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Abstract

Phase-field models of brittle fracture are typically endowed with a decomposition of the elastic strain energy density
in order to realistically describe fracture under multi-axial stress states. In this contribution, we identify the essential
requirements for this decomposition to correctly describe both nucleation and propagation of cracks. Discussing the
evolution of the elastic domains in the strain and stress spaces as damage evolves, we highlight the links between the
nucleation and propagation conditions and the modulation of the elastic energy with the phase-field variable. In light
of the identified requirements, we review some of the existing energy decompositions, showcasing their merits and
limitations, and conclude that none of them is able to fulfil all requirements. As a partial remedy to this outcome, we
propose a new energy decomposition, denoted as star-convex model, which involves a minimal modification of the
volumetric-deviatoric decomposition. Predictions of the star-convex model are compared with those of the existing
models with different numerical tests encompassing both nucleation and propagation.
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1. Introduction

Francfort and Marigo revisited Griffith’s criterion from a variational perspective by casting it into a global energy
minimization framework; thus, they formulated a general principle circumventing the need for ad-hoc criteria to
handle arbitrarily complex crack topologies in 2D or 3D [1]. The direct application of the ensuing (so-called sharp-
crack) model is limited by the difficulty to handle displacement jumps in the numerical setting. Phase-field approaches
come into play as a regularization of the sharp-crack model [2, 3] and offer a smeared description of the crack as the
localization of an auxiliary variable, i.e., the phase-field variable. The regularized model is prone to a simple numerical
treatment using standard finite element discretizations with smooth basis functions; it introduces a regularization
length ℓ, which defines the typical width of the localization bands representing the approximation of the cracks.

Although originally developed to describe crack propagation, phase-field models are naturally able to predict the
evolution of damage from a pristine material, which can be regarded as the capability to predict nucleation of cracks.
From a theoretical perspective, this ability can be justified by treating the auxiliary regularization variable as a damage
variable and interpreting the model as a gradient damage model endowed with a finite internal length ℓ [4]. Gradient
damage modeling in the quasi-static rate-independent setting defines the system evolution through the three principles
of stability, irreversibility and energy balance [5]. In particular, the stability requirement is equivalent to local energy
minimization, in contrast to the starting sharp-crack problem which instead calls for global energy minimization.
Evolution following local energy minima is not only numerically convenient when dealing with large-scale problems,
but also more physically reasonable as it does not require crossing energy barriers [6–8].

Following the three principles of gradient damage model evolution, localization of damage naturally occurs upon
the loss of stability of the homogeneous solution whose threshold depends on the length ℓ [4]. Thus, the internal
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length can be tuned to calibrate the uniaxial tensile strength of the material [9, 10]. On the other hand, once the elastic
parameters, the fracture toughness of the material and ℓ are fixed, the standard phase-field model does not offer any
additional degree of freedom to calibrate the strength related to scenarios different from uniaxial tension, such as the
compressive strength or the shear strength, see the discussion in [11, 12]. Flexibility in defining the strength envelope
represents the main problem of nucleation under multi-axial stress states. As for crack propagation under such stress
states, the most relevant problem is to model unilateral contact appropriately [13].

There is a wealth of literature proposing phase-field models for brittle fracture under multi-axial stress states. The
performance of these models is demonstrated through different examples, making their comparison not immediate and
their strength and limitations not obvious. Among these contributions, some preserve a variational nature; the most
popular variational solutions [13, 14] are based on elastic energy decompositions. This idea is adopted in [12, 15–
17], justified through structured deformation theory. Other contributions are inspired by anisotropic materials [18–20],
propose cohesive fracture [21], introduce plasticity [22–24] or propose an explicit treatment of the crack direction [25–
27]. Unfortunately, the available variational models implicitly prioritize either nucleation or propagation, and (as we
will show in this paper, at least for the most popular ones) none of them can describe both aspects correctly without
introducing excessive complexity with respect to the original model or moving away from the framework of linear
elastic (brittle) materials. Other models step outside the variational framework; in this way, they more easily achieve
the needed flexibility to handle nucleation and propagation, but only at the cost of giving up the theoretical and
practical advantages of the variational structure [11, 28–32]. The variational principle naturally comes with a simple
stability concept and it allows the use of the mathematical tools of calculus of variations to discuss the existence of
solutions and to study the asymptotic Γ-convergence behavior. Additionally, the finite element tangent stiffness matrix
stemming from a variational formulation is automatically symmetric, which gives important advantages in numerics.
Moreover, the Drucker-Prager Ilyushin postulate is satisfied only if the damage criterion is derived from a variational
formulation where the strain work is a state function [33] and the thermodynamic consistency of non-variational
models is not granted.

To date, a study that highlights advantages and drawbacks of different energy decompositions based on a consistent
set of criteria and common examples is still lacking. In this contribution, we first define these criteria; subsequently,
we perform a systematic review of some available models, highlighting their performance in relation to the defined
criteria. We find out that none of the examined energy decompositions is able to satisfy all the proposed criteria, as
they perform well with respect to either nucleation or propagation of cracks. As a remedy, we propose a new model,
which we denote as star-convex model; this model is still based on an energy decomposition, but it is specifically
designed to satisfy the desired requirements for both nucleation and propagation.

The paper is structured as follows. Section 2 offers a brief review on the basic ingredients of standard phase-field
modeling of brittle fracture, shows its limitations and formulates the requirements for an ideal model to describe
fracture under multi-axial stress states. In light of the defined requirements, Section 3 reports a review of some of the
available models, all based on decompositions of the elastic strain energy density. In Section 4, the novel star-convex
model is introduced. Section 5 is dedicated to numerical experiments that showcase the advantages and limitations of
the models previously illustrated, including the new one. The main conclusions are drawn in Section 6.

As follows, we summarize the notation and some useful relations. Vectors and second-order tensors will be both
denoted by boldface fonts, e.g. u and σ for the displacement vector and stress tensor, respectively. For the standard or-
thogonal decomposition of second-order tensors in volumetric and deviatoric parts we will use the following notation
(exemplified on σ)

σ = σvol + σdev, σvol =
tr(σ)

n
I, σdev = σ − tr(σ)

n
I, σvol · σdev = 0,

where I is the second-order identity tensor and n is the number of space dimensions. For an isotropic elastic undam-
aged material with Young’s modulus E0 and Poisson’s ratio ν0, we denote by (λ0, µ0, κ0) the Lamé and the bulk moduli
given by:

λ0 =
E0ν0

(1 + ν0)[1 − (n − 1)ν0]
, µ0 =

E0

2(1 + ν0)
, κ0 = λ0 +

2µ0

n
=

E0

n[1 − (n − 1)ν0]
.

Given a scalar valued function: f : x→ f (x) ∈ R, we define its positive part and negative part as:

⟨ f (x)⟩+ = f (x)
2
+
| f (x)|

2
, ⟨ f (x)⟩+ = f (x)

2
− | f (x)|

2
.
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2. Standard model and ideal model requirements

In this section, we first introduce the general formulation of a phase-field model for brittle fracture. We then
proceed to specialize this framework to the case of the standard model. Subsequently, we clarify the limitations of this
model and leverage these insights to define the ideal requirements for a model able to handle fracture under multi-axial
stress state.

2.1. General formulation

Let us consider a homogeneous body occupying the domain Ω ⊂ Rn. Its current state at point x ∈ Ω is described
by the displacement field u(x) and the irreversible scalar damage field α(x) ∈ [0, 1], with α = 0 and α = 1 denoting a
pristine and a fully damaged material, respectively. The strain energy density is a differentiable function of the strain,
the damage and the damage gradient

W(ε, α,∇α) := φ(ε, α) + w1

(
w(α) + ℓ2|∇α|2

)
, (1)

where the first term φ is the elastic strain energy density and the second term is the dissipated energy density. The
elastic strain energy density is convex and positively homogeneous of degree 2 with respect to ε at fixed α, i.e.
φ(rε, α) = r2φ(ε, α) ∀r ≥ 0, and it decreases with respect to α at fixed ε. The dissipated energy density is composed
of a local and a non-local part. The local term w1w(α) corresponds to the amount of energy dissipated per unit volume
to damage homogeneously a pristine material; the dissipation function w(α) is a non-negative increasing function of
α such that w(0) = 0 and w(1) = 1, and we refer to w1 as the specific fracture energy. The non-local term is assumed
to be a quadratic function of the gradient of the damage, whereby ℓ is an internal length.

The total energy at time t, Et(u, α), is the sum of the strain energy and the potential energy of the external forces:

Et(u, α) :=
∫

Ω

W(ε(u), α,∇α)dΩ −
∫

Ω

bt · udΩ −
∫

∂NΩ

f t · udΩ, (2)

where bt is the body force defined in Ω and f t is the surface traction applied on ∂NΩ, both at time t, and ε(u) :=
sym(∇u) is the linear strain tensor. The applied displacement ūt is applied on the complementary part of the boundary
∂DΩ.

In the time-discrete setting of the evolution problem, given αp (the damage at the previous time tp), the displace-
ment and the damage field at time t = tp + ∆t are found by solving the minimization problem:

(u, α) = arg loc min
(û,α̂)∈Ct×D(αp)

Et(û, α̂), (3)

where

Ct := {u ∈ H1(Ω;Rn) : u = ūt on ∂DΩ}, D(αp) := {α ∈ H1(Ω) : α ≥ αp} (4)

are the spaces of the admissible displacement and damage fields at time t from the previous state with damage αp.
Equation (3) requires (u, α) to satisfy:

∀(û, α̂) ∈ Ct ×D(αp), ∃h̄ > 0 : ∀h ∈ [0, h̄]
Et(u + h(u − û), α + h(α − α̂)) − Et(u, α) ≥ 0.

(5)

A necessary condition for this local constrained minimization is found taking into account only the first-order expan-
sion of the energy increment:

E′t(u, α)(u − û, α − α̂) ≥ 0, ∀(û, α̂), (6)

where

E′t(u, α)(v, β) :=
d
dh
Et(u + hv, α + hβ)

∣∣∣∣∣∣
h=0

(7)
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is the Gateaux derivative of the functional Et(u, α) in the direction (v, β). For smooth solutions, we can show with
standard arguments of Calculus of Variation that the first-order optimality condition (6) is equivalent to the equilibrium
equation and boundary conditions

divσ(ε, α) + bt = 0 in Ω, σ(ε, α) · n = f t on ∂NΩ (8)

and to the Karush-Kuhn-Tucker (KKT) conditions and boundary conditions

− Y(ε, α) + w1w′(α) − 2ℓ2w1∆α ≥ 0, α − αp ≥ 0, (−Y(ε, α) + w1w′(α) − 2ℓ2w1∆α)(α − αp) = 0 on Ω,
∇α · n ≥ 0, α − αp ≥ 0, (∇α · n)(α − αp) = 0 on ∂Ω,

(9)

where n is the outer unit normal to the boundary, We denote the KKT conditions as damage criterion, irreversibility
and loading-unloading condition, respectively. The conjugate quantities

σ(ε, α) :=
∂φ(ε, α)
∂ε

, Y(ε, α) := −∂φ(ε, α)
∂α

(10)

are the stress tensor and the damage energy release rate, respectively.
A crucial notion for the following analysis of damage under multi-axial stress states is that of elastic domains.

In the context of local damage modeling, these are the sets in which stresses and strains must remain in order for
the material to follow a linearly elastic behavior without damage evolution, i.e., α = αp. In our non-local context,
their boundaries define the elastic limits for materials with homogeneous damage distribution (∆α = 0). The elastic
domains in the strain space R(α) and in the stress space R∗(α) are defined as the sets

R(α) :=
{
ε ∈ Sym : −∂φ(ε, α)

∂α
≤ w1w′(α)

}
, (11)

R∗(α) :=
{
σ ∈ Sym :

∂φ∗(σ, α)
∂α

≤ w1w′(α)
}
, (12)

where Sym denotes the space of symmetric tensors and φ∗(σ, α) is the complementary energy density defined as

φ∗(σ, α) := sup
ε̂∈Sym

σ · ε̂ − φ(ε̂, α). (13)

At a given value of α ∈ [0, 1) a damage model enjoys the strain-hardening property if, ∀β > α, R(β) ⊃ R(α). and
the stress-softening property if R∗(β) ⊂ R∗(α), see [34]. The strain-hardening property is important to ensure the
uniqueness of the solution for the damage at a given strain upon damage evolution, while the stress-softening property
is fundamental to allow for damage localization [34].

2.2. The standard phase-field model
For the model that we refer to in the following as the standard phase-field model, the elastic strain energy density

is defined as
φ(ε, α) = a(α)φ0(ε) with φ0(ε) =

κ0
2

tr2(ε) + µ0|εdev|2, (14)

where φ0 is the elastic strain energy density for a homogeneous isotropic linear elastic material and a(α) is the degra-
dation function. This function describes the degradation of the linear elastic properties with damage; it is a decreasing
function of α going from a(0) = 1 to a(1) = 0. By Legendre transformation, the complementary energy density
φ∗(σ, α) is derived as

φ∗(σ, α) = s(α)φ∗0(σ) with φ∗0(σ) =
tr2(σ)
2n2κ0

+
|σdev|2

4µ0
and s(α) :=

1
a(α)
. (15)

Combining (11-15) we obtain

R(α) :=
{
ε ∈ Sym :

κ0
2

tr2(ε) + µ0|εdev|2 ≤ −w1w′(α)
a′(α)

}
, (16)
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R∗(α) :=
{
σ ∈ Sym :

tr2(σ)
2n2κ0

+
|σdev|2

4µ0
≤ w1w′(α)

s′(α)

}
. (17)

The expressions of the elastic strain energy density in (14) and of the complementary energy density in (15) ensure that
the transformation of spaces R(α) and R∗(α) with varying α is a homothety centered in ε = 0 and σ = 0, respectively.

The selection of the degradation function a(α) and of the dissipation function w(α) has a significant impact on the
description of the damaging behavior. Two classical expressions are

AT1 : a(α) = (1 − α)2, w(α) = α, αpeak = 0, (18)

AT2 : a(α) = (1 − α)2, w(α) = α2, αpeak =
1
4
. (19)

These two models are both strain-hardening ∀α ∈ [0, 1], and stress-softening ∀α ∈ [αpeak, 1], whereas they are stress-
hardening ∀α ∈ [0, αpeak). These properties hold regardless of the loading direction due to the homothetic evolution of
R(α) and R∗(α) with α. The primary difference between AT1 and AT2 is that AT1 displays a linearly elastic behavior
up to a non-zero elastic limit stress, whereas AT2 features a zero elastic limit stress, therefore with AT2 an infinitesimal
load is sufficient to trigger the onset of damage.

For AT1 and AT2 applied to the 1D bar under tensile loading it is shown in [4, 35] that, for sufficiently long bars
(L ≫ ℓ), the damage localization in bands (crack nucleation) occurs at the level of damage at which the behavior of
the model changes from stress hardening to stress softening, i.e., at α = αpeak. For AT1 this transition corresponds to
the elastic limit because αpeak = 0. Under multi-axial loading, in [36] it is also shown that with the AT1 model and
for a sufficiently large structure the transition from a stress-hardening to a stress-softening phase is a necessary and
sufficient condition for the damage localization in bands (or cracks). For different types of phase-field models, these
conclusions do not necessarily hold and a more careful study would be necessary, see [36, 37] for more details.

From now on, we focus only on AT1-like models (w(α) = α). Accordingly, we define the strength surface S∗ as
the set of stresses at the elastic limit, i.e., all stresses at the boundary of the elastic domain R∗(α) for α = αpeak = 0:

S∗ := ∂R∗(0) =
{
σ ∈ Sym :

tr2(σ)
2n2κ0

+
|σdev|2

4µ0
=

w1w′(0)
s′(0)

}
. (20)

From S∗, one can define the tensile and compressive strengths, σ+e and σ−e , as the maximum and minimal allowable
stress σ for the uniaxial stress state σ = σe1 ⊗ e1, and the shear strength τe as the maximum allowable stress τ for
stress states of pure shear σ = τe1 ⊗ e2. For the standard model, these quantities are given by

σ+e :=

√
2E0w1w′(0)

s′(0)
, τe :=

√
2µ0w1w′(0)

s′(0)
, σ−e := −

√
2E0w1w′(0)

s′(0)
. (21)

In the setting of a 1D bar under tensile loading, the dissipated energy associated to the phase-field smeared repre-
sentation of a crack is regarded as the dissipation upon rupture and is denoted as fracture toughness Gc. In [4, 35], the
1D localized damage distribution is derived analytically and the fracture toughness is accordingly expressed as

Gc = 4w1ℓ

∫ 1

0

√
w(β)dβ, (22)

which for AT1 gives

Gc =
8
3

w1ℓ. (23)

Thus, from the experimental determination of Gc and σ+e , it is possible to calibrate w1 and ℓ. In this sense, the
regularization length can be viewed as a material property. In Figure 1, we plot the evolution of the elastic domains
R(α) and R∗(α) with increasing α in both the volumetric-deviatoric plane (Figure 1a) and the plane spanned by the
principal strain/stress components under the plane-strain assumption (Figure 1b). Given the symmetry of R(α) and
R∗(α) with respect to the volumetric axis in Figure 1a and with respect to the bisector of the first and third quadrants
in Figure 1b, we plot only half of R(α) (in blue) and half of R∗(α) (in red).
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α

α

tr(ε)√
w1/κ0

|ε
d
e
v
|

√
w

1
/
κ
0

tr(σ)
n
√
w1κ0

|σ
d
e
v
|

n
√
w

1
κ
0

∂R(α)

∂R∗(α)

α
=
0

α = 0

(a)

α

α

εxx√
w1/E0

ε
y
y

√
w

1
/
E

0
σxx√
w1E0

σ
y
y

√
w

1
E

0

∂R(α)

∂R∗(α)

α = 0

α
=
0

(b)

Fig. 1: Elastic domains for the standard model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
(ν0 = 0.3). The domains for α = 0 (thick lines) are the nucleation domains (or strength surfaces). Volumetric-deviatoric diagram (a). Principal
components diagram under the plane-strain assumption (b).

2.3. Limitations of the standard model

The standard phase-field model has major limitations when considering multi-axial stress states. Regarding nu-
cleation, we mention two limits evident from the shape of the elastic domains at α = 0 (Figure 1):

• Tension/compression symmetry: Both R(0) and R∗(0) are ellipsoids in the strain and the stress spaces, respec-
tively. As a consequence, the tensile and compressive strengths have the same magnitude. This is unrealistic for
the majority of brittle materials, which typically feature a compressive strength one order of magnitude higher
than the tensile strength. Moreover, the shear strength often increases with volumetric compression.

• Lack of flexibility: Assuming the elastic constants κ0, µ0, the tensile strength σ+e and the fracture toughness Gc

to be known, it is possible to calibrate w1 and ℓ using (21) and (22). In this manner, all the model parameters
are determined, thus the shape and size of the ellipsoids R(0) and R∗(0) are also fixed and it is not possible to
match e.g. experimentally known values of σ−e and/or τe. This aspect is what we term lack of flexibility of the
model.

Regarding propagation, we report a major limit related to the local behavior for α = 1:

• Zero residual stress: In the standard model, the whole elastic strain energy drives the damage evolution. The
consequence is that, once the maximum damage α = 1 is locally reached, the elastic strain energy density
vanishes regardless of the loading direction and the elastic domain in the stress space collapses to the point
σ = 0 (Figure 1). From now on, we denote the stress obtained for α = 1

σR(ε) := σ(ε, 1) =
∂φ(ε, 1)
∂ε

(24)

as residual stress. Thus, for the standard model it is σR = 0. This correctly avoids the transmission of tensile
tractions across the crack boundary in mode 1 (opening), mode 2 and 3 (shear). However, it also gives zero
tractions under compressive loading, thus it cannot properly represent unilateral contact at the crack faces.
Determining the threshold that defines which load directions should be associated with zero residual stress and
which should not to best model unilateral contact is a nontrivial task. In [38], it is shown that a zero residual
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stress for tr(ε) ≥ 0 and a residual elastic energy density which depends solely on the negative volumetric energy
density (e.g., φ(ε, 1) = 1

2 κ0 ⟨tr(ε)⟩2−) can be used to approximate the non-interpenetration constraint in the sense
of Γ-convergence.

2.4. Requirements to an ideal model
In light of the previous observations on the standard model, we can now define the requirements for an ideal model

as follows:

• Strain-hardening: As previously mentioned, this is a key requirement to ensure the uniqueness of the solution
for the damage at a given strain upon damage evolution.

• Stress-softening: It is fundamental to allow for the presence of solutions with localised damage and hence for
crack nucleation.

• Tension/compression asymmetry: At least we require that |σ−e | > σ+e . For some materials it would be ideal to
have a shear strength that increases with volumetric compression.

• Flexibility: The model should contain enough parameters to allow for calibration of τe and σ−e (or at least one
of the two) independently of σ+e (for given elastic properties and Gc).

• Crack-like residual stress: The ideal model does not transmit stress through the crack faces in the opening
and shear modes but exhibits a compressive residual stress. Hinging on the consistent variational framework
in [38], we require the presence of nonzero residual stresses exclusively for tr(ε) < 0. Accordingly, an elastic
energy density such that φ(ε, 1) ∝ ⟨tr(ε)⟩2− fulfills the requirement.

Several models have been proposed in the literature to solve the limitations of the standard model under multi-axial
stress states. In the following, we analyze some of these models in light of the requirements listed above.

3. Available variational phase-field models for multi-axial stress states

In this section, we review the main available variational phase-field models for multi-axial stress states. The
advantages and limitations of these models in relation to the requirements listed in Section 2.4 are then exemplified
through numerical experiments in Section 5. The models are all based on the following decomposition of the elastic
strain energy (also denoted as energy split)

φ(ε, α) = a(α)φD(ε) + φR(ε) with φD(ε) + φR(ε) = φ0(ε), (25)

where φD(ε) and φR(ε) are respectively the degradable and the residual components of the elastic strain energy density.
These components are non-negative and only vanish for ε = 0; their sum yields the elastic energy density of a pristine
material φ0(ε), defined as in (14). The idea behind this decomposition is that only certain modes of deformation
contribute to the driving force for the nucleation and evolution of damage. Residual stresses at full damage are given
by

σR(ε) = σ(ε, 1) =
∂φR(ε)
∂ε

. (26)

Only φD(ε) contributes to the energy release rate Y(ε, α); accordingly, it is the only component which affects the
elastic domains

R(α) :=
{
ε ∈ Sym : φD(ε) ≤ −w1w′(α)

a′(α)

}
, (27)

R∗(α) :=
{
σ ∈ Sym : φD(ε(σ, α)) ≤ −w1w′(α)

a′(α)

}
, (28)

where ε(σ, α) is computed as the inverse of the constitutive law in (10). The choice of the decomposition strongly
affects the evolution of the elastic domain and thus the predicted crack nucleation and propagation behavior under
multi-axial stress states. Note that formulating the decomposition in the form of (25) ensures that R(α) evolves with α
as a simple homothety centered in the origin. Unlike in the case of the standard model, this is not always guaranteed
for R∗(α).
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3.1. The volumetric-deviatoric split

The split proposed by Amor et al. [13] is based on the decomposition of the elastic strain energy density into a
deviatoric and a volumetric part:

φD(ε) =
1
2
κ0 ⟨tr(ε)⟩2+ + µ0 |εdev|2, φR(ε) =

1
2
κ0 ⟨tr(ε)⟩2− (29)

leading to the residual stresses
σR(ε) = κ0⟨tr(ε)⟩−I. (30)

This model was constructed to recover unilateral contact conditions under compression. Indeed, in [38] it is demon-
strated that the volumetric-deviatoric decomposition can be used to approximate the non-interpenetration constraint in
the sense of Γ-convergence without affecting the tensile and shear behavior in the presence of a crack. The elastic do-
mains are given in Appendix A.1 and illustrated in Figure 2. In this case, both domains evolve with α as homotheties
centered in the origin.

This split introduces the desired asymmetry in tension and compression, as shown in Table 1, without adding
residual stresses for tr(ε) > 0. However, it gives no flexibility in the choice of the shear strength, which is the same as
in the standard model, nor in the compressive strength.
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|
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/
κ
0

tr(σ)
n
√
w1κ0

|σ
d
e
v
|

n
√
w

1
κ
0
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y
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w
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α
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Fig. 2: Elastic domains for the model with volumetric-deviatoric split in the strain (blue dash-dotted line) and stress (red solid line) space for
α = {0, 0.25, 0.5, 0.75, 1} (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates
the parts of the elastic domains shared with the standard model. Volumetric-deviatoric diagram (a). Principal components diagram under the
plane-strain assumption (b).

3.2. The spectral split

The decomposition introduced by Miehe et al. [14] is based on the eigenvalues and eigenvectors of the strain
tensor

φD(ε) =
1
2
λ0⟨tr(ε)⟩2+ + µ0ε

+ · ε+, φR(ε) =
1
2
λ0⟨tr(ε)⟩2− + µ0ε

− · ε− (31)

with ε+ =
∑

i⟨εi⟩+ei ⊗ ei and ε− =
∑

i⟨εi⟩−ei ⊗ ei, εi being the eigenvalues of the strain tensor and ei the corresponding
eigenvectors. The residual stress tensor

σR(ε) = λ0⟨tr(ε)⟩−I + 2µ0ε
− (32)
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is non-zero also for tr(ε) > 0. Hence, residual stresses with negative trace are possible for strain tensors with positive
trace. As we will show through a numerical example in Section 5, this undesirable coupling between tension and
compression behavior is problematic during damage propagation.

The elastic domains R(α) and R∗(α) are detailed in Appendix A.2. The stress-based domain R∗(α) does not
evolve as a simple homothety centered in the origin with respect to α, see Figure 3. We plot the elastic domains only
in the space of the principal components, because the model cannot be expressed as a function of the volumetric and
deviatoric parts of the strain/stress tensors. Since R∗(α) is not a homotethy, we cannot define a unique damage value
αpeak which marks the transition between stress-hardening and stress-softening behavior. With increasing damage,
R∗(α) shrinks only along tensile-dominated stress states. On the other hand, the compression-dominated strength
does not necessarily have to decrease with increasing damage. Therefore, even though the evolution of R∗(α) does
not fulfill stress-softening for compression-dominated stress states, it still consistently represents damaging behavior.
The asymmetry in tension and compression is gained at the expense of the existence of residual stresses. However,
the compressive and shear strengths cannot be calibrated independently of the tensile strength even though they are
different from those of the standard model (see Table 1).
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Fig. 3: Elastic domains for the model with spectral split in the strain (blue dash-dotted line) and stress (red solid line) space for α =
{0, 0.25, 0.5, 0.75, 1} (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the
parts of the elastic domains shared with the standard model. Principal components diagram under the plane-strain assumption.

3.3. The no-tension model
Freddi and Royer-Carfagni in [15] use the theory of structured deformations of Del Piero and Owen [39] to propose

a new elastic energy decomposition. They also demonstrate that certain decompositions already available in literature
[13, 40] and the standard model can be derived by leaning on this theory.

The assumption made is that the existence of micro-cracks leads to a reduction in the elastic energy density of
the sound material φ0(ε) due to the presence of inelastic deformations known as structured deformations, denoted as
η. These structured deformations are constrained within a convex set Kε, which defines the admissible “structure”
of the micro-cracks. With φ0(ε) and Kε determined, the residual elastic energy is computed by solving the following
minimization problem

η̄(ε) := arg min
η∈Kε

φ0(ε − η), φR(ε) := min
η∈Kε
φ0(ε − η) = φ0(ε − η̄(ε)). (33)

They apply the result of the minimization problem (33), reported in Appendix A.3, to the elastic energy density
decomposition and then derive φD(ε) = φ0(ε)−φR(ε). By knowing φD and φR, one can also derive the residual stresses
as follows:
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– if ε3 ≥ 0, σR = 0,

– else if ε2 + ν0ε3 ≥ 0, σR =
µ0(3λ0+2µ0)
λ0+µ0

ε3e3 ⊗ e3,

– else if ε1 +
ν0

1−ν0 (ε2 + ε3) ≥ 0, σR =
2µ0
λ0+2µ0

[
− λ0(3λ0+2µ0)(ε2+ε3)

λ0+2µ0
e1 ⊗ e1+

+ (2(λ0 + µ0)ε3 + λ0ε2) e2 ⊗ e2 + (2(λ0 + µ0)ε2 + λ0ε3) e3 ⊗ e3

]
,

– else, σR = 2µ0ε + λ0tr(ε)I.

The elastic domains are detailed in Appendix A.3 and represented in Figure 4 only in the space of principal compo-
nents, because the model cannot be expressed as a function of the volumetric and deviatoric parts of the strain/stress
tensors. With the no-tension model, the degree of asymmetry between tension and compression behavior is increased
compared to the volumetric-deviatoric or the spectral splits. However, the model has some limitations common to the
previous ones. The residual stresses lead to the same problematic coupling obtained with the spectral split. Further-
more, Chambolle et al. [38] study the behavior of this model as ℓ → 0 and demonstrate that a relative displacement
of the crack faces results in infinite energy. This constraint does not physically describe a crack. In addition, there is
still no flexibility in the choice of the compressive and shear strengths (see Table 1).
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Fig. 4: Elastic domains for the no-tension model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
(ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the parts of the elastic domains
shared with the standard model. Principal components diagram under the plane-strain assumption.

3.4. The Drucker-Prager-like (DP-like) model
The introduction of structured deformations potentially leads to extra flexibility, namely in the selection of the

convex set Kε. De Lorenzis and Maurini [12] leverage this flexibility by introducing a new decomposition that
depends on an additional material parameter γ. This parameter allows for elastic domains which partially recover the
Drucker-Prager model, commonly used for modeling compressive failure in cohesive-frictional materials like rocks
or concrete, and allow for an independent calibration of the tensile and the compressive or shear strengths.

The residual energy is determined through the structured deformation problem (33), utilizing a convex cone of
admissible structured deformations

Kε := {η ∈ Sym : tr(η) ≥ γ|ηdev|} with γ ≥ 0. (34)

The elastic strain energy decomposition, solution of the minimization problem (33), is detailed in Appendix A.4. The
residual stresses read as follows:
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Decomposition σ+e σ−e τe

None

√
2 E0 w1 w′ (0)

s′ (0) −
√

2 E0 w1 w′(0)
s′(0)

√
2 µ0 w1 w′(0)

s′(0)

Vol.-dev.

√
2 E0 w1 w′ (0)

s′ (0) −
√

6 µ0 w1 w′(0)
s′(0)

√
2 µ0 w1 w′(0)

s′(0)

Spectral

√
2 E0(1+ν0)

1+ν0−2 ν20

w1 w′ (0)
s′(0) −

√
E0(1+ν0)

ν20

w1 w′ (0)
s′(0)

√
4 µ0 w1 w′(0)

s′(0)

No-tension

√
2 E0(1−ν0)

1−ν0−2 ν20

w1 w′ (0)
s′(0) −∞

√
2 E0(1−ν0)

1−ν0−2 ν20

w1 w′(0)
s′ (0)

DP-like



√
2 E0 w1 w′ (0)

s′ (0) for 0<γ<
√

2
3
µ0
κ0√

18(κ0 γ
2+2 µ0)

(
√

6+γ)2
w1 w′ (0)

s′ (0) for γ≥
√

2
3
µ0
κ0



−
√

18(κ0 γ
2+2 µ0)

(
√

6−γ)2
w1 w′(0)

s′ (0) for 0≤γ<√6

−∞ for γ≥√6

√
(κ0 γ

2+2 µ0)
w1 w′(0)

s′ (0)

Star-convex

√
2 E0 w1 w′ (0)

s′ (0)



−
√√

2 E0

1+(1+γ⋆ )
(n−1)ν0−1

n

w1 w′(0)
s′ (0) for −1≤γ⋆< n(n−1)

2
κ0
µ0

−∞ for γ⋆≥ n(n−1)
2

κ0
µ0

√
2 µ0 w1 w′(0)

s′(0)

Tab. 1: Tensile, compressive and shear strengths for all the analyzed models.

– if |εdev| < tr(ε)/γ, σR = 0,

– else if |εdev| ≥ − γκ02µ0
tr(ε), σR =

2κ0µ0
κ0γ2+2µ0

(
(trε − γ|εdev|)I + γ

(
γ − trε

|εdev |
)
εdev

)
,

– else, σR = 2µ0εdev + κ0tr(ε)I.

With this model, the shear or the compressive strength can be calibrated independently of the tensile strength through
the new parameter γ (see Figure 5 and 6). However, during damage evolution the residual stresses lead to the same
undesired coupling between tension and compression as with the spectral split and the no-tension model.
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Fig. 5: Elastic domains for the DP-like model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
and γ =

√
2µ0/κ0 (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the parts

of the elastic domains shared with the standard model. Volumetric-deviatoric diagram (a). Principal components diagram under the plane-strain
assumption (b).

3.5. Summary

In light of the requirements defined in Section 2.4, we summarize the merits and disadvantages of the analyzed
models in Table 2. None of the available splits meets all requirements, as they either lack in flexibility (a requisite that
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Fig. 6: Elastic domains for the DP-like model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
and γ =

√
10µ0/κ0 (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the parts

of the elastic domains shared with the standard model. Volumetric-deviatoric diagram (a). Principal components diagram under the plane-strain
assumption (b).

is most important for nucleation, since this defines the strength surface of the material) or give rise to residual stresses
which contain spurious components (a requisite that is most important for damage evolution and for obtaining a crack-
like behavior of the fully developed damage localization bands). With the goal of satisfying the above requirements
under both aspects of flexibility and crack-like residual stresses, in the next section we introduce a novel model, which
we denote as the star-convex model.

Strain-
hardening

Stress-
softening

Tens./compr.
asymmetry Flexibility Crack-like

residual stress
Standard ✓ ✓ ✗ ✗ ✗

Vol.-dev. ✓ ✓ ✓ ✗ ✓

Spectral ✓ ✗ ✓ ✗ ✗

No-tension ✓ ✓ ✓ ✗ ✗

DP-like ✓ ✓ ✓ ✓∗ ✗

Star-convex ✓ ✓ ✓ ✓∗∗ ✓

*: Partial flexibility: out of tensile, compressive and shear strengths, the model allows for independent calibration of any pair, while the third
property is automatically fixed. **: Partial flexibility: the model allows for independent calibration of tensile and compressive or shear and
compressive strengths, while the third property is automatically fixed.

Tab. 2: Analyzed models and requirements to an ideal model for multi-axial stress states: blue checks and red crosses denote respectively success
and failure in satisfying a requirement. The star-convex meets all requirements with partial flexibility.

4. The star-convex model

In this section, we propose a new model that aims at satisfying the model requirements defined in Section 2.4.
As mentioned earlier, in [38] it is shown that the volumetric-deviatoric split can be used to approximate the non-
interpenetration constraint in the sense of Γ-convergence. This success hinges on a residual elastic strain energy
density depending solely on the volumetric energy associated to a negative trace, i.e. φR(ε) ∝ ⟨tr(ε)⟩2−. All the
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other decompositions suffer from spurious non-zero tangential stiffness for fully developed cracks. Therefore, the
volumetric-deviatoric split represents a sound option to model crack-like stresses in the phase-field framework, but
lacks flexibility in calibrating the compressive strength σ−e independently of the tensile strength σ+e . To compensate
for this disadvantage but keep a residual part exclusively related to a local volume contraction ⟨tr(ε)⟩−, we propose
the following energy decomposition

φD(ε) =µ0 |εdev|2 + 1
2
κ0
(
⟨tr(ε)⟩2+ − γ⋆⟨tr(ε)⟩2−

)
,

φR(ε) =(1 + γ⋆)
1
2
κ0 ⟨tr(ε)⟩2−,

(35)

where γ⋆ ≥ −1 is the additional parameter controlling the σ−e /σ
+
e ratio. Hence, the volumetric and deviatoric compo-

nents of the stress are derived as

σvol =κ0
{
a(α)⟨tr(ε)⟩+ +

[
1 + γ⋆ (1 − a(α))

]
⟨tr(ε)⟩−

}
I,

σdev =2a(α)µ0εdev.
(36)

For a reason that will become clear later, we denote the corresponding model as star-convex model (or star-convex
energy decomposition). In the following subsections, we analyze the elastic domains for the proposed model in the
strain and stress spaces. In Appendix B, we provide further insights on the development of the proposed model in
comparison to alternative options.

4.1. Strain space

Figures 7-9 illustrate the elastic domain of the proposed model in the strain space, which is given by the conditions

µ0 |εdev|2 + κ02 tr(ε)2 ≤ −w1w′(α)

a′(α) for tr(ε) ≥ 0
µ0 |εdev|2 − γ⋆ κ02 tr(ε)2 ≤ −w1w′(α)

a′(α) , for tr(ε) < 0
.

For tr(ε) ≥ 0, the new model shares the same boundary of the elastic domain ∂R(α) with the standard model and
∂R(α) is an ellipse in the tr(ε) − |εdev| diagram. On the same diagram but for tr(ε) < 0, the parameter γ⋆ determines
the type of conic section (Figure 7) such that

• for −1 ≤ γ⋆ < 0, ∂R(α) is an ellipse,

• for γ⋆ = 0, ∂R(α) is a degenerate parabola (horizontal straight line),

• for γ⋆ > 0, ∂R(α) is a hyperbola lying above the asymptote |εdev| = −
√
κ0

2 µ0
γ⋆ tr(ε)

In particular, we retrieve the standard model when γ⋆ = −1 and the volumetric-deviatoric split for γ⋆ = 0.
For −1 ≤ γ⋆ ≤ 0, the elastic domain R(α) is convex, whereas for γ⋆ > 0 ∂R(α) consists of the ellipse defined

over tr(ε) > 0 smoothly joined at tr(ε) = 0 with the hyperbola defined over tr(ε) < 0. Hence, in this case R(α) is not
convex but rather 0-star-convex, i.e. ∀ε ∈ R(α) and ∀s ∈ [0, 1], sε ∈ R(α) [41]. This is the reason for denoting the
new model as star-convex model (or star-convex decomposition). In [33] it is shown that an elastic-plastic material
with non-negative interior work in an admissible strain cycle must have a convex elastic domain. However, the same
thermodynamic work property assumed for an elastic-damaging material does not necessarily imply convexity, but at
most star-convexity with respect to 0.

The star-convex model enjoys the strain-hardening property ∀α ∈ [0, 1). Additionally, for γ⋆ > 0, the hyperbola
for tr(ε) < 0 evolves but keeps a constant asymptote as this depends only on the elastic constants and on γ⋆. Since
∂R(α) lies above the asymptote (grey dashed line in Figure 7), the strain states below the asymptote are unable to
produce additional damage and the material behaves as linearly elastic. Accordingly, the compressive strength can be
calibrated by modifying the slope of the asymptote by tuning γ⋆, thus providing the desired flexibility in nucleation.
At the limit α = 1, the star-convex elastic domain becomes R(1) = Sym, meaning that for a fully broken material the
whole strain space is admissible.
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Fig. 7: Nucleation domain in the strain space for the star-convex model with varying γ⋆ (ν0 = 0.3). For tr(ε) < 0, the boundary is an ellipse if
−1 ≤ γ⋆ < 0, a degenerate parabola if γ⋆ = 0 and a hyperbola (with the dashed grey line as asymptote) if γ⋆ > 0.

4.2. Stress space

The elastic domain in the stress space R∗(α) (Figures 8, 9) is the set of σ ∈ Sym such that

– if tr(σ) ≥ 0, 1
4 µ0
|σdev|2 + 1

2 κ0 n2 tr(σ)2 ≤ w1w′(α)
s′(α) ,

– if tr(σ) < 0, 1
4 µ0
|σdev|2 − γ⋆ a(α)2

2 κ0 n2 (1+γ⋆ (1−a(α)))2 tr(σ)2 ≤ w1w′(α)
s′(α) .

Similarly to the strain space, for tr(σ) ≥ 0 the star-convex split shares with the standard model the same elliptic
boundary ∂R∗(α) in the tr(σ) − |σdev| diagram, whereas for tr(σ) < 0

• for −1 ≤ γ⋆ < 0, ∂R∗(α) is an ellipse,

• for γ⋆ = 0, ∂R∗(α) is a degenerate parabola (horizontal straight line),

• for γ⋆ > 0, ∂R∗(α) is a hyperbola lying above the asymptote |σdev| = − 2 a(α)
n(1+γ⋆(1−a(α))

√
2 µ0
κ0
γ⋆ tr(σ).

A three-dimensional representation of R∗(0) is given for γ⋆ = 1, 5 in Figure 10. For −1 ≤ γ⋆ ≤ 0, the domain R∗(α)
is convex, whereas for γ⋆ > 0 R∗(α) is not convex but 0−star-convex, i.e. ∀σ ∈ R∗(α) and ∀s ∈ [0, 1], sσ ∈ R∗(α)
[41].

The star-convex model enjoys the stress-softening property ∀α ∈ [0, 1). At the limit α = 1, the star-convex elastic
domain becomes strictly convex and collapses to the negative hydrostatic pressure half-line, meaning that non-zero
deviatoric and positive volumetric stresses are not admissible in a fully broken material. In particular, according to
(24), the stress tensor when α = 1 is

σR = (1 + γ⋆) κ0 ⟨tr(ε)⟩− I, (37)

thus, the mapping between admissible strains and admissible stresses for α = 1 is such that only negative volumetric
strains can produce work through negative volumetric stresses. In this manner, the model fulfils the crack-like stress
requirement.

Equation (37) shows that, for negative volumetric strains, the volumetric stiffness for α = 1 is κ0(1 + γ⋆). On
the other hand, according to (36), it is equal to κ0 when α = 0. Therefore, for negative volumetric strains, the
volumetric stiffness of a fully broken material is larger than the one of the pristine material when γ⋆ > 0. This increase
can be explained by considering that the damage evolution occurs only above the asymptote, where the deviatoric
contribution exceeds the volumetric one. Damage evolution redistributes the stiffness such that the deviatoric stiffness
decreases to zero and the volumetric stiffness increases, while the total elastic energy density (which is the sum of the
volumetric and deviatoric contributions) always decreases.
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Fig. 8: Elastic domains for the star-convex model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
for γ⋆ = 1 (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the parts of the
elastic domains shared with the standard model. Volumetric-deviatoric diagram (a): damage cannot evolve for loading directions below the black
dashed line in the strain space which is also the constant asymptote. Principal components diagram under the plane-strain assumption (b).

Defining as usual the strength surface as the boundary of the elastic domain in the stress space for α = αpeak = 0,
i.e. ∂R∗(0), we can derive the tensile strength, the shear strength and the compressive strength as

σ+e =

√
2 E0 w1 w′(0)

s′(0)
, τe =

√
2 µ0 w1 w′(0)

s′(0)
,

σ−e =


−
√

1
1+ (1+γ⋆) (n−1) ν−1

n

2 E0 w1 w′(0)
s′(0) for γ⋆ < n(n−1)

2
κ0
µ0
,

−∞ otherwise.

(38)

From (38) we see that the shear strength τe is independent of γ⋆. Thus, the flexibility offered by the star-convex model
is exclusively related to the compressive stength σ−e .

5. Numerical tests

As follows, we demonstrate the advantages and limitations of the existing models outlined in Section 3 and of the
novel star-convex model introduced in Section 4 through numerical experiments. These consist in a bi-axially loaded
disk, a plate with hole under compression and two blocks in relative sliding.

Computational solvers for phase-field fracture models based on the finite element method seek a quasi-static
solution by solving the time- and space-discretized weak problem. At time step t, we look for the solution of the space-
discretized weak form of (8) and (9) by using an alternate minimization scheme implemented in FEniCSx [42, 43].
In [6], such scheme was introduced in the context of the standard model taking advantage of the separate directional
convexity of functions u → Et(u, ·) and α → Et(·, α) (see also [44, 45] for a detailed discussion on monolithic and
alternate minimization schemes). With this scheme, using as initial guess (uk−1, αk−1), we first solve the problem
in u using a Newton-based nonlinear solver with line search and a maximum of 100 iterations, which gives us the
output uk. Then, starting from (uk, αk−1), we solve the constrained nonlinear problem in α using a reduced-space
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Fig. 9: Elastic domains for the star-convex model in the strain (blue dash-dotted line) and stress (red solid line) space for α = {0, 0.25, 0.5, 0.75, 1}
and γ⋆ = 5 (ν0 = 0.3). The domains for α = 0 are the nucleation domains (or strength surfaces). The grey background indicates the parts of the
elastic domains shared with the standard model. Volumetric-deviatoric diagram (a): damage cannot evolve for loading directions below the black
dashed line in the strain space which is also the constant asymptote. Principal components diagram under the plane-strain assumption (b).

active set solver for variational inequalities based on Newton’s method with a maximum of 100 iterations, which
returns αk. Consequently, we calculate Ru, the L2-norm of the residual for the displacement problem for (uk, αk). The
convergence of the alternate minimization scheme is achieved if Ru is below the tolerance level (tol =10−6) .

For tr(ε) < 0, the DP-like model and the star-convex model display a linearly elastic behavior with no damage for
|εdev| < − γκ02µ0

tr(ε) and |εdev| < −
√
κ0

2 µ0
γ⋆ tr(ε), respectively. By overlapping these two lines, we obtain the relationship

γ =
√

2γ⋆µ0/κ0 among the parameters γ and γ⋆. Accordingly, we adopt γ⋆ = {1, 5} for the star-convex model and
γ = {√2µ0/κ0,

√
10µ0/κ0} for the DP-like model to facilitate their comparison.

5.1. Bi-axially loaded disk test
We first focus on nucleation and consider a bi-axially loaded disk of diameter D under the plane-strain assumption.

The geometry and boundary conditions are illustrated in Figure 11. The center of the disk coincides with the origin of
the cartesian reference system x-y and the out-of-plane direction is denoted with z. We set D = 1, E0 = 100, ν0 = 0.3,
w1 = 1.5 and ℓ = 0.04. At t = 0, the material is assumed to be intact, i.e. α = 0 everywhere. The goal of the test is to
numerically determine the elastic domains of the various models for α = 0 in the εxx-εyy and σxx-σyy planes.

Defining on the εxx-εyy plane the angle θ ∈ [0, 2π), for a given θwe prescribe a displacement ūt = t(x cos(θ), y sin(θ))
on the disk boundary. In the linearly elastic regime, this Dirichlet boundary condition ensures that the disk is subjected
to a homogeneous strain along the θ-direction, i.e.

εyy

εxx
= tan(θ). (39)

Maintaining θ fixed, we increment the value of t until we reach the elastic limit, while always imposing the Dirichlet
boundary condition α = 0 on the whole boundary of the disk. We discretize the problem with standard linear triangular
finite elements using an unstructured mesh with average size h = ℓ/3.

Figures 12 and 13 illustrate the contour of the elastic domain in the strain and stress planes at α = 0 for all
models. The blue and red lines correspond to the theoretical strain and stress domains, respectively, while the dots
of the respective colors represent the numerically obtained strain and stress states right before damage nucleation. In
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Fig. 10: Three-dimensional nucleation domain in the stress space for the star-convex model with γ⋆ = 1 (a) and γ⋆ = 5 (b) (ν0 = 0.3).

some cases, the dots are absent because certain loading directions do not reach the limit or reach it after a very large
number of time steps (outside the range of the figure). For each load direction we plot the damage field at the time
step when nucleation occurs, if it occurs; for directions at which no nucleation occurs we plot a zero damage field for
completeness. Hence, the test serves not only as a nucleation test but also provides valuable insights into the initial
crack propagation behavior under various loading conditions.

Figure 12a presents the simulation results for the standard model, which displays elliptical elastic domains and
maintains symmetry of behavior in both tension and compression. Accordingly, the elastic domains are symmetric
not only with respect to the bisector of the first and third quadrants but also with respect to the bisector of the second
and fourth quadrants.

Figure 12b illustrates the outcomes of the test using the volumetric-deviatoric model. The “tensile” part (tr(ε) ≥ 0))
behaves as in the standard model, while an asymmetry in the compressive behavior is introduced by the split. Due to
the plane-strain assumption, there is no purely volumetric direction; as a result, the elastic domain is closed, leading
to damage nucleation for every loading direction. In the third quadrant of Figure 12b nucleation occurs in all cases,
although in three of them the damage level is so low to be hardly visible. Understanding why these cases nucleate but
do not localize into a crack would require a second-order stability analysis for multi-axial stress states [8, 36], a task
going beyond the scope of the present work and currently in progress [37].

Figures 12c and 12d provide the results for the spectral and the no-tension models, respectively. In these cases,
the domains are open since for some directions (some values of θ) nucleation cannot occur. The extent of the no-
nucleation region varies for the spectral and the no-tension models but cannot be adjusted based on experimental
results. As discussed in Section 3.2, the evolution of the elastic domain in the stress plane for the spectral split is a
complex non-homothetic transformation with respect to the origin that does not enjoy the stress-softening property.
This can explain the presence in Figure 12c of some localized damage fields not reaching α = 1.

Figures 12e and 12f depict the results of the test using the DP-like model with γ =
√

2µ0/κ0 and γ =
√

10µ0/κ0,
respectively. Similar to the spectral and no-tension models, the domains remain open, hence for some values of θ no
nucleation occurs. However, the opening angle of the no-nucleation region can now be adjusted using the additional
parameter γ, namely, it becomes wider with increasing γ. At the same time the region of ∂R(α) and ∂R∗(α) shared
with the standard model becomes narrower as γ increases. While on this shared region the nucleation behavior is the
same as in the standard model (the dots have the same locations), the propagation behavior (which can be appreciated
looking at the plotted localized damage fields after nucleation) is different. For instance, for γ =

√
10µ0/κ0 in Figure

12f, the cracks exhibit abnormal thickening with respect to those in 12a even in the first quadrant where the shared
portion lies. Hence, while this model exhibits the desired flexibility in nucleation, it leads to a problematic behavior
during propagation related to the non-zero residual stresses for tr(ε) > 0.

Finally, Figures 13a and 13b illustrate the results for the star-convex split with γ⋆ = {1, 5}. Similar to the DP-like
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Fig. 11: Geometry and loading for the bi-axially loaded disk.

model, the star-convex split also exhibits a certain flexibility in the opening angle of the no-nucleation region. As
shown in the figures, for increasing values of γ⋆, the opening angle widens. At the same time, the star-convex split
shows a better propagation behavior without the abnormal thickening of cracks observed with the DP-like model. In
fact, the residual stresses are entirely absent for tr(ε) ≥ 0 and proportional to the volumetric strain in compression
(tr(ε) ≤ 0).

5.2. Plate with hole test

We now discuss the compression of a plate with hole under plane-strain conditions. Assuming the problem to be
symmetric, the test is performed on a quarter of the plate as shown in Figure 14.

The plate is a square with side length 2L and a central hole with radius R. The hole center coincides with the
origin of both the cartesian reference system x-y and the polar one r-θ. The out-of-plane direction is denoted with z.
Rigid body motions are prevented by the symmetry constraints uy(x, y = 0) = 0 and ux(x = 0, y) = 0 and compression
is prescribed through the upper vertical displacement uy(x, y = L) = −tL with t going from 0 up to 0.3. At t = 0, the
material is assumed to be intact, i. e. α = 0 everywhere. We adopt L = 1, R = 0.3, E0 = 100, ν0 = 0.3, w1 = 1 and
ℓ = 0.02. We discretize the problem with standard bilinear quadrilateral finite elements using an unstructured mesh
with average size h = ℓ/3.

During the elastic regime, the highest stress concentration is expected at the boundary of the hole (r = R), along
which the radial stress σrr and the tangential stress σrθ are both zero (σrr = σrθ = 0) and the hoop stress σθθ and the
out-of-plane stress σzz are related by the plane-strain condition σzz = −ν0σθθ. Along the boundary of the hole, point
A (r = R, θ = π/2) undergoes the maximum tensile hoop stress σA

θθ ≥ 0 whereas point B (r = R, θ = 0) is subjected to
the lowest compressive hoop stress σB

θθ ≤ −σA
θθ.

We now wonder whether the crack will originate from A or B. Experiments with this setup for many brittle
materials produce a so-called “splitting” crack that starts at point A and proceeds parallel to the loading direction
upwards [46]. On the other hand, nucleation as predicted by a phase-field model will start from the point at which
the stress state first touches the limit curve ∂R∗(0). For first nucleation in A, the stress state in A must reach the
intersection between ∂R∗(0) and the half-line σzz = −ν0σθθ ≤ 0. We denote with σ+θθe the value of the hoop stress
at this intersection point (this concept is exemplified in Figure 15 for the star-convex model). Similarly, for first
nucleation in B, the stress state in B must reach the intersection between ∂R∗(0) and the half-line σzz = −ν0σθθ ≥ 0.
We denote with σ−θθe the value of the hoop stress at this intersection point (Figure 15). The |σ−θθe/σ+θθe | ratio increases
with the compressive to tensile strength ratio |σ−e /σ+e |with a trend which is specific to each model. Since when L ≫ R,
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Fig. 12: Analytical (lines) versus numerical (dots) nucleation domains and damage fields after nucleation for the available models.
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Fig. 14: Geometry and loading for the plate with hole.

σB
θθ = −3σA

θθ [47], we can infer that if the |σ−θθe/σ+θθe | ratio is well below 3, nucleation will occur in B, and if it is well
above 3, it will occur in A (Table 3).

For the standard phase-field model, which has an elastic domain symmetric in tension and compression, damage
starts at point B, as shown in Figure 16b. Additionally, the asymmetry alone is not sufficient to prevent crack initiation
in B, as visible in Figures 16d, 16f and 17f as for these models the |σ−θθe/σ+θθe | ratio is well below 3 (Tab. 3). Unlike
the other models, the DP-like and the star-convex models contain the additional parameters γ and γ⋆ that allow us for
the flexible calibration the strength ratio |σ−θθe/σ+θθe |. For the star-convex model, Figure 15 shows how the |σ−θθe/σ+θθe |
ratio is affected by the variation of γ⋆.

Figures 16 and 17 present the results of the plate with hole test. For each model, we show the plot of the vertical
stress reaction per unit thickness Ry, equal to the integral of σyy over the upper boundary, against the pseudo-time t,
as well as the damage field at the last time step. Some models do not reach iterative convergence of the numerical
solver for all time steps; for these models, we report the results up to the last converged time step (a brief discussion
on convergence issues is postponed to Section 5.4). In the Ry vs. t plots, the elastic limit point e marks the transition
between the elastic regime (black dash-dotted line) and the stage after damage nucleation (red solid line). From
Figures 16a, 16c, 16e and 17e we observe that, in models for which nucleation occurs at point B, the elastic limit e
is met at different time steps. While the volumetric-deviatoric, spectral, and star-convex split with γ⋆ = 1 introduce
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Model |σ−θθe /σ+θθe | ν0=0.3

Standard 1 =1

Vol.-dev.

√
3(1−ν20)

2(1+ν30)
≈1.15

Spectral

√
1−ν0−ν20
ν0

≈2.60

No-tension ∞ =∞

DP-like



√
3(1−ν0)(γ∞ζ+γ2)√

(1−2ν0)(1+ν0)(γ∞−γ)
for γ<ζ=

3(1−2ν0)
γ∞ (1+ν0)

γ∞+γ
γ∞−γ for ζ≤γ<γ∞=

√
6(1−ν0+ν20)

(1+ν0)

∞ otherwise

ζ≈0.55

γ∞≈1.67

Star-convex



√
γ⋆∞+1
γ⋆∞−γ⋆

for γ⋆<γ⋆∞=
2(1+ν30)

(1+ν0)2(1−2ν0)

∞ otherwise
γ⋆∞≈3.04

Tab. 3: |σ−θθe/σ+θθe | ratio for the plate with hole. With reference to Figure 14, first nucleation is expected in B when the ratio is well below 3.
Nucleation is expected in A when the ratio is well above 3.

tension/compression asymmetry, this is not sufficient to obtain damage onset at point A. In the case of the spectral split
in Figure 16f, the nucleation of the diffuse damage in B occurs before vertical localization at point A. Consequently,
the nucleation point e in Figure 16e corresponds to the initiation of damage in B. Thus, the only models that exhibit a
crack propagation consistent with the experimental evidence [46] are those with a certain level of flexibility, adjustable
with the parameter γ (DP-like model) or γ⋆ (star-convex split), along with the no-tension model. However, in the case
of the DP-like model (Figure 17d), for γ =

√
10µ0/κ0, the damage exhibits a diffuse pattern rather than being fully

localized. This is attributed to the phenomenon of crack thickening as γ increases, as previously highlighted in the
bi-axially loaded disk test.

5.3. Sliding test

The last test concerns a square plate of side L with a crack in the center, as shown in Figure 18, under plane-strain
conditions. The bottom left corner of the plate coincides with the origin of the cartesian reference system x-y and
the out-of-plane direction is denoted with z. In order to emulate a crack using a localized damage field, we impose
the Dirichlet boundary condition α(x, y = L/2) = 1 and we solve the minimization problem (3) while maintaining
the displacement field homogeneously equal to zero. Starting from the obtained damage field, we apply the Dirichlet
boundary conditions in Figure 18 to the displacement field: the lower part of the plate is blocked in both directions
and a horizontal displacement ux(x, y = L) = tL is applied to the upper part. Furthermore, the two sides are vertically
blocked in their lower part uy(x = 0, y ≤ L/2) = uy(x = L, y ≤ L/2) = 0 and we apply a constant vertical displacement,
i.e. independent of t, on the upper part uy(x = 0, y ≥ L/2) = uy(x = L, y ≥ L/2) = ūL, where ū = 0.1. This test aims to
emphasize the importance of having zero residual shear stresses at full damage. Indeed, if these stresses are not zero,
even though the two faces of the block are separate, physically unrealistic stresses are transmitted during sliding. This
test is inspired by the one illustrated in [48] with additional separation of the two blocks. This excludes the possibility
that the transmitted stresses are attributable to friction. We set L = 1, E0 = 100, ν0 = 0.3, w1 = 1 and ℓ = 0.05. We
discretize the problem with standard bilinear quadrilateral finite elements using a structured mesh with h = ℓ/5.

Figure 19 depicts the deformed configuration at t = 0.2 for each model, except for the spectral and no-tension
models, both of which experience convergence issues and thus stop at t = 0.06. The no-tension model and the DP-like
model for γ =

√
10µ0/κ0 in Figure 19d and 19f, respectively, display unrealistic deformations. Figure 20 illustrates

for each model the horizontal stress reaction per unit thickness Rx, given by the integral of σxy over the upper side
of the plate, against t, compared to the horizontal elastic stress reaction of an undamaged plate (green dotted line).
Given the presence of the crack and the initial separation, we expect the horizontal reaction force to be identically zero.
However, this occurs only for the standard model, which has no residual stresses, and for the volumetric-deviatoric and
the star-convex models, both of which have residual stresses proportional to ⟨tr(ε)⟩−. The spectral and the no-tension
models, as well as the DP-like model for γ =

√
10µ0/κ0, exhibit a significant reaction force, slightly lower than half

of that observed in an undamaged material. The DP-like model for γ =
√

2µ0/κ0 initially displays no reaction and a
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Fig. 15: Effect of γ⋆ on the nucleation domain in the plane spanned by hoop stress and out-of-plane stress for the plate with hole test. Elastic limit
hoop stresses (a): the red solid line and the black dashed line represent the contour ∂R∗(0) for γ⋆ = {−1, 0, 1, 2, 5} and the stress state under the
plane-strain assumption, respectively. Their intersection determines the compressive limit σ−θθe (blue on the left) and the tensile limit σ+θθe (blue on
the right). Compressive-tensile hoop limits ratio (b): trend of the limits ratio vs. γ⋆ (red solid line). For γ⋆ > γ⋆3 the ratio is greater than 3, for
γ⋆ ≥ γ⋆∞ the ratio is equal to∞.

deformation as shown in Figure 19, which is acceptable. However, it subsequently shows an increase in the reaction
force. This is because a lower γ value delays this undesired effect.

5.4. Iterative convergence issues

As described in Section 5, the iterative convergence criterion of the alternate minimization is met when Ru < tol.
Given the convexity of the functional in the separate problems of displacement and damage, the standard model is
robust in terms of iterative convergence. However, due to the high non-linearity introduced by the energy decompo-
sitions, for the other models iterative convergence is often problematic. To achieve convergence, some authors [see
e.g. 49] resort to non-variational simplified versions of the volumetric-deviatoric and spectral models, known as the
hybrid model [44]. In fact, we already showed in Sections 5.2 and 5.3 that, for each model, we had to stop specific
numerical tests at the first non-converging time step. The presented results exclusively relate to converged simulations.
On the other hand, the same tests with modified parameters can lead to no convergence. In Figure 21, we illustrate the
exemplary case of an angle θ in the bi-axially loaded disk test using the star-convex model, for which iterative conver-
gence is lost when varying the mesh size h. This issue calls for a thorough numerical analysis addressing the specific
non-linearities introduced by the splits. It is a crucial issue to be resolved for the proper numerical implementation of
phase-field modeling of fracture under multi-axial stress states, but it goes beyond the scope of this work.

6. Conclusions

In this contribution, we focused on variational phase-field models for brittle fracture under multi-axial stress
states based on energy decomposition. We first reviewed some available models of this type, namely the volumetric-
deviatoric [13], the spectral [14], the no-tension [15] and the DP-like models [12]. We then proposed a new model
that we denoted as star-convex model. The major contents and findings of the paper can be summarized as follows:

• We defined essential requirements for a phase-field model of brittle fracture dealing with multi-axial stress
states (Sec 2.4): strain-hardening, stress-softening, tension/compression asymmetry, flexibility (i.e. the ability
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(a) Standard

α0 1

(b) Standard

(c) Volumetric-deviatoric

α0 1

(d) Volumetric-deviatoric

(e) Spectral
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(f) Spectral

(g) No-tension
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(h) No-tension

Fig. 16: Results of the plate with hole test for the standard, volumetric-deviatoric, spectral and no-tension models. Vertical reaction against pseudo-
time t (a), (c), (e), (g): the black dash-dotted line corresponds to the elastic phase, the e point to damage nucleation and the red solid line to the
post-nucleation phase. Damage fields (b), (d), (f), (h).
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(a) DP-model, γ =
√

2µ0/κ0

α0 1

(b) DP-model, γ =
√

2µ0/κ0

(c) DP-model, γ =
√

10µ0/κ0

α0 1

(d) DP-model, γ =
√

10µ0/κ0

(e) Star-convex, γ⋆ = 1

α0 1

(f) Star-convex, γ⋆ = 1

(g) Star-convex, γ⋆ = 5

α0 1

(h) Star-convex, γ⋆ = 5

Fig. 17: Results of the plate with hole test for the DP-like (γ = {√2µ0/κ0,
√

10µ0/κ0}) and star-convex models (γ⋆ = {1, 5}). Vertical reaction
against pseudo-time t (a), (c), (e), (g): the black dash-dotted line corresponds to the elastic phase, the e point to damage nucleation and the red solid
line to the post-nucleation phase. Damage fields (b), (d), (f), (h).
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Fig. 18: Geometry and loading for the sliding test.

to independently calibrate not only the uniaxial tensile strength but also the uniaxial compressive strength and
the shear strength), and crack-like residual stress.

• In light of these requirements we discussed the advantages and limitations of the available models. As summa-
rized in Table 2, none of the analyzed existing decompositions was found to meet all the requirements.

• Our newly proposed star-convex model, based on a minimal modification of the volumetric-deviatoric decompo-
sition, is equipped with a γ⋆ parameter that allows independent calibration of compressive and tensile strengths.
Such partial flexibility can be extended to the shear strength by modifying the softening laws as analyzed in
[37]. Additionally, the model satisfies all other requirements. Thus, it represents a very simple but effective step
forward towards the realistic prediction of brittle fracture mechanisms under multiaxial stress states.

The issue of iterative convergence, which is crucial for the robustness of the simulations with all the presented
models, remains open and may well be the topic of further investigations.
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Fig. 19: Damage fields on the deformed configurations for all models.

Fig. 20: Horizontal reaction vs. pseudo-time t obtained from different models: linear elasticity (green dotted line) and phase-field models with
spectral split (black solid line with empty circles), no-tension model (purple dashed line), DP-like model with γ =

√
2µ0/κ0 (red dash-dotted line),

DP-like model with γ =
√

10µ0/κ0 (blue solid line with point marker). The grey solid line corresponds to the star-convex split with γ⋆ = {1, 5}, to
the volumetric-deviatoric split (γ⋆ = 0) and to the standard model (γ⋆ = −1).

Fig. 21: Bi-axially loaded disk with the star-convex model
(
γ∗ = 1, θ = 3

4π
)
: Ru against iterations of the alternate minimization scheme for the time

step at which the elastic limit is reached. All the parameters are as in Section 5.1 for the solid blue line
(
h = ℓ3

)
. For the solid red line, only the

mesh size differs
(
h = ℓ5

)
.
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Appendix A. Elastic domains

In this section, we provide the expressions of the elastic domains for the models presented in Section 3.

Appendix A.1. The volumetric-deviatoric split
The elastic domains are

R(α) :=
{
ε ∈ Sym :

1
2
κ0 ⟨tr(ε)⟩2+ + µ0 |εdev|2 ≤ −w1w′(α)

a′(α)

}
, (A.1)

R∗(α) :=
{
σ ∈ Sym :

1
2n2κ0

⟨tr(σ)⟩2+ +
1

4µ0
|σdev|2 ≤ w1w′(α)

s′(α)

}
. (A.2)

Appendix A.2. The spectral split
The elastic domain in strains corresponds to

R(α) :=
{
ε ∈ Sym :

1
2
λ0 ⟨tr(ε)⟩2+ + µ0ε

+ · ε+ ≤ −w1w′(α)
a′(α)

}
. (A.3)

Assuming, without loss of generality, that σ1 ≥ σ2 ≥ σ3 are the eigenvalues of the stress tensor σ, the stress
domain R∗ (α) is obtained as the set of σ ∈ S ym such that

– if σ3 − ν0 (σ1 + σ2) ≥ 0

1
18κ0

tr2 (σ) +
1

4µ0
|σdev|2 ≤ w1w′ (α)

s′ (α)
,

– else if
[
(1 + a (α)) λ0 + 2µ0

]
σ2 − λ0σ1 − a (α) λ0σ3 ≥ 0 and σ1 + σ2 + a (α)σ3 ≥ 0

1

4a2 (α) µ0
[
(2 + a (α)) λ0 + 2µ0

]2
{
4µ2

0

(
σ2

1 + σ
2
2

)
+ 2λ0µ0

[
(3 + 2a (α))σ2

1 − 2σ1σ2 + (3 + 2a (α))σ2
2 + a2 (α)σ2

3

]

+λ2
0

[(
2 + 2a (α) + a2 (α)

) (
σ2

1 + σ
2
2

)
− 2a2 (α)σ2σ3 + 2a2 (α)σ2

3

−2σ1

(
2σ2 + 2a (α)σ2 + a2 (α)σ3

)]}
≤ −w1w′ (α)

a′ (α)
,

– else if
[
(1 + a (α)) λ0 + 2a (α) µ0

]
σ2 − λ0σ1 − a (α) λ0σ3 ≥ 0 and σ1 + σ2 + a (α)σ3 ≤ 0

1

4a2 (α) µ0
[
(2 + a (α)) λ0 + 2a (α) µ0

]2
{[

(λ0 + a (α) λ0 + 2a (α) µ0)σ1 − λ0σ2 − a (α) λ0σ3
]2

+
[
(λ0 + a (α) λ0 + 2a (α) µ0)σ2 − λ0σ1 − a (α) λ0σ3

]2} ≤ −w1w′ (α)
a′ (α)

,

– else if 2µ0σ1 + a (α) λ0 (2σ1 − σ2 − σ3) ≥ 0 and σ1 + a (α) (σ2 + σ3) ≥ 0

1

4a2 (α) µ0
[
(1 + 2a (α)) λ0 + 2µ0

]2
{[

(8a (α) + 2) λ0µ0 + 4µ2
0

]
σ2

1

+ a2 (α) λ0

[
2µ0 (σ2 + σ3)2 + λ0 (−2σ1 + σ2 + σ3)2

]}
≤ −w1w′ (α)

a′ (α)
,
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– else if 2 (λ0 + µ0)σ1 − λ0 (σ2 + σ3) ≥ 0 and σ1 + a (α) (σ2 + σ3) ≤ 0

1

4µ0
[
(1 + 2a (α)) λ0 + 2a (α) µ0

]2
[
2 (λ0 + µ0)σ1 − λ (σ2 + σ3)

]2 ≤ −w1w′ (α)
a′ (α)

.

Appendix A.3. The no-tension model
In the case of no-tension materials, Freddi and Royer-Carfagni [15] define Kε = Sym+, the convex cone of

symmetric positive semi-definite second-order tensors. The solution to the minimization problem (33) with Kε =
Sym+ for the three-dimensional scenario is already presented in [50]. Assuming without loss of generality that the
eigenvalues of ε are ordered such that ε1 ≥ ε2 ≥ ε3 :

– if ε3 ≥ 0, then η̄ = ε,

– else if ε2 + ν0ε3 ≥ 0, then η̄1 = ε1 + ν0ε3, η̄2 = ε2 + ν0ε3 and η̄3 = 0,

– else if ε1 +
ν0

1−ν0 (ε2 + ε3) ≥ 0, then η̄1 = ε1 +
ν0

1−ν0 (ε2 + ε3) and η̄2 = η̄3 = 0,

– else, η̄ = 0.

Starting from φD(ε), one can calculate the elastic domain R(α) as the set of ε ∈ Sym such that:

– if ε3 ≥ 0, κ02 tr2(ε) + µ0|εdev|2 ≤ −w1w′(α)
a′(α) ,

– else if ε2 + ν0ε3 ≥ 0, λ2
0

2(λ0+µ0)ε
2
3 + λ0ε3(ε1 + ε2) + λ0

2 (ε1 + ε2)2 + µ0(ε2
1 + ε

2
2) ≤ −w1w′(α)

a′(α) ,

– else if ε1 +
ν0

1−ν0 (ε2 + ε3) ≥ 0, 1
2(λ0+2µ0)

[
(λ0 + 2µ0)ε1 + λ0(ε2 + ε3)

]2 ≤ −w1w′(α)
a′(α)

and reversing the behavior law σ(ε, α) in (10), one can also derive the domain in the stresses R∗(α) which is the set of
σ ∈ Sym such that:

– if σ3 − ν0(σ1 + σ2) ≥ 0, 1
18κ0

tr2(σ) + 1
4µ0
|σdev|2 ≤ w1w′(α)

s′(α) ,

– else if σ2 − ν0
1−ν0σ1 ≥ 0, 1

8µ0(λ0+µ0)

[
λ0(σ1 − σ2)2 + 2µ0(σ2

1 + σ
2
2)
]
≤ w1w′(α)

s′(α) ,

– else if σ1 ≥ 0, 1
2(λ0+µ0)σ

2
1 ≤ w1w′(α)

s′(α) .

Appendix A.4. DP-like model
Having defined Kε and knowing the elastic energy density of the pristine material φ0(ε), one can solve the mini-

mum problem in (33) as in [12], find

η̄(ε) =



ε for |εdev| < tr(ε)/γ,
0 for |εdev| < − γκ02µ0

tr(ε),
tr(ε)+ 2µ0

κ0γ
|εdev |

γ+
2µ0
κ0γ

(
γ
n I + ε̂dev

)
for |εdev| ≥ tr(ε)/γ & |εdev| ≥ − γκ02µ0

tr(ε)
(A.4)

and obtain the elastic energy density split

φD(ε) =



κ0
2 tr2(ε) + µ0|εdev|2 for |εdev| < tr(ε)/γ,
0 for |εdev| < − γκ02µ0

tr(ε),
1

2(κ0γ2+2µ0)
[
κ0γtr(ε) + 2µ0|εdev|]2 for |εdev| ≥ tr(ε)/γ & |εdev| ≥ − γκ02µ0

tr(ε),
(A.5)

φR(ε) =



0 for |εdev| < tr(ε)/γ,
κ0
2 tr2(ε) + µ0|εdev|2 for |εdev| < − γκ02µ0

tr(ε),
κ0µ0

κ0γ2+2µ0

[
tr(ε) − γ|εdev|]2 for |εdev| ≥ tr(ε)/γ & |εdev| ≥ − γκ02µ0

tr(ε).
(A.6)

The elastic domain in strains R(α) is the set of ε ∈ Sym such that:
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– if tr(ε) − γ|εdev| > 0, κ02 tr2(ε) + µ0|εdev|2 ≤ −w1w′(α)
a′(α) ,

– else if tr(ε) + 2µ0
γκ0
|εdev| ≥ 0, 1

2(κ0γ2+2µ0)
[
κ0γtr(ε) + 2µ0|εdev|]2 ≤ −w1w′(α)

a′(α) .

The elastic domain in stresses R∗(α) is the set of ε ∈ Sym such that:

– if tr(σ) − nγκ0
2µ0
|σdev| > 0, tr2(σ)

2n2κ0
+
|σdev |2

4µ0
≤ w1w′(α)

s′(α) ,

– else if tr(σ) + n
γ
|σdev| ≥ 0, 1

2n2(κ0γ2+2µ0)
[
γtr(σ) + n|σdev|]2 ≤ w1w′(α)

s′(α) .

Appendix B. Conic sections

In this section, a procedure for the construction of a strain energy density which satisfies the requirements illus-
trated in Section 2.4 is proposed. First, we assume that the elastic domain is axisymmetric around the hydrostatic
axis, hence it is sufficient to develop the model construction on the tr(ε) - |εdev| plane. For the strain energy density
W(ε, α,∇α), we keep the definition in (1) and, regarding local dissipation, we simply opt for the AT1-like function
w(α) = α that guarantees the existence of an initial linear elastic regime.

Since the energy density must be quadratic in ε for α = 0, a simple functional candidate is the second-order
polynomial in tr(ε) and |εdev|

φ(ε, α) =
1
2
κ(α)tr(ε)2 + µ(α)|εdev|2 + p(α) tr(ε). (B.1)

where in order to ensure smoothness of the elastic domain the linear term in |εdev| is not included. The choice of a null
coefficient for the mixed-term tr(ε) |εdev| in the polynomial aims to avoid complicated loss of coaxiality between strain
and stress. In fact, the mixed-term allows the volumetric (deviatoric) stress to work for the deviatoric (volumetric)
strain. Such constitutive laws are exemplified by the DP-like model and lead to undesired and convoluted residual
stresses as illustrated in Section 3.4. Moreover, we assume that κ(0) = κ0, µ(0) = µ0, p(0) = 0 to retrieve classical
linear elasticity for α = 0. The constitutive law is obtained by work conjugacy, hence

tr(σ)
n
= κ(α)tr(ε) + p(α) and |σdev| = 2 µ(α) |εdev|, (B.2)

from which we see that p(α) acts as a pre-stress along the volumetric component.
The boundary of the elastic domain in the strain space is the set ∂R(α) of ε ∈ Sym such that

1
2
κ′(α)tr(ε)2 + µ′(α)|εdev|2 + p′(α)tr(ε) + w1 = 0, (B.3)

which is the implicit equation of a conic section in the tr(ε) - |εdev| plane. The shape of the conic section is determined
by the sign of the product κ′(α)µ′(α). Specifically, when the product is positive, zero or negative the conic section
is respectively an ellipse, a parabola, or a hyperbola. It can be proved easily that the same shape is preserved by
passing to the space of stresses, i.e., if ∂R(α) is an ellipse, a parabola, or a hyperbola, then ∂R∗(α) will be an ellipse,
a parabola, or a hyperbola, respectively.

At least for tr(ε) ≥ 0, a standard damaging behavior and finite elastic limits for α < 1 are required, that is
κ(1) = 0 and µ(1) = 0 with κ′(α) ≤ 0, p′(α) , 0 if κ′(α) = 0 and µ′(α) < 0 for α < 1. As a consequence, the
boundary of the elastic domain can be either a parabola or an ellipse. A parabolic domain seems to hold distinct
advantages, as it appears capable of describing infinite elastic limit in volumetric compression. On the other hand,
within the interval [0, 1] there is at least one α value for which the product κ′(α)µ′(α) is negative and, consequently,
∂R(α) is an ellipse. The elastic domain adapts with α, eventually morphing from an ellipse to a parabola. However,
this morphing cannot occur in the reverse direction, from parabola to ellipse, without violating the strain-hardening
condition. Consequently, fulfillment of strain-hardening requires that, for α = 0, the elastic domain takes an elliptic
shape. This constraint would confine us to models in which, under significant compressive loads, the deviatoric elastic
limit decreases as volumetric compression increases, and this is a trend contrary to the models of our primary interest,
such as the Drucker-Prager model.
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Since the requirements on tr(ε) ≥ 0 are more demanding, the split of the strain energy density

φ(ε, α) =


1
2κ+(α)tr(ε)2 + µ(α)|εdev|2 + p(α) tr(ε), if tr(ε) ≥ 0,
1
2κ−(α)tr(ε)2 + µ(α)|εdev|2 + p(α) tr(ε), if tr(ε) < 0

(B.4)

offers flexibility to the shape of the elastic domain at least for tr(ε) < 0. In (B.4), µ(α) does not depend on the sign
of tr(ε) to guarantee smoothness of the elastic domain. Also p(α) does not depend on the sign of tr(ε) to preserve
the continuity of the elastic domain in the stress space. However, although selecting an independent p(α) from tr(ε)
ensures continuity, this alone is insufficient to ensure smoothness of the elastic domain in the stress space. In addition
to this, for tr(ε) ≥ 0 it must be p(0) = p(1) = 0 to recover linear elasticity at α = 0 and to obtain zero residual stresses
at α = 1. Consequently, there are inevitably values of α for which the elastic domain for tr(ε) ≥ 0 is an ellipse with a
center shifted to tr(ε) > 0. For this value of α then, as we approach tr(ε) = 0 from above, i.e. at the limit tr(ε) → 0+,
there is a reduction in the deviatoric elastic limit with decreasing tr(ε) value, which once again contradicts the ideal
behavior we aim to model. This complexity leads to exclude the translation effect in the case with energy split, i.e.
p(α) = 0.

At this point, a straightforward choice for µ(α) is the standard one µ(α) = µ0 (1 − α)2. For a comprehensive
analysis on the influence of different κ(α) functions on the elastic domain, we refer interested readers to [37]. For our
current aim, it is worth noting that different choices of κ(α), as long as they follow stability rules and strain-hardening,
provide only limited control over strength limits. Therefore, we opt for the simplest choice κ+(α) = κ0 (1 − α)2.

Because of the split, the constraints on κ−(α) are relaxed, so we can take κ′(α) > 0, thus having hyperbolas on
tr(ε) < 0 and a 0-star-convex elastic domain. In the tr(ε)-|εdev| plane, the hyperbola for tr(ε) < 0 has an asymptote

|εdev|
tr(ε)

= −
√
κ′−(α)

2 (1 − α)
. (B.5)

Since for numerical robustness we prefer not to have a vertical asymptote for α → 1, a convenient choice is that
of an asymptote with a slope independent of α and proportional to the root of a flexible parameter γ⋆, i.e., κ(α) =
κ0
(
1 + 2 γ⋆ α

(
1 − α2

))
. In this manner, we construct the star-convex model

φ(ε, α) = κ0
(
1 + 2 γ⋆ α

(
1 − α

2

))
tr(ε)2 + µ0 (1 − α)2 |εdev|2, (B.6)

φ(ε, α) =


κ0 (1 − α)2 tr(ε)2 + µ0 (1 − α)2 |εdev|2, if tr(ε) ≥ 0,
κ0
(
1 + 2 γ⋆ α

(
1 − α2

))
tr(ε)2 + µ0 (1 − α)2 |εdev|2, if tr(ε) < 0

(B.7)

which, written in the canonical split form, is equivalent to (35).
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Journal of elasticity 95 (2009) 1–30.
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