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Abstract Phase-field models of brittle fracture are
typically endowed with a decomposition of the elastic
strain energy density in order to realistically describe
fracture under multi-axial stress states. In this contri-
bution, we identify the essential requirements for this
decomposition to correctly describe both nucleation
and propagation of cracks. Discussing the evolution
of the elastic domains in the strain and stress spaces
as damage evolves, we highlight the links between the
nucleation and propagation conditions and themodula-
tion of the elastic energy with the phase-field variable.
In light of the identified requirements, we review some
of the existing energy decompositions, showcasing
their merits and limitations, and conclude that none of
them is able to fulfil all requirements. As a partial rem-
edy to this outcome, we propose a new energy decom-
position, denoted as star-convexmodel, which involves
a minimal modification of the volumetric-deviatoric
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decomposition. Predictions of the star-convex model
are compared with those of the existing models with
different numerical tests encompassing both nucleation
and propagation.
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1 Introduction

Francfort andMarigo revisited Griffith’s criterion from
a variational perspective by casting it into a global
energy minimization framework; thus, they formu-
lated a general principle circumventing the need for
ad-hoc criteria to handle arbitrarily complex crack
topologies in 2D or 3D (Francfort and Marigo 1998).
The direct application of the ensuing (so-called sharp-
crack) model is limited by the difficulty to handle
displacement jumps in the numerical setting. Phase-
field approaches come into play as a regularization of
the sharp-crack model (Bourdin et al. 2000; Ambrosio
1992) andoffer a smeareddescription of the crack as the
localization of an auxiliary variable, i.e., the phase-field
variable. The regularized model is prone to a simple
numerical treatment using standard finite element dis-
cretizationswith smooth basis functions; it introduces a
regularization length �, which defines the typical width
of the localization bands representing the approxima-
tion of the cracks.
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Phase-field models are naturally able to predict the
evolution of damage fromapristinematerial,which can
be regarded as the capability to predict nucleation of
cracks. From a theoretical perspective, this ability can
be justified by treating the auxiliary regularization vari-
able as a damage variable and interpreting the model as
a gradient damagemodel endowedwith a finite internal
length � (Pham et al. 2011b). Gradient damage model-
ing in the quasi-static rate-independent setting defines
the system evolution through the three principles of
stability, irreversibility and energy balance (Marigo
et al. 2016). In particular, the stability requirement is
equivalent to local energy minimization, in contrast to
the starting sharp-crack problem which instead calls
for global energy minimization. Evolution following
local energy minima is not only numerically conve-
nient when dealing with large-scale problems, but also
more physically reasonable as it does not entail cross-
ing energy barriers (Bourdin et al. 2008; Negri 2010;
Baldelli and Maurini 2021).

Following the three principles of gradient dam-
age model evolution, localization of damage natu-
rally occurs upon the loss of stability of the homoge-
neous solution whose threshold depends on the length
� (Pham et al. 2011b). Thus, the internal length can
be tuned to calibrate the uniaxial tensile strength of
the material (Tanné et al. 2018; Wu et al. 2017). On
the other hand, once the elastic parameters, the frac-
ture toughness of the material and � are fixed, the stan-
dard phase-field model does not offer any additional
degree of freedom to calibrate the strength related to
scenarios different from uniaxial tension, such as the
compressive strength or the shear strength, see the dis-
cussion in (Kumar et al. 2020; De Lorenzis and Mau-
rini 2022). Flexibility in defining the strength envelope
represents themain problem of nucleation under multi-
axial stress states. As for crack propagation under such
stress states, the most relevant problem is to model uni-
lateral contact appropriately (Amor et al. 2009).

There is a wealth of literature proposing phase-
field models for brittle fracture under multi-axial stress
states. The performance of these models is demon-
strated through different examples, making their com-
parison not immediate and their strength and limita-
tions not obvious. Among these contributions, some
preserve a variational nature; the most popular varia-
tional solutions (Amor et al. 2009; Miehe et al. 2010)
are based on elastic energy decompositions. This idea
is adopted in (Freddi and Royer-Carfagni 2010, 2011;

De Lorenzis and Maurini 2022; Navidtehrani et al.
2022), justified through structured deformation theory.
Other contributions are inspired by anisotropic materi-
als (van Dijk et al. 2020; He and Shao 2019; Vu et al.
2022), propose cohesive fracture Lorentz (2017), intro-
duce plasticity (Ulloa et al. 2022; You et al. 2020; Fei
and Choo 2021) or propose an explicit treatment of
the crack direction (Hakimzadeh et al. 2022; Steinke
and Kaliske 2019; Storm et al. 2020). Unfortunately,
the available variational models implicitly prioritize
either nucleation or propagation, and (as we will show
in this paper, at least for the most popular ones) none
of them can describe both aspects correctly without
introducing excessive complexity with respect to the
original model. Other models step outside the varia-
tional framework; in this way, they more easily achieve
the needed flexibility to handle nucleation and propa-
gation, but only at the cost of giving up the theoret-
ical and practical advantages of the variational struc-
ture (Kumar et al. 2020; Miehe et al. 2015; Zhang et al.
2017; Feng andLi 2022;Wang et al. 2019;AbrariVajari
et al. 2023). The variational principle naturally comes
with a simple stability concept and it allows for the
use of the mathematical tools of calculus of variations
to discuss the existence of solutions and to study the
asymptotic �-convergence behavior. Additionally, the
finite element tangent stiffness matrix stemming from
a variational formulation is automatically symmetric,
which gives important advantages in numerics. More-
over, for constitutive models with one scalar damage
internal variable, the Drucker-Ilyushin postulate is sat-
isfied only if the damage criterion is derived from a
variational formulation where the strain work is a state
function (Marigo 1989) and the thermodynamic con-
sistency of non-variational models is not granted.

To date, a study that highlights advantages and draw-
backs of different energy decompositions based on a
consistent set of criteria and common examples is still
lacking. In this contribution, we first define these cri-
teria; subsequently, we perform a systematic review of
some available models, highlighting their performance
in relation to the defined criteria. We find out that none
of the examined energy decompositions is able to sat-
isfy all the proposed criteria, as each of these decompo-
sitions performs well with respect to either nucleation
or propagation of cracks. As a remedy, we propose a
new model, which we denote as star-convex model;
this model is still based on an energy decomposition,
but it is specifically designed to satisfy the desired

123



On the energy decomposition in variational phase-field models for brittle fracture under multi-axial stress states

requirements for both nucleation and propagation. All
the models that we consider, including our newly pro-
posed energy decomposition, are of phenomenological
nature. In other words, they are not grounded onmicro-
scopically motivated considerations and do not aim at
reproducing fine-scale features of the fracture behavior
Marigo and Kazymyrenko (2019), which may well be
specific of single materials. Rather, we aim at consis-
tently reproducing the key macroscopic features of the
fracture behavior under multiaxial stress states, namely
the strength surface and the transmission of stresses
across fully developed cracks, that are common to a
wide class of brittle materials.

The paper is structured as follows. Section 2 offers a
brief review on the basic ingredients of standard phase-
field modeling of brittle fracture, shows its limitations
and formulates the requirements for an ideal model to
describe fracture undermulti-axial stress states. In light
of the defined requirements, Sect. 3 reports a review of
some of the available models, all based on decompo-
sitions of the elastic strain energy density. In Sect. 4,
the novel star-convex model is introduced. Section 5 is
dedicated to numerical experiments that showcase the
advantages and limitations of the models previously
illustrated, including the new one. The main conclu-
sions are drawn in Sect. 6.

As follows, we summarize the notation and some
useful relations. Vectors and second-order tensors are
both denoted by boldface fonts, e.g., u and σ for the
displacement vector and stress tensor, respectively. For
the standard orthogonal decomposition of second-order
tensors in volumetric and deviatoric parts we adopt the
following notation (exemplified on σ )

σ = σ vol + σ dev, σ vol = tr(σ )

n
I,

σ dev = σ − tr(σ )

n
I, σ vol · σ dev = 0, (1)

where I is the second-order identity tensor,n is the num-
ber of space dimensions, and the dot denotes the inner
product. Note that for problems in plane-strain/stress
conditions it is n = 3. For an isotropic elastic undam-
aged material with Young’s modulus E0 and Poisson’s
ratio ν0, we denote by (λ0, μ0, κ0) the Lamé constants
and the bulk modulus given by:

λ0 = E0ν0

(1 + ν0)[1 − (n − 1)ν0] , μ0 = E0

2(1 + ν0)
,

κ0 = λ0 + 2μ0

n
= E0

n[1 − (n − 1)ν0] . (2)

Given a scalar valued function: f : x → f (x) ∈ R,
we define its positive part and negative part as:

〈 f (x)〉+ = f (x)

2
+ | f (x)|

2
,

〈 f (x)〉− = f (x)

2
− | f (x)|

2
. (3)

2 Standard model and ideal model requirements

In this section, we first introduce the general formu-
lation of a phase-field model for brittle fracture. We
then proceed to specialize this framework to the case
of the standard model. Subsequently, we clarify the
limitations of this model and leverage these insights to
define the ideal requirements for amodel able to handle
fracture under multi-axial stress states.

2.1 General formulation

Let us consider a homogeneous body occupying the
domain � ⊂ R

n . Its current state at point x ∈ � is
described by the displacement field u(x) and the irre-
versible scalar damage field α(x) ∈ [0, 1], with α = 0
and α = 1 denoting a pristine and a fully damaged
material, respectively. The strain energy density is a
differentiable function of the strain, the damage and
the damage gradient

W (ε, α,∇α) := ϕ(ε, α) + w1

(
w(α) + �2|∇α|2

)
,

(4)

where the first termϕ is the elastic strain energy density
and the second term is the dissipated energy density.
We assume the elastic strain energy density to be pos-
itively homogeneous of degree 2 with respect to ε at
fixed α, i.e., ϕ(rε, α) = r2ϕ(ε, α) ∀r ≥ 0, and to
decrease with respect to α at fixed ε. The dissipated
energy density is composed of a local and a non-local
part. The local termw1w(α) corresponds to the amount
of energy dissipated per unit volume to damage homo-
geneously a pristine material; the dissipation function
w(α) is a non-negative increasing function of α such
that w(0) = 0 and w(1) = 1, and we refer to w1 as the
specific fracture energy. The non-local term is assumed
to be a quadratic function of the gradient of the damage,
whereby � is an internal length.

The total energy at time t , Et (u, α), is the sum of the
strain energy and the potential energy of the external
forces:
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Et (u, α):=
∫

�

W (ε(u), α,∇α)d�−
∫

�

bt ·ud�−
∫

∂N�

f t ·udS,

(5)

where bt is the body force defined in � and f t is
the surface traction applied on ∂N�, both at time t ,
and ε(u) := sym(∇u) is the linear strain tensor. The
applied displacement ūt is applied on the complemen-
tary part of the boundary ∂D�.

In the time-discrete setting of the evolution problem,
given αp (the damage at the previous time tp), the dis-
placement and the damage field at time t = tp + �t
are found by solving the minimization problem:

(u, α) = arg locmin
(û,α̂)∈Ct×D(αp)

Et (û, α̂), (6)

where

Ct := {u ∈ H1(�;Rn) : u = ūt on ∂D�},
D(αp) := {α ∈ H1(�) : α ≥ αp}

(7)

are the spaces of the admissible displacement and dam-
age fields at time t from the previous state with damage
αp. Equation (6) requires (u, α) to satisfy:

∀(û, α̂) ∈ Ct × D(αp), ∃h̄ > 0 : ∀h ∈ [0, h̄]
Et (u + h(û − u), α + h(α̂ − α)) − Et (u, α) ≥ 0.

(8)

A necessary condition for this local constrained min-
imization is found taking into account only the first-
order expansion of the energy increment:
E ′
t (u, α)(û − u, α̂ − α) ≥ 0 ∀(û, α̂) ∈ Ct × D(αp),

(9)

where

E ′
t (u, α)(v, β) := d

dh
Et (u + hv, α + hβ)

∣∣∣∣
h=0

(10)

is the Gateaux derivative of the functional Et (u, α) in
the direction (v, β). For smooth solutions, we can show
with standard arguments of calculus of variations that
the first-order optimality condition (9) is equivalent to
the equilibrium equation and boundary conditions

divσ (ε, α) + bt = 0 in �, σ (ε, α) n = f t on ∂N� (11)

and to the Karush-Kuhn-Tucker (KKT) conditions and
boundary conditions

− Y (ε, α) + w1w
′(α) − 2�2w1�α ≥ 0, α − αp ≥ 0,

(−Y (ε, α) + w1w
′(α) − 2�2w1�α)(α − αp) = 0 on �,

∇α · n ≥ 0, α − αp ≥ 0, (∇α · n)(α − αp) = 0 on ∂�,

(12)

where n is the outer unit normal to the boundary. We
denote the KKT conditions as damage criterion, irre-
versibility and loading-unloading condition, respec-
tively. The conjugate quantities

σ (ε, α) := ∂ϕ(ε, α)

∂ε
, Y (ε, α) := −∂ϕ(ε, α)

∂α
(13)

are the stress tensor and the damage energy release
rate, respectively.

A crucial notion for the following analysis of dam-
age under multi-axial stress states is that of elastic
domains. In the context of local damage modeling,
these are the sets in which stresses and strains must
remain in order for thematerial to follow a linearly elas-
tic behavior without damage evolution, i.e., α = αp.
In our non-local context, their boundaries define the
elastic limits for materials with homogeneous damage
distribution (�α = 0). The elastic domains in the strain
space R(α) and in the stress space R∗(α) are defined
as the sets

R(α) :=
{
ε ∈ Sym : −∂ϕ(ε, α)

∂α
≤ w1w

′(α)

}
,

(14)

R∗(α) :=
{
σ ∈ Sym : ∂ϕ∗(σ , α)

∂α
≤ w1w

′(α)

}
,

(15)

where Sym denotes the space of symmetric tensors and
ϕ∗(σ , α) is the complementary energy density defined
as

ϕ∗(σ , α) := sup
ε̂∈Sym

σ · ε̂ − ϕ(ε̂, α). (16)

At a given value of α ∈ [0, 1) a damage model
enjoys the strain-hardening property if, ∀β > α,
R(β) ⊃ R(α) and the stress-softening property if
R∗(β) ⊂ R∗(α), see Pham and Marigo (2010). The
strain-hardening property is important to ensure the
uniqueness of the solution for the damage at a given
strain, while the stress-softening property is fundamen-
tal to allow for damage localization Pham and Marigo
(2010).

2.2 The standard phase-field model

For the model that we refer to in the following as the
standard phase-field model, the elastic strain energy
density is defined as

ϕ(ε, α) = a(α)ϕ0(ε) with

ϕ0(ε) = κ0

2
tr2(ε) + μ0|εdev|2, (17)
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where ϕ0 is the elastic strain energy density for a
homogeneous isotropic linear elastic material and a(α)

is the degradation function. This function describes
the degradation of the linear elastic properties with
damage; it is a decreasing function of α going from
a(0) = 1 to a(1) = 0. By Legendre transformation, the
complementary energy density ϕ∗(σ , α) is derived as

ϕ∗(σ , α) = s(α)ϕ∗
0 (σ ) with

ϕ∗
0 (σ ) = tr2(σ )

2n2κ0
+ |σ dev|2

4μ0
and s(α) := 1

a(α)
. (18)

Combining (14-18) we obtain

R(α) :=
{
ε ∈ Sym : κ0

2
tr2(ε) + μ0|εdev|2 ≤ −w1w

′(α)

a′(α)

}
,

(19)

R∗(α) :=
{
σ ∈ Sym : tr

2(σ )

2n2κ0
+ |σ dev|2

4μ0
≤ w1w

′(α)

s′(α)

}
.

(20)

The expressions of the elastic strain energy density
in (17) and of the complementary energy density in
(18) ensure that the transformation of spacesR(α) and
R∗(α)with varying α is a homothety centered in ε = 0
and σ = 0, respectively.

The selection of the degradation function a(α) and
of the dissipation function w(α) has a significant
impact on the description of the damaging behavior.
Two classical expressions are

AT1 : a(α) = (1 − α)2, w(α) = α, αpeak = 0, (21)

AT2 : a(α) = (1 − α)2, w(α) = α2, αpeak = 1

4
. (22)

These two models are both strain-hardening ∀α ∈
[0, 1], and stress-softening ∀α ∈ [αpeak, 1], whereas
they are stress-hardening ∀α ∈ [0, αpeak). These prop-
erties hold regardless of the loading direction due to the
homothetic evolution of R(α) and R∗(α) with α. The
primary difference between AT1 and AT2 is that AT1

displays a linearly elastic behavior up to a non-zero
elastic limit stress, whereas AT2 features a zero elastic
limit stress, therefore with AT2 an infinitesimal load is
sufficient to trigger the onset of damage.

For AT1 and AT2 applied to the 1D bar under tensile
loading it is shown in (Phamet al. 2011a, b) that, for suf-
ficiently long bars (L � �), the damage localization in
bands (crack nucleation) occurs at the level of damage
at which the behavior of the model changes from stress
hardening to stress softening, i.e., atα = αpeak. ForAT1

this transition corresponds to the elastic limit because

αpeak = 0. Under multi-axial loading, in (Pham and
Marigo 2013) it is also shown that with the AT1 model
and for a sufficiently large structure the transition from
a stress-hardening to a stress-softening phase is a nec-
essary and sufficient condition for the damage localiza-
tion in bands (or cracks). For different types of phase-
field models, these conclusions do not necessarily hold
and amore careful studywould be necessary, see (Pham
and Marigo 2013; Zolesi and Maurini 2023) for more
details.

From now on, we focus only on AT1-like models
(w(α) = α). Accordingly, we define the strength sur-
face S∗ as the set of stresses at the elastic limit, i.e., all
stresses at the boundary of the elastic domain R∗(α)

for α = αpeak = 0:

S∗ := ∂R∗(0) =
=

{
σ ∈ Sym : tr

2(σ )

2n2κ0
+ |σ dev|2

4μ0
= w1w

′(0)
s′(0)

}
. (23)

From S∗, one can define the tensile and compres-
sive strengths, σ+

e and σ−
e , as the maximum and min-

imal allowable stress σ for the uniaxial stress state
σ = σ e1 ⊗ e1, and the shear strength τe as the maxi-
mum allowable stress τ for stress states of pure shear
σ = τ e1 ⊗ e2. For the standard model, these quantities
are given by

σ+
e :=

√
2E0w1w′(0)

s′(0)
, τe :=

√
2μ0w1w′(0)

s′(0)
,

σ−
e := −

√
2E0w1w′(0)

s′(0)
. (24)

In the setting of a 1D bar under tensile loading, the
dissipated energy associated to the phase-field smeared
representation of a crack is regarded as the dissipation
upon rupture and is denoted as fracture toughness Gc.
In (Pham et al. 2011a, b), the 1D localized damage dis-
tribution is derived analytically and the fracture tough-
ness is accordingly expressed as

Gc = 4w1�

∫ 1

0

√
w(β)dβ, (25)

which for AT1 gives

Gc = 8

3
w1�. (26)

Thus, from the experimental determination of Gc and
σ+
e , it is possible to calibrate w1 and �. In this sense,

the regularization length can be viewed as a mate-
rial property. In Fig. 1, we plot the evolution of the
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Fig. 1 Elastic domains for the standard model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} (ν0 = 0.3). The domains for α = 0

(thick lines) are the nucleation domains (or strength surfaces).
Volumetric-deviatoric diagram a. Principal components diagram
under the plane-strain assumption b

elastic domains R(α) and R∗(α) with increasing α in
both the volumetric-deviatoric plane (Fig. 1a) and the
plane spannedby theprincipal strain/stress components
under the plane-strain assumption (Fig. 1b). Given the
symmetry ofR(α) andR∗(α)with respect to the volu-
metric axis in Fig. 1a and with respect to the bisector of
the first and third quadrants in Fig. 1b, we plot only half
ofR(α) (in blue) and half ofR∗(α) (in red). Note that
for the elastic domainsR∗(α) in Fig. 1b, depicted in the
plane of the principal components σxx −σyy , the value
of σzz is not constant but related to σxx and σyy through
the constitutive law and the plane-strain constraint. The
same is true for all the other figures depicting the elastic
domains R∗(α) in the principal stress components.

2.3 Limitations of the standard model

The standard phase-field model has major limitations
when considering multi-axial stress states. Regarding
nucleation, we mention two limits evident from the
shape of the elastic domains at α = 0 (Figure 1):

• Tension/compression symmetry: Both R(0) and
R∗(0) are ellipsoids in the strain and the stress

spaces, respectively. As a consequence, the tensile
and compressive strengths have the same magni-
tude. This is unrealistic for the majority of brittle
materials, which typically feature a compressive
strength one order of magnitude higher than the
tensile strength. Moreover, the shear strength often
increases with volumetric compression.

• Lack of flexibility: Assuming the elastic constants
κ0, μ0, the tensile strength σ+

e and the fracture
toughness Gc to be known, it is possible to cali-
brate w1 and � using (24) and (25). In this manner,
all the model parameters are determined, thus the
shape and size of the ellipsoidsR(0) andR∗(0) are
also fixed and it is not possible to match e.g. experi-
mentally known values of σ−

e and/or τe. This aspect
is what we term lack of flexibility of the model.

Regarding propagation, we report a major limit related
to the local behavior for α = 1:

• Zero residual stress: In the standard model, the
whole elastic strain energy density drives the dam-
age evolution. The consequence is that, once the
maximum damage α = 1 is locally reached, the
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elastic strain energy density vanishes regardless of
the loading direction and the elastic domain in the
stress space collapses to the point σ = 0 (Figure 1).
From now on, we denote the stress obtained for
α = 1, i.e.,

σ R(ε) := σ (ε, 1) = ∂ϕ(ε, 1)

∂ε
, (27)

as residual stress. Thus, for the standard model it
is σ R = 0. This correctly avoids the transmis-
sion of tensile tractions across the crack bound-
ary in mode 1 (opening), mode 2 and 3 (shear).
However, it also gives zero tractions under com-
pressive loading, thus it cannot properly represent
unilateral contact at the crack faces. Determining
the threshold that defines which load directions
should be associated with zero residual stress and
which should not to best model unilateral contact
is a nontrivial task. In Chambolle et al. (2018), it
is shown that a zero residual stress for tr(ε) ≥ 0
and a residual elastic energy density which depends
solely on the volumetric energy density associ-
ated to the negative part of the strain trace (e.g.,
ϕ(ε, 1) = 1

2 κ0 〈tr(ε)〉2−) can be used to approx-
imate the non-interpenetration constraint in the
sense of �-convergence.

2.4 Requirements for an ideal model

In light of the previous observations on the standard
model, we can now define the requirements for an ideal
model as follows:

• Strain-hardening: This ensures the uniqueness of
the solution for the damage at a given strain.

• Stress-softening: It is fundamental to allow for the
presence of solutions with localised damage and
hence for crack nucleation.

• Tension/compression asymmetry: At least we
require that |σ−

e | > σ+
e . For some materials

it would be ideal to have a shear strength that
increases with volumetric compression.

• Flexibility: The model should contain enough
parameters to allow for calibration of τe and σ−

e
(or at least one of the two) independently of σ+

e
(for given elastic properties and Gc).

• Crack-like residual stress: The ideal model does
not transmit stress through the crack faces in the
opening and shear modes but exhibits a compres-

sive residual stress. Hinging on the consistent vari-
ational framework in (Chambolle et al. 2018), we
require the presence of nonzero residual stresses
exclusively for tr(ε) < 0. Accordingly, an elastic
energy density such that ϕ(ε, 1) ∝ 〈tr(ε)〉2− fulfills
the requirement.

Several models have been proposed in the literature
to solve the limitations of the standard model under
multi-axial stress states. In the following, we analyze
some of these models in light of the requirements listed
above.

3 Available variational
phase-field models for multi-axial stress states

In this section, we review themain available variational
phase-field models for multi-axial stress states. The
advantages and limitations of such models in relation
to the requirements listed in Sect. 2.4 are then exem-
plified through numerical experiments in Sect. 5. The
models are all based on the following decomposition of
the elastic strain energy (also denoted as energy split)

ϕ(ε, α) = a(α)ϕD(ε) + ϕR(ε) with

ϕD(ε) + ϕR(ε) = ϕ0(ε), (28)

whereϕD(ε) andϕR(ε) are respectively thedegradable
and the residual components of the elastic strain energy
density. These components are non-negative and only
vanish for ε = 0; their sum yields the elastic energy
density of a pristine material ϕ0(ε), defined as in (17).
The idea behind this decomposition is that only certain
modes of deformation contribute to the driving force
for the nucleation and evolution of damage. Residual
stresses at full damage are given by

σ R(ε) = σ (ε, 1) = ∂ϕR(ε)

∂ε
. (29)

Only ϕD(ε) contributes to the energy release rate
Y (ε, α); accordingly, it is the only component which
affects the elastic domains

R(α) :=
{
ε ∈ Sym : ϕD(ε) ≤ −w1w

′(α)

a′(α)

}
, (30)

R∗(α) :=
{
σ ∈ Sym : ϕD(ε(σ , α)) ≤ −w1w

′(α)

a′(α)

}
, (31)

where ε(σ , α) is computed as the inverse of the con-
stitutive law in (13). The choice of the decomposition
strongly affects the evolution of the elastic domain and
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Fig. 2 Elastic domains for themodel with volumetric-deviatoric
split in the strain (blue dash-dotted line) and stress (red solid line)
space for α = {0, 0.25, 0.5, 0.75, 1} (ν0 = 0.3). The domains
for α = 0 are the nucleation domains (or strength surfaces). The

grey background indicates the parts of the elastic domains shared
with the standard model. Volumetric-deviatoric diagram a. Prin-
cipal components diagram under the plane-strain assumption b

thus the predicted crack nucleation and propagation
behavior under multi-axial stress states. Note that for-
mulating the decomposition in the form of (28) ensures
that R(α) evolves with α as a simple homothety cen-
tered in the origin. Unlike in the case of the standard
model, this is not always guaranteed for R∗(α).

3.1 The volumetric-deviatoric split

The split proposed by Amor et al. (Amor et al. 2009) is
based on the decomposition of the elastic strain energy
density into a deviatoric and a volumetric part:

ϕD(ε) = 1

2
κ0 〈tr(ε)〉2+ + μ0 |εdev|2,

ϕR(ε) = 1

2
κ0 〈tr(ε)〉2− (32)

leading to the residual stresses

σ R(ε) = κ0〈tr(ε)〉−I. (33)

This model was constructed to recover unilateral con-
tact conditions under compression. Indeed, in (Cham-

bolle et al. 2018) it is demonstrated that the volumetric-
deviatoric decomposition can be used to approximate
the non-interpenetration constraint in the sense of �-
convergence without affecting the tensile and shear
behavior in the presence of a crack. The elastic domains
are given in Appendix A.1 and illustrated in Fig. 2. In
this case, both domains evolve with α as homotheties
centered in the origin.

This split introduces the desired asymmetry in ten-
sion and compression, as shown in Table 1, without
adding residual stresses for tr(ε) > 0.However, it gives
no flexibility in the choice of the shear strength, which
is the same as in the standard model, nor in the com-
pressive strength.

3.2 The spectral split

The decomposition introduced by Miehe et al. (Miehe
et al. 2010) is based on the eigenvalues and eigenvec-
tors of the strain tensor
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Table 1 Tensile, compressive and shear strengths for all the analyzed models

Decomposition σ+
e σ−

e τe

None
√

2 E0 w1 w′(0)
s′(0) −

√
2 E0 w1 w′(0)

s′(0)

√
2μ0 w1 w′(0)

s′(0)

Vol.-dev.
√

2 E0 w1 w′(0)
s′(0) −

√
6μ0 w1 w′(0)

s′(0)

√
2μ0 w1 w′(0)

s′(0)

Spectral
√

2 E0(1+ν0)

1+ν0−2 ν20

w1 w′(0)
s′(0) −

√
E0(1+ν0)

ν20

w1 w′(0)
s′(0)

√
4μ0 w1 w′(0)

s′(0)

No-tension
√

2 E0(1−ν0)

1−ν0−2 ν20

w1 w′(0)
s′(0) −∞

√
2 E0(1−ν0)

1−ν0−2 ν20

w1 w′(0)
s′(0)

DP-like

{√
2 E0 w1 w′(0)

s′(0) for 0<γ<

√
2
3

μ0
κ0√

18(κ0 γ 2+2μ0)

(
√
6+γ )2

w1 w′(0)
s′(0) for γ≥

√
2
3

μ0
κ0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
√

18(κ0 γ 2+2μ0)

(
√
6−γ )2

w1 w′(0)
s′(0) for 0≤γ<

√
6

−∞ for γ≥√
6

√
(κ0 γ 2+2μ0)

w1 w′(0)
s′(0)

Star-convex
√

2 E0 w1 w′(0)
s′(0)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
√√√√ 2 E0

1+(1+γ �)
(n−1)ν0−1

n

w1 w′(0)
s′(0) for −1≤γ �<

n(n−1)
2

κ0
μ0

−∞ for γ �≥ n(n−1)
2

κ0
μ0

√
2μ0 w1 w′(0)

s′(0)

ϕD(ε) = 1

2
λ0〈tr(ε)〉2+ + μ0ε

+ · ε+,

ϕR(ε) = 1

2
λ0〈tr(ε)〉2− + μ0ε

− · ε− (34)

with ε+ = ∑
i 〈εi 〉+ei ⊗ ei and ε− = ∑

i 〈εi 〉−ei ⊗ ei ,
εi being the eigenvalues of the strain tensor and ei the
corresponding eigenvectors. The residual stress tensor

σ R(ε) = λ0〈tr(ε)〉−I + 2μ0ε
− (35)

may be non-zero also for tr(ε) > 0. This implies
that, even for positive crack opening, non-zero resid-
ual stresses are possible. As we will show through a
numerical example in Sect. 5, this undesirable coupling
between tension and compression behavior is problem-
atic during damage propagation.

The elastic domains R(α) and R∗(α) are detailed
in Appendix A.2. The stress-based domainR∗(α) does
not evolve as a simple homothety centered in the origin
with respect toα, see Fig. 3.We plot the elastic domains
only in the space of the principal components, because
the model cannot be expressed as a function of the
volumetric and deviatoric parts of the strain/stress ten-
sors. SinceR∗(α) is not a homotethy, we cannot define
a unique damage value αpeak which marks the tran-
sition between stress-hardening and stress-softening
behavior. With increasing damage,R∗(α) shrinks only
along tensile-dominated stress states. On the other
hand, the compression-dominated strength does not
necessarily have to decrease with increasing damage.
Therefore, even though the evolution of R∗(α) does
not fulfill stress-softening for compression-dominated
stress states, it still consistently represents damag-
ing behavior. The asymmetry in tension and com-

Fig. 3 Elastic domains for the model with spectral split in the
strain (blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} (ν0 = 0.3). The domains for α =
0 are the nucleation domains (or strength surfaces). The grey
background indicates the parts of the elastic domains shared with
the standard model. Principal components diagram under the
plane-strain assumption

pression is gained at the expense of the existence of
residual stresses. However, the compressive and shear
strengths cannot be calibrated independently of the ten-
sile strength even though they are different from those
of the standard model (see Table 1).
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3.3 The no-tension model

Freddi and Royer-Carfagni in (Freddi and Royer-
Carfagni 2010) use the theory of structured deforma-
tions ofDelPiero andOwen (DelPiero andOwen1993)
to propose a new elastic energy decomposition. They
also demonstrate that certain decompositions already
available in the literature (Lancioni andRoyer-Carfagni
2009; Amor et al. 2009) and the standard model can be
derived by leaning on this theory.

The assumption made is that the existence of micro-
cracks leads to a reduction in the elastic energy den-
sity of the sound material ϕ0(ε) due to the presence of
inelastic deformations known as structured deforma-
tions, denoted as η. These structured deformations are
constrained within a convex set Kε, which defines the
admissible “structure” of the micro-cracks. With ϕ0(ε)

and Kε determined, the residual elastic energy den-
sity is computed by solving the followingminimization
problem

η̄(ε) := argmin
η∈Kε

ϕ0(ε − η),

ϕR(ε) := min
η∈Kε

ϕ0(ε − η) = ϕ0(ε − η̄(ε)). (36)

The result of theminimizationproblem (36), reported
in Appendix A.3, is applied to the elastic energy den-
sity decomposition to derive ϕD(ε) = ϕ0(ε) − ϕR(ε).
By knowing ϕD and ϕR , the residual stresses can be
obtained as follows:

– if ε3 ≥ 0, σ R = 0,
– else if ε2 + ν0ε3 ≥ 0, σ R = μ0(3λ0+2μ0)

λ0+μ0
ε3e3 ⊗ e3,

– else if ε1 + ν0
1−ν0

(ε2 + ε3) ≥ 0,

σ R = 2μ0
λ0+2μ0

[
− λ0(3λ0+2μ0)(ε2+ε3)

λ0+2μ0
e1 ⊗ e1+

+ (2(λ0 + μ0)ε3 + λ0ε2) e2 ⊗ e2 +
+ (2(λ0 + μ0)ε2 + λ0ε3) e3 ⊗ e3

]
,

– else, σ R = 2μ0ε + λ0tr(ε)I.

The elastic domains are detailed in Appendix A.3 and
represented in Fig. 4 only in the space of principal com-
ponents, because the model cannot be expressed as a
function of the volumetric and deviatoric parts of the
strain/stress tensors. With the no-tension model, the
degree of asymmetry between tension and compres-
sion behavior is increased compared to the volumetric-
deviatoric and the spectral splits. However, the model
has some limitations common to the previous ones. The
residual stresses lead to the same problematic coupling
obtained with the spectral split. Furthermore, Cham-
bolle et al. (2018) study the behavior of this model as

Fig. 4 Elastic domains for the no-tension model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1}(ν0 = 0.3). The domains for α = 0
are the nucleation domains (or strength surfaces). The grey back-
ground indicates the parts of the elastic domains shared with the
standard model. Principal components diagram under the plane-
strain assumption

� → 0 and demonstrate that a relative displacement of
the crack faces results in infinite energy. This constraint
does not physically describe a crack. In addition, there
is still no flexibility in the choice of the compressive
and shear strengths (see Table 1).

3.4 The Drucker-Prager-like (DP-like) model

The introduction of structured deformations potentially
leads to extra flexibility, namely in the selection of the
convex set Kε. De Lorenzis and Maurini (De Lorenzis
andMaurini 2022) leverage this flexibility by introduc-
ing a new decomposition that depends on an additional
material parameter γ . This parameter allows for elas-
tic domains which partially recover the Drucker-Prager
model, commonly used for modeling compressive fail-
ure in cohesive-frictional materials like rocks or con-
crete, and enables the independent calibration of the
tensile and the compressive or shear strengths.

The residual energy is determined through the struc-
tured deformation problem (36), utilizing a convex
cone of admissible structured deformations

Kε := {η ∈ Sym : tr(η) ≥ γ |ηdev|} with γ ≥ 0.

(37)
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Fig. 5 Elastic domains for the DP-like model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} and γ = √

2μ0/κ0 (ν0 = 0.3). The
domains for α = 0 are the nucleation domains (or strength sur-

faces). The grey background indicates the parts of the elastic
domains shared with the standard model. Volumetric-deviatoric
diagram a. Principal components diagram under the plane-strain
assumption b

The elastic strain energy density decomposition, solu-
tion of the minimization problem (36), is detailed in
Appendix A.4. The residual stresses read as follows:

– if |εdev| < tr(ε)/γ, σ R = 0,
– else if |εdev| ≥ − γ κ0

2μ0
tr(ε),

σ R = 2κ0μ0
κ0γ 2+2μ0

(
(trε−γ |εdev|)I+

+ γ
(
γ − trε

|εdev|
)

εdev

)
,

– else, σ R = 2μ0εdev + κ0tr(ε)I.

With this model, the shear or the compressive strength
can be calibrated independently of the tensile strength
through the new parameter γ (see Figs. 5 and 6). How-
ever, during damage evolution the residual stresses
lead to the same undesired coupling between tension
and compression as with the spectral split and the no-
tension model.

3.5 Summary

In light of the requirements defined in Sect. 2.4, we
summarize the merits and disadvantages of the ana-

lyzed models in Table 2. None of the available splits
meets all requirements, as they either lack in flexibility
(a requisite that is most important for nucleation, since
this defines the strength surface of the material) or give
rise to residual stresses which contain spurious com-
ponents (a requisite that is most important for damage
evolution and for obtaining a crack-like behavior of the
fully developed damage localization bands). With the
goal of satisfying the above requirements under both
aspects of flexibility and crack-like residual stresses,
in the next section we introduce a novel model, which
we denote as the star-convex model.

4 The star-convex model

In this section, we propose a newmodel that aims at sat-
isfying the requirements defined in Sect. 2.4. As men-
tioned earlier, in (Chambolle et al. 2018) it is shown that
the volumetric-deviatoric split can be used to approxi-
mate the non-interpenetration constraint in the sense of
�-convergence. This success hinges on a residual elas-
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Fig. 6 Elastic domains for the DP-like model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} and γ = √

10μ0/κ0 (ν0 = 0.3).
The domains for α = 0 are the nucleation domains (or strength

surfaces). The grey background indicates the parts of the elastic
domains shared with the standard model. Volumetric-deviatoric
diagram a. Principal components diagram under the plane-strain
assumption b

Table 2 Analyzed models and requirements for an ideal model
undermulti-axial stress states: blue checks and red crosses denote
respectively success and failure in satisfying a requirement. For
the sake of compactness the last line of the table includes the

star-convex model even though it is first introduced in the fol-
lowing section. The star-convex model meets all requirements
with partial flexibility

Strain-hardening Stress-softening Tens./compr. asymmetry Flexibility Crack-like residual stress

Standard ✓ ✓ ✗ ✗ ✗

Vol.-dev. ✓ ✓ ✓ ✗ ✓

Spectral ✓ ✗ ✓ ✗ ✗

No-tension ✓ ✓ ✓ ✗ ✗

DP-like ✓ ✓ ✓ ✓a ✗

Star-convex ✓ ✓ ✓ ✓b ✓

a Partial flexibility: out of tensile, compressive and shear strengths, the model allows for the independent calibration of any pair, while
the third property is automatically fixed
b Partial flexibility: the model allows for the independent calibration of tensile and compressive or shear and compressive strengths,
while the third property is automatically fixed

tic strain energy density depending solely on the volu-
metric energy associated to a negative strain trace, i.e.,
ϕR(ε) ∝ 〈tr(ε)〉2−. All the other decompositions suf-
fer from spurious non-zero tangential stiffness for fully
developed cracks. Therefore, the volumetric-deviatoric
split represents a sound option to model crack-like

stresses in the phase-field framework, but lacks flex-
ibility in calibrating the compressive strength σ−

e inde-
pendently of the tensile strength σ+

e . To compensate
for this disadvantage but keep a residual energy den-
sity (and stress) exclusively related to a local volume
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contraction 〈tr(ε)〉−, we propose the following energy
decomposition

ϕD(ε) = μ0 |εdev|2 + 1

2
κ0

(
〈tr(ε)〉2+ − γ �〈tr(ε)〉2−

)
,

ϕR(ε) = (1 + γ �)
1

2
κ0 〈tr(ε)〉2−,

(38)

where γ � ≥ −1 is the additional parameter controlling
the σ−

e /σ+
e ratio. Hence, the volumetric and deviatoric

components of the stress are derived as

σ vol = κ0
{
a(α)〈tr(ε)〉+ + [

1 + γ � (1 − a(α))
] 〈tr(ε)〉−

}
I,

σ dev = 2a(α)μ0εdev. (39)

For a reason that will become clear later, we denote
the corresponding model as star-convex model (or star-
convex energy decomposition). In the following sub-
sections, we analyze the elastic domains for the pro-
posedmodel in the strain and stress spaces. InAppendix
B,weprovide further insights on thedevelopment of the
proposed model in comparison to alternative options.

4.1 Strain space

Figures 7, 8 and 9 illustrate the elastic domain of the
proposed model in the strain space, which is given by
the conditions
⎧
⎨
⎩

μ0 |εdev|2 + κ0
2 tr2(ε) ≤ −w1w

′(α)
a′(α)

, for tr(ε) ≥ 0

μ0 |εdev|2 − γ � κ0
2 tr2(ε) ≤ −w1w

′(α)
a′(α)

, for tr(ε) < 0
.

For tr(ε) ≥ 0, the newmodel shares the sameboundary
of the elastic domain ∂R(α) with the standard model
and ∂R(α) is an ellipse in the tr(ε)−|εdev| diagram.On
the same diagram but for tr(ε) < 0, the parameter γ �

determines the type of conic section (Fig. 7) such that

• for −1 ≤ γ � < 0, ∂R(α) is an ellipse,
• for γ � = 0, ∂R(α) is a degenerate parabola (hori-
zontal straight line),

• for γ � > 0, ∂R(α) is a hyperbola lying above the

asymptote |εdev| = −
√

κ0
2μ0

γ � tr(ε)

In particular,we retrieve the standardmodelwhenγ � =
−1 and the volumetric-deviatoric split for γ � = 0.

For −1 ≤ γ � ≤ 0, the elastic domain R(α) is con-
vex, whereas for γ � > 0 ∂R(α) consists of the ellipse
defined over tr(ε) > 0 smoothly joined at tr(ε) = 0
with the hyperbola defined over tr(ε) < 0. Hence, in

this case R(α) is not convex but rather 0-star-convex,
i.e. ∀ε ∈ R(α) and ∀s ∈ [0, 1], sε ∈ R(α) Hansen
et al. (2020). This is the reason for denoting the new
model as star-convex model (or star-convex decompo-
sition).

Note that starting from the Drucker-Ilyushin postu-
late, which requires the non-negativity of the interior
work in a strain cycle, it can be proved that an elasto-
plastic material must have a convex elastic domain.
However, the same thermodynamic postulate for an
elasto-damaging material does not necessarily imply
convexity, but at most star-convexity with respect to 0
(Marigo 1989).

The star-convex model enjoys the strain-hardening
property ∀α ∈ [0, 1). Additionally, for γ � > 0, the
hyperbola for tr(ε) < 0 evolves but keeps a constant
asymptote as this depends only on the elastic constants
and on γ �. Since ∂R(α) lies above the asymptote (grey
dashed line in Fig. 7), the strain states below the asymp-
tote are unable to produce additional damage and the
material behaves as linearly elastic. Accordingly, the
compressive strength can be calibrated by modifying
the slope of the asymptote by tuning γ �, thus providing
the desired flexibility in nucleation. At the limit α = 1,
the star-convex elastic domain becomesR(1) = Sym,
meaning that for a fully broken material the whole
strain space is admissible.

4.2 Stress space

The elastic domain in the stress space R∗(α) (Figs. 8,
9) is the set of σ ∈ Sym such that

– if tr(σ ) ≥ 0, 1
4μ0

|σ dev|2+ 1
2 κ0 n2

tr2(σ ) ≤ w1w
′(α)

s′(α)
,

– if tr(σ ) < 0, 1
4μ0

|σ dev|2 +
− γ � a(α)2

2 κ0 n2 (1+γ � (1−a(α)))2
tr2(σ ) ≤ w1w

′(α)
s′(α)

.

Similarly to the strain space, for tr(σ ) ≥ 0 the star-
convex split shares with the standard model the same
elliptic boundary ∂R∗(α) in the tr(σ )−|σ dev| diagram,
whereas for tr(σ ) < 0

• for −1 ≤ γ � < 0, ∂R∗(α) is an ellipse,
• for γ � = 0, ∂R∗(α) is a degenerate parabola (hor-
izontal straight line),

• for γ � > 0, ∂R∗(α) is a hyperbola lying above

the asymptote |σ dev| = − 2 a(α)
n(1+γ �(1−a(α))

√
2μ0
κ0

γ � tr(σ ).

A three-dimensional representation of R∗(0) is
given for γ � = 1, 5 in Fig. 10. For −1 ≤ γ � ≤ 0, the
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Fig. 7 Nucleation domain
in the strain space for the
star-convex model with
varying γ � (ν0 = 0.3). For
tr(ε) < 0, the boundary is
an ellipse if −1 ≤ γ � < 0, a
degenerate parabola if
γ � = 0 and a hyperbola
(with the dashed grey line as
asymptote) if γ � > 0

Fig. 8 Elastic domains for the star-convex model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} for γ � = 1 (ν0 = 0.3). The domains
for α = 0 are the nucleation domains (or strength surfaces). The
grey background indicates the parts of the elastic domains shared

with the standard model. Volumetric-deviatoric diagram a: dam-
age cannot evolve for loading directions below the black dashed
line in the strain spacewhich is also the constant asymptote. Prin-
cipal components diagram under the plane-strain assumption b

domain R∗(α) is convex, whereas for γ � > 0 R∗(α)

is not convex but 0−star-convex, i.e. ∀σ ∈ R∗(α) and
∀s ∈ [0, 1], sσ ∈ R∗(α) Hansen et al. (2020).

The star-convex model enjoys the stress-softening
property ∀α ∈ [0, 1). At the limit α = 1, the star-
convex elastic domain becomes strictly convex and
collapses to the negative hydrostatic pressure half-line,
meaning that non-zero deviatoric and positive volumet-
ric stresses are not admissible in a fully brokenmaterial.
In particular, according to (27), the stress tensor when
α = 1 is

σ R = (1 + γ �) κ0 〈tr(ε)〉− I, (40)

thus, the mapping between admissible strains and
admissible stresses for α = 1 is such that only negative
volumetric strains can produce work through negative
volumetric stresses. In this manner, the model fulfils
the crack-like stress requirement.

Equation (40) shows that, for negative volumetric
strains, the volumetric stiffness for α = 1 is κ0(1+γ �).
On the other hand, according to (39), it is equal to
κ0 when α = 0. Therefore, for negative volumetric
strains, the volumetric stiffness of a fully broken mate-
rial is larger than the one of the pristine material when
γ � > 0. This increase can be explained by consider-
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Fig. 9 Elastic domains for the star-convex model in the strain
(blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} and γ � = 5 (ν0 = 0.3). The domains
for α = 0 are the nucleation domains (or strength surfaces). The
grey background indicates the parts of the elastic domains shared

with the standard model. Volumetric-deviatoric diagram a: dam-
age cannot evolve for loading directions below the black dashed
line in the strain spacewhich is also the constant asymptote. Prin-
cipal components diagram under the plane-strain assumption b

ing that the damage evolution occurs only above the
asymptote, where the deviatoric contribution exceeds
the volumetric one. Damage evolution redistributes the
stiffness such that the deviatoric stiffness decreases to
zero and the volumetric stiffness increases, while the
total elastic energy density (which is the sum of the vol-
umetric anddeviatoric contributions) always decreases.

Defining as usual the strength surface as the bound-
ary of the elastic domain in the stress space for
α = αpeak = 0, i.e. ∂R∗(0), we can derive the ten-
sile strength, the shear strength and the compressive
strength as

σ+
e =

√
2 E0 w1 w′(0)

s′(0)
, τe =

√
2μ0 w1 w′(0)

s′(0)
,

σ−
e =

⎧⎨
⎩

−
√

1
1+ (1+γ �)

(n−1) ν−1
n

2 E0 w1 w′(0)
s′(0) for γ � <

n(n−1)
2

κ0
μ0

,

−∞ otherwise.

(41)

From (41) we see that the shear strength τe is inde-
pendent of γ �. Thus, the flexibility offered by the star-
convex model is exclusively related to the compressive
stength σ−

e .

5 Numerical tests

As follows, we demonstrate the advantages and limi-
tations of the existing models outlined in Sect. 3 and
of the novel star-convex model introduced in Sect. 4
through numerical experiments. These are carried out
on a bi-axially loaded disk, a plate with hole under
compression and two blocks in relative sliding.

Computational solvers for phase-field fracture mod-
els based on the finite element method seek a quasi-
static solutionby solving the time- and space-discretized
weak problem. At time step t , we look for the solution
of the space-discretized weak form of (11) and (12) by
using an alternate minimization scheme implemented
in FEniCSx Scroggs et al. (2022a, b). In Bourdin et al.
(2008), such scheme was introduced in the context of
the standard model taking advantage of the separate
directional convexity of functions u → Et (u, ·) and
α → Et (·, α) (see alsoAmbati et al. (2015); Gerasimov
and De Lorenzis (2016) for a detailed discussion on
monolithic and alternate minimization schemes). With
this scheme, using as initial guess (uk−1, αk−1), we
first solve the problem in u using a Newton-based non-
linear solver with line search and a maximum of 100
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Fig. 10 Three-dimensional nucleation domain in the stress space for the star-convex model with γ � = 1 a and γ � = 5 b (ν0 = 0.3)

iterations, which gives us the output uk . Then, starting
from (uk, αk−1), we solve the constrained nonlinear
problem inα using a reduced-space active set solver for
variational inequalities based onNewton’smethodwith
a maximum of 100 iterations, which returns αk . Conse-
quently, we calculate Ru , the L2-norm of the residual
for the displacement problem for (uk, αk). The conver-
gence of the alternate minimization scheme is achieved
if Ru is below the tolerance level (tol =10−6) .

For tr(ε) < 0, the DP-like model and the star-
convex model display a linearly elastic behavior with
no damage for |εdev| < − γ κ0

2μ0
tr(ε) and |εdev| <

−
√

κ0
2μ0

γ � tr(ε), respectively. By overlapping these

two lines, we obtain the relationship γ = √
2γ �μ0/κ0

among the parameters γ and γ �. Accordingly, we
adopt γ � = {1, 5} for the star-convex model and
γ = {√2μ0/κ0,

√
10μ0/κ0} for the DP-like model to

facilitate their comparison.

5.1 Bi-axially loaded disk test

We first focus on nucleation and consider a bi-axially
loaded disk of diameter D under the plane-strain
assumption. The geometry and boundary conditions
are illustrated in Fig. 11. The center of the disk coin-
cides with the origin of the cartesian reference system
x-y and the out-of-plane direction is denoted with z.
We set D = 1, E0 = 100, ν0 = 0.3, w1 = 1.5 and
� = 0.04. At t = 0, the material is assumed to be
intact, i.e., α = 0 everywhere. The goal of the test is to
numerically determine the elastic domains of the vari-
ousmodels forα = 0 in the εxx -εyy andσxx -σyy planes.

Fig. 11 Geometry and loading for the bi-axially loaded disk

Defining on the εxx -εyy plane the angle θ ∈ [0, 2π),
for a given θ we prescribe a displacement ūt =
t (x cos(θ), y sin(θ)) on the disk boundary. In the lin-
early elastic regime, this Dirichlet boundary condition
ensures that the disk is subjected to a homogeneous
strain along the θ -direction, i.e.,

εyy

εxx
= tan(θ). (42)

Maintaining θ fixed, we increment the value of t until
we reach the elastic limit, while always imposing the
Dirichlet boundary condition α = 0 on the whole
boundary of the disk.

We discretize the problemwith standard linear trian-
gular finite elements using an unstructured mesh with
average size h = �/3.

Figures 12 and 13 illustrate the contour of the elastic
domain in the strain and stress planes at α = 0 for all
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models. The blue and red lines correspond to the theo-
retical strain and stress domains, respectively, while the
dots of the respective colors represent the numerically
obtained strain and stress states right before damage
nucleation. In some cases, the dots are absent because
certain loading directions do not reach the limit or reach
it after a very large number of time steps (outside the
range of the figure). For each load direction we plot the
damage field at the time step when nucleation occurs, if
it occurs; for directions at which no nucleation occurs
we plot a zero damage field for completeness. Hence,
the test serves not only as a nucleation test but also pro-
vides valuable insights into the possible post-critical
crack patterns under various loading conditions.

Figure 12a presents the simulation results for the
standardmodel,whichdisplays elliptical elastic domains
and maintains symmetry of behavior in both tension
and compression. Accordingly, the elastic domains are
symmetric not only with respect to the bisector of the
first and third quadrants but also with respect to the
bisector of the second and fourth quadrants.

Figure 12b illustrates the outcomes of the test using
the volumetric-deviatoric model. The “tensile” part
(tr(ε) ≥ 0) behaves as in the standard model, while an
asymmetry in the compressive behavior is introduced
by the split. Due to the plane-strain assumption, there
is no purely volumetric direction; as a result, the elas-
tic domain is closed, leading to damage nucleation for
every loading direction. In the third quadrant of Fig.
12b nucleation occurs in all cases, although in three
of them the damage level is so low to be hardly visi-
ble. Understanding why these cases nucleate but do not
localize into a crack would require a second-order sta-
bility analysis for multi-axial stress states Pham and
Marigo (2013); Baldelli and Maurini (2021), a task
going beyond the scope of the present work and cur-
rently in progress (Zolesi and Maurini 2023).

Figure 12c and 12d provide the results for the spec-
tral and the no-tension models, respectively. In these
cases, the domains are open since for some directions
(some values of θ ) nucleation cannot occur. The extent
of the no-nucleation region varies for the spectral and
the no-tension models but cannot be adjusted based
on experimental results. As discussed in Sect. 3.2, the
evolution of the elastic domain in the stress plane for
the spectral split is a complex non-homothetic trans-
formation with respect to the origin that does not enjoy
the stress-softening property. This can explain the pres-

ence in Fig. 12c of some localized damage fields not
reaching α = 1.

Figure 12e and 12f depict the results of the test
using the DP-like model with γ = √

2μ0/κ0 and
γ = √

10μ0/κ0, respectively. Similar to the spec-
tral and no-tension models, the domains remain open,
hence for some values of θ no nucleation occurs. How-
ever, the opening angle of the no-nucleation region
can now be adjusted using the additional parameter
γ , namely, it becomes wider with increasing γ . At the
same time the region of ∂R(α) and ∂R∗(α) sharedwith
the standard model becomes narrower as γ increases.
While on this shared region the nucleation behavior is
the same as in the standard model (the dots have the
same locations), the propagation behavior (which can
be appreciated looking at the plotted localized dam-
age fields after nucleation) is different. For instance,
for γ = √

10μ0/κ0 in Fig. 12f, the cracks exhibit
abnormal thickening with respect to those in Fig. 12a
even in the first quadrant where the shared portion lies.
Hence, while this model exhibits the desired flexibility
in nucleation, it leads to a problematic behavior during
propagation related to the non-zero residual stresses for
tr(ε) > 0.

Finally, Fig. 13a and 13b illustrate the results for
the star-convex split with γ � = {1, 5}. Similar to the
DP-like model, the star-convex split also exhibits a cer-
tain flexibility in the opening angle of the no-nucleation
region. As shown in the figures, for increasing values
of γ �, the opening angle widens. At the same time, the
star-convex split shows a better propagation behavior,
without the abnormal thickening of cracks observed
with the DP-like model. In fact, the residual stresses
are entirely absent for tr(ε) ≥ 0 and proportional to
the negative volumetric strain.

5.2 Plate with hole test

We now discuss the compression of a plate with hole
under plane-strain conditions. Assuming the problem
to be symmetric, the test is performed on a quarter of
the plate as shown in Fig. 14.

ChaoCorreas et al. (2023) performed recently a sim-
ilar nucleation test undermultiaxial loading, comparing
the standardmodel and the no-tensionmodel to the pre-
diction of cohesive-zone models and the finite-fracture
mechanics approach.
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Fig. 12 Analytical (lines) versus numerical (dots) nucleation domains and damage fields after nucleation for the available models
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Fig. 13 Analytical (lines) versus numerical (dots) nucleation domains and damage fields after nucleation for the star-convex model

Fig. 14 Geometry and loading for the plate with hole

Theplate is a squarewith side length 2L and a central
hole with radius R. The hole center coincides with the
origin of both the cartesian reference system x-y and
the polar one r -θ . The out-of-plane direction is denoted
with z. Rigid body motions are prevented by the sym-
metry constraints uy(x, y = 0) = 0 and ux (x =
0, y) = 0 and compression is prescribed through the
upper vertical displacement uy(x, y = L) = −t L
with t going from 0 up to 0.3. At t = 0, the mate-
rial is assumed to be intact, i. e., α = 0 everywhere.
We adopt L = 1, R = 0.3, E0 = 100, ν0 = 0.3,
w1 = 1 and � = 0.02. We discretize the problem with
standard bilinear quadrilateral finite elements using an
unstructured mesh with average size h = �/3.

During the elastic regime, the highest stress concen-
tration is expected at the boundary of the hole (r = R),
along which the radial stress σrr and the tangential
stress σrθ are both zero (σrr = σrθ = 0) and the hoop
stress σθθ and the out-of-plane stress σzz are related
by the plane-strain condition σzz = −ν0σθθ . Along
the boundary of the hole, point A (r = R, θ = π/2)
undergoes the maximum tensile hoop stress σA

θθ ≥ 0
whereas point B (r = R, θ = 0) is subjected to the
lowest compressive hoop stress σB

θθ ≤ −σA
θθ .

We now wonder whether the crack will originate
from A or B. Experiments with this setup for many
brittle materials produce a so-called “splitting” crack
that starts at pointA and proceeds parallel to the loading
direction upwards (Romani et al. 2015). On the other
hand, nucleation as predicted by a phase-field model
will start from the point at which the stress state first
touches the limit curve ∂R∗(0). For first nucleation
in A, the stress state in A must reach the intersection
between ∂R∗(0) and the half-line σzz = −ν0σθθ ≤ 0.
We denote with σ+

θθe
the value of the hoop stress at this

intersection point (this concept is exemplified in Fig.
15 for the star-convexmodel). Similarly, for first nucle-
ation in B, the stress state in B must reach the intersec-
tion between ∂R∗(0) and the half-lineσzz = −ν0σθθ ≥
0. We denote with σ−

θθe
the value of the hoop stress at

this intersection point (Fig. 15). The |σ−
θθe

/σ+
θθe

| ratio
increases with the compressive to tensile strength ratio
|σ−

e /σ+
e | with a trend which is specific to each model.

Since when L � R, σB
θθ = −3σA

θθ (Kirsch 1898), we
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Fig. 15 Effect of γ � on the nucleation domain in the plane
spanned by hoop stress and out-of-plane stress for the plate
with hole test. Elastic limit hoop stresses (a): the red solid line
and the black dashed line represent the contour ∂R∗(0) for
γ � = {−1, 0, 1, 2, 5} and the stress state under the plane-strain

assumption, respectively. Their intersection determines the com-
pressive limitσ−

θθe
(blue on the left) and the tensile limitσ+

θθe
(blue

on the right). Compressive-tensile hoop limits ratio (b): trend of
the limits ratio vs. γ � (red solid line). For γ � > γ �

3 the ratio is
greater than 3, for γ � ≥ γ �∞ the ratio is equal to ∞

Table 3 |σ−
θθe

/σ+
θθe

| ratio
for the plate with hole. With
reference to Fig. 14, first
nucleation is expected in B
when the ratio is well below
3. Nucleation is expected in
A when the ratio is well
above 3

Model |σ−
θθe

/σ+
θθe

| ν0 = 0.3

Standard 1 = 1

Vol.-dev.

√
3(1−ν20 )

2(1+ν30 )
≈ 1.15

Spectral

√
1−ν0−ν20

ν0
≈ 2.60

No-tension ∞ = ∞

DP-like

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

√
3(1−ν0)(γ∞ζ+γ 2)√

(1−2ν0)(1+ν0)(γ∞−γ )
for γ < ζ = 3(1−2ν0)

γ∞(1+ν0)

γ∞+γ
γ∞−γ

for ζ ≤ γ < γ∞ =
√
6(1−ν0+ν20 )

(1+ν0)

∞ otherwise

ζ ≈ 0.55

γ∞ ≈ 1.67

Star-convex

{√
γ �∞+1
γ �∞−γ � for γ � < γ �∞ = 2(1+ν30 )

(1+ν0)2(1−2ν0)

∞ otherwise
γ �∞ ≈ 3.04

can infer that if the |σ−
θθe

/σ+
θθe

| ratio is well below 3,
nucleation will occur in B, and if it is well above 3, it
will occur in A (Table 3).

For the standard phase-field model, which has an
elastic domain symmetric in tension and compression,
damage starts at point B, as shown in Fig. 16b. Addi-
tionally, the asymmetry alone is not sufficient to prevent
crack initiation in B, as visible in Figs. 16d, 16f and 17f
as for these models the |σ−

θθe
/σ+

θθe
| ratio is well below 3

(Table 3). Unlike the other models, the DP-like and the
star-convex models contain the additional parameters
γ and γ � that allow for the flexible calibration of the

strength ratio |σ−
θθe

/σ+
θθe

|. For the star-convex model,

Fig. 15 shows how the |σ−
θθe

/σ+
θθe

| ratio is affected by
the variation of γ �.

Figures 16 and 17 present the results of the plate
with hole test. For each model, we show the plot of
the vertical stress reaction per unit thickness Ry , equal
to the integral of σyy over the upper boundary, against
the pseudo-time t , as well as the damage field at the
last time step. Some models do not reach iterative con-
vergence of the numerical solver for all time steps; for
these models, we report the results up to the last con-
verged time step (a brief discussion on iterative con-
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Fig. 16 Results of the plate
with hole test for the
standard,
volumetric-deviatoric,
spectral and no-tension
models. Vertical reaction
against pseudo-time t a, c,
e, g: the black dash-dotted
line corresponds to the
elastic phase, the e point to
damage nucleation and the
red solid line to the
post-nucleation phase.
Damage fields b, d, f, h (b)

(d)

(f)

(h)
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Fig. 17 Results of the plate
with hole test for the
DP-like (γ =
{√2μ0/κ0,

√
10μ0/κ0})

and star-convex models
(γ � = {1, 5}). Vertical
reaction against
pseudo-time t a, c, e, g: the
black dash-dotted line
corresponds to the elastic
phase, the e point to damage
nucleation and the red solid
line to the post-nucleation
phase. Damage fields b, d, f,
h

(b)

(d)

(f)

(h)
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vergence issues is postponed to Sect. 5.4). In the Ry

vs. t plots, the elastic limit point e marks the transition
between the elastic regime (black dash-dotted line) and
the stage after damage nucleation (red solid line). From
Figs. 16a, c, e and 17e we observe that, in models for
which nucleation occurs at point B, the elastic limit e
is met at different time steps. While the volumetric-
deviatoric, spectral, and star-convex split with γ � = 1
introduce tension/compression asymmetry, this is not
sufficient to obtain damage onset at point A. In the
case of the spectral split in Fig. 16f, the nucleation of
the diffuse damage in B occurs before vertical local-
ization at point A. Consequently, the nucleation point
e in Fig. 16e corresponds to the initiation of damage in
B. Thus, the only models that exhibit a crack propaga-
tion consistent with the experimental evidence Romani
et al. (2015) are those with a certain level of flexibility,
adjustable with the parameter γ (DP-like model) or γ �

(star-convex split), along with the no-tension model.
However, in the case of the DP-like model (Fig. 17d),
for γ = √

10μ0/κ0, the damage exhibits a diffuse pat-
tern rather than being fully localized. This is attributed
to the phenomenon of crack thickening as γ increases,
as previously highlighted in the bi-axially loaded disk
test.

5.3 Sliding test

The last test concerns a square plate of side L with a
crack in the center, as shown in Fig. 18, under plane-
strain conditions. The bottom left corner of the plate
coincides with the origin of the cartesian reference
system x-y and the out-of-plane direction is denoted
with z. In order to emulate a crack using a localized
damage field, we impose the Dirichlet boundary con-
dition α(x, y = L/2) = 1 and we solve the minimiza-
tion problem (6) while maintaining the displacement
field homogeneously equal to zero. Starting from the
obtained damage field,we apply theDirichlet boundary
conditions inFig. 18 to the displacement field: the lower
part of the plate is blocked in both directions and a hor-
izontal displacement ux (x, y = L) = t L is applied to
the upper part. Furthermore, the two sides are vertically
blocked in their lower part uy(x = 0, y ≤ L/2) =
uy(x = L , y ≤ L/2) = 0 andwe apply a constant (i.e.,
independent of t) vertical displacement on the upper
part uy(x = 0, y ≥ L/2) = uy(x = L , y ≥ L/2) =
ūL , where ū = 0.1. This test aims to emphasize the

Fig. 18 Geometry and loading for the sliding test

importance of having zero residual shear stresses at
full damage. Indeed, if these stresses are not zero, even
though the two faces of the block are separate, phys-
ically unrealistic stresses are transmitted during slid-
ing. This test is inspired by the one illustrated in Strobl
and Seelig (2016) with additional separation of the two
blocks. This excludes the possibility that the transmit-
ted stresses are attributable to friction. We set L = 1,
E0 = 100, ν0 = 0.3, w1 = 1 and � = 0.05. We dis-
cretize the problemwith standard bilinear quadrilateral
finite elements using a structured mesh with h = �/5.

Figure 19 depicts the deformed configuration at
t = 0.2 for each model, except for the spectral and
no-tension models, both of which experience conver-
gence issues and thus stop at t = 0.06. The no-tension
model and the DP-like model for γ = √

10μ0/κ0 in
Fig. 19d and f, respectively, display unrealistic defor-
mations. Figure 20 illustrates for each model the hor-
izontal stress reaction per unit thickness Rx , given by
the integral of σxy over the upper side of the plate,
against t , compared to the horizontal elastic stress reac-
tion of an undamaged plate (green dotted line). Given
the presence of the crack and the initial separation,
we expect the horizontal reaction force to be iden-
tically zero. However, this occurs only for the stan-
dard model, which has no residual stresses, and for
the volumetric-deviatoric and the star-convex models,
both of which have residual stresses proportional to
〈tr(ε)〉−. The spectral and the no-tension models, as
well as the DP-like model for γ = √

10μ0/κ0, exhibit
a significant reaction force, slightly lower than half of
that observed in an undamaged material. The DP-like
model for γ = √

2μ0/κ0 initially displays no reaction
and a deformation as shown in Fig. 19, which is accept-
able. However, it subsequently shows an increase in the
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Fig. 19 Damage fields on the deformed configurations for all models

reaction force. This is because a lower γ value delays
the undesired residual stress effect.

5.4 Iterative convergence issues

As described in Sect. 5, the iterative convergence cri-
terion of the alternate minimization is met when Ru <

tol. Given the convexity of the functional in the sep-
arate problems of displacement and damage, the stan-
dard model is robust in terms of iterative convergence.
However, due to the high non-linearity introduced by
the energy decompositions, for the other models iter-
ative convergence is often problematic. In fact, we
already showed in Sects. 5.2 and 5.3 that, for each
model,we had to stop specific numerical tests at the first
non-converging time step. The presented results exclu-
sively relate to converged simulations. On the other
hand, the same tests with modified parameters can lead
to no convergence. In Fig. 21, we illustrate the exem-
plary case of an angle θ in the bi-axially loaded disk test
using the star-convexmodel, forwhich iterative conver-
gence is lost when varying the mesh size h. This issue
calls for a thorough numerical investigation addressing
the specific non-linearities introduced by the splits. It
is a crucial issue to be resolved for the proper numeri-
cal implementation of phase-field modeling of fracture
under multi-axial stress states, but it goes beyond the
scope of this work.

Fig. 20 Horizontal reaction vs. pseudo-time t obtained from
different models: linear elasticity (green dotted line) and phase-
field models with spectral split (black solid line with empty
circles), no-tension model (purple dashed line), DP-like model
with γ = √

2μ0/κ0 (red dash-dotted line), DP-like model with
γ = √

10μ0/κ0 (blue solid line with point marker). The grey
solid line corresponds to the star-convex split with γ � = {1, 5},
to the volumetric-deviatoric split (γ � = 0) and to the standard
model (γ � = −1)

Fig. 21 Bi-axially loaded disk with the star-convex model(
γ ∗ = 1, θ = 3

4π
) : Ru against iterations k of the alternate min-

imization scheme for the time step at which the elastic limit is
reached. All the parameters are as in Sect. 5.1 for the solid blue
line

(
h = �

3

)
. For the solid red line, only the mesh size differs(

h = �
5

)
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6 Conclusions

In this contribution, we focused on variational phase-
field models for brittle fracture under multi-axial
stress states based on energy decomposition. We first
reviewed some available models of this type, namely
the volumetric-deviatoric (Amor et al. 2009), the spec-
tral (Miehe et al. 2010), the no-tension (Freddi and
Royer-Carfagni 2010) and the DP-like models (De
Lorenzis and Maurini 2022). We then proposed a new
model that we denoted as star-convex model. All these
models are of phenomenological nature and focus
on reproducing macroscopic behavioral features. The
major contents and findings of the paper can be sum-
marized as follows:

• We defined essential requirements for a phase-field
model of brittle fracture dealing with multi-axial
stress states (Sect. 2.4): strain-hardening, stress-
softening, tension/compression asymmetry, flexi-
bility (i.e., the ability to independently calibrate not
only the uniaxial tensile strength but also the uni-
axial compressive strength and the shear strength),
and crack-like residual stress.

• In light of these requirements we discussed the
advantages and limitations of the available models.
As summarized in Table 2, none of the analyzed
existing decompositions was found to meet all the
requirements.

• Our newly proposed star-convex model, based on a
minimal modification of the volumetric-deviatoric
decomposition, is equipped with a γ � parameter
that allows for the independent calibration of com-
pressive and tensile strengths. Such partial flexibil-
ity can be extended to the shear strength by modi-
fying the softening laws as analyzed in (Zolesi and
Maurini 2023). Additionally, the model satisfies all
other requirements. Thus, it represents a very sim-
ple but effective step forward towards the realis-
tic prediction of brittle fracture mechanisms under
multiaxial stress states.

The issue of iterative convergence, which is crucial
for the robustness of the simulations with all the pre-
sented models, remains open and may well be the topic
of further investigations.
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