, the
Green’s function g̃(ρ cosω, ρ sinω) of this process has the following asymptotics when ω → ω0 ∈ (0, β)
and ρ→∞, for all n ∈ N:

• If ω∗ < ω0 < ω∗∗ then

(1.2) g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

e−2ρ|µ̃| sin
2(ω−θ

2 ) 1
√
ρ

n∑
k=0

c̃k(ω)

ρk
.

• If ω0 < ω∗ then

(1.3) g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

c∗e−2ρ|µ̃| sin
2(ω+δ−θ) + e−2ρ|µ̃| sin

2(ω−θ
2 ) 1
√
ρ

n∑
k=0

c̃k(ω)

ρk
.

• If ω∗∗ < ω0 then

(1.4) g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

c∗∗e−2ρ|µ̃| sin
2(ω−ϵ−θ) + e−2ρ|µ̃| sin

2(ω−θ
2 ) 1
√
ρ

n∑
k=0

c̃k(ω)

ρk
.

where c∗ and c∗∗ are positive constants and ck(ω) are constants depending on ω such that c̃k(ω) −→
ω→ω0

c̃k(ω0).

There are four cases which are illustrated by Figure 2.
Our second result states the asymptotics along the edges when ω → 0 or ω → β.

Theorem 2 (Asymptotics along the edges). We now assume that ω0 = 0 and let ρ → ∞ and ω →
ω0 = 0. In this case, we have c̃0(ω) ∼

ω→0
c′ω and c̃1(ω) ∼

ω→0
c′′ for some non-negative constants c′ and

c′′ which are non-null when ω∗ < 0. Then, the Green’s function g̃(ρ cosω, ρ sinω) has the following
asymptotics:

• When ω∗ < 0 the asymptotics are still given by (1.2). In particular, we have

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→0

e−2ρ|µ̃| sin
2(ω−θ

2 ) 1
√
ρ

(
c′ω +

c′′

ρ

)
.
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(a) 0 < ω∗ < ω∗∗ < β (b) 0 < ω∗ < β < ω∗∗

(c) ω∗ < 0 < ω∗∗ < β (d) ω∗ < 0 < β < ω∗∗

Figure 2. Asymptotics of the Green’s function determined in Theorem 1 according
to the direction ω0: four different cases according to the value of angles ω∗ = θ − 2δ
and ω∗∗ = θ + 2ϵ. When ω0 belongs to the gray region, the asymptotics are given
by (1.2); in the purple region, they are given by (1.3); in the orange region, they are
given by (1.4).

• When ω∗ > 0 the asymptotics given by (1.3) remain valid. In particular, we have

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→0

c∗e−2ρ|µ̃| sin
2(ω+δ−θ).

where c∗ is the same constant as in Theorem 1.

Therefore, when ω∗ < 0, there is a competition between the two first terms of the sum
∑n

k=0
c̃k(ω)
ρk to

know which one is dominant between c′ω and c′′

ρ . More precisely:

• If ρ sinω −→
ρ→∞
ω→0

∞ then the first term is dominant.

• If ρ sinω −→
ρ→∞
ω→0

c > 0 then both terms contribute and have the same order of magnitude.

• If ρ sinω −→
ρ→∞
ω→0

0 then the second term is dominant.

A symmetric result holds when we take ω0 = β. The asymptotics are given by (1.2) when β < ω∗∗

and by (1.4) when ω∗∗ < β. The first two terms of the sum compete to be dominant, and this depends
on the limit of ρ sin(β − ω).

We will explain later in Propositions 11.1 and 11.2 that ω∗ and ω∗∗ correspond in some sense to
the poles of the Laplace transforms of the Green’s functions and that ω corresponds to the saddle
point obtained when we will take the inverse of the Laplace transform. Our third result states the
asymptotics when the saddle point meets the poles, which occurs when ω → ω∗ or ω → ω∗∗.

Throughout, we let Φ(z) := 2√
π

∫ z

0
exp(−t2)dt.
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Theorem 3 (Asymptotics when the saddle point meets a pole). We now assume that ω0 = ω∗ =
θ − 2δ and let ω → ω∗ and ρ → ∞. Then, the Green’s function g̃(ρ cosω, ρ sinω) has the following
asymptotics:

• When ρ(ω−ω∗)2 → 0 the asymptotics are given by (1.3) with the constant c∗ of the first term
has to be replaced by 1

2c
∗.

• When ρ(ω − ω∗)2 → c > 0 for some constant c then:
– If ω < ω∗ the asymptotics are still given by (1.3) with the constant c∗ of the first term

has to be replaced by 1
2c
∗(1 + Φ(

√
cA)) for some constant A.

– If ω > ω∗ the asymptotics are still given by (1.3) with the constant c∗ of the first term
has to be replaced by 1

2c
∗(1− Φ(

√
cA)) for some constant A.

• When ρ(ω − ω∗)2 →∞ then:
– If ω < ω∗ the asymptotics are given by (1.3)
– If ω > ω∗ the asymptotics are given by (1.2) and we have c̃0(ω) ∼

ω→ω∗
c

ω−ω∗ for some
constant c.

A symmetric result holds when we assume that ω0 = ω∗∗ = θ + 2ϵ.

These main asymptotic results are very similar to those obtained in the article [23] on the stationary
distribution in the recurrent case when the drift points towards the apex of the cone. This makes sense
given that the Green’s functions and the stationary distribution measure the time or proportion of
time that the process spends at a point. However, the analysis of Green’s functions is more complex
because of their dependence on the initial state of the process.

In the three previous theorems, we considered a Brownian motion which is standard, i.e. of covari-
ance matrix identity. But all the results stated above may easily be extended to all covariance matrices
by the the simple linear transformation mentioned in the previous remark. The next remark explains
how to proceed, in line with what is stated in Section 11.

Remark 1.3 (Generalisation to any covariance matrix in any convex cone). Consider Ẑt an obliquely
reflected Brownian motion in a cone of angle β̂0 ∈ (0, π) starting from ẑ0, with reflection angles δ̂ and
ε̂, of drift µ̂ of angle θ̂ and of covariance matrix Σ̂. We introduce the angle β̂1 := arccos

(
− σ̂12√

σ̂11σ̂22

)
∈

(0, π) and the linear transformation

T̂ :=

 1

sin β̂1

cot β̂1

0 1




1√
σ̂11

0

0
1√
σ̂22

.


Then, the process Z̃t := T̂ Ẑt is an obliquely reflected standard Brownian motion in a cone of angle
β ∈ (0, π) starting from z̃0 := T̂ ẑ0, with reflection angles δ and ε and of drift µ̃ := T̂ µ̂ of angle θ. The
angle parameters are in (0, π) and are determined by

tanβ =
sin β̂1

1

tan β̂0

√
σ̂22

σ̂11
+ cos β̂1

, tan θ =
sin β̂1

1

tan θ̂

√
σ̂22

σ̂11
+ cos β̂1

,

tan δ =
sin β̂1

1

tan δ̂

√
σ̂22

σ̂11
+ cos β̂1

, tan(β − ε) =
sin β̂1

1

tan(β̂0−ε̂)

√
σ̂22

σ̂11
+ cos β̂1

.

The linear transformation T̂ gives the following relation between the Green’s function of Ẑt denoted
by ĝ(ẑ) for ẑ inside the cone of angle β̂0 and the Green’s function of Z̃t denoted by g̃(z̃) for z̃ inside
the cone of angle β:

ĝ(ẑ) =
1√
det Σ̂

g̃(T̂ ẑ).

Therefore, the previous formula allows us to extend our results from g̃ to ĝ.
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The following remark concerns the Martin boundary.

Remark 1.4 (Martin boundary). The Martin boundary associated to this process can be computed from
the asymptotics of the Green’s function obtained in the previous theorems. The corresponding harmonic
functions can also be obtained utilizing the the constants of the dominant terms of the asymptotics.
See Section 6 of [14] which briefly reviews some elements of this theory in a similar context.

Plan and strategy of proof. In this article, the results will be first established in a quadrant for
any covariance matrix and then will be extended to a cone in the last section.

The first step in solving our problem is to determine a functional equation relating the Laplace
transforms of Green’s functions in the quadrant and on the edges (see Section 2). In Section 3, we
continue to study these Laplace transforms, in particular their singularities. Then, we use the inversion
Laplace transform formula combined with the functional equation to express the Green’s functions as
a sum of simple integrals (see Section 4). To determine the asymptotics, we first use complex analysis
to obtain Tauberian results, which links the poles of the Laplace transforms to the asymptotics of
the Green’s functions. Then, we use a double refinement of the classical saddle-point method: the
uniform method of the steepest descent. One of the reference books on this classical approach is
that of Fedoryuk [18]. Appendix A, which gives a generalized version of the classical Morse Lemma by
introducing a parameter dependency, will be useful in understanding the refinement of the saddle-point
method. Section 5 studies the saddle point and Section 6 explains how we shift the integration contour,
thus determining the contribution of the encountered poles to the asymptotics. Section 7 identifies
which parts of the new integration contour are negligible. Section 8 establishes the contribution of
the saddle point to the asymptotics and states the main result. Section 9 studies the asymptotics
along axes and Section 10 studies the asymptotics in the case where the saddle point meets a pole.
Appendix B states a technical result useful to this section. Finally, Section 11 explains how to transfer
the asymptotic results obtained in the quadrant to any convex cone and thus concludes the proof of
Theorems 1, 2 and 3.

2. Convergence of Laplace transforms and functional equation

Transient reflected Brownian motion in a cone. Let (Zt)t≥0 = (z0 + µt + Bt + RLt)t≥0 be a
(continuous) semimartingale reflected Brownian motion (SRBM) in R2

+ on a filtered probability space
where µ = (µ1, µ2)

⊤ ∈ R2 is the drift, Σ is the covariance matrix associated to the Brownian motion
B, R = (rij)1⩽i,j⩽2 ∈ R2×2 is the reflection matrix, and (Lt)t≥0 = ((L1

t , L
2
t )
⊤)t≥0 is the bivariate

local time on the edges associated to the process. We will assume that det(Σ) > 0, i.e. that Σ is
positive-definite. See Figure 3 to visualize the parameters of this process. We recall the following
classical result concerning the existence of such a process, see for example [43,47].

Proposition 2.1 (Existence and uniqueness of SRBM). There exists an SRBM with parameters
(µ,Σ, R) if and only if Σ is a covariance matrix and R is completely-S, i.e.

(2.1) r11 > 0, r22 > 0, and [ det(R) > 0 or r21, r12 > 0 ].

In this case, the SRBM is unique in law and defines a Feller continuous strong Markov process.

Condition (2.1) will therefore be required throughout the article. The recurrence and transience
conditions of those processes are well known, see [34, 46]. In our case, the SRBM will be transient
because of the following assumption of positive drift, which we assume to hold throughout the sequel.

Assumption 1 (Positivity of the drift). We assume that µ1 > 0 and µ2 > 0.

Note that this assumption is equivalent to that made in the introduction: θ ∈ (0, β). Under
Assumption 1, the reflected Brownian motion is transient by [34].

Green’s function. As in (1.1), recall that the Green’s measure G inside the quadrant is defined by

G(z0, A) := Ez0

[∫ ∞
0

1A(Zt)dt

]
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Figure 3. SRBM parameters in the quadrant: drift µ, reflection vectors R1 and R2

and covariance matrix Σ.

for z0 ∈ R2
+ and A ⊂ R2. For i ∈ {1, 2}, we define Hi the Green’s measures on the edges of the

quadrant by

Hi(z0, A) := Ez0

[∫ ∞
0

1A(Zt)dL
i
t

]
.

The measure H1 has its support on the vertical axis and H2 has its support on the horizontal axis.

Proposition 2.2. Green measures G (resp. H1, H2) have densities g (resp. h1, h2) with respect to
the two dimensional (resp. one dimensional) Lebesgue measure.

We then have G(z0, A) =
∫
A
g(z)dz for A ⊂ R2, H1(z0, B × {0}) =

∫
B
h1(z)dz for B ⊂ R and

H2(z0, {0} × C) =
∫
C
h2(z)dz for C ⊂ R.

In the sequel it should be kept in mind that in the notations g and hi we have omitted the dependence
on the starting point z0.

Proof. In the recurrent case, Harrison and Williams proved in [32] that the invariant measure has a
density with respect to the Lebesgue measure. The proof in that article extends to the transient case
and justifies the existence of a density with respect to the Lebesgue measure for the Green’s measures.
Indeed, the proof of Lemma 9 of section 7 in [32] shows that for a Borel set A of Lebesgue measure 0,
we have

E
[∫ +∞

0

1A(Zt)dt

]
= 0.

This is even an equivalence, although we will not need it in the present article. Since the proof does
not require the recurrence property, this gives the desired result by the Radon Nikodym theorem. The
same argument applies to the densities of Hi for i = 1, 2, see theorem 1, section 8 in [32]. □

In the following, we denote R+ = [0,∞) and R∗+ = (0,∞).

Remark 2.3 (Partial differential equation). Let us denote L = 1
2∇ · Σ∇+ µ · ∇ the generator of the

SRBM inside the quadrant and L∗ = 1
2∇ · Σ∇− µ · ∇ its dual operator. Then, the Green’s function g

satisfies
L∗g = −δz0

in the sense of distributions D′((R∗+)2).
Let us define the matrix R∗ = 2Σ − R diag(R)−1diag(Σ). We denote R∗1 and R∗2 the two columns

of R∗. Then, the following boundary conditions hold{
∂R∗

1
g(z)− 2µ1g(z) = 0 for z ∈ {0} × R+

∂R∗
2
g(z)− 2µ2g(z) = 0 for z ∈ R+ × {0}

where ∂R∗
i
= R∗i · ∇.

Sketch of proof of the remark. The partial differential equation of the Green’s function and its bound-
ary conditions are derived from the forward equation of the transition kernel established in [29], see
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Equation (8.3). However, we provide here a direct elementary proof of the fact that L∗g = −δz0 . Let
φ ∈ C∞c ((R∗+)2). Applying Ito’s formula and taking expectations, we obtain

E[φ(Zt)] = φ(z0) + E
[∫ t

0

Lφ(Zs)ds

]
.

One may remark that there are no boundary terms since the functions φ will cancel on a neighborhood
of the boundaries. Since we are in the transient case and since φ is bounded, the left term converges
to 0 as t tends towards infinity by the dominated convergence theorem. Since successive derivatives
of φ are bounded, Lφ(a, b) is bounded by an exponential function up to a multiplication constant.
Due to the convergence domain of the Laplace transform (see Proposition 2.6 below), we obtain by
dominated convergence that φ(z0) = −E

[∫ +∞
0
Lφ(Zs)ds

]
= −

∫
R2

+
Lφ(z)g(z)dz which implies that

L∗g = −δz0 . □

Furthermore, it is preferable to have continuity of the Green’s function when investing their asymp-
totic behaviour. This is the content of the following comment.

Remark 2.4 (Smoothness of Green’s functions). By the strictly elliptic regularity theorem (see for
instance the Hypoelliptic theorem 5.1 in [30]), we may deduce from L∗g = −δz0 that the density g has
a C∞ version on (0,+∞)2\{z0}. We will not go into more detail here about the proof of this result.
In the remainder of this article, we will assume that g is continuous on [0,+∞)2 \ {0, z0}.

Laplace transform and functional equation.

Definition 2.5 (Laplace transform of Green’s functions). For (x, y) ∈ C2 we define the Laplace
transforms of the Green’s measures by

φ(x, y) := Ez0

[∫ ∞
0

e(x,y)·Ztdt

]
=

∫
R2

+

e(x,y)·zg(z)dz

and

φ1(y) := Ez0

[∫ ∞
0

e(x,y)·ZtdL1
t

]
=

∫
R+

eybh1(b)db, φ2(x) := Ez0

[∫ ∞
0

e(x,y)·ZtdL2
t

]
=

∫
R+

exah2(a)da.

Let us remark that φ1 does not depend on x and φ2 does not depend on y. Recall the dependence
on the starting point z0 even though it is omitted in the notation.

Since Green’s measures are not probability measures, the convergence of their Laplace transforms
are not guaranteed. For example, φ(0) is not finite. Convergence domains for Laplace transforms of
Green’s functions have been studied in [22] but we need stronger results. The following proposition
establishes the convergence when the real parts of x and y are negative.

Proposition 2.6 (Convergence of the Laplace transform). Assuming that µ1 > 0 and µ2 > 0,

• φ1(y) converges (at least) on y ∈ {y ∈ C,ℜ(y) < 0}
• φ2(x) converges (at least) on x ∈ {x ∈ C,ℜ(x) < 0}
• φ(x, y) converges (at least) on (x, y) ∈ {(x, y) ∈ C2,ℜ(x) < 0 and ℜ(y) < 0}.

Before proving this proposition, we state the functional equation that will be central in this article.
First, we need to define for (x, y) ∈ C2 the following polynomials

γ(x, y) = 1
2 (x, y) · Σ(x, y) + (x, y) · µ = 1

2 (σ11x
2 + 2σ12xy + σ22y

2) + µ1x+ µ2y

γ1(x, y) = R1 · (x, y) = r11x+ r21y

γ2(x, y) = R2 · (x, y) = r12x+ r22y

where R1, R2 are the two columns of the reflection matrix R. The polynomial γ is called the kernel.

Proposition 2.7 (Functional equation). If ℜ(x) < 0 and ℜ(y) < 0, then

(2.2) −γ(x, y)φ(x, y) = γ1(x, y)φ1(y) + γ2(x, y)φ2(x) + e(x,y)·z0 .
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The proofs of these two proposition are directly related, so we will prove both together.

Proof of Propositions 2.6 and 2.7. The main idea of the proof is to take the expectation of Itô’s formula
applied to the SRBM and to use a sign argument to justify the limit when t → +∞. The beginning
of the proof is inspired by the Proposition 5 of [22].

Letting (x, y) ∈ (R∗−)2, Itô’s formula applied to f(z) := e(x,y)·z gives

f(Zt)− f(z0) =

∫ t

0

∇f(Zs).dBs +

∫ t

0

Lf(Zs)ds+

2∑
i=1

∫ t

0

Ri · ∇f(Zs)dL
i
s(2.3)

=

∫ t

0

∇f(Zs).dBs + γ(x, y)

∫ t

0

e(x,y)·Zsds+

2∑
i=1

γi(x, y)

∫ t

0

e(x,y)·ZsdLi
s(2.4)

where L = 1
2∇·Σ∇+µ ·∇ is the generator of the Brownian motion. Since (x, y) ∈ (R∗−)2, the integral∫ t

0
∇f(Zs).dBs is a martingale (its quadratic variation is bounded by C.t for a constant C > 0) and

its expectation cancels out. Therefore,

(2.5) Ez0

[
e(x,y)·Zt

]
− e(x,y)·z0 − γ(x, y)Ez0

[∫ t

0

e(x,y)·Zsds

]
= Ez0

[
γ1(x, y)

∫ t

0

e(x,y)·ZsdL1
s + γ2(x, y)

∫ t

0

e(x,y)·ZsdL2
s

]
.

The expectations in the left-hand side of the previous equation are finite because for (x, y) ∈ (R∗−)2,
the first expectation is bounded by 1 and the second expectation is bounded by t. This implies that
the expectation of the right-hand side is also finite.

The aim now is to take the limit of (2.5) when t goes to infinity to show the finiteness of the
Laplace transforms and the functional equation. First, since (x, y) ∈ (R∗−)2 and ||Zt|| −→

t→∞
+∞ a.s.,

the expectation Ex

[
e(x,y)·Zt

]
converges toward 0 when t→∞ by the dominated convergence theorem.

Secondly, by the monotone convergence theorem, the expectation Ez0

[∫ t

0
e(x,y)·Zsds

]
converges in

[0,∞] to φ(x, y) = Ez0

[∫∞
0

e(x,y)·Zsds
]
.

We now prove by contradiction that φ(x0, y0) is finite. For the sake of contradiction, let us assume
that it is possible to choose (x0, y0) ∈ (R∗−)2 such that γ(x0, y0) < 0, γ1(x0, y0) < 0 and γ2(x0, y0) < 0

and Ez0

[∫∞
0

e(x0,y0)·Zsds
]
= +∞. Since γ(x0, y0) < 0, the left-hand side of (2.5) will be positive

for large enough t. But, since γ1(x0, y0) < 0 and γ2(x0, y0) < 0, the right-hand side of (2.5) is
always negative. We have thus obtained a contradiction, allowing us to conclude that φ(x0, y0) =
Ez0

[∫∞
0

e(x0,y0)·Zsds
]

is finite. Hence, the limit of the right-hand side of (2.5) is also finite and
converges by the monotone convergence theorem to γ1(x0, y0)φ1(y0) + γ2(x0, y0)φ2(x0). We deduce
that φ1(y0) and φ2(x0) are also finite and that the functional equation (2.2) is satisfied for (x0, y0).
This implies that for all x and y in C such that ℜx < x0 and ℜy < y0 the Laplace transforms φ(x, y),
φ1(y) and φ2(x) are finite and the functional equation (2.2) is satisfied by taking the limit of (2.5)
when t→∞.

All that remains is to show that we can always choose x0 and y0 as close to 0 as we like, such that
(x0, y0) ∈ (R∗−)2, γ(x0, y0) < 0, γ1(x0, y0) < 0 and γ2(x0, y0) < 0 and the proof of Propositions 2.6
and 2.7 will be complete. Let us denote by E the ellipse of equation γ(x, y) = 0. One may observe that
the interior of the ellipse E defined by γ(x, y) < 0 contains a neighbourhood of 0 intersecting (R∗−)2
by Assumption 1 on the positivity of the drift. Indeed, the drift is an external normal to the ellipse at
(0, 0). We consider two cases coming from the existence condition of the process (2.1). The first case
is given by r11 > 0, r22 > 0, r12 > 0 and r21 > 0 (see Figure 4a). In this case, one may see directly see
that γ1(x, y) < 0 and γ2(x, y) < 0 on (R∗−)2. It is therefore easy to pick (x0, y0) close enough to (0, 0)
which satisfies the required conditions. The second case is given by r11 > 0, r22 > 0 and det(R) > 0
(see Figure 4b). In this case, the cone defined by γ1 < 0 and γ2 < 0 has a non-empty intersection with
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(R∗−)2. Hence, we can still choose (x0, y0) as close as we want to (0, 0) inside the desired cone and the
ellipse E . □

(a) Case r11 > 0, r22 > 0, r12 > 0 and r21 > 0. (b) Case r11 > 0, r22 > 0 and detR > 0.

Figure 4. Illustration of the domain where γ1 < 0 and γ2 < 0.

Remark 2.8 (Dependency on the initial state). The main difference compared to the recurrent case [23]
comes from the additional term e(x,y)·z0 in the functional equation.With the exception of this one term,
it is coherent that Green’s functions in the transient case have similar asymptotic behaviors that those
of the stationary densities in the recurrent case.

The following proposition follows from the functional equation and states that the boundary Green’s
densities h1 and h2 are equal, up to some constant, to the bivariate Green’s function g on the axes.

Proposition 2.9 (Green’s densities on the boundaries). The Green’s density g is related to the bound-
ary Green’s densities hi by the formulas

r11h1(b) =
σ11

2
g(0, b) and r22h2(a) =

σ22

2
g(a, 0).

Proof. The initial value formula of a Laplace transform gives

xφ(x, y) −→
x→−∞

−
∫ ∞
0

eybg(0, b)db.

Therefore, by dividing the functional equation (2.2) by x and taking the limit when x tends to infinity,
we obtain

1

2
σ11

∫ ∞
0

eybg(0, b)db = r11φ1(y) = r11

∫ ∞
0

eybh1(b)db

which implies the result. □

3. Continuation and properties of φ1(x) and φ2(y)

The first step of the analytical approach [14,17] is to study the kernel.

Lemma 3.1 (Kernel study). (i) Equation γ(x, y) = 0 determines an algebraic function Y (x)
[resp. X(y)] with two branches

Y ±(x) =
1

σ22

(
− σ12x− µ2 ±

√
(σ2

12 − σ11σ22)x2 + 2(µ2σ12 − µ1σ22)x+ µ2
2

)
.
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The function Y (x) [resp. X(y)] has two branching points xmin and xmax [resp. ymin and
ymax] given by

xmin =
µ2σ12 − µ1σ22 −

√
D1

det(Σ)
, xmax =

µ2σ12 − µ1σ22 +
√
D1

det(Σ)
,

ymin =
µ1σ12 − µ2σ11 −

√
D2

det(Σ)
, ymax =

µ1σ12 + µ2σ11 −
√
D2

det(Σ)
,

where D1 = (µ2σ12 − µ1σ22)
2 + µ2

2 det(Σ) and D2 = (µ1σ12 − µ2σ11)
2 + µ2

1 det(Σ). Both
of them are real and xmin < 0 < xmax [resp. ymin < ymax]. The branches of Y (x) [resp.
X(y)] take real values if and only if x ∈ [xmin, xmax] [resp. y ∈ [ymin, ymax]]. Furthermore
Y −(0) = − 2µ2

σ22
< 0, Y −(xmax) < 0, Y +(0) = 0, Y +(xmax) < 0. See Figure 5.

(ii) For any u ∈ R

ReY ±(u+iv) =
1

σ22

(
−σ12u−µ2±

1√
2

√
(u− xmin)(xmax − u) + v2 + |(u+ iv − xmin)(xmax − u− iv)|

)
.

(iii) Let δ = ∞ if σ12 ≥ 0 and δ = −µ2/σ12 − xmax > 0 if σ12 < 0. Then for some ϵ > 0 small
enough

ReY −(u+ iv) < 0 for u ∈]− ϵ, xmax + δ[, v ∈ R.

Proof. Points (i) and (ii) follow from elementary considerations. The fact that Y +(xmax) < 0 implies
the inequality −σ12xmax − µ2 < 0, so that δ > 0. Furthermore, by (ii) ReY −(u + iv) ≤ ReY −(u)
which is strictly negative for u ∈]− ϵ, xmax + δ[ by the analysis in (i). □

Lemma 3.2 (Continuation of the Laplace transform). Function φ2(x) can be meromorphically con-
tinued to the (cut) domain

(3.1) {x = u+ iv | u < xmax + δ, v ∈ R} \ [xmax, xmax + δ]

by the formula :

(3.2) φ2(x) =
−γ1(x, Y −(x))φ1(Y

−(x))− exp
(
a0x+ b0Y

−(x)
)

γ2(x, Y −(x))

where z0 = (a0, b0). A symmetric continuation formula holds for φ1.

Proof. By Lemma 3.1 (iii) for any x = u+ iv with u ∈]− ϵ, 0[ the following equation holds

−γ(x, Y −(x))φ(x, Y −(x)) = γ1(x, Y
−(x))φ1(Y

−(x)) + γ2(x, Y
−(x))φ2(x) + exp(a0x+ b0Y

−(x)).

Since γ(x, Y −(x)) = 0, the statement follows. □

We now define

(3.3) x∗ = 2
µ2

r12
r22
− µ1

σ11 − 2σ12
r12
r22

+ σ22

(
r12
r22

)2 and y∗∗ = 2
µ1

r21
r11
− µ2

σ11

(
r21
r11

)2

− 2σ12
r21
r11

+ σ22

.

Proposition 3.3 (Poles of the Laplace transform, necessary condition). (i) x = 0 is not a pole
of φ2(x), and φ2(0) = E[L2

∞] < +∞. The local time spent by the process on the horizontal
axis is finite.

(ii) If x is a pole of φ2(x) in the domain (3.1), then x = x∗ and (x∗, Y −(x∗)) is a unique non-zero
solution of the system of two equations

(3.4) γ(x, y) = 0, γ2(x, y) = r12x+ r22y = 0.

In this case, xmaxr12 + Y ±(xmax)r22 > 0, x∗ is real and belongs to (0, xmax).
(iii) If y is a pole of φ1(y), then y = y∗∗ and (X−(y∗∗), y∗∗) is a unique non-zero solution of the

system of two equations

(3.5) γ(x, y) = 0, γ1(x, y) = r11x+ r21y = 0.

In this case, ymaxr21 +X±(ymax)r11 > 0, y∗∗ is real and belongs to (0, ymax).
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Finally, we define
y∗ := Y +(x∗) and x∗∗ := X+(y∗).

See Figure 5 below, which depicts the poles x∗ and y∗∗ when they are both poles.

Figure 5. In the real plane (x, y), graphical representation of poles x∗ and y∗∗ when
both exist.

Proof. (i) The observation that γ2(0, Y
−(0)) = r22 × Y −(0) ̸= 0 implies the first statement.

(ii) If x is a pole of φ2, then (x, Y −(x)) should be a solution of the system (3.4) above by the
continuation formula (3.2) and the continuity of φ1 [resp. φ2] on {ℜy ≤ 0} [resp. {ℜx ≤ 0}].
This system has one solution (0, 0) and the second one (x◦, y◦), which is necessarily real. Then
x◦ ∈ [xmin, xmax] and y◦ is either Y −(x◦) or Y +(x◦). But x◦ can be a pole of φ2(x), if only it is
within ]0, xmax] and y◦ = Y −(x◦). This last condition implies r12

r22
> −Y ±(xmax)

xmax
. □

Proposition 3.4 (Poles of the Laplace transforms, sufficient condition). The point x∗ (resp. y∗∗) is a
pole of φ2 (resp. φ1) if (and only if) xmaxr12+Y ±(xmax)r22 > 0 (resp. ymaxr21+X±(ymax)r11 > 0).

Proof. The inequalities above are necessary by the previous proposition. The next two lemmas prove
sufficiency. In those, we denote the dependence of Laplace transforms with the initial condition z0 by
φz0
1 , φz0

2 instead of φ1, φ2. The proof is done for x∗, but is of course symmetrical for y∗∗. □

Lemma 3.5 (Existence of the pole for a starting point). If xmaxr12 + Y ±(xmax)r22 > 0, there exists
z0 ∈ R2

+ such that x∗ is a pole of φz0
2 .

Proof. The denominator of the continuation formula (3.2) vanishes since we assume that xmaxr12 +
Y ±(xmax)r22 > 0. We are looking for a z0 such that the numerator doesn’t vanish at x∗, which will
imply that z0 is a pole of φ2. If γ1(x∗, Y −(x∗)) ≥ 0, this is obvious due to the exponential term and
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since γ1(x
∗, Y −(x∗)φ1(Y

−(x)) ≥ 0. We suppose now that −C := γ1(x
∗, Y −(x∗)) < 0. We proceed

with a proof by contradiction. For the sake of contradiction, assume that

(3.6) ∀z0 = (a0, b0) ∈ R2
+, −Cφ

(a0,b0)
1 (Y −(x∗)) + ea0x

∗+b0Y
−(x∗) = 0.

Let T be the stopping time defined by the first hitting time of the axis {x = 0}, i.e. T = inf{t ≥
0, Z1

t = 0} with Z = (Z1, Z2). (It is possible that T = +∞). Firstly, since the Stieltjes measure dL1

is supported by {Z1 = 0} and since Z is a strong Markov process, for a starting point z0 = (a0, b0) we
have:

φ
(a0,b0)
1 (Y −(x∗)) = E(a0,b0)

[∫ +∞

T

eZ
2
t .Y

−(x∗)dL1
t1T<+∞

]
(3.7)

= E(a0,b0)

[
EZT

[∫ +∞

0

eZ
2
t .Y

−(x∗)dL1
t

]
1T<+∞

]
(3.8)

= E(a0,b0)

[
φ
(0,Z2

T )
1 (Y −(x∗))1T<+∞

]
.(3.9)

Conditioning by the value of Z2
T , using (3.6) and Y −(x∗) ≤ 0, we get :

φ
(a0,b0)
1 (Y −(x∗)) =

∫ +∞

0

φ
(0,b)
1 (Y −(x∗))P(a0,b0)(T < +∞, Z2

T = db)

(3.10)

=

∫ +∞

0

1

C
e0.x

∗+bY −(x∗)P(a0,b0)(T < +∞, Z2
T = db) ≤ 1

C
P(a0,b0)(T < +∞) ≤ 1

C
.(3.11)

But, (a0, b0) can be chosen such that ea0x
∗+b0Y

−(x∗) is as large as desired because x∗ > 0. This is in
contradiction with (3.6). □

Lemma 3.6 (Existence of a pole for all starting points). If x∗ is a pole of φz0
2 for some z0 ∈ R2

+, then
x∗ is a pole of φz′

0
2 for every z′0 ∈ R2

+.

The proof of Lemma 3.6 requires Proposition 3.8 to be established and is therefore postponed until
after Proposition 3.8.

Lemma 3.7 (Nature of the branching point of φ2). Letting x→ xmax with x < xmax, we have
• If γ2(xmax, Y

−(xmax)) = 0, i.e. x∗ = xmax, then

φ2(x) =
C√

xmax − x
+O(1)

for a constant C > 0.
• If γ2(xmax, Y

−(xmax)) ̸= 0, then

φ2(x) = C1 + C2

√
xmax − x+O(xmax − x)

for constants C1 ∈ R and C2 > 0.

Proof. By Lemma 3.1, Y − can be written as Y −(x) = Y −(xmax)− c
√
xmax − x+O(xmax − x) where

c > 0. We proceed to calculate an elementary asymptotic expansion of the quotient of the continuation
formula (3.2). Firstly,

1

γ2(x, Y −(x))
=

1

γ2(xmax, Y −(xmax))− r22c
√
xmax − x+O(xmax − x)

=


−1

r22c
√
xmax−x

if γ2(xmax, Y
−(xmax) = 0,

1
γ2(xmax,Y −(xmax))

(
1 + r22c

√
xmax−x

γ2(xmax,Y −(xmax))
+O(xmax − x)

)
if γ2(xmax, Y

−(xmax)) ̸= 0.



14 SANDRO FRANCESCHI, IRINA KOURKOVA, AND MAXENCE PETIT

Secondly, for the numerator,

(3.12) γ1(x, Y
−(x))φ1(Y

−(x)) + ea0x+b0Y
−(x) =(

γ1(xmax, Y
−(xmax))− r21c

√
xmax − x+O(xmax − x)

)
×
(
φ1(Y

−(xmax))− cφ′1(Y
−(xmax))

√
xmax − x+O(xmax − x)

)
+ ea0xmax+b0Y

−(xmax)(1− cb0
√
xmax − x+O(xmax − x))

Combining the two asymptotic expansions, we obtain the desired formula with

C =
γ1(xmax, Y

−(xmax))φ1(Y
−(xmax)) + ea0xmax+b0Y

−(xmax)

r22c

and

C2 =
1

γ2(xmax, Y −(xmax))

[
r21cφ1(Y

−(xmax))+cγ1(xmax, Y
−(xmax))φ

′
1(Y

−(xmax))+cb0e
a0xmax+b0Y

−(xmax)

− r22c

γ2(xmax, Y −(xmax))

(
γ1(xmax, Y

−(xmax))φ1(Y
−(xmax)) + ea0xmax+b0Y

−(xmax)
) ]

.

□

The following proposition states the asymptotics of the Green’s functions h1 and h2 on the bound-
aries. We note that we obtain the same asymptotics as in Theorem 2 and 5 with α → 0, which is
consistent with the link made between h1, h2 and g in Proposition 2.9.

Proposition 3.8 (Asymptotics of the Green’s functions on the boundary h1 and h2). In this propo-
sition we denote by c a constant which is allowed to vary from one line to the next.

(1) Suppose that we have a pole x∗ ∈]0, xmax[ for φ2. Then, the Green’s function h2 has the
following asymptotics

h2(u) ∼
u→∞

ce−x
∗u.

(2) Suppose that x∗ = xmax, then

h2(u) ∼
u→∞

cu−1/2e−xmaxu.

(3) Suppose that there is no pole in ]0, xmax[ and that x∗ ̸= xmax, then,

h2(u) ∼
u→∞

cu−3/2e−xmaxu.

A symmetric result holds for h1.

Proof. The result directly follows from classical Tauberian inversion lemmas which link the asymp-
totic of a function at infinity to the first singularity of its Laplace transform (which is here given in
Lemma 3.7). We refer here to Theorem 37.1 of Doetsch’s book [13] and more precisely we apply the
special case stated in Lemma C.2 of [10]. To apply this lemma, we have to verify the analyticity and
the convergence to 0 at infinity of φ2 in a domain Gδ(xmax) := {z ∈ C : z ̸= xmax, | arg(z−xmax)| > δ}
for some δ ∈ (0, π/2). But this follows directly from the continuation procedure of Lemma 3.2 :the ex-
ponential part of the continuation formula (3.2) tends to 0 in a domain Gδ(xmax) for some δ ∈ (0, π/2)
by using (ii) of lemma 3.1. Note that the convergence to 0 also follows from Lemma C.1. Then,
Lemma 3.7 gives the nature at the branching point xmax which is the smallest singularity except in
the case where there is a pole in ]0, xmax[, where the pole x∗ is the smallest singularity. □

Remark 3.9. We remark in the proof of Lemma 3.7 that O(1) and O(xmax − x) of this lemma are
locally uniform according to z0. This means that supz′

0∈V

∣∣∣φ(z′
0)

2 (x)− C(z′0)
√
xmax−x

∣∣∣ = O(1) as x → x∗

when γ2(xmax, Y
−(xmax)) = 0 for a sufficiently small neighborhood V of z0 (and the same holds for

O(xmax − x) in the other case). This implies that the results of Proposition 3.8 hold locally uniformly
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in z0. Indeed, it is enough to adapt the Tauberian lemmas of [13] used in the proof of Proposition 3.8.
Note that the constants c of this proposition depend continuously on z0.

Proof of Lemma 3.6. Let z0 = (a0, b0) be a starting point such that x∗ is a pole of φz0
2 . Then, the

continuation formula (3.2) implies that −γ1(x∗, Y −(x∗))φz0
1 (Y −(x∗))−exp

(
a0x
∗+b0Y

−(x∗)
)
̸= 0. By

continuity with respect to the starting point (which follows from the integral formula given in [22] or
from [38]), there exists a neighbourhood V of z0 such that −γ1(x∗, Y −(x∗))φ

z′
0

1 (Y −(x∗))− exp
(
a′0x
∗+

b′0Y
−(x∗)

)
̸= 0 for all z′0 = (a′0, b

′
0) ∈ V . Therefore, by the continuation formula, x∗ is a pole of φz′

0
2

for all z′0 ∈ V . From Proposition 3.8 and by continuity of the constant of this proposition according to
z′0 we conclude the following. If x∗ is a pole of φz′

0
2 , there exists a constant c such that for all z′0 ∈ V

we have h
(z′

0)
2 (u) = ce−x

∗u(1 + o(1)) (notice that o(1) is uniform in z′0 in the sense of Remark 3.9 and
that c is continuous in z′0). For z′′0 ∈ R2 we introduce the stopping time

TV := inf{t > 0 : Z
z′′
0

t ∈ V }

where Z
z′′
0

t denotes the process starting from z′′0 . By the strong Markov property applied to TV we
have for some constant C and when u→∞,

h
z′′
0

2 (u) ⩾ Pz′′
0
(TV <∞) inf

z′
0∈V

h
z′
0

2 (u) = Ce−x
∗u(1 + o(1)).

We deduce by Proposition 3.8 that z′′0 is necessarily a pole. □

We conclude this section with the following lemma which will be needed in Section 6.

Lemma 3.10 (Boundedness of the Laplace transform). Let η ∈]0, δ[, we have

sup
u∈[X±(ymax)−η,xmax+η]

|v|>ϵ

|φ2(u+ iv)| <∞.

Proof. Clearly, for any x = u+ iv with u < 0, |φ2(u+ iv)| ≤ φ2(u). Then for any ϵ > 0,

(3.13) sup
u∈[X±(ymax)−η,−ϵ]

|φ2(u+ iv)| <∞.

For any x = u+ iv with u ∈ [−ϵ, xmax + η] Lemma 3.2 applies and gives the representation (3.2). Let
us consider all its terms. By Lemma 3.1 (ii), for any fixed u ∈ R, the function ReY −(u+ iv) is strictly
decreasing as |v| goes from 0 to infinity. Moreover, for any u ∈ [−ϵ, xmax + δ]

ReY −(u+ iv) ≤ − 1√
2σ22

|v|.

Then,

(3.14) |φ1(Y
−(u+ iv))| ≤ φ1(ReY

−(u+ iv)) ≤ φ1

(
−1√
2σ22

|v|
)
≤ φ1(0).

By Proposition 3.3 (i) φ1(0) <∞. It follows that

(3.15) sup
u∈[−ϵ,xmax+δ]

φ1(Y
−(u+ iv)) <∞.

By Lemma 3.1 (i) there exists a constant d1 > 0 such that

(3.16) |γ1(u+ iv, Y −(u+ iv))| ≤ d1|v|, ∀u ∈ [−ϵ, xmax + η], |v| ≥ ϵ.

Note that |γ2(u + iv, Y −(u + iv))| ≥ |r12u + r22ReY
−(u + iv)|. Then by Lemma 3.1 (ii) and also by

Proposition 3.3 (ii) there exists a constant d2 > 0 such that

(3.17) |γ2(u+ iv, Y −(u+ iv))| ≥ d2|v|, ∀u ∈ [−ϵ, xmax + η], |v| ≥ ϵ.

Finally by Lemma 3.1 (ii)
(3.18)

| exp(a0(u+ iv) + b0Y
−(u+ iv))| = exp(a0u+ b0ReY

−(u+ iv)) ≤ exp

((
a0−b0

σ12

σ22

)
u− b0√

2σ22

|v|
)
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for any u ∈ [−ϵ, xmax + η] and v with |v| > ϵ. Then the estimate (3.13), the representation (3.2)
combined with the estimates (3.15), (3.16), (3.17) and (3.18) lead to the statement of the lemma. □

4. Inverse Laplace transform: from a double integral to simple integrals

By the Laplace transform inversion formula ( [13, Theorem 24.3 and 24.4] and [5]), for any ϵ > 0
small enough,

g(a, b) =
1

(2πi)2

∫ −ϵ+i∞

−ϵ−i∞

∫ −ϵ+i∞

−ϵ−i∞
φ(x, y) exp(−ax− by)dxdy,

in the sense of principal value convergence.

Lemma 4.1 (Inverse Laplace transforms as a sum of simple integrals). Let z0 = (a0, b0) be the starting
point of the process. For any (a, b) ∈ R2

+ where either a > a0, b > 0 or b > b0, a > 0 the following
representation holds :

g(a, b) = I1(a, b) + I2(a, b) + I3(a, b)

where

I1(a, b) =
1

2πi

∫ −ϵ+i∞

−ϵ−i∞
φ2(x)γ2(x, Y

+(x)) exp(−ax− bY +(x))
dx

γ′y(x, Y
+(x))

,

I2(a, b) =
1

2πi

∫ −ϵ+i∞

−ϵ−i∞
φ1(y)γ1(X

+(y), y) exp(−aX+(y)− by)
dy

γ′x(X
+(y), y)

,

I3(a, b) =
1

2πi

∫ −ϵ+i∞

−ϵ−i∞
exp(a0x+ b0Y

+(x)) exp(−ax− bY +(x))
dx

γ′y(x, Y
+(x))

if b > b0,

I3(a, b) =
1

2πi

∫ −ϵ+i∞

−ϵ−i∞
exp(a0X

+(y) + b0y) exp(−aX+(y)− by)
dy

γ′x(X
+(y), y)

if a > a0.

The two different formulas for I3 will be useful in Section 9 in studying the asymptotics along the
axes.

Proof. For any ϵ > 0 small enough γ(−ϵ,−ϵ) < 0. Then

(4.1) Reγ(−ϵ+ iv1,−ϵ+ iv2) < 0 ∀v1, v2 ∈ R
since Σ is a covariance matrix. Then, by (2.2)

g(a, b) =
−1

(2πi)2

∫ −ϵ+i∞

−ϵ−i∞

∫ −ϵ+i∞

−ϵ−i∞

γ1(x, y)φ1(y) + γ2(x, y)φ2(x) + exp(a0x+ b0y)

γ(x, y)
exp(−ax− by)dxdy.

Now, let us consider for example the second term. It can be written as

−1
(2πi)2

∫ −ϵ+i∞

−ϵ−i∞
φ2(x) exp(−ax)

(∫ −ϵ+i∞

−ϵ−i∞

γ2(x, y)

γ(x, y)
exp(−by)dy

)
dx.

Note that the convergence in the sense of the principal value of this integral can be guaranteed by
integration by parts. Now, it just remains to show that

(4.2)
−1
2πi

∫ −ϵ+i∞

−ϵ−i∞

γ2(x, y)

γ(x, y)
exp(−by)dy =

γ2(x, Y
+(x))

γ′y(x, Y
+(x))

exp
(
− bY +(x)

)
.

Let x = −ϵ. The equation γ(−ϵ, y) = 0 has two solutions, Y +(−ϵ) > 0 and Y −(−ϵ) < 0. (In
fact, for ϵ > 0 small enough Y +(−ϵ) is close to Y +(0) = 0 staying positive and Y −(−ϵ) is close to
Y −(0) = −2µ2/σ22 < 0). Let x = −ϵ+ iv. The functions Y +(−ϵ+ iv) and Y −(−ϵ+ iv) are continuous
in v. By (4.1) their real parts do not equal −ϵ for any v ∈ R. Thus ReY +(−ϵ + iv) > −ϵ and
ReY −(−ϵ + iv) < −ϵ for all v ∈ R. Let us construct the contour [−ϵ − iR,−ϵ + iR] ∪ {t + iR, | t ∈
[−ϵ, 0]} ∪ {Reit | t ∈]− π/2 + π/2[} ∪ {t− iR, | t ∈ [−ϵ, 0]}, see Figure 6.

For any fixed x = −ϵ + iv, the integral over this contour taken in the counter-clockwise direction
of the function γ2(x,y)

γ(x,y) exp(−by) equals the residue of this function multiplied by 2πi, which is exactly
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Figure 6. Integral contour in the complex plane Cy, with the pole Y +(x).

the result in (4.2). It suffices to show that the integral over {t + iR | t ∈ [−ϵ, 0]} ∪ {Reit | t ∈
]− π/2 + π/2[} ∪ {t− iR | t ∈ [−ϵ, 0]} converges to zero as R →∞. The integral over the half of the
circle {Reit | t ∈]− π/2 + π/2[} equals∫ π/2

−π/2

γ2(x,Reit)

γ(x,Reit)
exp(−bReit)iReitdt.

We have supR>R0
supt∈]−π/2,π/2[

∣∣∣γ2(x,Reit)
γ(x,Reit) iReit

∣∣∣ < ∞ for R0 = R0(x) > 0 large enough, while

| exp(−bReit)| = exp(−bR cos t) → 0 as R → ∞ for any t ∈] − π/2, π/2[ since b > 0. Hence, the
integral over the half of the circle converges to zero as R→∞ by the dominated convergence theorem.
Let us look at the integral over segment {t+ iR | t ∈ [−ϵ, 0]}. For any fixed x = −ϵ+ iv, there exists
a constant C(x) > 0 such that for any R large enough

sup
u∈[−ϵ,0]

∣∣∣γ2(x, u+ iR)

γ(x, u+ iR)

∣∣∣ ≤ C(x)

R
.

Therefore ∣∣∣ ∫ 0

−ϵ

γ2(x, u+ iR)

γ(x, u+ iR)
exp(−b(u+ iR))du

∣∣∣ ≤ ϵ exp(bϵ)
C(x)

R
−→
R→∞

0.

The representation of I1(a, b) follows.
The reasoning is the same for the third term. The integral over the half of the circle equals∫ π/2

−π/2

exp(−(b− b0)Reit)

γ(x,Reit)
iReitdt.

We have supR>R0
supt∈]−π/2,π/2[

∣∣∣ 1
γ(x,Reit) iReit

∣∣∣ <∞ while | exp(−(b−b0)Reit)| = exp(−(b−b0)R cos t)→
0 as R→∞ for any t ∈]− π/2, π/2[ since b− b0 > 0. The integral over the half of the circle converges
to zero as R→∞ by the dominated convergence theorem once again. For any fixed x = −ϵ+ iv, there
exists a constant C(x) > 0 such that for any R large enough

sup
u∈[−ϵ,0]

∣∣∣ 1

γ(x, u+ iR)

∣∣∣ ≤ C(x)

R2
.
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Therefore ∣∣∣ ∫ 0

−ϵ

exp(−(b− b0)(u+ iR))

γ(x, u+ iR)
du

∣∣∣ ≤ ϵ exp((b− b0)ϵ)
C(x)

R2
→ 0, R→∞.

The representations for I2(a, b) and I3(a, b) with a > a0 are obtained in the same way. □

Remark. Let us introduce the notation a, b, c, ã, b̃, c̃ by

(4.3) γ(x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 + b̃(y)x+ c̃(y).

Then functions in the integrand can be represented as

(4.4) γ′y(x, Y
+(x)) = a(x)(Y +(x)− Y −(x)) = 2a(x)Y +(x) + b(x) =

√
b2(x)− 4a(x)c(x)

(4.5) γ′x(X
+(y), y) = ã(y)(X+(y)−X−(y)) = 2ã(y)X+(y) + b̃(y) =

√
b̃2(y)− 4ã(y)c̃(y).

5. Saddle point and contour of the steepest descent

Our aim is to study the integrals I1, I2 and I3 of Lemma 4.1 using the saddle point method (see,
for example, Fedoryuk [18]).

Saddle point. For α ∈ [0, 2π[ we define

(5.1) (x(α), y(α)) := argmax(x,y):γ(x,y)=0(x cosα+ y sinα).

We will see that this point turns out to be the saddle point of the functions inside the exponentials of
the integrals I1, I2 and I3. See Figure 7 for a geometric interpretation of this point.

Figure 7. Graphical representation of the saddle point. We denote eα =
(cos(α), sin(α)).

The map α : [0, 2π[→ {(x, y) : γ(x, y) = 0} is a diffeomorphism. The functions x(α), y(α) are in the
class C∞([0, 2π]). For any α ∈ [0, π/2] the function cos(α)x+sin(α)Y +(x) reaches its maximum at the
unique point on [X±(ymax), xmax] called x(α). This function is strictly increasing on [X±(ymax), x(α)]
and strictly decreasing on [x(α), xmax]. The function cos(α)X+(y) + sin(α)y reaches its maximum on
[Y ±(xmax), ymax] at the unique point y(α). It is strictly increasing on [Y ±(xmax), y(α)] and strictly
decreasing on [y(α), ymax].

Thus x(0) = xmax, y(0) = Y ±(xmax), x(π/2) = X±(ymax), y(π/2) = ymax. Finally, x(α) = 0 and

y(α) = 0 if (cos(α), sin(α)) =
(

µ1√
µ2
1+µ2

2

, µ2√
µ2
1+µ2

2

)
. We denote the direction corresponding to the drift

by αµ.
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Let us define the functions

(5.2) F (x, α) = − cos(α)x− sin(α)Y +(x) + cos(α)x(α) + sin(α)y(α),

G(y, α) = − cos(α)X+(y)− sin(α)y + cos(α)x(α) + sin(α)y(α).

We see that the function F is (up to a constant) the function inside exponential of the integral I1,
and the function G is (up to a constant) the function inside the exponential of the integral I2, see
Lemma 4.1. We have

F (x(α), α) = 0 ∀α ∈ [0, π/2]

and
F ′x(x(α), α) = 0 ∀α ∈]0, π/2], but not at α = 0.

In the same way G(y(α), α) = 0 for any α ∈ [0, π/2] and G′y(y(α), α) = 0 for any α ∈ [0, π/2[ but not
at α = π/2. Then (Y +(x(α)))′ = −ctan(α) and (X+(y(α)))′ = −tan(α).

Using the identities γ(x, Y +(x)) ≡ 0 and γ(X+(y), y) ≡ 0, we get :

(5.3) (Y +(x))′
∣∣∣
x=x(α)

= −γ′x(x(α), y(α))

γ′y(x(α), y(α))
= −cos(α)

sin(α)
, α ∈]0, π/2]

(X+(y))′
∣∣∣
y=y(α)

= −
γ′y(x(α), y(α))

γ′x(x(α), y(α))
= − sin(α)

cos(α)
, α ∈ [0, π/2[

(Y +(x))′′
∣∣∣
x=x(α)

= −σ11 + 2σ12(−ctan (α)) + σ22(−ctan (α))2

γ′y(x(α), y(α))

(X+(y))′′
∣∣∣
y=y(α)

= −σ11(−tan(α))2 + 2σ12(−tan (α)) + σ22

γ′x(x(α), y(α))

(5.4) F ′′x (x(α), α) =
σ11 sin

2(α)− 2σ12 sin(α) cos(α) + σ22 cos
2(α)

γ′y(x(α), y(α)) sinα
> 0 α ∈]0, π/2],

G′′y(y(α), α) =
σ11 sin

2(α)− 2σ12 sin(α) cos(α) + σ22 cos
2(α)

γ′x(x(α), y(α)) cos(α)
> 0 α ∈ [0, π/2[,

where the strict inequality arises from (4.4), (4.5) and the positive-definite form of Σ.

Figure 8. Level sets of ℜ(F ) in purple and of ℑ(F ) in orange. The saddle point
x(α) is represented in blue and the branch point xmax is in red.

The values of x(α) and y(α) are given by the following formulas.
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(5.5) x(α) =
(µ2σ12 − µ1σ22)

det(Σ)
+

1

det(Σ)
(σ22 − tan(α)σ12)

√
µ2
2σ11 − 2µ1µ2σ12 + µ2

1σ22

σ11 tan
2(α)− 2σ12 tan(α) + σ22

(5.6) y(α) =
(µ1σ12 − µ2σ11)

det(Σ)
+

1

det(Σ)

(
σ11 −

1

tan(α)
σ12

)√
µ2
1σ22 − 2µ1µ2σ12 + µ2

2σ11
σ22

tan2(α) − 2 σ12

tan(α) + σ11
.

Indeed, using the same calculations as in section 4.2 of [23], the equation 0 = d
dx [γ(x, Y +(x))] |x=x(α)

combined with the first equation of (5.3) gives a linear relationship between x(α) and y(α). Injecting
this condition in the polynomial equation γ(x(α), y(α)) = 0, we get two possible values for x(α) and
y(α). The choice of sign then depends on α.

Contour of the steepest descent. Before continuing, the reader should read Appendix A which
states a parameter dependent Morse lemma. The usual Morse Lemma enables one to find steepest
descent contours for a function at a critical point. The parameter dependent Morse lemma treats
the case of a family of functions (fα)α which have critical points x(α) (with smooth dependency in
α). This lemma tells us that the contours of steepest descents of fα at x(α) are also smooth in α.
This property is necessary to obtain the asymptotic behaviour where r → +∞ and α → α0. Let
α0 ∈]0, π/2]. We apply Lemma A.1 to F defined in (5.2). Let us fix any ϵ ∈]0,K[ and consider
any α such that |α − α0| < η, where constants K and η are taken from the definition of Ω(0, α0) in
Lemma A.1. Then, for any α we can construct the contour of the steepest descent

Γx,α = {x(it, α) | t ∈ [−ϵ, ϵ]}.

Clearly,

F (x(it, α), α) = −t2.

We denote by x+
α = x(iϵ, α) and x−α = x(−iϵ, α). Then

(5.7) F (x+
α , α) = −ϵ2, F (x−α , α) = −ϵ2.

Since F ′′x (x(α), α) ̸= 0, the contours in a neighborhood of x(α) where the function F is real are
orthogonal, see Figure 8. One of them is the real axis. The other is the contour of the steepest
descent, which is the orthogonal to the real axis. It follows that Imx+

α0
> 0 and Imx−α0

< 0. By
continuity of x(iϵ, α) on α for any η > 0 small enough, there exists ν > 0 such that

(5.8) Imx+
α > ν, Imx−α < −ν ∀α : |α− α0| < η.

In the same way, for any α ∈ [0, π/2[, we may define by the generalized Morse lemma the function
y(ω, α) w.r.t. G(y, α). Let α0 ∈ [0, π/2[. We can construct the contour of the steepest descent

Γy,α = {y(it, α) | t ∈ [−ϵ, ϵ]}

with end points y+α = y(iϵ, α) and y−α = y(−iϵ, α) and the property analogous to (5.8).
We note that for any α =]0, π/2[

(5.9) Γx,α =
←−−−−−−
X+(Γy,α)−−−−−−→

, Γy,α =
←−−−−−−
Y +(Γx,α)−−−−−−→

.

The arrows mean that the direction has to be changed because of the facts that (X+(y))′
∣∣∣
y=y(α)

< 0

and (Y +(x))′
∣∣∣
x=x(α)

< 0. This notation comes from [17] (chapter 5.3, p 137).
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Figure 9. Steepest descent contour for ℜ(F ) according to α. As α gets closer to
zero, the corresponding contours appear in lighter shades of green. When α→ 0 this
contour tends to the half line [xmax,∞).

Case where α0 = 0. In this case Γy,0 is now well-defined, but not Γx,0 (since F ′′x (x(0), 0) = ∞), see
Figure 9. Thus we define

Γx,0 =
←−−−−−−
X+(Γy,0)−−−−−−→

with end points x+
0 = X+(y+0 ) = xmax+ ϵ2 and x−0 = X+(y−0 ) = xmax+ ϵ2. In fact, for α = 0, we have

G(y, 0) = −X+(y) + xmax and G(y(iϵ, 0), 0) = −ϵ2. Thus Γx,0 runs the real segment from xmax + ϵ2

to xmax and back to xmax+ ϵ2. Figure 9 illustrates why this phenomenon happens when α = 0. Again
by continuity on α we may find η > 0 and ν > 0 small enough, such that

(5.10) Rex+
α − xmax > ν, Rex−α − xmax > ν, ∀α ∈ [0, η].

If α0 = π/2, Γx,π/2 is well-defined, but not Γy,π/2. We then let

Γy,π/2 =
←−−−−−−−−
Y +(Γx,π/2)−−−−−−−−→

with endpoints y+α = Y +(x+
α ) and y−α = Y +(x−α ).

6. Shift of the integration contours and contribution of the poles

We will now define the integration contours of I1, I2 and I3 using the contours of the steepest
descent studied in the previous section. First, let

S+
x,α = {x+

α + it | t ≥ 0 }, S−x,α = {x−α − it | t ≥ 0},

S+
y,α = {y+α + it | t ≥ 0}, S−y,α = {y−α − it | t ≥ 0}.

Now, let us construct the integration contours Tx,α = S−x,α+Γx,α+S+
x,α and Ty,α = S−y,α+Γy,α+S+

y,α

for any α ∈ [0, π/2]. See Figure 10 which illustrates these integration contours.

Case where the saddle point meets the pole. The only exception in defining these contours will be for
α ∈ [0, π/2] such that x(α) = x∗ ∈]0, xmax[ is a pole of φ2(x) and y(α) = y∗∗ ∈]0, ymax[ is a pole of
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Figure 10. In the complex plane Cx, shift of the integration contour passing through
the saddle point along the steepest line.

φ1(y). We call these directions α∗ and α∗∗, so that x(α∗) = x∗, y(α∗) = Y +(x∗) = y∗, y(α∗∗) = y∗∗,
x(α∗∗) = X+(y∗∗) = x∗∗. When x∗ and y∗∗ are poles, we recall that by the Lemma 3.3 :

(6.1) x∗ = 2
µ2

r12
r22
− µ1

σ11 − 2σ12
r12
r22

+ σ22

(
r12
r22

)2 and y∗∗ = 2
µ1

r21
r11
− µ2

σ11

(
r21
r11

)2

− 2σ12
r21
r11

+ σ22

.

We also recall that

(6.2) y∗ := Y +(x∗) and x∗∗ := X+(y∗∗).

We remark that we have y∗ = − r12
r22

x∗ (resp. x∗∗ = − r21
r11

y∗∗) if and only if x∗ (resp y∗∗) is not a pole
of φ2 (resp. φ1) because of the condition on x∗ and y∗∗ to be poles.

Remark 6.1. If x∗ is a pole, then α∗ ∈]0, αµ[, and if y∗∗ is a pole, then α∗∗ ∈]αµ, π/2[. We denote
α∗ = −∞ if x∗ is not a pole and α∗∗ = +∞ if y∗∗ is not a pole.

If α = α∗ ∈]0, αµ[, we modify in the definition of Tx,α the contour Γx,α by Γ̃x,α, which is the half
of the circle centered at x(α∗) going from x+

α∗ to x−α∗ in the counter-clockwise direction. The same
modification is made for α = α∗∗ ∈]αµ, π/2[.

The next lemma performs the shift of the integration contour and takes into account the contribution
of the crossed poles. Recall that I1, I2 and I3 are defined in Lemma 4.1.

Lemma 6.2 (Contribution of the poles to the asymptotics). Let α ∈ [0, π/2]. Then for any a, b > 0

I1(a, b) =

(
−resx=x∗φ2(x)

)
γ2(x

∗, y∗)

γ′y(x
∗, y∗)

exp(−ax∗ − by∗)× 1α<α∗

+
1

2πi

∫
Tx,α

φ2(x)γ2(x, Y
+(x))

γ′y(x, Y
+(x))

exp(−ax− bY +(x))dx,
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I2(a, b) =

(
−resy=y∗∗φ1(y)

)
γ1(x

∗∗, y∗∗)

γ′x(x
∗∗, y∗∗)

exp(−ax∗∗ − by∗∗)× 1α>α∗∗

+
1

2πi

∫
Ty,α

φ1(y)γ1(X
+(y), y)

γ′x(X
+(y), y)

exp(−aX+(y)− by)dy,

I3(a, b) =
1

2πi

∫
Tx,α

exp((a0 − a)x+ (b0 − b)Y +(x))
dx

γ′y(x, Y
+(x))

if b > b0

I3(a, b) =
1

2πi

∫
Tx,α

exp((a0 − a)X+(y) + (b0 − b)y)
dy

γ′x(X
+(y), y)

if a > a0.

We remark that we have γ2(x
∗, y∗)resx∗φ2 < 0 and γ1(x

∗∗, y∗∗)resy∗∗φ1 < 0.

Proof. We start from the result of Lemma 4.1, and we use Cauchy theorem to shift the integration
contour. We take into account the poles by the residue theorem noting that x∗ < x(α) if and only if
α < α∗ and that y∗∗ < y(α) if and only if α∗∗ < α. In order to get the representation of I1 by shifting
the contour, we want to show that the integrals on the dotted lines of Figure 10 tend to 0 when these
lines go to infinity. To do so, it suffices to show that for any η > 0 small enough ,

sup
u∈[X+(ymax)−η,xmax+η]

∣∣∣φ2(u+ iv)γ2(u+ iv, Y +(u+ iv))

γ′y(u+ iv, Y +(u+ iv))
exp(−a(u+iv)−bY +(u+iv))

∣∣∣→ 0, as v →∞.

It suffices to study the supremum on [−ϵ, xmax + η]. By Lemma 3.10 for any ϵ > 0,

sup
u∈[X+(ymax)−η,xmax+η],|v|≥ϵ

|φ2(u+ iv)| <∞.

Let us observe that by (4.4)

(6.3) γ′y(x, Y
+(x)) =

√
b2(x)− 4a(x)c(x) =

√
(σ2

12 − σ11σ22)x2 + 2(µ2σ12 − µ1σ22)x+ µ2
2.

This function equals zero only at real points xmin and xmax and grows linearly in absolute value as
|ℑx| → ∞. By Lemma 3.1 (i) the function |γ2(x, Y +(x))| grows linearly as |ℑx| → ∞. Then for any
ϵ > 0

sup
u∈[X+(ymax)−η,xmax+η],

|v|≥ϵ

∣∣∣γ2(u+ iv, Y +(u+ iv))

γ′y(u+ iv, Y +(u+ iv))
exp(−a(u+ iv))

∣∣∣ <∞.

Finally,

sup
u∈[X+(ymax)−η,xmax+η]

| exp(−bY +(u+ iv))| = sup
u∈[X+(ymax)−η,xmax+η]

exp(−bReY +(u+ iv))→ 0,

as |v| → ∞ due to Lemma 3.1 (ii) and the fact that b > 0. The other representations are obtained in the
same way. In the representations of I3(a, b) we have used the facts that a− a0 > 0 and b− b0 > 0. □

7. Exponentially negligible part of the asymptotic

Let us recall the integration contours Tx,α = S−x,α + Γx,α + S+
x,α and Ty,α = S−y,α + Γy,α + S+

y,α for
any α ∈ [0, π/2]. This section establishes a domination of the integrals on the contours S±x,α and S±y,α.
This domination will be useful in the following sections to show that these integrals are negligible.
We will see that the asymptotics of integrals I1, I2 and I3 of contour Tx,α and Ty,α are given by the
integrals on the lines of steepest descent Γx,α and Γy,α.

Lemma 7.1 (Negligibility of the integrals on S±x,α and S±y,α). For any couple (a, b) ∈ R2
+ we may

define α(a, b) as the angle in [0, π/2] such that cos(α) = a√
a2+b2

and sin(α) = b√
a2+b2

.
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• Let α0 ∈]0, π/2]. Then for any η small enough and any r0 > 0 there exists a constant D > 0

such that for any couple (a, b) where
√
a2 + b2 > r0 and |α(a, b)− α0| < η we have

(7.1)
∣∣∣ ∫
S+
x,α

φ2(x)γ2(x, Y
+(x))

γ′y(x, Y
+(x))

exp
(
− ax− bY +(x)

)
dx

∣∣∣ ≤ D

b
exp

(
− ax(α)− by(α)− ϵ2

√
a2 + b2

)
.

Furthermore, if b > b0 we have
(7.2)∣∣∣ ∫
S+
x,α

exp((a0−a)x+(b0−b)Y +(x))
dx

γ′y(x, Y
+(x))

∣∣∣ ≤ D

b− b0
exp

(
−ax(α)−by(α)−ϵ2

√
a2 + (b− b0)2

)
.

• Let α0 ∈ [0, π/2[. Then for any η small enough and any r0 > 0 there exists a constant D > 0

such that for any couple (a, b) such that
√
a2 + b2 > r0, |α(a, b)− α0| ≤ η we have

(7.3)
∣∣∣ ∫
S+
y,α

φ1(y)γ1(X
+(y), y)

γ′x(X
+(y), y)

exp
(
− aX+(y)− by

)
dy

∣∣∣ ≤ D

a
exp

(
− ax(α)− by(α)− ϵ2

√
a2 + b2

)
.

Furthermore, if a > a0 we have
(7.4)∣∣∣ ∫
S+
y,α

exp((a0−a)X+(y)+(b0−b)y)
dy

γ′x(X
+(y), y)

∣∣∣ ≤ D

a− a0
exp

(
−ax(α)−by(α)−ϵ2

√
(a− a0)2 + b2

)
.

The same estimations hold for S−x,α and S−y,α.

Proof. First, with definition (5.2) and the notation in (5.7), the estimate (7.1) can be written as

(7.5)
∣∣∣ ∫
v>0

φ2(x
+
α + iv)γ2(x

+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))
exp

(
−
√
a2 + b2

(
F (x+

α +iv, α)−F (x+
α , α)

)
dx

∣∣∣ ≤ D

b

with α = α(a, b).
Let be α0 ∈]0, π/2]. If α0 ̸= π/2, let us fix η > 0 sufficiently small such that α0 − η > 0, and

α0 + η ≤ π/2. If α0 = π/2, let us fix any small η > 0 and consider only α ∈ [π/2− η, π/2].
By Lemma 3.10 and equation (5.8)

(7.6) sup
v≥0,|α−α0|≤η

|φ2(x
+
α + iv)| <∞.

By the observation (4.4) γ′y(x, Y
+(x)) = 0 only if x = xmin, xmax. Then by (5.8) we have

(7.7) inf
v≥0,|α−α0|≤η

|γ′y(x+
α + iv, Y +(x+

α + iv))| > 0.

Again by (6.3) and Lemma 3.1 (ii) we have

(7.8) sup
v≥0,|α−α0|≤η

∣∣∣γ2(x+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))

∣∣∣ <∞.

Finally

(7.9) | exp
(
−
√
a2 + b2(F (x+

α + iv, α)− F (x+
α , α))

)
| = exp

(
− b(ReY +(x+

α + iv)− ReY +(x+
α ))

)
.

By Lemma 3.1 (ii), the function ReY +(x+
α + iv) − ReY +(x+

α ) equals 0 at v = 0 is strictly increasing
as v goes from zero to infinity. Moreover, it grows linearly as v → ∞ : there exists a constant c > 0
such that for any α such that |α− α0| ≤ η and any v large enough

(7.10) ReY +(x+
α + iv)− ReY +(x+

α ) ≥ cv.

It follows from (7.6), (7.8), (7.9) and (7.10) that the left-hand side of (7.5) is bounded by

C

∫ ∞
0

exp(−bcv)dv = C × (cb)−1
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with some constant C > 0 for all couples (a, b) with |α(a, b)− α0| ≤ η.
As for the integral (7.2), we make the change of variables B = b− b0 > 0. Next, we proceed exactly

as we did in (7.1). The only different detail is the elementary estimation sup|α−α0|≤η,v>0 | exp(a0(x+
α +

iv))| <∞. We then obtain the bound D′

B exp(−ax(α)−By(α)− ϵ
√
a2 +B2) with some D′ > 0. Then

with D = D′ exp(b0y(α)) the estimation (7.2) follows.
The proofs for (7.3) and (7.4) are symmetric. □

The previous lemma will be useful in Section 8 in establishing the asymptotics when α0 ∈]0, π/2[.
In the next lemma we will show the negligibility of the integrals in the two cases where α0 = 0 or π/2.
This will be useful in Section 9.

Remark 7.2 (Pole and branching point). In the next lemma and in Section 9 and 10, we exclude the
case γ2(xmax, Y

±(xmax)) = 0 [resp. γ1(X
±(ymax), ymax) = 0] such that the branching point and the

pole of φ2(x) coincides. This case corresponds to x∗ = xmax [resp. y∗ = ymax], i.e. α∗ = 0 [resp.
α∗∗ = π/2]. Note that we already obtained the asymptotics of h1 and h2 in these specific cases in
Proposition 3.8.

Lemma 7.3 (Negligibility of the integrals on S±x,α and S±y,α, case where α0 = 0 or π/2). For any
η > 0 small enough and any r0 > 0 there exists a constant D > 0 such that for any couple (a, b) where√
a2 + b2 > r0 and 0 < α(a, b) < η we have

(7.11)
∣∣∣ ∫
S+
x,α

φ2(x)γ2(x, Y
+(x))

γ′y(x, Y
+(x))

exp
(
− ax− bY +(x)

)
dx

∣∣∣ ≤ D exp
(
− ax(α)− by(α)− ϵ2

√
a2 + b2

)
.

Furthermore, if b > b0 we have
(7.12)∣∣∣ ∫
S+
x,α

exp((a0 − a)x+ (b0 − b)Y +(x))
dx

γ′y(x, Y
+(x))

∣∣∣ ≤ D exp
(
− ax(α)− by(α)− ϵ2

√
a2 + (b− b0)2

)
.

The same estimations hold for S−x,α. For any couple (a, b) such that
√
a2 + b2 > r0 and 0 < π/2 −

α(a, b) < η, a symmetric result holds for the integrals on S+
y,α and S−y,α.

Proof. Let α0 = 0 so that x(α0) = xmax. Our aim is to prove (7.11), which is then reduced to the
estimate

(7.13)
∣∣∣ ∫

v>0

φ2(x
+
α + iv)γ2(x

+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))
exp

(
− aiv− b(Y +(x+

α + iv)− Y +(x+
α ))

)
dv

∣∣∣ ≤ D.

Let us fix any η > 0 small enough and consider α ∈]0, η]. By (4.4) the denominator γ′y(x, Y
+(x)) is

zero at x = xmax but not at other points in a neighborhood of xmax. Then by (5.10) we have

(7.14) inf
0≤α≤η

|γ′y(x+
α , Y

+(x+
α ))| > 0.

The function φ2(x) has a branching point at xmax. But it follows from the representation (3.2) that
it is bounded in a neighborhood of xmax cut along the real segment due to Remark 7.2. Hence, this
integral has no singularity at v = 0 for any α ∈]0, η] so that

(7.15) sup
0≤α≤η

φ2(x
+
α )γ2(x

+
α , Y

+(x+
α ))

γ′y(x
+
α , Y +(x+

α ))
<∞.

Let us consider the asymptotics of the integrand in (7.13) as v →∞. It is clear that Y +(x+
α + iv)

grows linearly as v →∞ and so do functions γ2 and γ′y of this argument. The function φ2(xα + iv) is
defined by the formula of the analytic continuation
(7.16)

φ2(xα + iv) = −
γ1(x

+
α + iv, Y −(x+

α + iv))φ1(Y
−(x+

α + iv)) + exp
(
a0(x

+
α + iv) + b0Y

−(x+
α + iv)

)
γ2(x

+
α + iv, Y −(x+

α + iv))
.
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We know that Y −(x+
α + iv) varies linearly as v → ∞, and moreover ReY −(xα + iv) ≤ −c1 − c2v for

all v ≥ 0 and α ∈]0, η] with some c1, c2 > 0. Then by Lemma C.1 in Appendix C

(7.17) |φ2(x
+
α + iv)| ≤ Cvλ−1

for any α ∈]0, η] and v > V0 with some C > 0, V0 > 0 and λ < 1. Hence, the integrand

φ2(x
+
α + iv)γ2(x

+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))

is O(vλ−1) as v →∞. The positivity of ReY +(x+
α + iv)−ReY +(x+

α ) for any v ≥ 0 and the inequality
(7.10) in the exponent stay valid for any α ∈]0, η], so that the exponential term is bounded in absolute
value by exp(−cbv) with some c > 0. But for η small enough, the assumption α(a, b) ∈]0, η] implies the
arbitrary smallness of b. In the limiting case b = 0 the integral in the l.h.s of (7.13) is not absolutely
convergent. In order to prove the required estimate (7.13), we proceed by integration by parts. This
integral equals
(7.18)

φ2(x
+
α + iv)γ2(x

+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))(−ai− b(Y +(x+
α + iv))′v)

exp
(
− aiv − b(Y +(x+

α + iv)− Y +(xα))
) ∣∣∣v=∞

v=0

(7.19)

−
∫ ∞
0

( φ2(x
+
α + iv)γ2(x

+
α + iv, Y +(x+

α + iv))

γ′y(x
+
α + iv, Y +(x+

α + iv))(−ai− b(Y +(x+
α + iv))′v)

)′
v
exp

(
−aiv−b(Y +(x+

α+iv)−Y +(x+
α ))

)
dv.

Note that although in this case x+
α0

= xmax which is a branching point for Y +(x), the first and second
derivatives are bounded

(7.20) sup
α∈[0,η]

∣∣∣Y (x+
α + iv)′

∣∣∣
v=0

∣∣∣ <∞, sup
α∈[0,η]

∣∣∣Y (x+
α + iv)′′

∣∣∣
v=0

∣∣∣ <∞
by remark (5.10). Furthermore, Y ±(x+

α + iv)′ is of the constant order and Y ±(x+
α + iv)′′ is not greater

than O(1/v) as v →∞.
The term (7.18) at v = 0 is bounded in absolute value by some constant due to (7.15) and (7.20). It

converges to zero as v →∞ by the statements above for any α ∈ [0,∞], a, b ≥ 0. To evaluate (7.19),
we compute the derivative in its integrand and show that it is of order O(vλ−2) as v → ∞. We skip
the technical details of this computation but outline the fact that φ2(x

+
α + iv)′v is computed via the

representation (7.16) and |φ1(Y
−(x+

α + iv))′v| is evaluated again by Lemma C.1. Namely, it is of order
not greater than O(vλ−2) as v →∞. Thus, the integral (7.19) is absolutely convergent for any a, b ≥ 0
and can be bounded by some constant as well. This finishes the proof of (7.11). The proof of (7.12) is
symmetric. □

Note that the proof of Lemma 7.1 essentially uses the result of Lemma 3.10 which bounds the
Laplace transforms. The proof of Lemma 7.3 uses a stronger result stated in Appendix C which gives
a more precise estimate of the Laplace transform near infinity.

Following the lines of the proof we could establish a better estimate, namely the one that the integral
is bounded by some universal constant divided by a, but we do not need it for our purposes.

Remark 7.4 (Negligibility). When α(a, b) → α0 ∈]0, π/2[, Equations (7.1), (7.2), (7.3), (7.4) of
Lemma 7.1 give quite satisfactory estimates which prove the negligibility of the integrals on the contours
S±x,α and S±y,α with respect to integrals on contours Γx,α and Γy,α, see Lemma 8.1 below. In fact

exp(−ax(α)− by(α)− ϵ2
√
a2 + b2)

b
= o

(exp(−ax(α)− by(α))
4
√
a2 + b2

)
,

exp(−ax(α)− by(α)− ϵ2
√
a2 + b2)

a
= o

(exp(−ax(α)− by(α))
4
√
a2 + b2

)
.

When α(a, b)→ 0 or π/2, Equations (7.11) and (7.12) of Lemma 7.3 give satisfactory estimates which
prove the negligibility which will be useful in Section 9 when computing the asymptotics along the axes.
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8. Essential part of the asymptotic and main theorem

This section is dedicated to the asymptotics of g(a, b) = I1 + I2 + I3 when α(a, b) → α0 ∈]0, π/2[.
The next lemma determines the asymptotics of the integrals on the lines of steepest descent Γx,α and
Γy,α of the shifted contours.

For any couple (a, b) ∈ R2
+ we define α(a, b) as the angle in [0, π/2] such that cos(α) = a√

a2+b2
and

sin(α) = b√
a2+b2

and we define r ∈ R+ such that r =
√
a2 + b2.

Lemma 8.1 (Contribution of the saddle point to the asymptotics). Let α0 ∈]0, π/2[. Let α(a, b)→ α0

and r =
√
a2 + b2 →∞. Then for any n ≥ 0 we have

1

2πi

∫
Γx,α

φ2(x)γ2(x, Y
+(x))

γ′y(x, Y
+(x))

exp(−ax− bY +(x))dx+
1

2πi

∫
Γy,α

φ1(y)γ1(X
+(y), y)

γ′x(X
+(y), y)

exp(−aX+(y)− by)dy

+
1

2πi

∫
Γx,α

exp((a0 − a)X+(y) + (b0 − b)y)
dy

γ′x(X
+(y), y)

(8.1) ∼ exp(−ax(α(a, b))− by(α(a, b)))

n∑
k=0

ck(α(a, b))
4
√
a2 + b2(a2 + b2)k/2

with some constants c0(α), c1(α), . . . , cn(α) continuous at α0. Namely

(8.2) c0(α) =
γ1(x(α), y(α))φ1(y(α)) + γ2(x(α), y(α))φ2(x(α)) + exp(a0x(α) + b0y(α))√

2π(σ11 sin
2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))

× C(α),

where

C(α) =

√
sin(α)

γ′y(x(α), y(α))
=

√
cos(α)

γ′x(x(α), y(α)
.

Proof. Consider the first integral. We make the change of variables x = x(it, α), see Section 5 and
Appendix A. Then the sum of integrals becomes

exp(−ax(α)− by(α))

2π

∫ ϵ

−ϵ
f(it, α) exp(−

√
a2 + b2t2)dt

where

f(it, α) =
φ2(x(it, α))γ2(x(it, α), Y

+(x(it, α)))

γ′y(x(it, α), Y
+(x(it, α)))

x′ω(it, α).

We take Ω(α0) from Lemma A.1 where K and η are defined in this lemma. For any α ∈ [α0−η, α0+η]
and t ∈ [−ϵ, ϵ] we have ∣∣∣f(it, α)− 2n∑

l=0

f (l)(0, α)
(it)l

l!

∣∣∣ ≤ C|t|2n+1

with the constant

C = sup
|ω|=K,

|α−α0|≤η

∣∣∣f(ω, α)−∑2n
l=0 f

(l)(0, α)ω
l

l!

ω2n+1

∣∣∣
by the maximum modulus principle and the fact that f(ω, α) is in class C∞ in Ω(α0). The integral∫ ϵ

−ϵ
tl exp(−

√
a2 + b2t2)dt

equals 0 if l is odd. By the change of variables s = 4
√
a2 + b2t it equals

(l − 1)(l − 3)...(1)

2l/2

√
π

( 4
√
a2 + b2)l+1

+O
(exp(−√a2 + b2ϵ)

( 4
√
a2 + b2)l+1

)
,

√
a2 + b2 →∞
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if l is even. The constant comes from the fact that
∫ +∞
−∞ tle−s

2

ds = (l−1)(l−3)...(1)
2l/2

√
π. By the same

reason ∫ ϵ

−ϵ
|t|2n+1 exp(−

√
a2 + b2t2)dt = O

( 1

( 4
√
a2 + b2)2n+2

)
,

√
a2 + b2 →∞.

The representation (8.1) for the first integral follows with the constants

c1l (α) =
(l − 1)(l − 3)...(1)

2l/2

√
π

2π

(−1)lf (2l)(0, α)

(2l)!
.

In particular

c10(α) =
1

2
√
π
× γ2(x(α), y(α))φ2(x(α))

γ′y(x(α), y(α))
× x′ω(0, α).

Using the expressions (A.1) and (5.4), we get

c10(α) =
γ2(x(α), y(α))φ2(x(α))√

2π(σ11 sin
2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))

×

√
sin(α)

γ′y(x(α), y(α))
.

In the same way, using the variable y instead of x, we get the asymptotic expansions of the second
and the third integral with constants c20(α), . . . , c

2
n(α), c

3
0(α), . . . , c

3
n(α). Namely,

c20(α) + c30(α) =
γ1(x(α), y(α))φ1(y(α)) + exp(a0x(α) + b0y(α))√
2π(σ11 sin

2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))
×

√
cos(α)

γ′x(x(α), y(α))
.

By (5.3) sin(α)γ′x(x(α), y(α)) = cos(α)γ′y(x(α), y(α)). This implies the representation (8.1) and con-
cludes the proof with ck(α) =

∑3
i=1 c

i
k(α). □

We will justify later that the constants c0(α) are not zero. We now turn to the main result of the
paper.

Theorem 4 (Asymptotics in the quadrant, general case). We consider a reflected Brownian motion in
the quadrant of parameters (Σ, µ,R) satisfying conditions of Proposition 2.1 and Assumption 1. Then,
the Green’s density function g(r cos(α), r sin(α)) of this process has the following asymptotics for all
n ∈ N when α→ α0 ∈ (0, π/2) and r →∞:

• If α∗ < α0 < α∗∗ then

(8.3) g(r cos(α), r sin(α)) ∼
r→∞
α→α0

e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

n∑
k=0

ck(α)

rk
.

• If α0 < α∗ then

(8.4) g(r cos(α), r sin(α)) ∼
r→∞
α→α0

c∗e−r(cos(α)x
∗+sin(α)y∗) + e−r(cos(α)x(α)+sin(α)y(α)) 1√

r

n∑
k=0

ck(α)

rk
.

• If α∗∗ < α0 then

(8.5) g(r cos(α), r sin(α)) ∼
r→∞
α→α0

c∗∗e−r(cos(α)x
∗∗+sin(α)y∗∗) + e−r(cos(α)x(α)+sin(α)y(α)) 1√

r

n∑
k=0

ck(α)

rk

where explicit expressions of the saddle point coordinates x(α) and y(α) are given by (5.5) and (5.6),
the coordinates of the poles x∗, y∗, y∗∗, x∗∗ are given by (6.1) and (6.2), and the constants are given
by

c∗ =
(−resx=x∗φ2(x))γ2(x

∗, y∗)

γ′y(x
∗, y∗)

> 0 and c∗∗ =
(−resy=y∗∗φ1(y))γ1(x

∗∗, y∗∗)

γ′y(x
∗∗, y∗∗)

> 0

where the ck are constants depending on α and such that ck(α) −→
α→α0

ck(α0) where c0(α) is given

by (8.2). We have c0(α) > 0 at least when α∗ < α0 < α∗∗ where it gives the dominant term of the
asymptotics in (8.3).
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Proof. The theorem follows directly from combining several lemmas. By Lemma 4.1 the inverse Laplace
transform g(a, b) can be expressed as of the sum of three simple integrals I1 + I2 + I3. Those integrals
have been rewritten in Lemma 6.2 by the residue theorem as the sum of residues and integrals whose
contour locally follows the steepest descent line through the saddle point. This has been done in
Section 6 using Morse’s Lemma, see Appendix A. Residues are present if 0 < x∗ < x(α) or 0 < y∗∗ <
y(α). In addition, we proved in Lemma 7.1 the negligibility of the integrals of the lines S±x,α and
S±y,α compared to the integrals on the steepest descent lines. The main asymptotics are then given
by the poles plus the asymptotics of the steepest descent integrals. A disjunction of cases concerning
the pole’s contributions gives the three cases of the theorem (recall that α∗ < α∗∗). In the second
case, when α0 < α∗, φ2 has a pole and then c∗ ̸= 0 because we have r12

r22
> −Y ±(xmax)

xmax
which implies

γ2(x
∗, y∗) ̸= 0. The same holds for c∗∗. Finally, Lemma 8.1 gives the desired asymptotic expansion

of the integrals on the lines of the steepest descent. The fact that c0(α0) ̸= 0 when α∗ < α0 < α∗∗ is
postponed to Lemma 8.2 and Lemma 8.3. □

The constants c0(α) shall not be zero at least when α∗ < α0 < α∗∗, that is when the poles are not
involved in the asymptotics. We divide the proof into two lemmas.

Most of the quantities studied so far depend on the starting point of the process, even if this
dependence is not explicit in the notation. In the following, we add a power z0 (or (a0, b0)) in the
notation of the objects which correspond to a process whose starting point is z0 = (a0, b0). For
example, we will note hz0

1 or φz0
1 when we want to emphasise the dependency on the starting point.

Lemma 8.2 (Non nullity of the constant c0(α) for at least a starting point). If α ∈
(
0, π

2

)
\{α∗, α∗∗},

there exists some starting point z0 ∈ R2
+ such that cz00 (α) ̸= 0.

Proof. Let z0 = (a0, b0) the starting point of the process. We proceed by contradiction assuming that
c
(a0,b0)
0 (α) = 0 for all a0, b0 ≥ 0. Since x(α) ≤ 0 or y(α) ≤ 0, we suppose without loss of generality

that y(α) ≤ 0. We have then, by (8.2) and the continuation formula:
(8.6)
c1φ

(a0,b0)
1 (y(α))−c2φ(a0,b0)

1 (Y −(x(α))) = γ2(x(α), y(α))e
a0x(α)+b0Y

−(x(α))−γ2(x(α), Y −(x(α)))ea0x(α)+b0y(α)

with c1 = γ1(x(α), Y
−(x(α)))γ2(x(α), y(α)) and c2 = γ1(x(α), Y

−(x(α)))γ2(x(α), Y
−(x(α))). We

remark that γ2(x(α), Y
−(x(α))) ̸= 0 since we have assumed α ̸= α∗. The right term of (8.6) is

unbounded on the set of all (a0, b0) belonging to R2
+ since Y −(x(α)) < y(α) = Y +(x(α)). Then, it

is sufficient to show that the supremum of the left term is bounded according to (a0, b0). We denote
by h

(a0,b0)
1 the density of H1 according to the Lebesgue measure corresponding to the starting point

(a0, b0). We have then

(8.7) c1φ
(a0,b0)
1 (y(α))− c2φ

(a0,b0)
1 (Y −(x(α))) =

∫ ∞
0

(
c1e

y(α)z − c2e
Y −(x(α))z

)
h
(a0,b0)
1 (z)dz =: I.

Similarly to the proof of Lemma 3.5, we introduce T as the first hitting time of the axis {x = 0}. By
the strong Markov property, we obtain in the same way:

I = E(a0,b0)

[
1T<+∞E(0,Z2

T )

[∫ +∞

0

1{0}×R+
(Zt)

(
c1e

y(α)Z2
t − c2e

Y −(x(α))Z2
t

)
dL1

t

]]
(8.8)

=

∫ +∞

0

∫ +∞

0

(
c1e

y(α)z − c2e
Y −(x(α))z

)
h
(0,y)
1 (z)dzP(T < +∞, Z2

T = dy)(8.9)

=

∫ +∞

0

(
c1φ

(0,y)
1 (yα)− c2φ

(0,y)
1 (Y −(xα))

)
P(T < +∞, Z2

T = dy).(8.10)

Using the identity (8.6) in (8.10) (where we see the relevance of going to the y-axis), we get the bound

(8.11) |I| ≤ |γ2(x(α), y(α))|+ |γ2(x(α), Y −(x(α)))|
since y(α) ≤ 0. The right term of (8.6) is therefore bounded in (a0, b0), and thus a contradiction has
been reached. This completes the proof. □
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Lemma 8.3 (Non nullity of the constant c0(α) for all starting points). For all α ∈
(
0, π

2

)
such that

α∗ < α < α∗∗ and z0 ∈ R2
+, we have cz00 (α) ̸= 0.

Proof. Denote z0 = (a0, b0) the point obtained in Lemma 8.2 such that cz00 (α) ̸= 0. By continuity
of the Laplace transforms φz0

1 and φz0
2 in z0 (see the proof of Lemma 3.6) cz

′
0(α) ̸= 0 for all z′0

in an open neighborhood V of z0. Let z′′0 ∈ R2
+ be the starting point of the process Z(z′′

0 ) and let
T = inf{t ≥ 0, Z

(z′′
0 )

t ∈ V } be the hitting time of V . We have Pz′′
0
(T < +∞) = p > 0. By the strong

Markov property,

gz
′′
0 (r cos(α), r sin(α)) ≥ p inf

z′
0∈V

gz
′
0(r cos(α), r sin(α))(8.12)

≥ p inf
z′
0∈V

[
c
z′
0

0 (α)(1 + or→∞(1))
]
e−r(cos(α)x(α)+sin(α)y(α)) 1√

r
.(8.13)

Furthermore, V can be chosen bounded and such that infz′
0∈V c

z′
0

0 (α) > 0. The issue is that the
term or→∞(1) may depend on z′0. We then refer to the proof of Lemma 7.1. We remark that the
only quantity depending on the initial condition is the constant D of Lemma 7.1, which is based on
Lemma 3.10. If the supremum on z′0 ∈ V of the quantity of Lemma 3.10 is finite, then the result
holds. This fact is verified easily from the proof of this lemma, because V is bounded and φ

z′
0

1 (0) is
continuous in z′0. □

9. Asymptotics along the axes : α→ 0 or α→ π
2

In this section, we study the asymptotics of the Green’s function g along the axes. We recall the
assumptions α∗ ̸= 0 and α∗∗ ̸= π/2 made in Remark 7.2.

Let us recall that for any couple (a, b) ∈ R2
+ we define r =

√
a2 + b2 and α(a, b) as the angle in

[0, π/2] such that cos(α) = a√
a2+b2

and sin(α) = b√
a2+b2

.

Lemma 9.1 (Contribution of the saddle point to the asymptotics when α→ 0 or π/2).
(i) Let a→∞, b > 0 and α(a, b)→ 0. Then the asymptotics of (8.1) remain valid with c0(α)→ 0

as α→ 0. Moreover, we have c0(α) ∼ c′α and c1(α) ∼ c′′ as α→ 0 where c′ and c′′ are non-
null constants at least when α∗ = −∞ (i.e. when there is no pole for φ2).

(ii) When b→∞, a > 0 and α(a, b)→ π/2 the same result holds.

Remark 9.2 (Competition between the two first term of the asymptotics). The previous lemma states
that when α → 0 and r → ∞, there is a competition between the first two terms of the sum of the
asymptotic development given in (8.1). Namely, the first term c0(α)√

r
∼ c′α√

r
∼ c′b

r
√
r

and the second term
c1(α)
r
√
r
∼ c′′

r
√
r

may have the same order of magnitude. If b→ 0, the second term is dominant. If b→ c

where c is a positive constant, they both contribute to the asymptotics. If b → ∞ (and also b = o(a)
since α→ 0), the first term is dominant.

Proof. We first prove (i). For any α close to 0, Γx,α lies in a neighborhood of x(α). Using the
continuation formula of φ2(x) (3.2), the definition of F (5.2), and the fact that Γx,α =

←−−−−−−
X+(Γy,α)−−−−−−→

(5.9),

the first integral of (8.1) becomes

e−ax(α)−by(α)

2iπ

∫
←−−−−−−−
X+(Γy,α)
−−−−−−−→

γ2(x, Y
+(x))

(
− γ1(x, Y

−(x))φ1(Y
−(x))− ea0x+b0Y

−(x)
)

γ2(x, Y −(x))γ′y(x, Y
+(x))

× exp
(√

a2 + b2F (x, α)
)
dx.

Let us make the change of variables x = X+(y). Taking into account the fact that Y +(X+(y)) = y,
the relation γ′x(X

+(y), y)(X+(y))′+γ′y(X
+(y), y) ≡ 0 and the direction of

←−−−−−−
X+(Γy,α)−−−−−−→

, the first integral
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becomes

e−ax(α)−by(α)

2iπ

∫
Γy,α

γ2(X
+(y), y)

(
− γ1(X

+(y), Y −(X+(y)))φ1(Y
−(X+(y)))− ea0X

+(y)+b0Y
−(X+(y))

)
γ2(X+(y), Y −(X+(y)))γ′x(X

+(y), y)

(9.1) × exp
(√

a2 + b2G(y, α)
)
dy.

For the second and the third integral, we use the representation valid for a > a0. We then have to find
the asymptotics of the integral

e−ax(α)−by(α)

2iπ

∫
Γy,α

γ2(X
+(y), Y −(X+(y)))H(X+(y), y)− γ2(X

+(y), y)H(X+(y), Y −(X+(y)))

γ2(X+(y), Y −(X+(y)))γ′x(X
+(y), y)

× exp
(√

a2 + b2G(y, α)
)
dy

where
H(X+(y), y) = γ1(X

+(y), y)φ1(y) + exp(a0X
+(y) + b0y).

Finally, note that with notation in (4.3)

Y −(X+(y)) =
c(X+(y))

a(X+(y))× Y +(X+(y))
=

σ11(X
+(y))2 + 2µ1X

+(y)

σ22y
.

The function X+(y) is holomorphic in a neighborhood of Y ±(xmax). By (4.5) we have γ′x(X
+(y), y) =√

b̃2(y)− 4ã(y)c̃(y) which is holomorphic in a neighborhood of Y ±(xmax) and different from zero.
Finally, γ2(xmax, Y

±(xmax)) ̸= 0 by our assumption in Remark 7.2. It follows that the integrand in
(9.1) is a holomorphic function in a neighborhood of Y ±(xmax). Then, we can apply the saddle point
procedure of Lemma 8.1 to G(y, α) with α = 0 and where we replace the function f(it, α) by

f(it, α) = [γ2(X
+(y(it, α)),Y −(X+(y(it, α))))H(X+(y(it, α)), y(it, α))−

γ2(X
+(y(it, α)), y(it, α))H(X+(y(it, α)), Y −(X+(y(it, α))))]

× y′ω(it, α)

γ2(X+(y(it, α)), Y −(X+(y(it, α))))γ′x(X
+(y(it, α)), y(it, α))

where y(it, α) is the path given by the parameter-dependent Morse Lemma (see Lemma A.1). We get
the asymptotic development (8.1) as α→ 0 and then have a competition c0(α)+

c1(α)
r +O

(
1
r2

)
between

c0(α) =
1

2
√
π
f(0, α) and c1(α) = − 1

4
√
π

f ′′
ω (0,α)
4! . When α → 0, we have c0(α) ∼ c′α and c1(α) ∼ c′′ for

non-null constants c′ and c′′, see Lemma 9.3 and Remark 9.4 below.
The proof of (ii) is exactly the same, except that we use the other representation of I3(a, b). □

Lemma 9.3 (Non nullity of c′). When α→ 0 we have c0(α) ∼ c′α and the constant c′ is non-null at
least when α∗ = −∞ (i.e. when there is no pole for φ2).

Proof. It is clear that c0(0) = 0 because c0(α) coincides with (8.2) by uniqueness of asymptotic
development, and this expression tends to 0 as α goes to 0 due to C(α). Let us now consider the
behaviour of c0(α) when α → 0. Recall that c0(α) = 1

2
√
π
f(0, α) with the notation of the proof of

Lemma 9.1. Invoking Lemma 3.1, we obtain

y(α)− Y −(X+(y(α))) = Y +(X+(y(α))− Y −(X+(y(α)))

=
2

σ22

√
(σ11σ22 − σ2

12)(xmax −X+(y(α))(X+(y(α))− xmin).

We also remark that (X+(y))′
∣∣∣
y=y(0)

= 0 and (X+(y))′′
∣∣∣
y=y(0)

= − σ22

γ′
x(xmax,Y ±(xmax))

, so that

xmax −X+(y(α)) =
σ22

2γ′x(xmax, Y ±(xmax))
α2(1 + o(1)), as α→ 0.
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Finally

y(α)− Y −(X+(y(α))) ∼

√
2(σ11σ22 − σ2

12)(xmax − xmin)

2σ22γ′x(xmax, Y ±(xmax))
× α ∼ Π× α,

where Π is defined as the constant in front of α.
Since γ2(x, y) = r12x+ r22y and γ2(xmax, Y

−(xmax))γ
′
x(xmax, Y

−(xmax)) ̸= 0, we obtain

c0(α) =
−r22H(xmax, Y

±(xmax))× (Πα) + γ2(xmax, Y
±(xmax))H

′
y(xmax, Y

±(xmax))× (Πα) + o(α)

γ2(xmax, Y −(xmax))γ′x(xmax, Y −(xmax)) + o(1)

= α(c′ + o(1))

as α→ 0 where c′ is the corresponding constant.
Let us prove that c′ ̸= 0. We have to show that

−r22H(xmax, Y
±(xmax)) + γ2(xmax, Y

±(xmax))H
′
y(xmax, Y

±(xmax)) ̸= 0

i.e. that

−r22
(
γ1(xmax, Y

±(xmax))φ1(Y
±(xmax)) + ea0xmax+b0Y

±(xmax)
)
+ γ2(xmax, Y

±(xmax))×(
r21φ1(Y

±(xmax)) + γ1(xmax, Y
±(xmax))φ

′
1(Y

±(xmax)) + b0e
a0xmax+b0Y

±(xmax)
)
̸= 0.

The equation can be rewritten as

(9.2) c1φ1(Y
±(xmax)) + c2φ

′
1(Y

±(xmax)) ̸= (c3 + c4b0)e
a0xmax+b0Y

±(xmax)

with c1, c2, c3, c4 constants not depending on the initial conditions. Note that c3 = −r22 ̸= 0 by (2.1)
and c4 = γ2(xmax, Y

±(xmax)) ̸= 0 by the assumption in Remark 7.2. Furthermore, with the same
method employed in the proof of Lemmas 3.5 and 8.2, the left term of (9.2) is bounded in (a0, b0). Since
xmax > 0 and Y ±(xmax) < 0, the right term of (9.2) is not bounded in (a0, b0). Hence, (9.2) holds
for at least one (a0, b0). By a similar argument developed in the proof of Lemmas 3.6 and 8.3 (using
the fact that α∗ = −∞), since c′ ̸= 0 at least for one starting point (a0, b0), c′ ̸= 0 for all starting
points. Finally, (9.2) holds for every initial condition. This concludes the proof that c0(α) ∼ c′α for a
non-null constant c′. □

Remark 9.4 (Non nullity of c′′). We note here that c′′ ̸= 0. A proof inspired by what has been done
in the previous lemma to show that c′ ̸= 0 would work. The same techniques have also been employed
in Lemmas 3.5 and 3.6 to characterize the poles by showing the non nullity of a constant, and in
Lemmas 8.2 and 8.3 to show the non nullity of c0(α).

We now have everything we need to prove our second main result, which states the full asymptotic
expansion of the Green’s function g along the edges.

Theorem 5 (Asymptotics along the edges for the quadrant). We now assume that α0 = 0 and let
r → ∞ and α → α0 = 0. In this case, we have c0(α) ∼

α→0
c′α and c1(α) ∼

α→0
c′′ for some constants

c′ and c′′ which are non-null at least when α∗ = −∞ (i.e. when there is no pole for φ2). Then, the
Green’s function g(r cos(α), r sin(α)) has the following asymptotics:

• When α∗ < 0 the asymptotics given by (8.3) remain valid. In particular, we have

g(r cos(α), r sin(α)) ∼
r→∞
α→0

e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

(
c′α+

c′′

r

)
.

• When α∗ > 0 the asymptotics given by (8.4) remain valid. In particular, we have

g(r cos(α), r sin(α)) ∼
r→∞
α→0

c∗e−r(cos(α)x
∗+sin(α)y∗).

Therefore, when α∗ = −∞, there is a competition between the two first terms of the sum
∑n

k=0
ck(α)
rk

to know which of c′α and c′′

r is dominant. More precisely:
• If r sinα −→

r→∞
α→0

∞ then the first term is dominant.
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• If r sinα −→
r→∞
α→0

c > 0 then both terms contribute and have the same order of magnitude.

• If r sinα −→
r→∞
α→0

0 then the second term is dominant.

A symmetric result holds when we take α0 = π
2 . The asymptotics given by (8.3) remain valid when

π
2 < α∗∗ and (8.5) remain valid when α∗∗ < π

2 and there is a competition between the two first terms
of the sum to know which one is dominant which in turn depends on the limit of r cos(α).

Proof. The theorem follows directly from several lemmas put together. First, in Lemma 4.1 we invert
the Laplace transform and we express the Green’s function g as the sum of three integrals. Then, in
Lemma 6.2 we shift the integration contour of the integrals to reveal the contribution of the poles to
the asymptotics by applying the residue theorem. In Lemma 7.3 we show the negligibility of some
integrals which implies that the asymptotic expansion is given by the integrals on the contour of
steepest descent. Finally, Lemma 9.1 states the asymptotic expansion of these integrals given by the
saddle point method. □

10. Asymptotics when a pole meets the saddle point : α→ α∗ or α→ α∗∗

In this section we study the asymptotics of the Green’s function g(r cosα, r sinα) when α→ α0 in
the special cases where α0 = α∗ or α0 = α∗∗, that is when the pole meets the saddle point.

We introduce the following notation

(10.1) R(α) = x′ω(0, α) =

√
2

F ′′xx(x(α), α)
=

√
2

− sin(α)(Y +(x))′′ |x(α)

=

√
2 sin(α)γ′y(x(α), y(α))

σ11 sin
2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α)

.

We recall that for (a, b) ∈ R2
+ we define r =

√
a2 + b2 and we let α(a, b) be the angle in [0, π/2] such

that cos(α) = a√
a2+b2

and sin(α) = b√
a2+b2

.

Lemma 10.1 (Asymptotics of the integral on steepest descent line when α→ α∗). Letting α(a, b)→ α∗

as r =
√
a2 + b2 →∞. Then

I :=
1

2πi

∫
Γx,α

γ2(x, Y
+(x))φ2(x)

γ′y(x, Y
+(x))

exp
(√

a2 + b2F (x, α(a, b))
)
dx

has the following asymptotics.
(i) If

√
a2 + b2(α(a, b)− α∗)2 → 0, then

I ∼ −1
2

γ2(x
∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

if α(a, b) > α∗,

I ∼ 1

2

γ2(x
∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

if α(a, b) < α∗.

(ii) If
√
a2 + b2(α(a, b)− α∗)2 → c > 0. Further, let

(10.2) A(α∗) =
−x′α(α∗)
R(α∗)

.

Then

I ∼ −1
2

exp(cA2(α∗))
(
1− Φ

(√
cA(α∗)

))
× γ2(x

∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

if α(a, b) > α∗,

I ∼ 1

2
exp(cA2(α∗))

(
1− Φ

(√
cA(α∗)

))
× γ2(x

∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

if α(a, b) < α∗
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where

(10.3) Φ(z) =
2√
π

∫ z

0

exp(−t2)dt.

(iii) Let
√
a2 + b2(α(a, b)− α∗)2 →∞. Then

I ∼ γ2(x
∗, y∗)R(α∗)

2
√
πγ′y(x

∗, y∗)
× resx=x∗φ2

(x(α(a, b))− x(α∗))
× 1

4
√
a2 + b2

.

Proof. Proceeding as we did in Lemma 8.1, we obtain that

(10.4) I ∼ 1

2π

ϵ∫
−ϵ

f(it, α(a, b)) exp(−
√
a2 + b2t2)dt

where

f(it, α(a, b)) =
γ2(x(it, α), Y

+(x(it, α)))φ2(x(it, α))

γ′y(x(it, α), Y
+(x(it, α)))

× x′ω(it, α).

The function φ2 is a sum of a holomorphic function and of the term resx∗φ2

x−x∗ which after the change of
variables takes the form resx∗φ2

x(it,ω)−x∗ .
We have x(0, α∗) = x(α∗). By the implicit function theorem there exists a function ω(α) in the

class C∞ such that
x(ω(α), α) ≡ x∗ ∀α : |α− α∗| ≤ η̃

for some η̃ small enough where ω(α∗) = 0. Furthermore, differentiating this equality, we get

ω′(α) =
−x′α(ω(α), α)
x′ω(ω(α), α)

,

so that
ω′(α∗) = − x′α(α

∗)

x′ω(0, α
∗)
.

The formula

(10.5) ω(α) =
(x(α∗)− x(α))

x′ω(0, α
∗)

(1 + o(1)) =
(x(α∗)− x(α))

R(α∗)
(1 + o(1)) as α→ α∗

provides the asymptotics of ω(α) as α→ α∗. Note also that the main part of ω(α) is real.
Let us introduce the function

Ψ(ω, α) =

{
ω−ω(α)

x(ω,α)−x(ω(α),α) if ω ̸= ω(α)
1

x′
ω(ω(α),α) if ω = ω(α).

This function is holomorphic in ω for any fixed α and continuous as a function of three real variables.
Note that the integral (10.4) can be written as

1

2πi

ϵ∫
−ϵ

f(it, α)(it− ω(α))
exp(−

√
a2 + b2t2)

t+ iω(α)
dt.

Furthermore, there exists a constant C > 0 such that
(10.6)∣∣∣f(it, α)(it−ω(α))−f(0, α)(0−ω(α))∣∣∣ ≤ C|t|. ∀(it, α) ∈ Ω̃(0, α∗) = {(ω, α) : |ω| ≤ K, |α−α∗| ≤ min(η, η̃)}.

Indeed, it suffices to take C as the maximum of the modulus of

(f(ω, α)(ω − ω(α))− f(0, α)(0− ω(α)))ω−1

on {(ω, α) : |ω| = K, |α − α∗| ≤ min(η, η̃)} for η small enough. Moreover since ℑω(α) = o(ℜω(α)) as
α→ α∗, then by Lemma (B.1) (i) for any α close to α∗ the inequality

|t|
|t+ iω(α)|

≤ 2
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holds for all t ∈ R. The integral∫
R
2 exp(−

√
a2 + b2t2)dt = O(

1
4
√
a2 + b2

)

is of smaller order than the asymptotics announced in the statement of the lemma. Hence, it suffices
to show that the integral

1

2πi

ϵ∫
−ϵ

f(0, α)(0− ω(α))
exp(−

√
a2 + b2t2)

t+ iω(α)
dt

has the expected asymptotics. Note that by (10.5)

φ(x(α))(−ω(α))x′ω(0, α)→ resx∗φ as α→ α∗,

so that

f(0, α)(−ω(α))→ γ2(x
∗, y∗)

γ′y(x
∗, y∗)

× resx∗φ.

It remains to study

1

2πi

ϵ∫
−ϵ

exp(−
√
a2 + b2t2)

t+ iω(α)
dt.

For any t ∈ R \ [−ϵ, ϵ] the denominator in the integral is bounded from below

|t+ iω(α)| ≥ ||t| − ω(α)| ≥ ϵ− ω(α) ≥ ϵ/2

for any α close enough to α∗ while∫
R
exp(−

√
a2 + b2t2)dt = O(

1
4
√
a2 + b2

)

is of smaller order than the one stated in the lemma. Finally, it suffices to prove that

(10.7)
1

2πi

∫ ∞
−∞

exp(−
√
a2 + b2t2)

t+ iω(α(a, b))
dt

has the right asymptotics. By a change of variables, equation (10.7) equals

(10.8)
1

2πi

∫ ∞
−∞

exp(−s2)
s+ iω(α) 4

√
a2 + b2

ds.

Now let α > α∗ [resp. α < α∗]. Then x(α) < x(α∗) [resp. x(α) > x(α∗)] and by (10.5) ℜω(α) > 0
[resp. ℜω(α) < 0]. By Lemma B.1 (iii) this integral evaluates to

−1
2

exp(
√
a2 + b2ω2(α))

(
1− Φ(

4
√
a2 + b2ω(α))

)
if α > α∗

1

2
exp(

√
a2 + b2ω2(α))

(
1− Φ(− 4

√
a2 + b2ω(α))

)
if α < α∗.

If
√
a2 + b2(α(a, b) − α∗)2 → c ≥ 0 then by (10.5)

√
a2 + b2ω(α(a, b))2 → cA2(α∗) and the results

of (i) and (ii) are immediate. Now let
√
a2 + b2(α(a, b) − α∗)2 → ∞. Then by Lemma B.1 (ii) the

asymptotics of this integral are
√
π

2πi× (iω(α(a, b))) 4
√
a2 + b2

where the asymptotics of ω(α(a, b)) have been stated in (10.5). The result follows. □
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It is useful to note that

(10.9) − cos(α)x∗ − sin(α)y∗ = − cos(α)x(α)− sin(α)Y +(x(α)) +R−2(α∗)(x(α)− x∗)2(1 + o(1))

= − cos(α)x(α)− sin(α)Y +(x(α)) +A2(α∗)(α− α∗)2(1 + o(1)), α→ α∗

with the notation R(α) and A(α) above in (10.1) and (10.2).
By Taylor expansion at x(α) and and by the definition of a saddle point (the first derivative is zero):

− cos(α)x∗−sin(α)y∗ = − cos(α)x(α)−sin(α)Y +(x(α))−1

2
sin(α)(Y +(x))′′ |x=x(α) (x(α)−x∗)2(1+o(1)), α→ α∗.

We remind the reader that

−1

2
sin(α)(Y +(x))′′ |x=x(α)= (R(α))−2 = R(α∗)−2(1 + o(1)), α→ α∗.

The following lemma is useful in determining the asymptotics of the value of I1 found in Lemma 6.2.

Lemma 10.2 (Combined contribution of the pole and saddle point to the asymptotics when α→ α∗).
Let r =

√
a2 + b2 →∞ and α(a, b)→ α∗. The sum

(10.10)

I :=

(
−resx=x∗φ2(x)

)
γ2(x

∗, y∗)

γ′y(x
∗, y∗)

exp(−ax∗−by∗)×1α<α∗+
1

2iπ

∫
Γx,α

γ2(x, Y
+(x))φ2(x)

γ′y(x, Y
+(x))

exp(−ax−bY +(x))dx

has the following asymptotics.
(i) If α > α∗ and

√
a2 + b2(α(a, b)− α∗)2 →∞. Then

I ∼ exp(−ax(α(a, b))− by(α(a, b)))
4
√
a2 + b2

γ2(x
∗, y∗)

√
2π

√
σ11 sin

2(α∗) + 2σ12 sin(α∗) cos(α∗) + σ22 cos2(α∗)
× resx∗φ2

x(α(a, b))− x∗
×C(α∗),

where

C(α∗) =

√
sin(α∗)

γ′y(x
∗, y∗)

=

√
cos(α∗)

γ′x(x
∗, y∗)

.

(ii) If α > α∗ and
√
a2 + b2(α(a, b)− α∗)2 → c > 0, then

I ∼ −1
2

exp(−ax∗ − by∗)
(
1− Φ

(√
cA(α∗)

))
× γ2(x

∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

.

where A(α∗) and Φ are defined in (10.2), (10.1) and (10.3).
(iii) If

√
a2 + b2(α(a, b)− α∗)2 → 0, then

I ∼ −1
2

exp(−ax∗ − by∗)× γ2(x
∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

.

(iv) If α < α∗ and
√
a2 + b2(α(a, b)− α∗)2 → c > 0, then

I ∼ −1
2

exp(−ax∗ − by∗)
(
1 + Φ

(√
cA(α∗)

))
× γ2(x

∗, y∗)resx=x∗φ2

γ′y(x
∗, y∗)

.

(v) If α < α∗ and
√
a2 + b2(α(a, b)− α∗)2 →∞, then

I ∼ exp(−ax∗ − by∗)× −γ2(x
∗, y∗)resx=x∗φ

γ′y(x
∗, y∗)

.

Proof. Let us note that

(10.11)
∫
Γx,α

γ2(x, Y
+(x))φ2(x)

γ′y(x, Y
+(x))

exp(−ax− bY +(x))dx

= exp(−ax(α)− by(α))

∫
Γx,α

γ2(x, Y
+(x))φ2(x)

γ′y(x, Y
+(x))

exp
(√

a2 + b2F (x, α(a, b))
)
dx
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(i) The result follows from the representation (10.11) and Lemma 10.1 (iii) with R(α∗) defined in
(10.1).

(ii) Invoking (10.9) the representation (10.11) can be also written as
(10.12)

exp(−ax∗−by∗−
√

a2 + b2A2(α∗)(α(a, b)−α∗)2(1+o(1)))

∫
Γx,α

γ2(x, Y
+(x))φ2(x)

γ′y(x, Y
+(x))

exp(
√
a2 + b2F (x, α(a, b)))dx

The result follows from Lemma 10.1 (ii).
(iii) We will consider three subcases.

If α(a, b) > α∗, the announced result follows from Lemma 10.1 (i) and from the representa-
tion (10.12) where

√
a2 + b2A2(α∗)(α(a, b)− α∗)→ 0.

If α = α∗, then the contour Γx,α is special and a direct computation leads to the result. We
refer to Lemma 19 of [14] which deals with a similar case.

If α(a, b) < α∗, then by Lemma 10.1 (i) the asymptotics of the second term of (10.10) are
the same as in the case α(a, b) > α∗ but with the opposite sign. It should be summed with
the first term. The sum of their constants 1/2− 1 provides the result.

(iv) By the representation (10.12) and Lemma 10.1 (ii) the asymptotics of the second term of
(10.10) are the same as in the case (ii) but with opposite sign. It should be summed with the
first term. The sum of their constants 1

2 (1− Φ(
√
cA(α∗)))− 1 leads to the result.

(v) By Lemma (10.1) (iii) and the representation (10.12) the second term of (10.10) has the
asymptotics

exp
(
− ax∗ − by∗ −

√
a2 + b2A2(α∗)(α(a, b)− α∗)2(1 + o(1))

)
×γ2(x

∗, y∗)R(α∗)

2
√
πγ′y(x

∗, y∗)
× resx=x∗φ

(x(α(a, b))− x(α∗))
× 1

4
√
a2 + b2

.

Since exp(−
√
a2+b2A2(α∗)(α(a,b)−α∗)2)

(α(a,b)−α∗) 4√a2+b2
converges to 0 in this case, the order of the second term

in (10.10) is clearly smaller than the one of the first term which dominates the asymptotics.
□

Remark 10.3 (Consistency of the results). The results of (i) and (v) are perfectly “continuous” with
asymptotics along directions α → α∗, α < α∗ and α → α∗, α > α∗. Namely, if in (i) we substitute
φ(x(α)) instead of resx∗φ

x(α(a,b))−x∗ , we obtain the asymptotics for angles greater than α∗. The result (v)
remains valid for angles less than α∗.

We now summarize the previous results to obtain our final main result.

Theorem 6 (Asymptotics in the quadrant when the saddle point meets a pole). We now assume that
α0 = α∗ and let α → α∗ and r → ∞. Then, the Green’s density function g(r cosα, r sinα) has the
following asymptotics:

• When r(α − α∗)2 → 0 then the principal term of the asymptotics is given by (8.4) but the
constant c∗ of the first term has to be replaced by 1

2c
∗.

• When r(α− α∗)2 → c > 0 for some constant c then:
– If α < α∗ the principal term of the asymptotics is still given by (8.4) but the constant c∗

of the first term has to be replaced by 1
2c
∗(1 + Φ(

√
cA)) for some constant A.

– If α > α∗ the principal term of the asymptotics is still given by (8.4) but the constant c∗
of the first term has to be replaced by 1

2c
∗(1− Φ(

√
cA)) for some constant A.

Note that above Φ(z) = 2√
π

∫ z

0
exp(−t2)dt.

• When r(α− α∗)2 →∞ then:
– If α < α∗ the principal term of the asymptotics is given by (8.4).
– If α > α∗ the principal term of the asymptotics is given by (8.3) and we have c0(α) ∼

α→α∗
c

α−α∗ for some constant c.
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A symmetric result holds when we assume that α0 = α∗∗.

Proof. The theorem follows directly from several lemmas put together. The Green’s function g is still
given by the sum I1 + I2 + I3, see Lemma 4.1. We again apply Lemma 6.2 to take into account the
contribution of the poles and Lemma 7.1 which shows the negligibility of some integrals in the final
asymptotics. Furthermore, by the proof of Lemma 8.1, I2 + I3 = O

(
e−r cos(α∗)x(α∗)−r sin(α∗)y(α∗))

√
r

)
when

r → ∞ and α → α∗ (recall that α∗ < α∗∗). With Lemma 10.2, we see in each case that I2 + I3 is
negligible compared to I1 when r →∞ and α→ α∗. Indeed, in the case α > α∗ and r(α−α∗)2 →∞,
the domination of I1 is due to the term 1

x(α)−x∗ . For the other cases, the domination of I1 is due to
the factor 1√

r
in the asymptotics of I2 + I3.

The proof is similar for α0 = α∗∗. □

11. Asymptotics in a cone

From the quadrant to the cone. Let us describe the linear transformation which maps the reflected
Brownian motion in the quarter plane (of covariance matrix Σ and reflecting vectors R1 and R2) to a
reflected Brownian motion in a wedge with identity covariance matrix. We take

(11.1) β = arccos

(
− σ12√

σ11σ22

)
∈ (0, π)

and we define

(11.2) T =

 1

sinβ
cotβ

0 1




1
√
σ11

0

0
1
√
σ22


which satisfies TΣT⊤ = Id. Then, if Zt is a reflected Brownian motion in the quadrant of parameters
(Σ, µ,R), the process Z̃t = TZt is a reflected Brownian motion in the cone of angle β and of parameters
(TΣT⊤, Tµ, TR) = (Id, µ̃, TR). The new reflection matrix TR correspond to reflections of angles δ
and ϵ defined in (0, π) by

(11.3) tan δ =
sinβ

r12
r22

√
σ22

σ11
+ cosβ

and tan ε =
sinβ

r21
r11

√
σ11

σ22
+ cosβ

.

The new drift has an angle θ = arg µ̃ with the horizontal axis and satisfies

(11.4) tan θ =
sinβ

µ1

µ2

√
σ22

σ11
+ cosβ

.

The assumption µ1 > 0 and µ2 > 0 is equivalent to θ ∈ (0, β).

Green’s functions in the cone. Let us denote gz0 the density of G(z0, ·). For z ∈ R2
+ we have

gz0(z) =

∫ ∞
0

pt(z0, z)dt.

Let us recall that we have denoted G̃(z̃0, Ã) the Green measure of Z̃t and g̃z̃0(z̃) its density. It is
straightforward to see that for A ∈ R2

+ we have G(z0, A) = G̃(Tz0, TA) and then

(11.5) gz0(z) = |detT |g̃Tz0(Tz) =
1√
detΣ

g̃z̃0(z̃)

where z̃0 = Tz0 and z̃ = Tz.



ASYMPTOTICS FOR THE GREEN’S FUNCTIONS OF A REFLECTED BROWNIAN MOTION IN A WEDGE 39

Polar coordinates. For any z = (a, b) ∈ R2
+ we may define the polar coordinate in the quadrant

(r, α) ∈ R+ × [0, π
2 ] by

(11.6) z = (a, b) = (r cosα, r sinα).

We now define the polar coordinates in the β-cone (ρ, ω) by

(11.7) z̃ = (ρ cosω, ρ sinω).

For z̃ = Tz we obtain by a direct computation that

(11.8) (r cosα, r sinα) = (ρ
√
σ11 cos(β − ω), ρ

√
σ22 sinω).

and that

(11.9) tanω =
sinβ

1
tanα

√
σ22

σ11
+ cosβ

.

We deduce that

(11.10) g̃z̃0(ρ cosω, ρ sinω) =
√
detΣ gz0(ρ

√
σ11 cos(β − ω), ρ

√
σ22 sinω).

Saddle point. The ellipse E = {(x, y) ∈ R2 : γ(x, y) = 0} can be easily parametrized by the following,

E = {(x̃(t), ỹ(t)) : t ∈ [0, 2π]} ,
where

(11.11)

{
x̃(t) = xmax+xmin

2 + xmax−xmin

2 cos(t),

ỹ(t) = ymax+ymin

2 + ymax−ymin

2 cos(t− β).

see Proposition 5 of [23]. Noticing that

− cos θ =
xmax + xmin

xmax − xmin
, and − cos(β − θ) =

ymax + ymin

ymax − ymin

and that
2|µ̃| =

√
σ11(xmax − xmin) sinβ =

√
σ22(ymax − ymin) sinβ

we obtain

(11.12)

{
x̃(t) = |µ̃|√

σ11 sin β (cos t− cos θ) = 2|µ̃|√
σ11 sin β sin( θ−t2 ) sin( t+θ

2 )

ỹ(t) = |µ̃|√
σ22 sin β (cos(t− β)− cos(θ − β)) = 2|µ̃|√

σ22 sin β sin( θ−t2 ) sin( t+θ−2β
2 ).

The following result gives an expression of the saddle point in terms of the polar coordinate in the
cone.

Proposition 11.1 (Saddle point in polar coordinate). For α ∈ (0, π
2 ) and ω ∈ (0, β) previously defined

and linked by (11.9) we have

(11.13) (x(α), y(α)) = (x̃(ω), ỹ(ω))

where (x(α), y(α)) is the saddle point defined in (5.1).

Proof. Letting α ∈ (0, π
2 ), we are looking for the point (x(α), y(α)) which maximizes the quantity

x cosα + y sinα for (x, y) in the ellipse E = {(x, y) ∈ R2 : γ(x, y) = 0}. We search for a t ∈ (0, β)
cancelling the derivative of x̃(t) cosα + ỹ(t) sinα w.r.t t. By (11.12) we obtain that x̃′(t) cosα +
ỹ′(t) sinα = 0 if and only if

− 1
√
σ11

sin t cosα− 1
√
σ22

sin(t− β) sinα = 0.

Writing sin(t− β) = sin t cosβ − cos t sinβ it directly leads to tan t = sin β
1

tanα

√
σ22
σ11

+cos β
. Then by (11.9)

we obtain tan t = tanω and we deduce that t = ω maximizes x̃(t) cosα + ỹ(t) sinα and therefore
(x(α), y(α)) = (x̃(ω), ỹ(ω)). □
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Poles. Let us recall that x∗ is the pole of φ2(x) (when x∗ > 0), and y∗∗ is the pole of φ1(y) (when
y∗∗ > 0), see Proposition 3.4. We defined α∗ and α∗∗ such that x(α∗) = x∗ and y(α∗∗) = y∗∗. Now,
we may define the corresponding ω∗ and ω∗∗ linked by formula (11.9) and such that

(11.14) x∗ = x̃(ω∗) = x̃(−ω∗) and y∗∗ = ỹ(ω∗∗) = ỹ(2β − ω∗∗).

Proposition 11.2 (Poles in polar coordinate). We have

(11.15) ω∗ = θ − 2δ and ω∗∗ = θ + 2ϵ.

We have, α < α∗ if and only if ω < ω∗, and α > α∗∗ if and only if ω > ω∗∗. Then, x∗ is the pole of
φ2(x) if and only if θ − 2δ > 0, and y∗∗ is a pole of φ1(y) if and only if θ + 2ϵ < β.

Proof. When the pole of φ2 exists, we have γ2(x
∗, Y −(x∗)) = 0. Let us recall that in (6.2) we defined

y∗ := Y +(x∗) = ỹ(ω∗). Therefore, we have Y −(x∗) = ỹ(−ω∗). We are looking for the solutions of the
equation

(11.16) γ2(x̃(t), ỹ(t)) = 0,

which is the intersection of the ellipse E and the line γ2 = 0. There are two solutions, the first one
is elementary and is given by t = θ, that is (x̃(t), ỹ(t)) = (0, 0). The second one is by definition
(x̃(−ω∗), ỹ(−ω∗)) = (x∗, Y −(x∗)). By (11.12), the equation (11.16) gives

r12
1
√
σ11

sin

(
−ω∗ + θ

2

)
+ r22

1
√
σ22

sin

(
−ω∗ + θ

2
− β

)
= 0

With some basic trigonometry, we obtain that

tan
−ω∗ + θ

2
=

sinβ

r12
r22

√
σ22

σ11
+ cosβ

= tan(δ).

We deduce that ω∗ = θ − 2δ. A symmetric computation leads to ω∗∗ = θ + 2ϵ. The necessary and
sufficient condition for the existence of the poles comes from Proposition 3.4. The inequalities on α
transfer to ω by equation (11.9). □

Asymptotics in the cone. We now compute the exponential decay rate in terms of the polar coor-
dinate in the cone.

Proposition 11.3 (Exponential decay rate). For α and ω previously defined and linked by (11.9) we
have

(11.17) r cos(α)x(α) + r sin(α)y(α) = 2ρ|µ̃| sin2
(
ω − θ

2

)
and

(11.18) r cos(α)x(α∗) + r sin(α)y(α∗) = 2ρ|µ̃| sin2
(
2ω − ω∗ − θ

2

)
.

Proof. By Equations (11.8) and (11.13) we obtain the desired result. □

Proofs of Theorems 1, 2 and 3. Equation (11.5) and Propositions 11.1, 11.2, 11.3 combined to Theo-
rem 4 (resp. Theorems 5 and 6), lead to Theorem 1 (resp. Theorems 2 and 3). □
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Appendix A. Parameter-dependent Morse Lemma

The following lemma is a parameter-dependent Morse lemma. Although it is an intuitive result, we
could not find it in the existing literature.

Lemma A.1. Assume that α0 ∈ R is a constant, α 7→ x(α) is a function which is C∞ near α0, and
(x, α) 7→ F (x, α) is a function which is analytic as a function of the first variable x and C∞ as a
function of the second variable α near (x(α0), α0). Furthermore, assume that for all α near α0 we
have

F (x(α), α) = 0, F ′x(x(α), α) = 0, F ′′(x(α), α) > 0.

There exists a neighborhood of (0, α0) in C× R

Ω(0, α0) = {(ω, α) ∈ C× R : |ω| ≤ K, |α− α0| ≤ η}

with some K, η > 0 and a function x(ω, α) defined in Ω(0, α0) such that

F (x(ω, α), α) = ω2, ∀ω : |ω| ≤ K

x(0, α) = x(α) ∀α : |α− α0| ≤ η.

Furthermore x(ω, α) is in the class C∞ as function of three real variables ℜω,ℑω, α and holomorphic
of ω for any fixed α. Finally

(A.1) x′ω(0, α) =

√
2

F ′′x (x(α), α))
.

Proof. This is an adaptation of Morse’s lemma to the dependence of the parameter α. Consider
T (z, α) = F (z + x(α), α). Then T (0, α) = 0, T ′z(0, α) = 0 and T ′′z (0, α) = F ′′x (x(α), α) > 0 for any α
close to α0. Then the following representation holds

(A.2) T (z, α) = z2F ′′x (x(α), α)/2 + z3h(z, α)

which allows us to define
S(z, α) = z

√
F ′′x (x(α), α)/2 + zh(z, γ)

with one of two branches of the square root. Let us choose the one that takes the value +F ′′x (x(α), α)/2
at z = 0. Due to elementary properties of the function F and the fact that x(α) is in class C∞, the
function h(z, α) in the representation of T above is in class C∞ in a neighborhood of O(0, α0) ⊂ C×R
as a function of three real variables and also holomorphic in z for any fixed α. Furthermore,

(A.3) S′z(0, α0) = F ′′x (x(α0), α0)/2 ̸= 0.

Then by the implicit function theorem (the real one to establish the announced properties in R3 and
the complex one to show the holomorphicity), there exists a function z(ω, α) in a neighborhood of
(0, α0) which is in the class C∞ in three variables and holomorphic in ω such that

(A.4) S(z(ω, α), α) ≡ ω, z(0, α0) = 0.

This means that T (z(ω, α), α) ≡ ω2 for any couple (ω, α) in this neighborhood. In particular, the
function z(0, α) solves the equation S(z, α) ≡ 0 in the variable z. Since S′z(0, α0) ̸= 0, a function in
the class C∞ of a real variable α satisfying this equation and vanishing at α0 is unique by the implicit
function theorem. But we know already that S(0, α) = 0 for any α close to α0. Hence, z(0, α) ≡ 0 for
any α close to α0.

Now, let
x(ω, α) = z(ω, α) + x(α),

where x(α) is in the class C∞. It satisfies all expected properties. Furthermore F (x(ω, α), α) ≡ ω2.
Differentiating this identity twice, we obtain (A.1). □
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Appendix B. Technical Results

This following lemma is useful in Section 10 for finding out how the asymptotics behave as the
saddle point approaches the pole.

Lemma B.1. (i) If C > 0 is such that C2 ≥ 1 + B2

A2 , then

|s|
|s+ i(A+ iB)|

≤ C ∀s ∈ R.

(ii) Let |A| → ∞ and B = o(A) as |A| → ∞. Then∫ ∞
−∞

exp(−s2)
s+ i(A+ iB)

ds ∼
√
π

i(A+ iB)
.

(iii) Let

Π(w) =

∫ ∞
−∞

exp(−s2)
s+ iw

ds

with ℜw ̸= 0. This function is holomorphic in each half plane {w : ℜw > 0} and {w : ℜw < 0}
and can be made explicit:

Π(w) = πi exp(w2)(1− Φ(−w)) ∀w : ℜw < 0

Π(w) = −πi exp(w2)(1− Φ(w)) ∀z : ℜw > 0

where Φ(w) = 2√
π

∫ w

0
exp(−s2)ds.

Proof. (i) Elementary computation.
(ii) We have

∫∞
−∞

exp(−s2)
i(A+iB) ds =

√
π

i(A+iB) . It suffices to show that∫
R

|s|
|s+ i(A+ iB)|

exp(−s2)ds

converges to 0 for any A with absolute value large enough to have |A||B| ≥ 1. Then by (i)
|s|

|s+i(A+iB)| ≤ 2 for any s ∈ R. Since the integral
∫
R 2 exp(−s2)ds converges, the dominated

convergence theorem applies and we get the stated asymptotics.
(iii) Let us define for any z > 0 and w > 0

Π(z, w) =

∫ ∞
−∞

exp(−zs2)
s+ iw

ds.

Then

Π′z(z, w) =

∫ ∞
−∞

−s2 exp(−zs2)
s+ iw

ds =

∫ ∞
−∞

((iw)2 − s2 − (iw)2) exp(−zs2)
s+ iw

ds

=

∫ ∞
−∞

(iw − s) exp(−zs2)ds+ w2

∫ ∞
−∞

exp(−zs2)
s+ iw

ds

= iw

√
π

z
+ w2Π(w, z).

Solving this differential equation, we get that Π(w, z) = c(w, z) exp(w2z) where c′z(w, z) =
iw

√
π
z exp(−w2z). Taking into account the fact that Π(+∞, w) = 0, we obtain

Π(z, w) = −iw
√
π exp(w2z)

∫ ∞
z

t−1/2 exp(−w2t)dt = −iw
√
π exp(w2z)

∫ ∞
w
√
z

exp(−s2)ds

= −iwπ exp(w2z)
(
1− Φ(w

√
z)
)
.

Now let z = 1. Then
Π(1, w) = −πi exp(w2)(1− Φ(w))
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for any real positive w. The holomorphicity of Φ(w) in {w ∈ C : ℜw > 0} allows us to prove
statement (iii). Finally, we note that for any w with ℜw < 0, Π(−w) = −Π(w).

□

Appendix C. Green’s functions near zero and Laplace transforms near infinity

We introduce the parameter

λ =
δ + ϵ− π

β

where β is the angle of the cone, and ϵ and δ are the angles of reflection which can be expressed in
terms of the covariance matrix Σ and the reflection matrix R, see Section 11. This parameter λ is well
known in the SRBM literature and is usually denoted by α but to avoid any confusion of notation we
have called it λ in this article. It is well known that existence conditions of the SRBM stated in (2.1)
are equivalent to

λ < 1.

Lemma C.1 (Laplace transforms behaviour near infinity and Green’s functions near zero). For some
constants C1 and C2, the Laplace transforms φ1 and φ2 satisfy

(C.1) φ1(y) ∼ C1y
λ−1 when |y| → ∞ and φ2(x) ∼ C2x

λ−1 when |x| → ∞

and their derivatives satisfy

(C.2) φ′1(y) ∼ C1(λ− 1)yλ−2 when |y| → ∞ and φ′2(x) ∼ C2(λ− 1)xλ−2 when |x| → ∞.

Furthermore, the Green’s functions on the boundaries h1 and h2 satisfy

(C.3) h1(v) ∼ C1Γ(−λ+ 1)v−λ when |v| → 0 and h2(u) ∼ C2Γ(−λ+ 1)u−λ when |u| → 0,

where Γ is the gamma function.

We give the sketch of the proof of the previous Lemma which relies on the resolution of Boundary
Value Problem studied in [22]. This lemma is not crucial for establishing the results of this article. It
is only used to simplify the proof of Lemma 7.3 which is useful only in the special case where we are
looking for the asymptotics along the axes.

Sketch of proof. The article [22] states in Theorem 11 an explicit expression for the Laplace transform
φ1. This result is obtained by solving a Carleman Boundary Value Problem coming from the functional
equation (2.2). The solution is the product of the solution of the corresponding homogeneous problem
and an integral, namely,

φ1(y) = X(W (y))

(
1

2π

∫
R−

g(t)

X+(t)

dt

W (y)−W (t)
+ C

)
,

where we have taken the notation of Theorem 11 in [22] and its proof. Since g(t)
X+(s) converges to 0

when t tends to infinity, the integral 1
2π

∫ 1

0
g(t)

X+(t)
dt

W (y)−W (t) converges to a constant when y → ∞ by
classical complex analysis results, see (5.2.17) of [17]. The function X(W (y)) is the solution to the
corresponding homogeneous BVP which is studied in detail in the recurrent case in [25]. Proposition
19 of [25] shows that X(W (y))) ∼ yλ−1 when y tends to infinity, which concludes the proof of (C.1).

Integral Hardy–Littlewood Tauberian theorems (see for example Karamata’s theorem and Ikehara’s
theorem [44, §7.4 & 7.5] and [13, Thm 33.3 & 33.7]) state that, with some hypotheses, for a function
f and its Laplace transform L(f), for λ ⩾ −1, f(t) ∼ Ct−λ when t → 0 is equivalent to L(f)(x) ∼
CΓ(−λ+ 1)xλ−1 when x→∞. Equation (C.3) follows from a Tauberian theorem and from (C.1).

The proof of (C.2) follows from (C.3), from a Tauberian theorem and from the properties of the
derivative of the Laplace transform, namely L(tf(t)) = d

dxL(f)(x). □
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