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Abstract

Acoustical shock waves can be generated by numerous atmopsheric sources,

either natural – like thunder and volcanoes – or anthropic – like explosions,

sonic boom or buzz saw noise. The prediction of their long-range propaga-

tion remains a numerical challenge at 3D because of the large propagation

distance to wavelength ratio, and of the high frequency / small wavelength

content associated to shocks. In this paper, an original numerical method

for propagating acoustical shock waves in three-dimensional heterogeneous

media is proposed. Heterogeneities can result from temperature or den-

sity gradients and also from atmospheric shear and turbulent flows. The

method called FLHOWARD (for FLow and Heterogeneities in a One-Way

Approximation of the nonlineaR wave equation in 3D) is based on a one-way

solution of a generalized nonlinear wave equation. Even though backscat-

tering is neglected, it does not suffer from the limitations of classical ray

theory nor from the angular limitations of the popular parabolic methods.
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The numerical approach is based on a split-step method, which has the ad-

vantage of splitting the original equation into simpler ones associated with

specific physical mechanisms: diffraction, flows, heterogeneities, nonlineari-

ties, absorption and relaxation. The method has been developed on parallel

architecture for very high demanding 3D configurations using the Single

Method Multiple Data paradigm. The method is validated through several

test cases. A study of the lateral cut-off of the sonic boom finally illustrates

the potentialities of the method for realistic cases.

Keywords: nonlinear acoustics, weak shocks, operator splitting,

atmospheric propagation, one way method,

1. Introduction

Flow motion and medium inhomogeneities play a major role on the prop-

agation of weak shock waves. Influence of atmospheric effects on acoustical

shocks were already studied as early as the beginning of the twentieth cen-

tury for loud sources such as accidental explosions, artillery bombings and

volcanoes (see [1, 2] for reviews). For sonic boom [3], the wind stratification

influences the pressure distribution on the ground [4, 5] while the turbulence

in the planetary boundary layer alters the boom signatures [6, 7]. Buzz saw

noise produced by turboengine fan blades running at top speed during take

off propagates through flow in the inlet [8, 9]. Also nonlinear propagation

through inhomogeneous atmosphere has been shown to be of major impor-

tance for jet noise [10], thunder [11], meteroids [12] or explosions [13]. The

numerical simulation of such problems is a challenging issue requiring to

combine: (1) low dispersion and dissipation schemes to cover propagation

ranges reaching several hundreds of wavelengths, and (2) efficient shock cap-

turing algorithms to capture the high frequency content of the spectrum.
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The most common numerical approach is the nonlinear ray tracing method

initially developed for sonic boom applications [14, 15]. It relies on the linear

geometrical acoustic for determining the ray path, and then solve a nonlinear

1D transport equation along each ray to compute the waveform. However,

this method relies on a high frequency approximation and does not take into

account diffraction. Thus it cannot be employed for shadow zones in which

it predicts no signal [16], caustics where the predicted amplitude is infinite

[17, 18, 19] and scattering by turbulence.

Time-domain implementation of the Navier-Stokes equations (DNS) have

the advantage to capture the full physics of the problem at the cost of a huge

computational requirement. Low dispersion and dissipation explicit schemes

adapted for aeroacoustics [20, 21] scales at 3D as power 4 of frequency and

therefore are extremely demanding for capturing shocks. Some examples

of applications [22, 23, 24] are either limited to 2D simulations, or require

specific mesh refinement processes to follow the shock wave [25].

As a trade-off between the numerical efficiency of ray tracing and the

precision of DNS lie one way methods. There is a huge litterature on one-way

methods, ranging from parabolized Navier-Stokes equations to wide-angle

parabolic wave equation. See for instance recent paper by Towne et al. [26]

for linear hyperbolic systems and subsequent references. For linear acoustics,

the standard [27] and wide-angle [28] parabolic approximations have been

extensively used. In nonlinear acoustics, the nonlinear parabolic approxi-

mation known as the KZK equation [29, 30], is a one-way high frequency

approach that takes into account nonlinearities and diffraction at the first

order and therefore is valid only for small angles of propagation (typically

±15o). It turned out highly successful in simulating high intensity colli-

mated beams for ultrasonic biomedical applications [31, 32] or underwater
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acoustics [33]. This method has been extended for long range atmospheric

applications including the effect of slow flows [34] and applied at 2D to scat-

tering of shock wave by turbulence [35]. Meanwhile, investigations have been

carried out to overcome the angular limitation [36, 37, 38], and to extend

them to 3D [39] but only for steady media. To our knowledge, the only

model taking into account slow flow motion without angular limitation is

the so called FLHOWARD model developed recently at 2D for a stratified

flow [40].

The main objective of this work is to develop an efficient numerical

method able to fully simulate weak shock waves propagation in a realistic

three dimensional turbulent atmosphere. The present paper is an extension

of the previous FLHOWARD model [40] to a 3D moving and heterogeneous

medium. Also, absorption and dispersion mechanisms associated to thermo-

viscosity and molecular relaxation are incorporated. The resulting imple-

mentation has been named FLHOWARD3D and has no angular limitation.

Nevertheless it still relies on a one-way approach and therefore neglects the

backscattered field. It is implemented on distributed memory architecture

to allow for large computation and is extensively validated.

The main novelties of this study compared with the previous 2D version

[40] are (i) the 3D parallel implementation for the propagation of acoustic

shock waves through 3D velocity fields, (ii) the numerical analysis of the

algorithm, (iii) the derivation of a numerical dispersion relation for wave

propagation in a moving fluid (with a simplified formulation even more pre-

cise), (iv) the 3D validation tests, and finally (v) the application of the

method to simulate the problem of sonic boom at the lateral cutoff.

The paper is organized as follows. In section 2, the physical basis of the

model equation is recalled. The numerical algorithm is outlined in section 3.
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The equation is put in a form suitable for its resolution before introducing

the split-step procedure. Each step of the operator splitting is described.

Section 4 deals with the analysis of the dispersion relation of the model and

the influence of the numerical split-step on this dispersion relation. Details

on the implementation on distributed memory architecture and the resulting

performances are given in section 5. It is then validated against several test

cases in section 6. Finally, it is applied to the case of the propagation of

a shock wave in the planetary boundary layer (section 7) to illustrate the

performances of the method.

2. Model
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Figure 1: Schematic view of computation case for outdoor propagation over the ground.

A viscous fluid in a Cartesian domain is considered; x is the main prop-

agation direction, z the vertical coordinate, and y the transverse one as

displayed on Fig. 1. At a position x and time t, we denote ρ(x, t) the

density, c0(x, t) the sound speed, v(x, t) the flow velocity, and p(x, t) the
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pressure. Since the atmospheric characteristic time scales are much larger

than the acoustical one (a few hours for atmospheric state, a few minutes for

turbulent fluctuations and a fraction of seconds for an acoustic shock wave),

the medium can be considered as frozen which means that the quantities

associated with the ambient medium (•0) can be separated from the time

varying acoustical fluctuations (•a):

f(x, t) = f0(x) + fa(x, t) (1)

with f = (ρ,v, p). The ambient flow is then separated between a mean

vertically stratified flow V0(z) with only horizontal components V0 · ez =

0, which is of order of the ambient flow Mach number M , and turbulent

fluctuations u0(x) of smaller order, approximately M2:

v0(x) = V0(z) + u0(x). (2)

This assumption is consistent with the situation in the atmospheric bound-

ary layer where the mean wind velocity rarely exceeds 20 m/s, corresponding

to a Mach number M = ‖V0‖/c0 of 0.06. Its fluctuations are much lower: a

few meters per second [41, 42]. Hence, the Mach number of the fluctuation

is approximately of the order of M2 = 0.004. Finally, the temperature fluc-

tuations are of order 5◦C to 10◦C which implies that the sound speed and

density fluctuations are also of the order of one percent at most and thus

O(M2). Therefore they can also be separated between a mean component

(•̄) and a spatially varying one (•′):

c0(x) = c̄0 + c′0(x) (3)

ρ0(x) = ρ̄0 + ρ′0(x). (4)

Using these assumptions it is possible to model the nonlinear propagation of

acoustic waves in a moving inhomogeneous medium with a nonlinear scalar
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equation [43]:

1

c2
0

D2
spa
Dt2

− ρ0∇ ·
(
∇pa
ρ0

)
+ 2

dV0j

dz

∫ t

−∞

∂2pa(x, t
′)

∂z∂xj
dt′

= − 2

c2
0

u0 ·
∂∇pa
∂t

+
β

ρ0c4
0

∂2p2
a

∂t2
+
δ

c4
0

∂3pa
∂t3

(5)

where the operator Ds/Dt = ∂/∂t+V0·∇ is the convective derivative associ-

ated to the ambient mean flow. Eq. 5 takes into account quadratic nonlinear-

ities and atmospheric absorption; β = (γ+1)/2 and δ =
[

4
3µ+ µB + κ(c−1

v − c−1
p )
]
/ρ0

are respectively the nonlinear parameter and diffusivity of the medium. Here

µ is the shear viscosity, µb the bulk viscosity and κ the thermal conductiv-

ity, while cp and cv are the specific heats at constant pressure and constant

volume, respectively. The ratio of the specific heats γ = cp/cv is equal to

1.4 in air so that β = 1.2. Eq. 5 is of mixed order between 1 and 2 in Mach

number as it contains O(M2) terms for V0j in the convective derivative while

neglecting the O(M2) terms corresponding with the effect of shear associated

with
dV0j

dz . The first ones are involved in phase effects which are dominant

as soon as frequency is high enough while the other ones are involved only

in amplitude effects and therefore play a smaller role for the considered

frequencies. These approximations are quantified numerically in [43]. The

same assumption is performed on the turbulent fluctuations where all terms

proportional to wind fluctuation gradients
du0j

dxi
are neglected. Moreover,

formally, the time derivatives associated with nonlinearities and absorption

should be convective derivatives but the effect of convection can be neglected

as explained in [43]. In the linear and inviscid case, Eq. 5 reduces to Eq.2.73

of Ostashev [1].
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3. One-way numerical approach

3.1. Partially one-way equation

Eq. 5 is not easily handled numerically so some transformations have

to be performed. First, it is written in the form of a homogeneous wave

equation with a perturbation term on the right hand side:

1

c̄0
2

∂2pa
∂t2

− ∂2pa
∂x2

− ∂2pa
∂y2

− ∂2pa
∂z2

= P. (6)

The right hand side P contains all terms linked to flow motions, medium

heterogeneities, sound absorption and nonlinearities. They all are of order

M at most: P = O(M).

In a second stage, in order to use a one-way propagation approach, the

retarded time τ = t−x/c̄0 is introduced. Eq. 6 is rewritten in a time frame

moving with the mean sound speed in the x-direction.

2

c̄0
2

∂2pa
∂x∂τ

− ∂2pa
∂x2

− ∂2pa
∂y2

− ∂2pa
∂z2

= P ′. (7)

As a third step, a wide-angle parabolic approximation is applied only on

the perturbation terms P ′ = O(M) rather than on the full wave equation

7. To achieve this, all second order derivatives in x are replaced in P ′ using

the linear homogeneous equation written in retarded time:

∂2pa
∂x2

=
2

c̄0
2

∂2pa
∂x∂τ

− ∂2pa
∂y2

− ∂2pa
∂z2

+O(M). (8)

This wide-angle approximation is therefore of order M2 since it is applied

only on terms in P ′ that are already of order M at most. This approach

is of a higher order than applying a wide-angle approximation to the full

equation. As a counterpart, a second order derivative in x remains in the

homogeneous part of the equation. Thus it is only a partially one-way
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equation. The one-way numerical handling of this second order derivative

will be dealt with in subsection 3.3. In order to handle shock waves, the

acoustic pressure pa is also replaced by the pseudo-potential:

pa(x) =
∂φ

∂t
(x). (9)

The pseudo-potential has the advantage to remain continuous through shocks

and is well adapted for the numerical treatment of the nonlinear part of the

equation [14, 44]. It results finally in the following equation:

∂φ

∂x
(x, τ) = Dφ(x, τ) +Hφ(x, τ) +Nφ(x, τ) +Aφ(x, τ). (10)

Operator D represents diffraction effects:

Dφ(x, τ) =
c̄0

2

∫ τ

−∞

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
dt, (11)

so that equation ∂φ
∂x (x, τ) = Dφ(x, τ) is simply the usual 3D wave equa-

tion with constant sound speed c̄0 in a homogeneous, quiescent and non-

absorbing fluid, and written in terms of retarded time τ rather than physical

time t. The operator N associated to nonlinearities is:

Nφ(x, τ) =
β

2ρ̄0c̄0
3

(
∂φ

∂τ

)2

. (12)

The absorption operator A is given by:

Aφ(x, τ) =
δ

2c̄0
3

∂2φ

∂τ2
. (13)

Heterogeneities and wind effects are described by operator H decomposed

as:

Hφ(x, τ) = FLH(1)(x, τ) + FLH(2)(x, τ) + TH(x, τ). (14)

FLH(1) is the operator describing the effects of the mean vertically stratified

flow V0(z) on propagation. FLH(2) is a similar operator, but for the effects
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of fully 3D turbulent fluctuations u0(x). TH is the operator describing the

influence of the medium sound speed and density inhomogeneities on the

propagation. Rather lengthy expressions for these operators are found in

Appendix A.

3.1.1. Simplified FLHOWARD equation

A simplified FLHOWARD equation can be written by considering only

the dominant linear convection flow effects for both the mean wind and its

fluctuations. Only the first line of Eq.A.1 remains. In this case, the H

operator has to be replaced by H(s) defined as:

H(s)φ(x, τ) = FLH(s)(x, τ) + TH(x, τ), (15)

with

FLH(s)φ(x, τ) =
v0x

c̄0
2

∂φ

∂τ
− v0x

c̄0

∂φ

∂x
− v0y

c̄0

∂φ

∂y
− v0z

c̄0

∂φ

∂z
. (16)

Note that for the velocity fluctuations u0(x), operators FLH(s) and FLH(2)

are identical. Operators H and H(s) differ only for the mean stratified flow

V0(z).

3.2. Split-step method

The main physical effects are clearly separated in equation 10. This

is taken advantage of for the numerical split-step process. An operator

splitting method is chosen [45, 46] through a spatially advancing scheme in

the x-direction. It allows to solve each part of Eq. 10 separately and then

to couple the solution by assembling the results. The L.H.S. is the coupling

term.

φ(x+ ∆x, y, z, τ) = φD∆x ◦ φH+A
∆x ◦ φN∆x(x, y, z, τ) +O(∆x). (17)
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where ◦ is the composition operator: g ◦ f(x) = g(f(x)) and φX∆x is solution

of the formal equation ∂φ
∂x (x, τ) = Xφ(x, τ) over the ∆x step with operator

X = D,H +A or N . Equation (17) is a first order split-step. For numerical

reasons explained in 3.6, absorption and heterogeneities are solved during

the same sub-step. Alternatively, the following second order Strang split-

step [47, 45, 46] is used for higher accuracy:

φ(x+∆x, y, z, τ) = φN∆x
2

◦φD∆x
2

◦φH+A
∆x ◦φD∆x

2

◦φN∆x
2

(x, y, z, τ)+O(∆x2). (18)

The main advantage of the split-step scheme is that each part of the

equation is solved using an efficient numerical method adapted for each

physical effect as detailed in the next three sections.

3.3. Diffraction effects

Diffraction effects are contained in the operator D defined in Eq. 11. It

results into the usual wave equation (but written in terms of retarded time

τ):
∂φ

∂x
=
c̄0

2

∫ τ

−∞

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′. (19)

Eq. 19 is solved using the angular spectrum method in the spectral domain

(ky, kz, ω) [48]. Applying Fourier transforms in retarded time and in the two

transverse directions y and z, equation 19 becomes:

d2 ¯̂̄
φ

dx2
− 2ik

d
¯̂̄
φ

dx
−
(
k2
y + k2

z

) ¯̂̄
φ = 0 (20)

with k = ω/c̄0. Eq. 20 is a second-order linear scalar ODE with respect to

advancement variable x, other variables in the spectral domain (ky, kz, ω)

playing the role of parameters. It has two solutions: one for propagation

in the positive x direction and one for the propagation in the negative x
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direction. Only the solution propagating in the positive x direction is se-

lected in the algorithm: the backscattered field is canceled. This makes the

numerical solution fully one-way. If −k2 +
(
k2
y + k2

z

)
> 0, only the evanes-

cent wave propagating and decaying in the positive x-direction is selected.

The solution is:

¯̂̄
φ(x+ ∆x, ky, kz, ω) =

¯̂̄
φ(x, ky, kz, ω)exp

(
∆x
[
ik −

√
−k2 + k2

y + k2
z

])
.

(21)

If −k2 +
(
k2
y + k2

z

)
< 0, only the wave propagating in the positive x-direction

is selected. The solution is:

¯̂̄
φ(x+ ∆x, ky, kz, ω) =

¯̂̄
φ(x, ky, kz, ω)exp

(
∆x
[
ik − i

√
k2 − (k2

y + k2
z)
])
.

(22)

The solution is then retrieved in the physical space using the inverse Fourier

transforms. Practically, the Fourier transforms are implemented using Fast

Fourier Transform (FFT) algorithm provided by the FFTW library [49].

This method has the advantages to be fast due to the speed of the FFT

algorithm while keeping spectral accuracy.

3.4. Flows and heterogeneities effects

Heterogeneities and flows effects are contained in operator H which is

rewritten as H = H1 +H2 with:

H1 =
V0x

c̄0
2

∂φ

∂τ
− V0x

c̄0

∂φ

∂x
− V 2

0x

2c̄0
3

∂φ

∂τ
+
u0x

c̄0
2

∂φ

∂τ
− u0x

c̄0

∂φ

∂x

+
2c̄0c

′
0 + c′20

2c̄0
3

∂φ

∂τ
+

1

2ρ0

(
∂ρ0

∂x
φ− c̄0

∫ τ

−∞

∂ρ0

∂x

∂φ

∂x
dτ ′
)
, (23)
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and

H2 = −V0y

c̄0

∂φ

∂y
− u0y

c̄0

∂φ

∂y
− u0z

c̄0

∂φ

∂z

+
V 2

0x
¯2c0

∫ τ

−∞

(
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′ +

V0xV0y

c̄0

(
1

c̄0

∂φ

∂y
−
∫ τ

−∞

∂2φ

∂x∂y
dτ ′
)
−
V 2

0y

¯2c0

∫ τ

−∞

∂2φ

∂y2
dτ ′

+ c̄0V0x

∫ τ

−∞

∫ τ

−∞

∂3φ

∂x∂z2
dτ ′dτ ′ − c̄0

∫ τ

−∞

∫ τ

−∞

∂

∂z

[
V0x

∂2φ

∂x∂z

]
dτ ′dτ ′

+ c̄0V0y

∫ τ

−∞

∫ τ

−∞

∂3φ

∂y∂z2
dτ ′dτ ′ − c̄0

∫ τ

−∞

∫ τ

−∞

∂

∂z

[
V0y

∂2φ

∂y∂z

]
dτ ′dτ ′

+

∫ τ

−∞

d

dz

[
V0x

∂φ

∂z

]
dτ ′ −

∫ τ

−∞
V0x

∂2φ

∂z2
dτ ′

+
c̄0

2

∫ τ

−∞

(
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′ − c̄0

2ρ0

∫ τ

−∞

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
dτ ′.

(24)

For a plane wave, H1 handles the phase effects which are preponderant as

long as the frequency is high enough. This is the case for the considered

applications. It corresponds to the terms of Eq. 14 containing only x and

τ derivatives. It is worth noting that phase effects in operator H1 involve

only: (i) convection in the main propagation direction x (the terms are

linear or nonlinear with respect to V0x and linear with respect to u0x), (ii)

sound speed heterogeneities, (iii) gradient of density in the main propagation

direction. The remaining terms of Eq. 14 are contained in the operator H2

which represents the coupling between diffraction, heterogeneities and wind

for a non plane wave. Amplitude effects in operator H2 involve: (i) linear

convection due to the transverse components of the velocity field (first line),

(ii) some quadratic convection terms (second line), (iii) gradient of ambient

flow (lines 3 to 5), (iv) density gradients in the transverse directions (last

line). The effects contained in operator H are handled in the frequency

domain (ω, y, z). For stability and accuracy reasons [50], all phase effects
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are solved analytically. The coupling of the multiple effects is achieved

through a semi-implicit second order Crank-Nicolson advancement scheme.

For the simplified FLHOWARD equation, operator H1 and H2 are re-

placed by operators H
(s)
1 and H

(s)
2 defined as:

H
(s)
1 =

v0x

c̄0
2

∂φ

∂τ
− v0x

c̄0

∂φ

∂x
+

2c̄0c
′
0 + c′20

2c̄0
3

∂φ

∂τ
+

1

2ρ0

(
∂ρ0

∂x
φ− c̄0

∫ τ

−∞

∂ρ0

∂x

∂φ

∂x
dτ ′
)
,

(25)

H
(s)
2 = −v0y

c̄0

∂φ

∂y
− v0z

c̄0

∂φ

∂z

+
c̄0

2

∫ τ

−∞

(
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′ − c̄0

2ρ0

∫ τ

−∞

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
dτ ′.

(26)

In this simplified case, phase effects in operator H
(s)
1 involve only: (i) linear

convection in the main propagation direction x, (ii) sound speed hetero-

geneities, (iii) gradient of density in the main propagation direction. Am-

plitude effects in operator H2 involve only: (i) linear convection due to the

transverse components of the velocity field (first line), (ii) density gradients

in the transverse directions.

3.4.1. Phase effects

Phase effects are defined through operator H1 in Eq. 23 and are solved

analytically. The equation to solve is:

∂φ

∂x
= H1φ. (27)

In the frequency domain, it can be cast as:

dφ̂

dx
=
ω2
[
V 2

0x
2c̄03 − V0x

c̄02 − u0x
c̄02 −

2c̄0c′0+c′20
2c̄03

]
+ iω

2ρ0

∂ρ0

∂x

iω
[
1 + V0x

c̄0
+ u0x

c̄0

]
+ c̄0

2ρ0

∂ρ0

∂x

φ̂= Θ(x, y, z, ω)φ̂, (28)
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which is a first-order, scalar and linear ODE with respect to advancement

variable x, other variables playing the role of parameters, either in the phys-

ical (y, z) or spectral (ω) spaces. Solution is given explicitly by:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω) exp

(∫ x+∆x

x
Θ(ζ, y, z, ω)dζ

)
. (29)

To compute the integral, the second order trapezoidal rule (Simpson’s

rule) is used:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω) exp

(
∆x

2
[Θ(x) + Θ(x+ ∆x)]

)
+O(∆x2).

(30)

In the case of the simplified FLHOWARD equation Θ(x, y, z, ω) is replaced

by Θ(s)(x, y, z, ω):

Θ(s) =
−ω2

[
v0x
c̄02 +

2c̄0c′0+c′20
2c̄03

]
+ iω

2ρ0

∂ρ0

∂x

iω
[
1 + v0x

c̄0

]
+ c̄0

2ρ0

∂ρ0

∂x

. (31)

3.4.2. Coupling effects

The equation ∂φ̂
∂x = H2φ̂ representing the coupling between diffraction,

heterogeneities and wind for a non plane wave is a 3D linear PDE of first-

order with respect to advancement variable x and second-order with respect

to transverse space variables (y, z). Angular frequency ω is a parameter in

the spectral domain. To solve it, a semi-implicit Crank-Nicolson scheme is

used in the advancement x-direction. This scheme is unconditionally stable

and of second order accuracy. A second-order, centered finite difference

discretization is used in the y and z directions. We resort to an Alternate

Direction Implicit (ADI) method to separate the y and z directions. The

two resultant matrices associated to the Crank-Nicolason scheme in each y

or z directions are tridiagonal, so that they can be solved using the classical
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Thomas’ algorithm [51]. Details are given in Appendix B. The method is

similar for the simplified FLHOWARD equation for operator H
(s)
2 .

3.5. Nonlinear effects

The nonlinear effects are taken into account by operator N (Eq. 12)

which results into the inviscid Burgers’ equation:

∂φ

∂x
=

β

2ρ̄0c̄0
3

(
∂φ

∂τ

)2

, (32)

which is a first-order two-dimensional scalar PDE with respect to variables

x and τ , other space variables (y, z) playing the role of parameters. To

solve it, the quasi-analytical Burgers-Hayes methods is chosen. It relies

on the implicit Poisson solution. Poisson solution is exact as long as it is

single-valued (no shock). In case of a multi-valued solution (beyond the

shock formation), the weak shock theory is used. Burgers-Hayes method

[52, 14, 44] handles it in a very efficient numerical way using the fact that

the physical solution for the potential corresponds to the maximum value

of the multivalued Poisson’s solution. This condition is necessary to satisfy

the second principle of thermodynamics:

φ(x, y, z, τ) = max

[
φ(x, y, z, θ)− β∆x

ρ̄0c̄0
3

(
∂φ(x, y, z, θ)

∂θ

)]
τ = θ − β∆x

ρ̄0c̄0
3

∂φ(x, y, z, θ)

∂θ
. (33)

A numerical interpolation is needed to retrieve the solution Eq. 33 on the

initial retarded time τ grid. Practically, the order of this interpolation makes

no differences, thus only a first order interpolation is used.

3.6. Absorption and relaxation

Operator A deals with the absorption of the medium. In the atmosphere,

at audible frequencies or below, the thermoviscous absorption included in
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Eq. 13 is not the main attenuation mechanism. Dominant absorption terms

are due to relaxation of molecular nitrogen and oxygen and is controlled

by the water vapour content [53, 54, 55, 15]. Thus an ad-hoc expression is

added to include attenuation and dispersion due to relaxation:

dφ

dx
= Lτ (φ). (34)

Lτ is a linear operator containing the effects of attenuation and dispersion

in a thermoviscous fluids containing multiple relaxation mechanisms. It is

given by:

Lτ (φ) =
δ

2c̄0
3

∂2φ

∂τ2
+
∑
j

c′j
c̄0

2

∫ τ

−∞

∂2φ

∂τ ′2
e−(τ−τ ′)/tjdτ ′ (35)

with δ the diffusivity of sound defined by Eq. 2, tj the relaxing time of the

jth relaxation process and c′j the increase in phase velocity associated with

this mechanism when the frequency goes from 0 to infinity.

Eq. 34 is solved analytically in the frequency domain in the same manner

as for the phase effects of heterogeneous and flow terms (operator H1):

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω) exp

− ω2δ

2c̄0
3
− ω

c̄0
2

∑
j

c′jωtj

1 + iωtj

∆x

 .
(36)

Practically, this absorption substep is integrated in the same advancement

step as H1 to limit the computation time. Details on the absorption coeffi-

cients in the atmosphere can be found in [56].

3.7. Boundary conditions

The code is designed to perform simulations of acoustic propagation in

the atmosphere near the ground (Fig. 1). Hence, at least two kinds of

boundary conditions are required. The perfectly rigid ground is modeled
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using a perfectly reflecting boundary condition. The other boundary con-

ditions are handled as artificial absorbing layers mimicking infinite medium

in the vertical (z > 0) and lateral (y) directions.

3.7.1. Reflecting boundary conditions

The perfectly rigid condition is:

∂pa
∂z

∣∣∣∣
z=0

= 0. (37)

The difficulty to implement this boundary condition comes from the use of

Fourier transforms to solve the diffraction operator. The classical discrete

Fourier transform enforces periodicity on the boundaries. The simplest way

to take into account this boundary conditions is the image method [57] which

consists in solving the symmetric problem of the one we are solving. How-

ever, it is numerically inefficient both in terms of computation time and of

memory usage since one has to solve the problem on a domain twice as big

as needed. This solution was previously implemented in FLHOWARD 2D

[40] but is not tractable in 3D due to the memory that would be required.

Another common solution is to solve the problem on a grid generated by

using Chebyshev or Legendre polynomials [58]. With this method, the grid

is no longer Cartesian, which is more complicated to implement. To over-

come this problem, FLHOWARD3D uses the cosine transform to enforce

von Neumann boundary condition (Eq. 37):

φ̄(y, kz, τ) =

∫ ∞
−∞

φ(y, z, τ) cos(ikzz)dz. (38)

Discrete Cosine Transform (DCT) naturally enforces even parity at both of

its extremities [49] and can be computed efficiently using FFTW. Another

advantage is that Dirichlet boundary condition pa(z = 0) = 0 can also be
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modeled using the Sine transform. Also, combination of Cosine and Sine

transform should allow us to extend this work to the propagation over a

finite impedance ground as it has been done in electromagnetism [59].

3.7.2. Absorbing boundary layer

The current state of the art for enforcing non reflecting boundary con-

ditions is the Perfectly Matched Layers (PML) [60, 61]. With PML, waves

arriving on a boundary with any incidence angle will not reflect. Instead of

PML, the simpler Absorbing Boundary Layer (ABL) reduces the reflection

on the border of the domain. It consists in introducing an artificial absorp-

tion term in an upper layer in order to absorb the incident wave as shown

on Fig. 1. This artificial absorption term is implemented in addition to the

physical absorption. The absorption coefficient is quadratically increasing

from the beginning of the layer to the upper domain limit. It is the same as

implemented in FLHOWARD2D [38, 50]:

φ̂(x+ ∆x, y, z, ω) = φ̂(x, y, z, ω) exp (−α(z)∆x) (39)

with

α(z) ==

21
(z − L)2

h3
if L < z < L+ h,

0 else,

(40)

where L is the height of the physical domain and h is the height of the ABL.

3.8. Synthesis

The overall numerical scheme is synthesized in Table 1. For the sake of

simplicity, the table shows only the succession of numerical operations for

the first-order Strang splitting. Changes from physical variables (y, z, τ) to

spectral variables (ky, kz, ω) are indicated by FFT lines. For each physical
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effect, each Ordinary or Partial Differential Equations to be solved is recalled

along with its corresponding independent variables. Other variables play the

role of known parameters. In each case, the numerical method and its order

of approximation are also indicated. FFT operations all have a spectral

precision. Other numerical operators are of order 2. For the analytical

solution of nonlinear effects, the only numerical operation is the interpolation

of the nonlinearly distorted retarded time mesh on the initial one, which

can be done at first or second order. Though in theory a second order

interpolation would keep the overall precision of the algorithm, no difference

could be observed when using a first order only interpolation.

4. Numerical analysis: dispersion relations

4.1. Model equation

The validity of the model (Eq. 10) for a linear propagation, when opera-

tors Nφ(x) and Aφ(x) are set to zero, can be examined precisely by writing

its dispersion relation for a bi-dimensional plane wave:

φ(x, z, τ) = φ0 exp
[
ik0

(
(k̄x − 1)x+ k̄zz − c̄0τ

)]
(41)

where k0 = ω0/c̄0 is the wave number, and k̄x = kx/k0, k̄z = kz/k0 are

the dimensionless components of the wave vector. The investigated case is

the propagation of a plane wave in a uniform flow parallel to the selected

direction Ox of propagation (V0x = cte, V0y = 0). The exact convected wave

equation in this case is given by:

D2
spa
Dt2

− c2
0∆pa = 0, (42)

which corresponds to the dispersion relation:

k̄x
2

+
2M

1−M2
k̄x +

k̄z
2 − 1

1−M2
= 0. (43)
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Physical Sub-equation Numerical variables Method Order

Effect(s) (NATURE) [Parameters]

3D FFT (x, y, z, τ) ↓ SP

(x, ky, kz, ω)

Diffraction d
¯̂̄
φ
dx

= D
¯̂̄
φ x Analytical Eqs.(21-22) 2

(homogeneous (ODE) [kx, ky, ω] but backscatterng

wave Eq.) neglected

2D FFT (x, kx, ky, ω) ↓ SP

(x, y, z, ω)

Heterogeneities dφ̂
dx

= (H1 + Lτ )φ̂ x Analytical Eq.(29)

(phase effects) (ODE) [y, z, ω] + 2nd order 2

+ Absorption Simpson rule Eq.(30)

Heterogeneities ∂φ̂
∂x

= H2φ̂ (x, y, z) ADI

(coupling effects) (3D PDE) [ω] ∆x : Crank-Nicolson 2

(optional) ∆y,∆z : centered FD

1D FFT (x, y, z, ω) ↓ SP

(x, y, z, τ)

Nonlinearities ∂φ
∂x

= Nφ (x, τ) Semi-analytical Eq.(33) 1 or 2

(2D PDE) [y, z]

Table 1: Synthesis of numerical method. SP : Spectral Precision - ODE : Ordinary

Differential Equation - PDE : Partial Differential Equation - ADI : Alternate Direction

Implicit - FD : Finite Differences

Flhoward equation for FLH(1) (in this case FLH(2) = 0) is written:

∂φ

∂x
=
c̄0

2

∫ τ

−∞

(
∂2φ

∂x2
+
∂2φ

∂z2

)
dτ ′+

V0x

c̄0
2

∂φ

∂τ
−V0x

c̄0

∂φ

∂x
+
V 2

0x

2c̄0

(∫ τ

−∞

∂2φ

∂y2
dτ ′ − 1

c̄0
2

∂φ

∂τ

)
,

(44)

and its associated dispersion relation is:

k̄x
2
FLH(1) + 2Mk̄xFLH(1) +

(
k̄z

2 − 1
) (

1 +M2
)

= 0. (45)

Equations 43 and 45 differ only by a term of order O(M3) which is consistent

with the assumption made in establishing Eq. 10. To obtain a higher order
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of precision, the Mach number M can be replaced by M/
(
1−M2

)
. The

difference between the two dispersion relations then becomes of order O(M4)

[40, 50]. The lower order FLHOWARD equation for FLH(s):

∂φ

∂x
=
c̄0

2

∫ τ

−∞

(
∂2φ

∂x2
+
∂2φ

∂z2

)
dτ ′ +

V0x

c̄0
2

∂φ

∂τ
− V0x

c̄0

∂φ

∂x
(46)

has the dispersion relation:

k̄x
2
FLH(s) + 2Mk̄xFLH(s) +

(
k̄z

2 − 1
)

= 0, (47)

which clearly differs from Eq. 43 by terms of orderM2. Finally, the last

equation to compare is the parabolic equation of Averyianov et al. [35, 34,

62]:
∂φ

∂x
=
c̄0

2

∫ τ

−∞

∂2φ

∂z2
dτ ′ +

V0x

c̄0
2

∂φ

∂τ
, (48)

which leads to the dispersion relation:

(
k̄xPE − 1

)
+M +

k̄z
2

2
= 0. (49)

On Fig. 2, the various dispersion relations are compared for M = 0.1,

M = 0.3 and M = 0.5. First, contrary to the parabolic approximation, the

dispersion relations for the two FLHOWARD methods (full and simplified)

are not one way, since the one way approximation is only performed during

the numerical process. The dispersion relation for the full FLHOWARD

equation with FLH(1) is computed with M replaced by M/(1 − M2) to

get the high order accuracy as visible on the figure. However, simplified

FLHOWARD equation with FLH(s) is also more accurate than the classical

parabolic equation. The improvement is due mostly to the diffraction term

∂2φ
∂x2 rather than the higher order flow terms, especially in case of low Mach

numbers, since there are only small differences between FLH(1) and FLH(s).

It is to be noted that both approximations behave really well even with
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relatively high Mach number (here M = 0.5 is much larger than realistic

atmospheric values), even if the Mach number is supposed to be small for

the derivation of the equations.

4.2. Influence of the split-step method

On Sec. 4.1, the dispersion relation of Eq. 10 was examined. This did

not take into account the effect of the numerical split-step process. Here, the

effect of the split-step method on the dispersion relation is investigated. As

was done in 4.1, a plane wave solution under the form of Eq. 41 is injected

in the studied equation. First, for the angular spectrum method associated

to operator D:
∂2φ

∂x∂τ
=
c̄0

2

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
, (50)

as backward propagation is not included, one gets:

k̄x1 =

√
1− k̄z

2
. (51)

Then equation associated to operator FLH(1) reduces to:

∂2φ

∂x∂τ
=
V0x

c̄0
2

∂2φ

∂τ2
− V0x

c̄0

∂2φ

∂x∂τ
+
V 2

0x

2c̄0

(
∂2φ

∂z2
− 1

c̄0
2

∂2φ

∂τ2

)
. (52)

Its dispersion relation is:

k̄x2 =
1

1 +M

(
1− M2

2

(
k̄z

2
+ 1
))

. (53)

The total dispersion relation for the split-step method is given by:

k̄
xFLH

(1)
num

=

√
1− k̄z

2
+

1

1 +M

(
1− M2

2

(
k̄z

2
+ 1
))
− 1. (54)

Similarly, for the operators D and FLH(s), we get:

k̄
xFLH

(s)
num

=

√
1− k̄z

2
+

1

1 +M
− 1. (55)
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Figure 2: Dispersion relations for the exact solution at M = 0.1 (left), M = 0.3 (middle),

and M = 0.5 (right). Black: convected wave equation; red: full FLHOWARD equation

with FLH(1); green: simplified FLHOWARD equation with FLH(s); blue: standard

parabolic approximation.

As was done in 4.1 a comparison is made with the parabolic approximation

of Averyianov (Eq. 48) whose dispersion relation is unaffected by the split-

step method since it involves only first order effects which are completely

uncoupled.

On Fig. 3, the dispersion relation for the FLHOWARD method is now

one way. Some discrepancies with the exact case appear for all wave numbers

for FLH(1) while, surprisingly, only propagation at large angles induces an

error for FLH(s). So in the present numerical method, adding higher order

terms leads to an increased dispersion error for the case of a uniform flow.

For comparison, the parabolic equation has, for the same range of Mach

numbers, a good accuracy only for small angles of propagation.

To better understand why FLH(1) induces a larger error at large Mach

numbers, a Taylor expansion with respect to Mach number M up to order

O(M3) is performed on the above numerical dispersion relations. They

become:

• for the exact convected wave equation:
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Figure 3: Dispersion relations for the split step numerical solution at M = 0.1 (left),

M = 0.3 (middle), and M = 0.5 (right). Black: convected wave equation; red: full FL-

HOWARD equation with FLH(1); green: simplified FLHOWARD equation with FLH(s);

blue: standard parabolic approximation.

k̄x =

√
1− k̄z

2 −M +M2

√1− k̄z
2

+
1

2

k̄z
2√

1− k̄z
2

+O(M3); (56)

• for FLHOWARD with full operator FLH(1):

k̄
xFLH

(1)
num

=

√
1− k̄z

2 −M +
M2

2

(
1− k̄z

2
)

+O(M3); (57)

• for FLHOWARD with simplified operator FLH(s):

k̄xFLH(s)num =

√
1− k̄z

2 −M +M2 +O(M3); (58)

• for Averiyanov parabolic equation:

k̄xPE = 1− k̄z
2

2
−M +O(M3). (59)

The first three ones are strictly identical up to order M thanks to the angular

spectrum method. As expected, parabolic equation is valid only for small

angles of propagation. At second order M2, due to the combined effects

of equation approximations and numerical split step, the FLH(1) operator

induces a systematic error of order M2 even for small angles of propagation
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when k̄z << 1. On the contrary, the FLH(s) turns out to be precise up to

order M2k̄z
4
. Therefore it remains much more accurate as long as k̄z is not

too large.

Consequently, this analysis proves the use of FLHOWARD equation with

simplified operator FLH(s) is recommended. This is due to the numerical

split-step method, combined with the underlying approximations of the FL-

HOWARD equation.

5. Parallel computing and performance test

Three dimensional computations require parallelization of the algorithm.

For an acoustic wave at a frequency f0 = 10 Hz in a domain (x, y, z) =

(3 × 3 × 3 km3) using ten points per wavelength, we have δx = 3.4 m.

It means that around one thousand points in each directions are required.

Around the same number of points is needed for the temporal discretization.

Thus the problem has about 1012 degrees of freedom. Distributed memory

computers have many processors, each with its own memory. They allow

to tackle bigger computations with the restitution time remaining accept-

able. Currently, this kind of computation is classical and finite-differences,

finite-elements or finite-volumes codes implement it. The domain can be

decomposed so as to allocate one sub domain to one processor which per-

forms its computations on this small part of the numerical domain. It is also

known as the Single Program Multiple Data (SPMD) paradigm. However,

here, this strategy is complicated due to the presence of Fourier transforms

in the algorithm. A Fourier transform is a non-local operation incompati-

ble with the SPMD paradigm. To handle this, the 1D decomposition (also

known as slab decomposition) is implemented. The domain is only decom-
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posed in one direction, the two others remaining local to the processor.

With this method the Fourier transform can be applied on two directions.

For the last direction, a parallel transpose is done so that the decomposed

direction is changed. This parallel transpose requires a lot of data to be

transferred between the processors: it is an MPI ALL TO ALL instruction,

which means that each processor broadcasts the data to the others. There

exist alternative strategies such as 2D pencils which consist in a 2D decom-

position of the domain. Pencils are efficient if the number of cores is greater

than the smallest number of points amont Ny,Nz,Nt [63], otherwise 1D

slab decomposition is more efficient (where Ny,Nz,Nt are respectively the

number of points in the y−, z− and t− directions). For the moment, the

1D slab decomposition has been chosen here as, for our target applications,

the typical values are (Ny,Nz,Nt) = (1024, 1024, 1024) or more. Neverthe-

less, 2D pencils could be implemented in the future if the number of cores

becomes an issue. Indeed this would be compatible with the other steps of

the method. Practically, the 1D decomposition is implemented thanks again

to the FFTW library which provides FFT and DCT operators, and parallel

transposition [49].

Two metrics are used to quantify the code performances. The first one

is the strong scaling. It is defined as how the restitution time varies with the

number of processors for a fixed overall problem size. Ideally, the restitution

time should be halved when doubling the number of cores. Strong scaling is

a measure needed when the goal is to tackle a problem quicker when using

more computational cores i.e. for cpu-bound computation. The second one

is weak scaling. It is defined as how the restitution time varies with the

number of processors for a fixed problem size per processor. Ideally, the

restitution time should remain constant when both the mesh number of
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points and the number of cores are doubled. It is of interest when a bigger

mesh is needed, i.e. for memory-bound computations.

These performances tests are performed on the cluster of Institut Jean

le Rond d’Alembert (UMR7190 UPMC CNRS) which has 29 nodes of four

6-cores (AMD Opteron 2435 processors) cadenced at 2.6 GHz for a total of

696 cores. Its theoretical peak processing power is 3 Tflops. Each node has

64 GB of memory resulting in a total of 1,8 TB of RAM for the entire cluster.

The nodes are interconnected with Infiniband connections. The operating

system is a Linux CentOS. The procedure used is the following. We simulate

the propagation of an N-wave of amplitude 100 Pa and duration 0.2 s through

an acoustical lens resulting from a 3D sound speed heterogeneity. Such a test

case has already been selected [38] for mesh convergence studies at 2D. The

reader is refereed to this reference for details about the speed heterogeneity.

It is here chosen because it involves all the main operators D, N and H1

of the algorithm. All the writing and reading operations on the hard-disk

are deactivated so as to quantify only the computation efficiency in the test.

The results are presented in time spent for performing one advancement step

from x to x + ∆x. To compute this, hundred steps are performed and the

computational time is divided by 100 for averaging in order to reduce the

errors of measurement.

Strong scaling:. For the strong scaling, two configurations were tested. The

first one has a domain (Nτ × Ny × Nz) of (1024 × 1024 × 1024) resulting

in 1 billion points while the second one has 4 billions points with a domain

of (2048× 2048× 1024). These two domain sizes were chosen because they

are the targeted domain sizes for the code applications. Computations were

performed on up to 512 cores. Results presented on Fig. 4 show a good
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strong scaling with a 1.7 decrease in computation time when doubling the

number of cores, compared to the ideal linear case of factor 2. For these sizes

of mesh, the computation cost is mostly communications between cores even

using MPI ALL TO ALL calls. Let us recall that such a collective commu-

nication instruction is requested here only for transposition operations as

explained in section 5. The change in slope between 16 (where the slope is

almost 2) and 32 cores for the smallest domain occurs because, for 16 cores,

only one node is necessary, whereas for more than 24 cores several nodes

are used. Then communications are no longer local to the node and use the

Infiniband network.

Weak scaling:. During the weak scaling test, three different numbers of

points per core were tested: 220, 222 and 224. They correspond respec-

tively to a domain size (Nτ ×Ny×Nz) of (64×128×128), (256×128×128)

or (256 × 256 × 256) points per core. Computations were performed using

from 8 up to 512 cores. Good overall weak scaling is achieved as can be

seen on Fig. 4. The restitution time increases by a factor around 2 only,

while the overall domain size and number of cores increase by a factor 64.

As expected, the performance for the domain of smallest size (220 points

per core) is not as good (factor 2.4) as for the domains of bigger size (factor

1.8). This is because, for a small number of points, communications between

cores become more important in the restitution time.

For both weak and strong scaling, the results do not depend on the

specific value of Nτ , Ny or Nz but only on the overall number of points

(Nτ ×Ny ×Nz). The parallelization strategy therefore seems to show good

results for the considered applications which target domain sizes of the order

of a few billions points distributed on around typically 256 cores.
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Figure 4: Left: strong scaling. domain (1024 × 1024 × 1024), : domain

(2048 × 2048 × 1024), dashed lines: linear scaling. Right: Weak scaling. : 220,

222, : 224 points per core.
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6. Some validation cases

6.1. Three-dimensional circular acoustic piston in a linear homogeneous

medium

The first validation test addresses the 3D propagation of a pure tone

wave in a linear homogeneous medium. It is chosen to validate at 3D the

diffraction part (operator D) of the algorithm along with the efficiency of

the Absorbing Boundary Layer (ABL). The case of a circular piston in three-

dimensions is considered. The analytical solution of this problem [57, 15] is

given in Appendix C. Note that the name piston is somewhat inappropriate

in this case since pressure is imposed on the surface whereas for a true piston

the velocity would be imposed. For the classical parabolic equation it would

be meaningless to make the difference, but for higher-order methods such as

FLHOWARD, it is not equivalent. The parameters are chosen to correspond

to high-intensity focused ultrasound (HIFU) treatment: c0 = 1500 m/s,

ρ0 = 1000 kg/m3. The incident wave is sinusoidal with a frequency f = 1

MHz and a wavelength λ = 0.0015 m. The radius of the piston is r = 0.006

m which corresponds to 4λ. A uniform pressure of 5 Pa is applied on this

surface and the pressure is set to zero outside. The computational domain

extends from 0 m to 0.25m (0 to 250λ) in the propagation direction (x),

−0.07 m to 0.07m (−33λ to 33λ) in the transverse directions (y, z) and from

0 s to 10−6 s (one period) in time. Numerically, each direction (x, y, z,

τ) is discretized using 1024 points. Therefore the problem has 1012 degrees

of freedom. Absorbing boundary layers of size 0.02 m are used so that the

physical domain is reduced to −0.05 m to 0.05 m in the transverse directions.

Fig. 5 (top) shows the pressure amplitude radiated by the piston in the

(x, y) plane where the characteristic diffraction pattern can be seen. The

31



0.00 0.05 0.10 0.15 0.20 0.25
 X (m)

0.04

0.02

0.00

0.02

0.04

 Y
 (

m
)

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

8.0

P
re

ss
u
re

 (
P
a
)

0.00 0.05 0.10 0.15 0.20 0.25
 X (m)

0

2

4

6

8

10

P
re

ss
u
re

 (
P
a
)

Figure 5: Left: pressure amplitude (in Pa - Color level) radiated by a pure tone

pressure piston. Right: pressure amplitude on the axis of a 3D pressure piston.

FLHOWARD computation, Analytical solution and Analytical so-

lution for the parabolic equation. The near-field is zoomed.

comparison with the analytical solution on the x-axis in Fig. 5 (bottom)

shows a perfect agreement even in the near-field, a zone which is poorly

reproduced by the parabolic approach. These results show the ability of the

method to simulate the propagation in a homogeneous free field. Note that
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the lateral absorbing boundary layers play a key role. Indeed, their presence

kills reflections on the boundaries of the computational domain. Simulations

without ABLs (not shown here) would show spurious oscillations appearing

and would highly degrade the quality of the solution.

6.2. Scattering of a plane wave by a a spherical heterogeneity

The scattering of a plane wave by a discontinuous 3D spherical hetero-

geneity in sound speed is now investigated. The only two physical effects

present are the heterogeneous part (operator TH) coupled with the diffrac-

tion (operator D). This problem has an analytical solution [64] [57] de-

scribed in Appendix C. The physical parameters are chosen to correspond

to sonic boom propagation through the atmosphere. However the intensity

of the heterogeneity is chosen intentionally much larger than what could be

encountered in the atmosphere. The medium celerity and density are re-

spectively c0 = 340 m/s and ρ0 = 1.2 kg/m3. The incident plane wave has

an amplitude of 100 Pa and a frequency of f = 5 Hz which corresponds to

a wavelength λ = 68 m. The heterogeneity is a sphere placed at the center

of the domain. Its radius is r = 68 m, equal to one wavelength. The sound

speed in the sphere is ch = c0(1 + 0.05) m/s corresponding to a uniform 5

% increase. The computational domain extends from 0 m to 1020 m (0 to

15λ) in the propagation direction (x), −2040 m to 2040 m (−30λ to 30λ)

in the transverse directions (y and z) and from 0 s to 0.2 s (one period)

in time. Numerically, each direction (x, y, z, τ) is discretized using 1024

points. Reflecting boundary conditions are used. They are far enough from

the heterogeneity so as not to interfere with the transmitted field in the con-

sidered domain. This case is much more demanding than the atmospheric

application the model was designed for. First the heterogeneity is discon-
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tinuous whereas the parameters of the atmosphere are varying continuously.

Second, the intensity of the heterogeneity, 5% in sound speed, corresponds

to a variation of temperature of 34o C, extremely large for the atmosphere

over such a short distance.

Fig. 6 shows the pressure amplitude scattered by the heterogeneity in

the (x, y) plane. We can see the characteristic diffraction pattern. Com-

parison with the analytical results in Fig. 6 shows good agreement. The

main differences are: (i) the amplitude value of the low pressure just after

the heterogeneity in the defocusing zone, (ii) the lack of oscillations before

the heterogeneity in our result. The difference of amplitude in the defocus-

ing area is dependant on the number of points used and full convergence is

hard to achieve. This is probably due to the difficulty of meshing properly a

sphere with a cartesian grid. Note that the position of the minimum is well

reproduced. The absence of oscillations is due to the one-way approach, as

the backscattered wave is numerically not taken into account. The hypoth-

esis of negligible backscattering thus appears acceptable if the heterogeneity

is small (less than 5 %) in sound speed contrast.

6.3. Nonlinear propagation in a thermoviscous medium

To validate the nonlinear and absorption part, we use the 1D case of

propagation of a pure tone acoustic wave of angular frequency ω0 in a non-

linear thermoviscous medium. This problem has an analytical solution given

by Mendousse [53]. The parameters controlling this case are P = pa/P0 the

acoustical pressure normalized by the pressure amplitude at the source P0,

X = σρ0c0
βP0ω0

the propagation distance, α = βP0ω0

Γρ0c30
the absorption coefficient

and Γ = βP0ω0

αρ0c30
the Gold’berg number which measures the ratio between

nonlinearity and absorption. Notation σ is for the dimensionless distance
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Figure 6: Left: pressure amplitude (in Pa - Color level) resulting from scattering of a plane

wave by a heterogeneous sphere. The gray zone marks the heterogeneity location. Right:

axial pressure amplitude resulting from scattering of a plane wave by a heterogeneous

sphere. FLHOWARD, Analytical. The grey zone marks the heterogeneity

location.
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and σ = 1 corresponds to the shock formation distance in the inviscid case.

Here, the parameters are chosen to be Γ = 50 and σ = 3 so that the final

point is well beyond the shock distance and the shock wave is well formed

with a characteristic saw-tooth shape. The large Gold’berg number implies

that the primary effect is the nonlinearity which strongly dominates over

the absorption. Numerically 512 points are used to discretize the waveform

in retarded time.

Fig. 7 shows the waveform at σ = 3 using 200 points in the x−direction.

FLHOWARD results and the analytical solution are indiscernible. The same

conclusion is drawn when examining the wave spectrum up to 60th harmon-

ics on Fig 7. The least-square error metric defined by:

error% = 100

∑
Nτ

[PFLHOWARD(τ)− P (τ)]2∑
Nτ

P (τ)2
(60)

is plotted against the number of discretization points in the axial direction

Nx used for propagation in Fig. 8. The error remains small, even if a small

number of points is used for the propagation. As expected [5], the second or-

der split-step induces a great improvement compared to the first order split

step: the error is nearly always under 1%, even for a very small number of

points (as soon as Nx is larger than 20, which is equivalent to say that an

error less than 1% is achieved with 7 points per shock formation distance).

Note that the error curves saturate for a large number of points, because

round-off errors contaminate the numerical evaluation of the analytical so-

lution (Eq. C.8), for simultaneously a large index (n) and a large argument

(Γ/2) of the modified Bessel function.

36



−π −π/2 0 +π/2 +π

Time

−1

−0. 5

0

+0. 5

+1

P

0 10 20 30 40 50 60
Frequency (× f0)

10-5

10-4

10-3

10-2

10-1

100

P

Figure 7: Left: pressure amplitude for the propagation of a plane wave in a nonlin-

ear thermoviscous medium. Right: pressure amplitude of the first 60 harmonics for the

propagation of a plane wave in a nonlinear thermoviscous medium. FLHOWARD,

Analytical.

37



101 102

Nx

10-1

100

101

102

Le
a
st

 s
q
u
a
re

 e
rr

o
r 

(%
)

Figure 8: Effect of the split-step and discretization (Nx number of discretization points in

the propagation direction) on the error for the propagation of a plane wave in a nonlinear

thermoviscous medium. Second order, First order.

6.4. Scattering of a plane wave by a finite-circulation vortex

Code validation in case of a non-uniform flow is achieved in the case of

a pure tone plane wave propagating through a vortex. This problem has

been tackled using both analytical [65, 66, 67] and numerical methods such

as parabolic equations [68] or DNS [69]. It has been chosen as a validation

case for the Wide-Angle Parabolic Equation of Dallois et al. [70] and the

FDTD model of Cheinet et al. [71, 72]. The vortex has a finite-circulation,

its tangential speed is given by:

vθ(r) =
Γ

2πr

[
1− exp

(
−α r

2

L2

)]
(61)

where r is the distance to the center of the vortex, Γ the circulation and L the

size of the vortex. Constant α = 1.256431 is chosen so that the maximum

velocity occurs at r = L. The radial velocity is set to zero. This vortex is

an exact solution of the incompressible Navier-Stokes equation, called the
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Lamb-Oseen vortex. In this work we will present only one configuration:

Γ = 1511, M = 0.25 and L = 2 m. The wave is generated 40 m before

the vortex, its frequency is f = 43 Hz. These parameters are chosen to be

the same as Colonius et al. [69] and Cheinet et al. [71]. It is a demanding

test case since the Mach number is relatively high while the derivation of

the FLHOWARD equation assumes a small Mach number as expected in

outdoor acoustics. The computational domain extends from −40 m to 40m

in the propagation direction (x), −90 m to 90m in the transverse direction

(y) and 0 s to 0.2 s (one period) in time. The boundary conditions used

in y are reflections since it was found that they do not interfere with the

validation process. The domain is discretized using 2048 points in both x

and y directions. 512 points are used for the temporal signal. The mesh

is voluntarily oversampled to evaluate only the model. Two computations

were performed. The first one tested the FLHOWARD model with operator

FLH(2) including the effect of transverse flow H = H1 + H2. Note that

in this case FLH(2) = FLH(s). The second omitted the coupling operator

H2 of the algorithm, which is the only one that includes the effect of the

transverse flow relative to the main propagation direction. In this case we

have H = H1. The results are presented using what Colonius et al. called

the root-mean-square (RMS) of the scattered field. It consists in subtracting

the plane incident field from the results of the computations and then take

its RMS value (for a sinusoidal signal it amounts to divide its amplitude by
√

2). Fig. 9 presents the RMS scattered field resulting from FLHOWARD

simulation. Two well known features of this case can be observed. First,

the effect of refraction due to the finite circulation of the vortex is clearly

seen. The scattered field is not zero before entering the vortex. Second,

an asymmetry can be observed with an interference pattern due to the fact
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that propagation is in the flow direction for y < 0 and opposite for y > 0.

This validates qualitatively the use of FLHOWARD model. Quantitatively,

Fig. 9 compares the two FLHOWARD computations (with or without the

operator H2) with Colonius et al. DNS results [69]. The value of the field

is extracted on a circle of radius 20 m centered on the vortex.

The main maxima and minima are well reproduced even though there are

small differences, on the amplitude mostly. The FLHOWARD simulations

lead to slightly smoother fluctuations of the pressure field in a way similar

to what was observed for scattering by a speed of sound heterogeneity. The

main differences between FLHOWARD and DNS are mostly due to the wide-

angle approximation on the correction terms that take into account the flow

effects. As expected, the transverse flow described by H2 has only a small

effect, only shifting the curves slightly closer to the DNS simulations. The

levels of maxima and minima are nearly the same with or without transverse

flow.

It is important to emphasize that, for this case, the FLHOWARD model

is used at the fringes of its theoretical validity. Indeed, as discussed previ-

ously, FLHOWARD model is established for weak flows. In the derivation,

the Mach number has been assumed to be less than typically 0.1 because

it is designed for acoustic propagation in the atmosphere. Nevertheless,

in the section 4.1, it has been shown that the dispersion relation keeps in

good agreement with the convected wave equation for relatively high Mach

numbers. In the current test case the Mach number is 0.25. This is obvi-

ously well beyond the value assumed for the derivation. This large Mach

number value is likely to explain the small mismatches between the present

approach and reference DNS simulations [69], mostly observed in the loca-

tion and amplitude of extrema of the scattered field. However, even though
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the agreement is not perfect, the results are sufficiently close to DNS ones

to provide confidence in our model.

7. Sonic boom at the lateral cutoff

This section illustrates the potential of the developed software through

an example of application. The case of sonic boom penetration into the

shadow zone at the edge of the primary carpet is chosen. In case of negative

vertical temperature gradient or adverse wind, the sonic boom is refracted

upwardly and the carpet (footprint of the sonic boom at ground) has a finite

width. This is illustrated on Fig. 10. In the shadow zone, the ray theory

usually used to evaluate sonic boom [3] cannot predict the signal which re-

sults from both diffraction and scattering by turbulence. To model this,

an idealized plane wave is propagated through an upwardly refracting at-

mosphere described by Monin-Obukhov similarity theory giving shear wind

and temperature vertical profiles as explained by Ostashev [73]. The case

of a mostly sunny day with strong wind [73] is chosen. It corresponds to

a surface heat flux Qs = 200 W/m 2 and a friction velocity u∗ = 0.7 m/s.

A randomly generated realization 3D turbulent wind field is superposed to

the mean atmosphere assuming a homogeneous and isotropic turbulence for

simplicity. It obeys a von Kármán energy spectrum and is characterized by

two parameters: the characteristic outer scale L0 = 100 m and the level of

variance σu, three values of which being tested here: σu = 1.2, 2.4 and 3.6

m.s-1. This synthetic turbulent field is generated randomly in the Fourier

space according to the method described in [74]. The temporal signal of

the incoming wave is extracted from a ray tracing computation of the sonic

boom at cut-off of a Mach 5 hypersonic transport vehicle. This aircraft con-
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Figure 9: Left: normalized RMS pressure amplitude (PRMS - Color level) radiated by the

scattering of a plane wave by a finite-circulation vortex. The black circle has a radius of

2.5λ and shows where the pressure is extracted. Right: normalized RMS pressure ampli-

tude radiated by the scattering of a plane wave by a finite-circulation vortex on a circle

placed at 2.5λ. θ = 0 is situated on the Ox axis and θ = 90 on the Oy axis. with

transverse flow, without transverse flow, circle markers: DNS simulations (Colo-

nius [69]).
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figuration was described in detail through the European project ATLLAS

II [75]. The input signal displays three shocks (one from the nose, one from

the wing leading and engine inlets and one from the tail), a duration of

about 0.4s and a peak frequency slightly below 2Hz. Propagation is sim-

ulated over 4 km along the main horizontal direction Ox, the height and

width of the simulation domain being also 4 km. In the vertical direction

Oz, an Absorbing Boundary Layer (ABL) of thickness 400 m is imposed on

the top of domain. Rigid boundary conditions are imposed on the ground.

Laterally, either rigid or periodic boundary conditions can be imposed, with

no difference in terms of statistical variability. The duration of the time

window is 2.2 s. The temporal signal, the altitude and the transverse direc-

tion are sampled with 1024 points each. The maximum frequency of time

mesh is therefore 233 Hz. Higher frequency sampling could not be achieved

because: (i) the ground rigid boundary condition makes simulation about

twice as long as the periodic case; (ii) simulation of multiple realizations

is required to achieve statistical convergence. The computational domain

has more than 1 billions degrees of freedom; 1024 points are used in the

propagation direction.

On Fig. 11 we can observe the progressive decay of the ground positive

peak pressure in the central vertical plane (y = 0). On the top figure, the at-

mosphere is stratified but not turbulent and the shadow zone can be clearly

seen due to upward refraction against the wind. Just above the shadow

zone, a caustic (focusing area) is formed due to the curvature of the initially

plane wavefront induced by atmospheric refraction. On the middle figure,

for the highest value of turbulence variance σu = 3.6m.s-1, the turbulence is

shown to create random variability including multiple focusing and defocus-

ing areas. This process of random scattering also redirects energy into the
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shadow zone, which turns out to be much less pronounced than in the non

turbulent case. As a counterpart, the geometrical caustic tends to smear

out. As can be seen on the bottom of Fig.11, the positive peak pressure on

the ground surface is still globally decaying with the distance but, due to

turbulence, a high variability with areas of enhanced amplitudes is never-

theless observed relatively deep in the shadow zone. Both horizontal and

vertical slices show that random caustics are strongly elongated along the

main direction of propagation as already known for media without mean

flow [35]

Fig. 12 presents two simulated temporal waveforms at x = 2 km, either

at the ground in the shadow zone (z = 0) or near the caustic (z ≈ 250 m)

in cases with or without turbulence. The presence of oscillations before the

first shock is due to the periodicity of the time window: the perturbations

leaving the time window at the right side are re-injected on the left side. In

the shadow zone, without turbulence, the initial N-wave profile progressively

smears out along the ground due to exponential attenuation of creeping

waves [76, 16]. In the turbulent case, the positive peak pressure is increased

and high frequencies associated to the shocks are more strongly scattered

from the illuminated to the shadow zones than low frequencies [6]. This

results into a very large increase of the wave spectrum with turbulence

for frequencies above 5 Hz. Near the caustic the typical U-wave observed

without turbulence is strongly affected in the turbulent realization because

of the random phase scrambling [77]. As a consequence, the positive peak

overpressure is reduced. The spectrum modification changes mostly above

20 Hz, lower frequencies being much less affected.

Finally, to quantify the decrease of positive peak pressure qualitatively

seen in Fig. 11, a statistical study is performed. The positive peak pressure
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Figure 10: Physical setup for the sonic boom at lateral cutoff

is averaged on the ground along the transverse direction. To get statistical

convergence several realizations of turbulence are necessary, here 10 com-

putations for each level of turbulence turned out to be sufficient. Fig. 13

shows the average peak overpressure and its standard deviation compared

to the case without turbulence. Both show the classical exponential decay.

However, the average positive peak pressure increases with the turbulent in-

tensity as expected because of random scattering from the illuminated zone

to the shadow zone. However, even for the highest turbulent intensity, this

increase is relatively small (no more than 5 Pa) because turbulence affects

only the upper part of the signal spectrum. The standard deviation first

increases over distances in the range from 500 m to 1000 m before slowly de-

caying. This behaviour is similar to what happens for free field turbulence,

but the amplitude of the deviation is much weaker. Again, the more intense

the turbulence, the more standard deviation increases.

45



0

500

1000

1500

2000

2500

3000

Z
 (

m
)

0

500

1000

1500

2000

2500

3000

Z
 (

m
)

0 500 1000 1500 2000 2500 3000 3500 4000
X (m)

1000

500

0

500

1000

Y
 (

m
)

6

8

10

12

14

16

18

20

P
re

ss
u
re

 (
P
a
)

Figure 11: Maximum pressure field in a vertical plane without (top) and with atmospheric

turbulence (σu = 3.6m.s-1) (middle) and on the ground with atmospheric turbulence

(σu = 3.6m.s-1) (bottom).
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Figure 12: Examples of pressure signals (left) and their spectra (right): in the shadow

zone (top) and near caustic (bottom). Black/red lines: without/with turbulence (σu =

3.6m.s-1).
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8. Conclusion

An original three-dimensional one-way method has been developed to

model and simulate the nonlinear propagation of acoustic shock waves in

the atmosphere. It relies on a scalar wave equation which includes diffrac-

tion, flow and heterogeneities effects, nonlinearity, thermoviscous absorp-

tion, molecular relaxation and rigid reflexion over a flat ground. The model

strives to be as high order as possible while remaining computationally

tractable. To achieve this, numerical approach relies on the fractional step

method which permits to solve different simpler problems using algorithms

that are as efficient as possible. When possible, spectral or analytical solu-

tions are employed. For the other terms, finite differences method is used.

To asses the validity and accuracy of the resulting FLHOWARD3D software,

its dispersion relation, including the split-step scheme, was established and

shown to be exact up to order M2k̄4
z , so of second order relative to the

flow Mach number M and fourth order relative to the propagation angle

measured by the dimensionless wavenumber k̄z. Rigid ground and free field

boundary conditions have been implemented. The algorithm is implemented

for high performance computing on distributed memory architecture. The

model and its implementation have been validated by quantitative test cases

involving all the operators and boundary conditions. Results turn out ex-

cellent, even in cases were the model was used outside its theoretical range

of validity. The biggest approximation of the method in terms of results

accuracy is the neglecting of the field backscattering in the inhomogeneous

case. Nevertheless this one-way approximation allows to handle problems

with a very high number of Degrees of Freedom. Large scale problems are

tackled with parallelization performances showing again an excellent behav-
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ior for both weak and strong scaling. Finally, an example of application

was performed. The computation of the sonic boom at the shadow zone

and influence of turbulence was chosen. All the phenomena relatives to

scattering of a wave in a shadow zone were retrieved. It demonstrates that

FLHOWARD 3D is well suited for the simulation of acoustical shock waves

on relatively long distance of propagation through media with scalar and

vectorial heterogeneities.
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Appendix A. Expression of operator H

Expression for operator FLH(1) is:

FLH(1)φ(x, τ) =
V0x

c̄0
2

∂φ

∂τ
− V0x

c̄0

∂φ

∂x
− V0y

c̄0

∂φ

∂y

+
V 2

0x
¯2c0

∫ τ

−∞

(
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′ − V 2

0x

2c̄0
3

∂φ

∂τ

+
V0xV0y

c̄0

(
1

c̄0

∂φ

∂y
−
∫ τ

−∞

∂2φ

∂x∂y
dτ ′
)
−
V 2

0y

¯2c0

∫ τ

−∞

∂2φ

∂y2
dτ ′

+ c̄0V0x

∫ τ

−∞

∫ τ

−∞

∂3φ

∂x∂z2
dτ ′dτ ′ − c̄0

∫ τ

−∞

∫ τ

−∞

∂

∂z

[
V0x

∂2φ

∂x∂z

]
dτ ′dτ ′

+

∫ τ

−∞

d

dz

[
V0x

∂φ

∂z

]
dτ ′ − V0x

∫ τ

−∞

∂2φ

∂z2
dτ ′

+ c̄0V0y

∫ τ

−∞

∫ τ

−∞

∂3φ

∂y∂z2
dτ ′dτ ′ − c̄0

∫ τ

−∞

∫ τ

−∞

∂

∂z

[
V0y

∂2φ

∂y∂z

]
dτ ′dτ ′.

(A.1)

First line of Eq. A.1 describes linear convection terms by the mean stratified

flow. The second and third lines are for the nonlinear quadratic convection

terms. The last three lines emanate from the gradient of the ambient flow.

Expression for operator FLH(2) is:

FLH(2)φ(x, τ) =
u0x

c̄0
2

∂φ

∂τ
− u0x

c̄0

∂φ

∂x
− u0y

c̄0

∂φ

∂y
− u0z

c̄0

∂φ

∂z
. (A.2)

Eq. A.2 takes only into account the linear convection effects due to the flow

fluctuations.
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Expression for operator TH is:

THφ(x, τ) =
1

2ρ0

(
∂ρ0

∂x
φ− c̄0

∫ τ

−∞

∂ρ0

∂x

∂φ

∂x
dτ ′
)

− c̄0

2ρ0

∫ τ

−∞

(
∂

∂y

[
ρ0
∂φ

∂y

]
+

∂

∂z

[
ρ0
∂φ

∂z

])
dτ ′ +

c̄0

2

∫ τ

−∞

(
∂2φ

∂y2
+
∂2φ

∂z2

)
dτ ′

+
2c̄0c

′
0 + c′20

2c̄0
3

∂φ

∂τ
, (A.3)

The first line of Eq. A.3 stands for the density heterogeneities in the main

propagation direction x, the second line for those in the transverse directions

y and z. The last term takes into account all effects due to sound speed

heterogeneities. Note that in the definitions of FLH(1) (Eq. A.1), FLH(2)

(Eq. A.2) and TH (Eq. A.3) the components V0x, u0x and ∂ρ0/∂x appear

differently from the other ones because of the introduction of retarded time

in the main propagation direction x.

Appendix B. Numerical implementation of H2.

As explained in 3.4, operator H2 is solved using a second order finite

difference method in the frequency domain. In the x-direction, a semi-

implicit Crank-Nicolson scheme is used. It is unconditionally stable and

of second order accuracy. The resulting linear system is split into the y

and z directions using an Alternate Direction Implicit (ADI) method. For

the z-direction the equation to solve takes the form of the following linear

system:

A · u = q (B.1)
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where A is the tridiagonal matrix:

A =



aj,0 cj,0 0 . . . . . . . . . 0

bj,1
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . . bj,k aj,k cj,k

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . bj,nz−2 aj,nz−2 cj,nz−2

0 . . . . . . . . . 0 bj,nz−1 aj,nz−1


. (B.2)

Its coefficients are given by:

aj,k = 1 +
c̄0

ω2∆z2

[
−2V0x + V i

0x k+1/2 + V i
0x k−1/2

]
+
iθ∆x

ω∆z2

[
−V

2
0x

c̄0
+ 2V0x +

c̄0ρ0j,k+1/2

2ρ0
+
c̄0ρ0j,k−1/2

2ρ0
− c̄0 − V0xk+1/2 − V0xk−1/2

]
(B.3)

bj,k =
c̄0

ω2∆z2

[
V0x − V0x k−1/2

]
+
iθ∆x

ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k−1/2

2ρ0
+
c̄0

2
+ V0xk−1/2

]
, (B.4)

cj,k =
c̄0

ω2∆z2

[
V0x − V0x k+1/2

]
+
iθ∆x

ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k+1/2

2ρ0
+
c̄0

2
+ V0xk+1/2

]
. (B.5)
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q coefficients are:

qj,k = φ̂i−1
j,k−1

c̄0

ω2∆z2

[
V0x − V0x j,k−1/2

]
− φ̂i−1

j,k−1

(1− θ)i∆x
ω∆z2

[
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k−1/2

2ρ0
+
c̄0

2
+ V0xk−1/2

]
+ φ̂i−1

j,k

[
1 +

c̄0

ω2∆z2

(
−2V0x + V0x j,k−1/2 + V0x j,k+1/2

)]
− φ̂i−1

j,k

(1− θ)i∆x
ω∆z2

[
−V

2
0x

c̄0
+ 2V0x − V0xk+1/2 − V0xk−1/2

]
− φ̂i−1

j,k

(1− θ)i∆x
ω∆z2

[
+
c̄0ρ0j,k+1/2

2ρ0
+
c̄0ρ0j,k−1/2

2ρ0
− c̄0

]
+ φ̂i−1

j,k+1

c̄0

ω2∆z2

[
V0x − V0x j,k+1/2

]
− φ̂i−1

j,k+1

(1− θ)i∆x
ω∆z2

[
+
V 2

0x

2c̄0
− V0x −

c̄0ρ0j,k+1/2

2ρ0
+
c̄0

2
+ V0xk+1/2

]
.

(B.6)

This system is solved using Thomas algorithm for tridiagonal linear systems.

The method is similar for the y-direction.

Appendix C. Analytical solution for the validations

Appendix C.1. Acoustic piston

Axial field p̂a(x, y = z = 0) at angular frequency ω is given in terms of

wavenumber k = ω/c0 by:

p̂a(x, y = z = 0) = p̂0

(
exp(ikx)− x exp(ik

√
x2 + a2)√

x2 + a2

)
(C.1)

with p̂0 the pressure amplitude on the piston surface and a the piston radius.

Appendix C.2. Scattering by a sphere

Let us consider the scattering of an incident plane wave of angular fre-

quency ω in a fluid of density ρ0 and sound speed c0 by a fluid sphere of

radius a, density ρh and sound speed ch located at the origin. The incident

plane wave can be expanded into a series of spherical harmonics:

pinc = P0

∞∑
m=0

im(2m+ 1)Pm(cos θ)jm(k0r) exp(−iωt), (C.2)
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when written in spherical coordinates (r, θ, φ) with θ = 0 being the wave

axis of propagation so that the problem is independant of φ. The scattered

field in the outer fluid with p = pinc + psc for r > a is given by

psc =
∞∑
m=0

AmPm(cos θ)hm(k0r) exp(−iωt), (C.3)

while the transmitted field within the spherical heterogeneity (r < a)

pt =

∞∑
m=0

BmPm(cos θ)jm(khr) exp(−iωt). (C.4)

Here Pm are the Legendre polynomials, jm the spherical Bessel functions,

hm(x) = jm(x)+inm(x) the spherical Hankel functions and nm the spherical

Neumann functions. Wave number is k0 = ω/c0 in the outer fluid and

kh = ω/ch in the sphere. Coefficients Am and Bm are given by:

Am = P0i
m(2m+ 1)

st[jm(kha)αm(ka)]− jm(ka)αm(kha)

αm(kha)hm(ka)− st[αm(ka) + iβm(ka)]jm(kha)
,

(C.5)

Bm =
stAm

αm(kha)
(αm(ka) + iβm(ka)) + stP0i

m(2m+ 1)
αm(ka)

αm(kha)
, (C.6)

with s = ch/c0 and t = ρh/ρ0, while αm(x) = mjm−1(x) − (m + 1)jm+1(x)

and βm(x) = mnm−1(x)− (m+ 1)nm+1(x).

Appendix C.3. Nonlinear propagation in a thermoviscous medium

The solution of Burgers’ equation:

∂P

∂σ
= P

∂P

∂τ
+

1

Γ

∂2P

∂τ2
(C.7)

with input condition P (σ = 0, τ) = sin(τ) is given by:

P (σ, τ) =
2

Γ

∑∞
n=1 εn(−1)n+1nIn(Γ/2) exp(−n2σ/Γ) sin(nτ)∑∞
n=0 εn(−1)nIn(Γ/2) exp(−n2σ/Γ) cos(nτ)

. (C.8)
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with εn Neumann factor equal to 2 for n ≥ 1 and 1 for n = 0, and with

In(x) = i−nJn(ix) the modified Bessel function of the first kind.
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sis, Université Pierre et Marie Curie Paris VI (2014).

[51] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer-

Verlag, New York, 2007.

[52] J. Burgers, Further statistical problems connected with the solution of

a simple nonlinear partial differential equation, Proc. Kon. Nederlandse

Akad. van Wet. Ser. (B 57) (1954) 159–169.

[53] M. F. Hamilton, D. T. Blackstock, Nonlinear acoustics, Academic

Press, 1998.

[54] L. C. Sutherland, H. E. Bass, Atmospheric absorption in the atmo-

sphere up to 160 km, The Journal of the Acoustical Society of America

115 (3) (2004) 1012–1032.

[55] R. O. Cleveland, M. F. Hamilton, D. T. Blackstock, Time-domain mod-

eling of finite-amplitude sound in relaxing fluids, The Journal of the

Acoustical Society of America 99 (June) (1996) 3312–3318.

[56] ISO, Acoustics - Attenuation of sound during propagation outdoors -

Part 1: Calculation of the absorption of sound by the atmosphere, Tech.

rep., International Organization for Standardization, Geneva, Switzer-

land (1993).

62



[57] P. M. Morse, K. U. Ingard, Theoretical acoustics, McGraw-Hill, New

York, 1968.

[58] B. Fornberg, A practical guide to pseudospectral methods, Cambridge

University Press, 1996.

[59] G. D. Dockery, J. R. Kuttler, An improved impedance-boundary algo-

rithm for Fourier split-step solutions of the parabolic wave equation,

IEEE Transactions on Antennas and Propagation 44 (12) (1996) 1592–

1599.

[60] F. Collino, Perfectly matched absorbing layers for the paraxial equa-

tions, Journal of Computational Physics 180 (1997) 164–180.

[61] G. Cohen, Higher-Order Numerical Methods for Transient Wave Equa-

tions, Springer, Berlin, 2002.

[62] M. Averiyanov, Propagation des ondes acoustiques à travers un milieu
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