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Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. 
Neurofilament (NF) level in patient’ fluids have recently emerged as the prime biomarker of ALS disease progression, 
while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF 
accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, 
we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 
and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly 
accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions 
of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that 
the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining 
axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong 
correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition 
of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the 
axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in 
different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.

Keywords Amyotrophic lateral sclerosis · Human induced pluripotent stem cells · Motoneurons · Neurofilaments · Axonal 
initial segment · Degeneration
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Background

Amyotrophic lateral sclerosis (ALS) is the most common 
motor neuron (MN) disease of the adult, leading to 
paralysis and death within 2–5 years after diagnosis. The 
most common genetic causes of ALS are hexanucleotide 
expansions in the C9orf72 gene responsible for 30–46% 
of familial ALS (fALS), mutations in the superoxide 
dismutase 1 (SOD1) gene accounting for 12–20% of all 
fALS and mutations in the TARDBP gene (encoding for 
TDP-43) responsible for ~ 5% of fALS cases [1]. Despite 
many clinical trials, there is no efficient treatment able 
to significantly slow down ALS progression, despite 
some recent promising results from the SOD1 antisense 
oligonucleotide trial [2]. Therapy development for ALS 
remains challenging, as reliable diagnostic and prognostic 
biomarkers are lacking [3]. Recently, neurofilaments 
(NFs) have emerged as the most promising biomarker for 
ALS [4, 5] with ongoing studies assessing the promising 
performances of NFs for both disease diagnostic and 
prognosis, for improving clinical trial designs and for 
evaluation of treatment responses [3, 4, 6, 7]. NFs, and 
especially the light chain (NF-L) and the phosphorylated 
heavy chain (pNF-H), were detected both in the 
cerebrospinal fluid (CSF) and in the peripheral blood 
of ALS patients [3, 8]. As fundamental and specific 
structural components of neuronal cytoskeletons and the 
main constituents of MN axons, NF presence in biofluids 
reflects axon suffering and MN damage [9].

In ALS patients, NF deposits in degenerating MNs 
have been described since the 1980s. NF accumulations 
were first suggested by electron microscopy in proximal 
axon swellings in spinal cord tissues [10–13] and then 
confirmed by immunostaining with specific antibodies 
[14–16]. Abnormal NF cytoplasmic inclusions and 
accumulations in axonal spheroids in surviving MNs is 
a common histopathological hallmark in all ALS forms 
[5]. Evidences that these NF accumulations could be 
detrimental for MNs in ALS came from studies with 
transgenic mice overexpressing human NF-H or mouse 
NF-L proteins [17–19] that developed abnormal NF 
accumulations and axonal degeneration. The discovery of 
susceptibility variants in the gene encoding NF-H in some 
ALS sporadic cases also supported a role of NFs in ALS 
pathology [19]. Studies in the mouse model expressing 
mutant  SOD1G93A showed that NFs accumulated at the 
pre-symptomatic disease stage, in soma and proximal 
axonal regions [12], with pathological signs of impaired 
axonal transport [20]. Strikingly, this proximal region had 
previously been pointed at in patient’s post-mortem tissues 
as a region of privileged NF accumulation [21]. While, 
at that time, the singular protein structure of this axonal 

proximal region was not described in detail, it is now 
identified as a specific neuritic domain named the axonal 
initial segment (AIS), a unique and crucial compartment 
involved in axon–dendritic polarity [22–26]. Knowing that 
this AIS region is also involved in action potential (AP) 
initiation [27] and that MN excitability alteration is an 
ALS hallmark [28, 29], we asked whether AIS integrity 
could be altered in ALS MNs and whether it could be 
correlated to NF accumulations in axonal proximal 
regions.

To achieve this, we generated human induced pluripotent 
stem cells (iPSC) from fibroblasts of patients carrying 
mutations in the three main genes responsible for ALS—
C9orf72, SOD1 and TARDBP—as well as isogenic or age 
and sex-matched control iPSC clones. Our objective was 
to compare different ALS forms in the same experimental 
context to identify common alterations, with a specific 
focus on NF accumulations and AIS alterations. We 
therefore differentiated iPSC into spinal MNs and showed 
that the vast majority of produced MNs expressed markers 
of skeletal MNs able to innervate limb muscles, those 
primarily affected in ALS patients. Interestingly, our results 
showed that mutant C9orf72, SOD1 and TARDBP MNs 
accumulated NF-L in their soma and had fragmented NF-L-
positive neurite networks compared to controls. Importantly, 
when pNF-M/H accumulated specifically in the AIS region 
of C9orf72 and SOD1 MNs, we could correlate this with 
strongly altered structural components of the AIS, leading 
to molecular and geometric disorganizations of the axonal 
proximal region. Taken together, our results highlight a 
novel pathway by which NF accumulations disrupt MN 
homeostasis.

Methods

Neuropathology on ALS patient’s spinal cord 
sections

ALS patients were enrolled in a brain donation program 
declared by the Ministry of Research and Universities, as 
requested by French laws. An explicit consent was signed 
by the patient himself or by the next of kin, in the name of 
the patient, in accordance with the French Bioethical Laws. 
Patients are described in the Supplementary Table 1. Three 
levels of spinal cord (cervical, thoracic, lumbar) were taken. 
Immunostainings with anti-pNF-H antibodies (SMI31) were 
performed after deparaffinization of 5 μm-thick sections by 
an automatic slide stainer (Benchmark XT Ventana staining 
system). Slides were pre-treated at 95 °C in CC1 (pH 8) 
proprietary retrieval buffer (Ventana Medical Systems). 
Antibodies were targeted with a biotin-free detection 
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system (Ventana Medical Systems ultraView Universal DAB 
Detection Kit).

Human cells

To establish a human fibroblast collection to generate 
iPSC, skin biopsies were proposed for French ALS 
patients, in collaboration with the French National Referral 
Center for ALS at the Pitié-Salpétriêre hospital (Paris, 
France) and the Pasteur Institute (project promotor) 
(Paris, France). The study was conducted in accordance 
with the Declaration of Helsinki and was approved by an 
independent ethics committee (“Comité de Protection des 
Personnes Île de France VI”). Fibroblasts carrying the 
 TARDBPG348C mutation were obtained from the Erasmus 
Hospital (Brussels, Belgium). The study was conducted 
in accordance with the Declaration of Helsinki and was 
approved by an independent ethics committee (“Comité 
de Protection des Personnes Île de France II”, DC 2011-
534). Written informed consent was obtained from each 
patient. For control subjects, skin fibroblast cultures were 
obtained from the Centre de Ressources Biologiques (CRB) 
of Lyon (France). A statement of all biological samples was 
made according to French laws formulated by the Research 
Ministry.

IPSC generation and characterization

Fibroblasts of a control subject (69  years old), of the 
patient carrying the N139D mutation in the SOD1 gene 
and of the two patients harboring C9orf72 hexanucleotide 
repeat expansions, were reprogrammed into iPSC with the 
integration-free CytoTune™-iPS 2.0 Sendai Reprogramming 
Kit (Thermo Fisher Scientific). For the patient with the 
G348C mutation in the TARDBP gene, reprogramming of 
fibroblasts was done with integrative retroviral vectors as 
previously described [30], except that the reprogramming 
was done with five vectors encoding OCT4, SOX2, KLF4, 
C-MYC and NANOG. iPSC of a control subject of 33 years 
old (Ctrl33) were previously generated and described [31]. 
The control iPSC, named Ctrl40 and Ctrl60, were obtained 
from the European Collection of Authenticated Cell cultures 
(HipSci supplier, UK) and derived from fibroblasts of a 
40- to 44-year-old woman and a 60- to 64-year-old man 
(cell lines names HPSI0914i-zerv_8 and HPSI0114i-
zapk_3, respectively). Clones were passaged with 0.5 mM 
UltraPure™ EDTA, pH 8.0 (Thermo Fisher Scientific) 
and maintained in Essential 8 Medium (Thermo Fisher 
Scientific) on Geltrex-coated plates. iPSC were regularly 
tested for recurrent genomic abnormalities by the ICS-
digital™ PSC test (Stem Genomics, Montpellier, France) 
to control cells before initiation of different differentiation 
protocols.

For characterization, iPSC cultured as embryoid 
bodies (EBs) for 10  days were plated on Geltrex and 
cultured for another 10 days in fibroblast medium (DMEM 
supplemented with 10% fetal bovine serum) to induce 
spontaneous differentiation. Pluripotency and differentiation 
potential of iPSC and their EB derivatives were analyzed 
by immunostaining and PCR with reverse transcription 
(RT-PCR), as described previously (Supplementary 
Fig. 1) [30, 31]. When integrative vectors were used for 
reprogramming, quantitative RT-PCR was performed as 
described previously [31] to confirm efficient repression 
of exogenously introduced genes (Supplementary Fig. 2). 
Genome integrity was assessed by Illumina Human 
OmniExpress-24 SNP array (300,000 markers) (Integragen, 
Evry, France) and analyzed using KaryoStudio and 
GenomeStudio softwares (Illumina). SNP deviations in 
each iPSC clone from the reference human genome were 
compared to the original pool of fibroblasts. These analyses 
confirmed the identity of each clone compared to its parental 
fibroblast and that cells had not acquired large-scale copy 
number variations, although a small number of small-
scale indels were found (well below the level that would be 
detected by G-banding). (Supplementary Fig. 3). iPSC were 
also regularly tested for recurrent genomic abnormalities by 
the ICS-digital™ PSC test (Stem Genomics, Montpellier, 
France). We did not detect genomic abnormalities in iPSC 
clones with these analyses. Genotyping of SOD1 and 
TARDBP mutations as well as analysis of hexanucleotide 
repeat expansions in the C9orf72 gene was performed on 
genomic DNA isolated from fibroblasts, iPSC clones and 
MNs, as previously described (Supplementary Fig. 4) [32].

Gene correction of iPSC

To correct point mutations in iPSC carrying  SOD1N139D 
(clone SOD1-2) and  TARDBPG348C (clone TARDBP-1) 
mutated genes, the CRISPR/Cas9 technology was used 
[33]. Briefly, iPSC cultured in STEMFLEX medium were 
dissociated as single cells with Accutase (ThermoFischer 
Scientific). One million cells were then transfected (4D 
Nucleofector system, Core Unit AAF-1002B and X unit 
AAF-1002; Lonza, Switzerland) with a ribonucleoprotein 
(RNP) complex and 500  pmol of ssODN (single 
stranded oligodesoxynucleotide) matrix for homologous 
recombination (ssODN sequences: GCT AGC AGG ATA 
ACA GAT GAG TTA AGG GGC CTC AGA CTA CAT CCA 
AGG GAA TGT TTA TTG GGC GAT CCC AAT TAC ACC 
ACA AGC tAAA CGA CTT CCA GCGTtTCC TGT CTT TGT 
ACT TTC  for SOD1; GCC ATG ATG GCT GCC GCC CAG 
GCA GCA CTA CAG AGC AGT TGG GGT ATG ATG GGC 
ATG TTA GCC AGC CAG CAG AAC CAG TCA gGCC CAT 
CGG GTA AcAAtCAA AAC CAA GGC AAC ATG CAG for 
TARDBP). The RNP complex was prepared with equimolar 
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concentrations of crRNA (crRNA sequences: AGG AGA 
CGC TGG AAG TCG TT for SOD1; TGG TTT TGG TTA TTA 
CCC GA for TARDBP) and tracrRNA-ATT0550 (225 pmol 
of each RNA), with 120 pmol of Cas9 protein (Integrated 
DNA Technologies (IDT), Iowa, USA). After transfection, 
all cells were plated and 2 days later ATT0550-positive 
cells were sorted by FACS (MoFlo Astrios, Beckman 
Coulter; CYTO-ICAN platform, ICAN Institute, Paris, 
France) and plated at low concentrations on petri dishes 
coated with Laminin521 (Stem Cell Technologies) in 
STEMFLEX medium supplemented with Clone R (Stem 
Cell Technologies). Seven to 10 days later, individual iPSC 
clones were picked and expanded in 96-well plates. Each 
clone was duplicated for either DNA analysis or freezing. 
Between 100 and 300 clones were picked up. Genetically 
engineered clones were screened after DNA extraction 
by PCR amplification of the targeted genomic region and 
sequencing (primer for PCR: forward: GTA GTG ATT ACT 
TGA CAG CCC, Reverse: TAA TGT TTA TCA GGA TAC 
ATT TCT ACAG for SOD1; forward: CTG GCT TTA GAT 
AAA TTA ATGCT, Reverse: GCT GAA TAT ACT CCA CAC 
TGA ACA  for TARDBP) (primers for sequences: GTA GTG 
ATT ACT TGA CAG CCC for SOD1; GCC GAA CCT AAG 
CAC AAT AG for TARDBP). Corrected clones (SOD1-ISO; 
TARDBP-ISO) were then amplified and characterized at the 
molecular level. Potential off-target sites with one, two or 
three mismatches were screened by Sanger sequencing. No 
off-target mutations were found in the selected clones.

Differentiation of iPSC into MNs

MNs differentiation was performed as described by Maury 
et al. [34] with modifications. Briefly, iPSC clones are 
dissociated with StemPro™ Accutase™ (Thermo Fisher 
Scientific) and 2.105 cells/ml are suspended into a Neuronal 
Basic Medium (NBM) supplemented with SB431542 
(20 µM, Tocris Bioscience, Bristol, UK), LDN-193189 
(0.2 µM, Stemgent) and CHIR99021 (3 µM, Stemgent). 
NBM is composed of 1:1 DMEM/F-12/Neurobasal™, N2 
supplement, B27™ supplement minus vitamin A (all from 
Thermo Fisher Scientific) and l-ascorbic acid (0.01 μM, 
Sigma). EBs form within 1 day, and 2 days later the NBM 
is supplemented with retinoic acid (0.1 µM, Sigma) and 
SAG smoothened ligand (0.5  µM, Enzo Life Sciences, 
NY, USA) until day 14. CHIR99021 is removed on day 2, 
while SB431542 and LDN-193189 are removed on day 4. 
BDNF and GDNF (10 ng/mL, Miltenyi Biotec) are added 
from day 7. On day 9, DAPT (10 µM, Sigma) is added 
and EBs are dissociated the next day with Trypsin–EDTA 
(Thermo Fisher Scientific) (pMNs, Fig. 1a). Dissociated 
single cells are then seeded onto coverslips coated either 
with PEI (polyethyleneimine) solution (2 mg/mL, Sigma) 
or polyornithine (100 μg/mL, Sigma) and laminin (20 µg/

mL, Sigma). Between day 14 and day 17, cells are incubated 
in NBM with DAPT, BDNF and GNDF. From day 18 (T0, 
Fig. 1a) and until the end of each experiment, DAPT is 
removed from NBM, while CNTF and IGF1 are added 
(10  ng/mL, Miltenyi Biotec) (Fig.  1a). The medium is 
then changed every other day by replacing only half of the 
medium to keep a half of the medium conditioned by MNs.

Immunocytochemistry

Cells were washed in phosphate-buffered saline (PBS) 
and fixed with 4% paraformaldehyde (PFA) (Euromedex) 
for 10  min at room temperature (RT). For ion channel 
staining, cells were fixed for 10 min with PFA 1% (RT) and 
10 min in methanol at − 20 °C. Cells were then incubated 
in a blocking solution (PBS supplemented with 1% bovine 
serum albumin (BSA), 2% normal goat serum (NGS), 0.1% 
Triton X-00 for 1 h (RT). Primary antibodies were added, 
and cells were incubated either for 2 h at RT or overnight at 
4 °C. Secondary antibodies were added for 1 h at RT in PBS 
supplemented with BSA and NGS. Antibodies are listed in 
Supplementary Tables 2 and 3. Nuclei were stained with 
Hoechst H33342 (Thermo Fisher Scientific). Slides were 
mounted with Fluoromount G (Southern Biotech).

Electrophysiology

Whole-cell patch-clamp recordings were performed on 
iPSC-derived MNs, derived from SOD1-1, C9orf72-1, 
TARDBP-1 iPSC clones and control clones. Three days 
after pMNs dissociation and plating, neurons were incubated 
(90 min at 37 °C) with lentiviral vectors carrying the cDNA 
encoding the red fluorescent protein (RFP) under the control 
of the HB9 promoter [31]. Lentiviral vectors were prepared 
as previously described [31]. RFP expression was observed 
a few days later. Only RFP-positive neurons were targeted 
for patching.

Recordings were performed using an Axopatch 200B 
amplifier and a Digidata 1440A Analog/Digital interface 
(Molecular Devices). Data were low-pass filtered at 2 kHz 
and digitized at a sampling rate of 50 kHz. Patch pipettes 
were pulled from thin wall borosilicate glass capillaries 
(Harvard Apparatus) on a Zeitz DMZ puller and had a 
resistance of 2–3 MΩ when filled with the intracellular 
solution, containing 10 mM KCl, 130 mM K-gluconate, 
2 mM  MgCl2, 0.1 mM  CaCl2, 4 mM ATP-Mg, 0.3 mM 
GTP, 10  mM Na phosphocreatine, 1  mM EGTA and 
10 mM HEPES, adjusted to pH 7.2 with KOH (Sigma). The 
extracellular solution contained 140 mM NaCl, 3 mM KCl, 
1 mM  MgCl2, 2 mM  CaCl2, 10 mM glucose and 10 mM 
HEPES adjusted to pH 7.3 with NaOH. Capacitance 
transients were cancelled out. Series resistance was 
typically between 5 and 7 MΩ and was compensated by at 
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Fig. 1  Efficient differentiation of iPSC into spinal MNs. a Schematic 
representation of the differentiation protocol. The different time 
points of analysis are indicated (T − 1, T0, T1, T2 and T3). CHIR 
(CHIR99021), SB (SB431542), LDN (LDN193189), RA (retinoic 
acid), SAG (smoothened agonist), NTF (neurotrophic factors: BDNF, 
GDNF, CNTF, IGF1), DAPT (γ secretase inhibitor) are indicated, as 
well as the different time points of the MN cultures including pMNs 
(MN progenitors), yMNs (“just born” or young MNs) and mMNs 
(mature MNs). b, c Examples of phase contrast microscopy images 
of pMNs (b, left image) and yMNs (c, left image), which show 
cells with healthy neurite networks at T − 1 and T0. Right images 
show representative images of β3-tubulin-positive (TUJ1) neurons 
co-expressing OLIG2 (b) or ISLET1 (c). Nuclei are stained with 
Hoescht H33342. Scale bars: 20  µm. d At T1, β3-tubulin-positive 

(TUJ1) neurons express the vesicular acetylcholine transporter 
(VACHT) marker. Nuclei are stained with Hoescht H33342. Scale 
bars: 20 µm. e, f Quantifications of e ISLET1-positive iPSC-derived 
neurons at T0 and f VACHT-positive ones at T1. Bars: mean ± SEM. 
n = number of independent experiments. e Controls (Ctrl33, Ctrl40, 
Ctrl60, Ctrl69-1, Ctrl69-2): n = 29; SOD1 (SOD1-1, SOD1-2, 
SOD1-3): n = 18; SOD1-ISO: n = 3; C9orf72 (1C9orf72-1, 2C9orf72-
2, 2C9orf72-3): n = 19; TARDBP (TARDBP-1, TARDBP-2, 
TARDBP-3): n = 13; TARDBP-ISO: n = 3. f Controls (Ctrl33, Ctrl69-
1, Ctrl69-2, SOD-ISO, TARDBP-ISO): n = 8; SOD1 (SOD1-1, 
SOD1-2): n = 4; C9orf72 (1C9orf72-1, 2C9orf72-2): n = 6; TARDBP 
(TARDBP-1, TARDBP-3): n = 5. ns: statistically non-significant 
by Kruskal–Wallis with Dunn’s test (e) and one-way ANOVA with 
Tukey’s test (f)
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least 70% for voltage-clamp experiments. Only cells with 
an Rs ≤ 10 MΩ and a resting membrane potential (RMP) 
more hyperporlarized than − 35 mV were included in data 
analysis. Access resistance was monitored at the end of the 
experiment and cells were discarded if the series resistance 
changed by more than 20%. In current clamp mode, holding 
potentials were corrected for a calculated liquid junction 
potential of 15 mV. RMP was determined by averaging 
for 30 s of recording and afterward a holding current was 
used to clamp the resting membrane potential as close as 
possible to − 70 mV. Whole-cell recordings were performed 
on control and ALS groups of neurons in parallel on the 
same day. Electrophysiological recordings were carried out 
at room temperature (22–24 °C). Data were analyzed off-
line using Clampfit 10 software (Molecular Devices) and 
OriginPro (Origin Lab Corporation). The first AP from the 
first trace with evoked AP was used to determine the delay, 
threshold, amplitude and half-width of AP. Firing frequency 
was obtained by measuring the maximum number of spikes 
during the current steps protocol (1 s).

Image analysis

Optical sectioning was obtained using an Imager.M2 
equipped with AxioCAM MRm, Apotom.2 module, HXP 
120C light source, objectives/NA: 20×/0.8; 40×/1.3; 
63×/1.4. Confocal images were obtained with SP8 X WLL, 
DMI8 stand (Leica). All images were taken at the same laser 
intensity.

The maximum intensity projection of Z stacks acquired 
at 63 × was used to measure neuron characteristics with a 
semi-automatic Fiji Macro. Only cells with a single soma-
derived AIS were included in the quantitative analysis. To 
measure the length or area of the AIS and of the region 
between the soma and the AIS (the GAP), we used the 
methods described in Senol et al. [35]. The MAP2 staining 
allowed us to delimitate the soma contour because MAP2 
is a somato-dendritic marker that also stains the beginning 
of the axon (the GAP) with a decreased intensity (as seen 
on Fig.  4b, lower panel). Also, both MAP2 and AnkG 
staining allowed to delimit the GAP, as shown on the scheme 
(Fig. 4d). On Fig. 5, to plot the soma outline and the GAP, 
we transiently increased fluorescent signals of both pNF-
M/H and panNav stainings. Then, the AnkG-labeled AIS 
and pNF-M/H accumulations were automatically detected 
with an intensity threshold defined in control cells. ROIs 
were registered, source images were reopened and the 
background was subtracted. The following measures were 
done automatically: (1) soma, AIS and GAP areas, (2) 
GAP and AIS lengths, (3) AnkG, pNF-M/H and panNav 
immunofluorescence integrated density in GAP and AIS 
regions. The integrated density corresponds to the product 
of area and mean (immunofluorescence) gray values. GAP 

and AIS integrated densities were summed to obtain pNF-
M/H and panNav distributions from the soma to the end of 
the AIS. To compare panNav integrated density within the 
GAP, cells without GAP region were removed. Mean axonal 
calibers were obtained by dividing GAP and AIS areas by 
their respective length. We assumed that differences between 
integrated densities were significant after Kruskal–Wallis 
with Dunn’s test if the fold difference between control and 
mutant cells was up to 3. To measure NF accumulation 
in soma or in neurites, the maximum intensity projection 
(MIP) of Z stacks was used and analysis done with the 
Fiji software. MN cell bodies were circled by hand on 
β3-tubulin-labeled images and ROI registered. Second, 
intensity threshold was set up on NF random images of 
control MNs. Finally, positive area fraction per cell was 
calculated. For neurite quantification, we measured on 
MIP of Z stacks the percentage of the total area stained by 
β3-tubulin, allowing us to compare percentages of β3-tubulin 
positive area occupied by control neurite networks to those 
occupied by mutant neurite networks. On each image, MN 
cell bodies were circled and deleted to measure only the 
neurite networks.

RNA extraction and sample preparation for RNA 
sequencing

Total RNA was extracted using the RNeasy Plus Micro kit 
(Qiagen) according to the manufacturer’s protocol. RNA 
concentrations were determined with high-sensitivity RNA 
ScreenTape on TapeStation (Agilent). cDNA librairies 
were prepared using KAPA mRNA Hyper Prep kit (Roche) 
according to the manufacturer’s protocol (150 ng RNA 
input). Samples were run with an ILLUMINA short-reads 
sequencer to obtain an average coverage of 30 million of 
reads per sample (75 bp or 100 bp reads, paired ends). 
Library preparations and sequencing were performed by the 
ICM iGeneSeq core facility.

RNA‑seq data analysis

RNA-seq data analyses were performed by GenoSplice 
technology (www. genos plice. com). Sequencing, data 
quality, reads repartition (e.g., for potential ribosomal 
contamination) and insert size estimation were performed 
using FastQC, Picard-Tools, Samtools and rseqc. Reads 
were mapped using STARv2.4.0 [36] on the hg19 human 
genome assembly. Gene expression regulation study was 
performed as already described [37]. Briefly, for each gene 
present in the Human FAST DB v2016_1_full annotations, 
reads aligning on constitutive regions (that are not prone 
to alternative splicing) were counted. Based on these read 
counts, normalization and differential gene expression were 
performed using DESeq2 [38] on R (v.3.2.5). Only genes 

http://www.genosplice.com
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expressed in at least one of the two compared experimental 
conditions were further analyzed. Genes were considered 
as expressed if their fpkm value was greater than 98% 
the background fpkm value based on intergenic regions. 
Significant differential expression was defined as adjusted p 
values ≤ 0.05 (P-Adj) after false discovery rate correction 
and fold changes ≥ 1.5. First, we compared controls to each 
ALS form individually (SOD1, C9orf72 or TARDBP) and 
calculated differential of gene expressions between yMNs 
and mMNs. But due to the limited number of patients in 
the study, we also pooled all samples at each time point to 
compare all ALS samples (from the 4 patients) to all control 
samples to identify genes and/or pathways that could be 
commonly deregulated in the three ALS forms.

Quantitative PCR

Reverse transcription of 1  µg RNA into cDNA was 
performed with the SensiFAST cDNA synthesis kit (Bioline, 
France). Quantitative reverse transcription PCR was then 
performed in a Roche LightCycler480 using 100 ng of 
equivalent cDNA and the LightCycler probes master 
according to Roche procedures. Primers and Taqman probes 
were from Thermo Fisher Scientific: Hs00544069_m1 and 
Hs02786624-g1 for CHL1 and GAPDH, respectively.

Statistical analysis

A minimum of three independent experiments, considered 
as three differentiation batches from iPSC, was always done. 
Statistical analysis was performed with GraphPad Prism 8. 
D’Agostino and Pearson normality test was used to assess 
Gaussian distribution for large data. For data passing the 
normality test, one-way ANOVA with Tukey’s multiple 
comparisons test was performed. For data not passing the 
normality test, Mann–Whitney test or Kruskal–Wallis with 
Dunn’s multiple comparisons test were used. When the 
normality test was not possible, a Gaussian distribution was 
assumed.

Results

Efficient generation of human iPSC‑derived MNs 
from control and ALS individuals

iPSC clones were generated from four patients carrying 
mutations in SOD1  (SOD1N139D), C9orf72 (C9orf72, 
2 patients) and TARDBP  (TARDBPG348C) genes. Four 
non-related age- and sex-matched control iPSC clones 
were included in our analysis (Supplementary Table 4), 
as well as SOD1 and TARDBP iPSC isogenic controls 
generated with the CRISPR–Cas9 technology (SOD1-ISO 

and TARDBP-ISO) (see Methods). iPSC clones were 
fully characterized at the molecular and functional levels 
(Supplementary Fig. 1–4). Genome integrity was checked 
for each iPSC clone (Supplementary Fig. 3).

Each iPSC clone was differentiated into spinal MNs 
within 17 days (Fig. 1a), as we reported recently [39, 40]. 
Within 10  days, more than 90% of differentiated iPSC 
expressed OLIG2, the most specific marker of spinal MN 
progenitors (pMNs) (Fig.  1b). Seven days later (at T0, 
Fig. 1a), post-mitotic neurons expressed ISLET1 and HB9 
spinal MN markers (Fig. 1c, Supplementary Fig. 5a) and 
became mature (at T1, Fig.  1a) with the expression of 
ISLET1, HB9 and TAU and the vesicular acetylcholine 
transporter (VACHT) 18  days later (mMNs, Fig.  1d. 
Supplementary Fig. 5a-d). Analysis of the proportions of 
ISLET1-positive neurons derived from each control and each 
mutant ALS iPSC clone at T0 (in young or “just born” MNs, 
yMNs) showed no significant difference between control and 
ALS clones (Fig. 1e) (all controls (including SOD1-ISO and 
TARDBP-ISO): 79.1 ± 1.6%; SOD1: 73.5 ± 2.3%; C9orf72: 
84.8 ± 1.6%; TARDBP: 83.2 ± 4.3% (mean ± SEM)). At 
T1, percentages of β3tubulin-positive neurons expressing 
the VACHT marker were similar between control and 
ALS iPSC-derived MNs (all controls: 97.4 ± 1.1%; SOD1: 
98.3 ± 1.75%; C9orf72: 94.8 ± 2.5%; TARDBP: 98.8 ± 1.4% 
(mean ± SEM)) (Fig. 1f). Taken together, these data show 
that ALS MNs were generated with similar kinetics and 
efficiencies compared to controls.

iPSC‑derived MNs express markers of ALS 
vulnerable MNs

In ALS patients, it is well established that the different MN 
subtypes are not equally affected during disease progression 
[41, 42]. Thus, it was crucial for us to first define which MN 
subtypes were generated in our cultures to assure that our 
further results will be relevant to ALS. Thus, we performed 
RNA sequencing of pMNs, yMNs and mMNs derived from 
control iPSC clones (Ctrl33, Ctrl69-1, Ctrl69-2, SOD1-
ISO, TARDBP-ISO) and from different clones of the four 
ALS patients (SOD-1, SOD-2, C9orf72-1.1, C9orf72-2.1, 
TARDBP-1). Principal component analysis (PCA) showed 
efficient segregation of cells according to their maturation 
status (Fig.  2a). Then, the RNA expression patterns of 
differentiation markers were analyzed. First, expression of 
the two most specific transcription factors of MN progenitors, 
OLIG2 and NKX6.1 [43, 44], were detected in all control and 
ALS pMNs (Fig. 2b, c). Whereas OLIG2 expression was 
detected only in progenitors [45], NKX6.1 was detected in 
progenitors and in post-mitotic MNs as described previously 
[46]. Other less specific markers of MN progenitors were 
also expressed in pMNs including NKX6.2, NGN1, NGN2 
and PAX6 (Supplementary Fig. 6a), whereas markers of 
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interneuron progenitors were not or barely detected (DBX1, 
DBX2, FOXN4, NGN3) (Supplementary Fig.  6b) [44]. 
Second, efficient differentiation of pMNs into post-mitotic 
MNs was confirmed with expressions of ISLET1 and HB9 
transcription factors (Fig. 2d, e) [47]. HB9 was also detected 
in progenitors in agreement with its critical role for the 

proper specification of MNs during development [48, 49]. 
Importantly, markers of V1, V2 and V3 spinal interneurons 
(expressing Engrailed 1, CHX10 and NKX2.2 transcription 
factors, respectively) and markers of ISLET1-positive 
interneurons (expressing TLX3 and BRN3A) [44] were 
not detected in yMNs and mMNs (Supplementary Fig. 6c). 
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Third, the maturation of MNs into cholinergic neurons 
was confirmed by the detection of transcripts encoding 
acetylcholinesterase (ACHE) (Fig. 2f) and VACHT (Fig. 2g), 
while we did not detect any expression of genes encoding 
enzymes involved in the synthesis of other neurotransmitters 
(Supplementary Fig. 6d), except glutaminase 1 (GLS1), 
the enzyme known to produce glutamate. This result 
agrees with previous work showing that a single MN can 
release both acetylcholine and glutamate at the mixed 
MN and Renshaw cell synapse [50]. The skeletal identity 
of iPSC-derived cholinergic neurons was also confirmed 
by showing no or barely detectable expression of markers 
specific of cholinergic visceral MNs and cholinergic 
interneurons [44] [51] (Supplementary Fig. 6e). Fourth, 
glial markers were barely detectable and mostly absent. 
Analyzed markers included genes expressed in astrocytes 
(GFAP, ALDHL1, S100β, EAAT1), oligodendrocytes (MBP, 
SOX10, MOG) and microglia (CD11b, IBA1) (Fig. 2h, i; 
Supplementary Fig. 6f). Immunofluorescent labeling did 
not allow detecting GFAP, MBP or Iba1 expression in MN 
cultures. Fifth, MNs expressed an HOX code typical of the 
cervical spinal cord with high expression of HOXC456 and 
no expression of the lumbar marker HOXC8 (Fig. 2j, k). 
Sixth, we observed that LHX3 expression, a marker of MNs 
innervating epaxial muscles, was negative in MNs (Fig. 2l), 
while FOXP1 expression, a marker of MNs innervating 
limb muscles (LMC), was detected in all control and ALS 
MNs (Fig. 2m; Supplementary Fig. 6g). Other markers of 
LMCs were also detected including Paxillin and NCK2 
[52, 53] (Supplementary Fig. 6h). Finally, we looked for 

the expression of recently identified markers of alpha 
MNs, which were shown to be more vulnerable in ALS, 
compared to gamma MNs [54, 55]. Expression of alpha-MN 
markers, although low, was clearly higher than expression 
of gamma-MN markers (Supplementary Fig. 6i, j). This 
alpha identity of MNs was confirmed by expression of 
different markers of muscle fibers (Supplementary Fig. 6k). 
In conclusion, this detailed analysis showed that cervical 
cholinergic skeletal MNs were generated in our cultures 
with the specific expression of alpha MN markers suggesting 
that cultures contained MNs able to innervate limb muscles, 
those being affected in ALS patients, and thus being of 
particular interest to study ALS MN phenotypes.

Neurofilament accumulations in soma and proximal 
neurite regions of ALS MNs

To assess whether NFs accumulated in ALS MNs, iPSC 
differentiated cultures were immunolabeled to identify NF-L 
and pNF-M/H proteins. For NF-L, soma accumulations 
were already observed in SOD1 and C9orf72 yMNs 
(Supplementary Fig. 7a) and with time in culture these 
accumulations increased significantly in all 3 mutant 
ALS forms compared to controls (Fig. 3a, b) as shown by 
quantitative analyses (Fig. 3c, d; Supplementary Fig. 7c for 
individual data). For pNF-M/H, early soma accumulations 
were observed in SOD1 and C9orf72 yMNs, as for NF-L 
(Supplementary Fig. 7b), but with time pNF-M/H soma 
accumulations became rarer while it accumulated in the 
neurites (Fig.  3e, f). We measured significantly higher 
numbers of MNs with pNF-M/H accumulations in their 
neurite proximal regions in mutant SOD1 and C9orf72 
MNs (Fig. 3g, h. Supplementary Fig. 7d for individual 
data). These proximal pNF-M/H accumulations were not 
observed in TARDBP MNs (Fig. 3e, f). In parallel, the 
NF-L staining showed that neurite networks of control 
and ALS MNs were healthy with no neurite fragmentation 
at T0 (Supplementary Fig. 7a), while at T1 ALS neurite 
networks were less dense with bead-like structures all along 
neurites (Fig. 3a, Supplementary Fig. 7e), indicating neurite 
fragmentation and degeneration. In parallel, the pNF-M/H 
neurite staining remained homogenous in MNs at T0 and 
T1 (Fig. 3e, Supplementary Fig. 7b), suggesting that the 
different NF subunits were differently altered during the 
degenerative process.

Pathological pNF-M/H signs were reminiscent of those 
previously described in MNs of post-mortem spinal cord 
ALS patient tissues [11, 14, 15, 56]. Thus, to assess whether 
similar accumulations could specifically be observed in 
neurite proximal regions of spinal MNs of human patients, 
post-mortem tissues with mutations in the three main ALS 
genes were stained for pNF-H (Supplementary Table 1). 
In all three patients, we observed large NF inclusions in 

Fig. 2  Transcriptome profiling shows that iPSC differentiate into 
spinal cholinergic neurons expressing markers of MNs of the lateral 
motor column. RNA sequencing analyses were performed on 
differentiated cultures at T − 1 (pMNs), T0 (yMNs) and T1 (mMNs) 
derived from control (in black), SOD1 (in blue), C9orf72 (in orange) 
and TARDBP (in green) iPSC clones. a Principal component 
analysis (PCA) shows a time-dependent segregation of yMNs 
(dots), pMNs (diamonds) and mMNs (stars) samples. b–m Graphs 
show Deseq2 normalized expressions in MNs, at the three time 
points, of genes encoding b OLIG2, c NKX6.1 d ISLET1, e HB9, f 
acetylcholinesterase (ACHE), g vesicular acetylcholine transporter 
(VACHT), h GFAP, i MBP, j HOX-C456 markers of the rostral 
spinal cord MNs, k and HOXC8 a marker of more caudal MNs. l, m 
yMNs and mMNs express the transcription factor FOXP1, a specific 
marker of MN of the lateral motor column (LMC), but not the 
LHX3 gene encoding a transcription factor involved in specification 
of MNs located in the median motor column (MMC). For pMN: 
controls (Ctrl33 n = 2; Ctrl69-1 n = 2; Ctrl69-2 n = 2; SOD1-ISO 
n = 1; TARDBP-ISO n = 1), SOD1 (SOD1-1 n = 2; SOD1-2 n = 1), 
C9orf72 (1C9orf72-1 n = 2; 2C9orf72-2 n = 1), TARDBP (TARDBP-1 
n = 2). For yMNs: controls (Ctrl33 n = 2; Ctrl69-1 n = 2; Ctrl69-2 
n = 2; SOD1-ISO n = 1; TARDBP-ISO n = 1), SOD1 (SOD1-1 
n = 2; SOD1-2 n = 2), C9orf72 (1C9orf72-1 n = 2; 2C9orf72-2 n = 2), 
TARDBP (TARDBP-1 n = 3). For mMNs: controls (Ctrl33 n = 2; 
Ctrl69-1 n = 1; Ctrl69-2 n = 1; SOD1-ISO n = 1; TARDBP-ISO n = 1), 
SOD1 (SOD1-1 n = 2; SOD1-2 n = 2), C9orf72 (1C9orf72-1 n = 2; 
2C9orf72-2 n = 2), TARDBP (TARDBP-1 n = 3)

◂
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soma and numerous neurite NF beadings (Supplementary 
Fig. 8a–d). Interestingly, some of these NF beadings were 
localized in neurite proximal regions in agreement with our 
observations in iPSC-derived human ALS MNs.

Comparisons of transcriptome profiles between ALS 
and control MNs

To look for commonly deregulated genes between SOD1, 
C9orf72, TARDBP and control MNs, we used RNA 
sequencing (Fig. 2a). In pMNs and yMNs, no gene was 
found significantly dysregulated between mutant and control 
MNs (fold change ≥ 1.5 and adjusted P value ≤ 0.05). Then, 
we compared the differential gene deregulations with time 
between yMNs and mMNs in each mutant versus control 
MNs (Supplementary Table 5–8). Despite the identification 
of interesting deregulated genes involved in protein 
degradation, cell survival and metabolism, none was shared 
between ALS forms. Thus, we compared all ALS mMNs 

to control mMNs (at the mature state) and found seven 
upregulated genes (Table 1, Supplementary Table 9). The 
most deregulated gene encoded the cell adhesion molecule 
L1-like protein (CHL1). Its increased expression levels in 
ALS MNs vs control MNs were confirmed by quantitative 
RT-PCR (Supplementary Fig. 9). This gene was of particular 
interest as CHL1 belongs to the L1 subfamily of the Ig 
superfamily cell adhesion molecules, which share a highly 
conserved region containing an ankyrin-binding site. 
Interestingly, CHL1 was shown to interact with ankyrin G 
[57], the AIS master organizer protein [22, 58], and to be 
able to recruit it to the plasma membrane [59]. CHL1 was 
also shown to be involved in neuronal migration, survival, 
neurite outgrowth and regeneration after injury [60, 61].

AIS alterations in MNs with pNF‑M/H accumulations

To determine if the AIS was altered in ALS MNs and if it 
could be a target of NF accumulations, we first determined 
if pNF-M/H accumulated in axonal regions where AIS is 
localized. Control and ALS MNs were co-immunostained 
with antibodies against MAP2, a microtubule-associated 
protein enriched in dendrites and soma, AnkG (ankyrin G) 
and pNF-M/H, to identify MAP2-negative axons, the AIS 
and NFs, respectively. Results showed that the pNF-M/H 
intensity staining was higher in proximal axons where the 
AIS-specific AnkG staining was also localized (Fig. 4a, b). 
Interestingly, the abnormal pNF-M/H accumulation was 
always localized in the region between the soma and the 
AIS (Fig. 4c), called the axon hillock (AH), and partially 
also invaded the AIS. As the AH region, essentially made 
of microtubules, has no known specific marker and thus 
cannot be specifically identified, and as its integrity seemed 
altered, we called the region between the soma and the AIS 
the “GAP” for the quantification analysis (Fig. 4d).

Soma areas, without pNF-M/H accumulations, were 
similar in size between control and mutant SOD1, C9orf72 
and TARDBP MNs (Fig. 4e; Supplementary Fig. 10e). In 
the presence of pNF-M/H accumulations, we measured 
significantly smaller soma areas in SOD1 MNs derived from 
one out of the two analyzed clones (Supplementary Fig. 10e) 
compared to control MNs. However, the weak difference 
between both SOD1 clones could suggest that these SOD1 
MNs begin suffering, compared to other mutant MNs. Next, 
we measured the lengths (Fig. 4f, i; Supplementary Fig. 10f, 
i), mean calibers (Fig.  4g, j; Supplementary Fig.  10g, 
j) and areas (Fig. 4h, k; Supplementary Fig. 10h, k) of 
AIS and GAP in the different MN cultures. Interestingly, 
while AIS lengths were similar between the different MN 
populations with or without pNF-M/H accumulations 
(Fig. 4f, Supplementary Fig. 10f), GAP lengths increased 
significantly in SOD1 and C9orf72 MNs with pNF-M/H 
accumulations (Fig. 4i, Supplementary Fig. 10i), showing 

Fig. 3  NF-L and pNF-M/H defects in ALS iPSC-derived MNs. a, 
b, e, f Representative images show control, mutant SOD1, C9orf72 
and TARDBP iPSC-derived mMNs labeled with antibodies 
directed against the light neurofilament subunit NF-L (a, b) or 
the phosphorylated form of the medium–heavy neurofilament 
subunit pNF-M/H (e, f). Images in a and e show large fields of 
MN cultures at low magnification, while images in b and f are 
at higher magnifications. Scale bars: 10  µm. Nuclei were stained 
with Hoescht H33342. In a, arrows indicate NF-L accumulations 
in soma. In e, f, arrowheads indicate pNF-M/H increased staining 
in neurite proximal regions. c, d Quantifications of soma NF-L 
signal intensity in MNs (arbitrary units) derived from control 
and ALS clones. In c, the median intensity per control MN was 
0.19. In SOD1, C9orf72 and TARDBP MN cultures, 93.5%, 
88% and 79.5% of MNs had a higher median intensity than 0.19, 
respectively. Controls (Ctrl33, Ctrl69-1, Ctrl69-2): N = 399, n = 8; 
SOD1 (SOD1-1, SOD1-2) N = 245, n = 6; C9orf72 (1C9orf72-1, 
2C9orf72-2) N = 375, n = 6; TARDBP (TARDBP-1, TARDBP-3): 
N = 169, n = 4. In d, significant differences of NF-L accumulations 
were shown between SOD1 MNs and isogenic SOD1-ISO MNs, 
and between TARDBP MNs and isogenic TARDBP-ISO MNs. 
Controls (Ctrl69-2): N = 33, n = 3; SOD1 (SOD1-2): N = 37, n = 3; 
SOD1-ISO: N = 37; n = 3; TARDBP (TARDBP-1, TARDBP-3): 
N = 169, n = 4; TARDBP-ISO: N = 20, n = 3. Statistical significance 
by Kruskal–Wallis with Dunn’s test (****p < 0.0001, **p < 0.01). 
n = number of independent experiments. N = total number of analyzed 
neurons. g, h Quantifications of pNF-M/H accumulations at T1 in 
MNs derived from control and ALS clones showing significative 
differences between (g) control MNs and SOD1 MNs or C9orf72 
MNs, and (h) SOD1 MNs and isogenic SOD1-ISO MNs. Each dot 
represents the percentage of neurons with pNF-M/H accumulations 
counted in one experiment. 200–300 neurons were analyzed per 
experiment. n = number of independent experiments. In g: controls 
(Ctrl33, Ctrl69-1, Ctrl69-2): n = 7; SOD1 (SOD1-1, SOD1-2) n = 6; 
C9orf72 (1C9orf72-1, 2C9orf72-2) n = 6; TARDBP (TARDBP-1, 
TARDBP-3) n = 6. In h: controls (Ctrl33, Ctrl69-1, Ctrl69-2): n = 7; 
SOD1 (SOD1-1, SOD1-2): n = 6; SOD1-ISO: n = 3; TARDBP 
(TARDBP-1, TARDBP-3): n = 6; TARDBP-ISO: n = 3. Mean ± SEM. 
Statistical significance by unpaired t test (*p < 0.05; ***p < 0.001; 
****p < 0.0001)

◂
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that MNs accumulating pNF-M/H had an AIS displaced 
towards a distal position when compared to control MNs. 
Also, calibers of both AIS and GAP were significantly 
increased when MNs contained pNF-M/H accumulations 
in their proximal axonal region (Fig. 4g, j, Supplementary 
Fig. 10g, j).

Next, we analyzed pNF-M/H and voltage-gated sodium 
(Nav) channel repartitions along the axonal proximal 
region of MNs. Indeed, Nav channels could be affected 
by pNF-M/H accumulations, as the AIS is highly enriched 
in these channels that are anchored to AnkG [62, 63]. 
Immunofluorescent integrated densities of pNF-M/H and 
panNav were measured in the GAP and along the entire 
AIS using a triple immunostaining with antibodies directed 
against AnkG, pNF-M/H and panNav (Fig.  5a). In the 
entire GAP + AIS region, the pNF-M/H integrated density 
was significantly increased in both SOD1 and C9orf72 
MNs compared to control MNs (Fig. 5b; Supplementary 
Fig. 11b). Whereas in C9orf72 MNs accumulations were 
seen in both GAP and AIS regions, in SOD1 MNs the pNF-
M/H accumulations were observed either only in the GAP or 
in the GAP and the AIS, a phenotype that is clone dependent 
(Fig.  5d; Supplementary Fig.  11d). Quantifications of 
panNav integrated densities showed that Nav channels 
were mostly localized in the AIS region (Fig.  5f, g; 
Supplementary Fig. 11f, g) and that the increased panNav 

integrated densities seen in one SOD1 clone and the two 
C9orf72 clones, in the presence of pNF-M/H accumulations 
(Fig. 5e; Supplementary Fig. 11e) were due to the increase 
of Nav channels in the GAP rather than in the AIS (Fig. 5f, 
g; Supplementary Fig. 11f, g). Thus, increased panNav 
integrated densities in the GAP (Fig. 5f; Supplementary 
Fig. 11f) and significantly lower ratios of panNav in the AIS 
vs in the GAP in the presence of pNF-M/H accumulations 
(Fig. 5h; Supplementary Fig. 11 h) suggest a modified 
distribution of Nav channels in pathological conditions.

Overall, our data show that the molecular organization and 
the geometry of the axonal proximal region were strongly 
modified in the presence of pNF-M/H accumulations, with 
a distal delocalization of the AIS, a GAP increase of Nav 
channels, as well as increased axonal calibers and axonal 
areas of the entire region GAP/AIS region in iPSCs-derived 
SOD1 and C9orf72 MNs (Fig. 5i). In TARDBP MNs, no 
alteration of the AIS or of Nav channel localization was 
observed in this region. Taken together, our results provide, 
for the first time, strong evidence of a correlation between 
the presence of pathological axonal pNF-M/H accumulations 
in ALS MNs and alterations of the AH and AIS regions that 
are crucial for MN polarity, transport and excitability.

Table 1  Genes upregulated in ALS mMNs vs control mMNs (fold change ≥ 1.5; adjusted p value ≤ 0.05)

Gene symbol Gene name Belongs to significant GO 
terms

Known functions Fold change Adjusted p value References

CHL1 Cell adhesion molecule 
L1-like protein

Extracellular exosome
Proteinaceous 

extracellular matrix
Cell adhesion
Plasma membrane

Recruits AnkG to the 
plasma membrane

Cholinergic synapse 
formation

362.8 2.75 ×  10–6 [22, 58–61]

CTSF Cathepsin F Extracellular space
Extracellular exosome

Lysosomal enzyme
Role in intracellular 

degradation and 
turnover of proteins

357.0 1.17 ×  10–3 [117]

RIMBP2 RIMS-binding protein 2 Plasma membrane Role in synaptic 
transmission

29.5 1.41 ×  10–3 [118]

NNAT Neuronatin Disease development and 
progression

876.5 3.77 ×  10–3 [119]

DACH1 Dachshund family 
transcription factor 1

Transcription factor 4.2 4.36 ×  10–3

HSPA1L Heat shock protein family 
A (Hsp70) member 
1-like

Cell body In conjunction with 
other HSP, this protein 
stabilizes existing 
proteins against 
aggregation and 
mediates the folding of 
newly translated proteins 
in the cytosol and in 
organelles

3.9 6.71 ×  10–3 [120]

TCF4 Transcription factor 4 Transcription factor 3.7 6.71 ×  10–3
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ALS MNs become hyperexcitable with time

As the AIS is directly involved in AP initiation [22] and 
as altered excitability is a common phenomenon reported 
in ALS patients [28, 29], we next asked whether the 
electrophysiological properties of ALS iPSC-derived MNs 
were altered with time in culture. While spontaneous APs 
were rarely recorded, most of the control and ALS MNs were 
able to fire at least one AP in response to injected currents 
at late time points (T2 and T3, Fig. 1a) (Fig. 6a, b). When 
we compared AP distributions with respect to four different 
firing patterns (no AP, single AP, adaptive AP, repetitive 
AP firing) [64] (Fig. 6a), no significant differences in the 
distributions of AP were measured at T2 and T3 between all 
ALS and control MNs (Supplementary Fig. 12a). However, 
when mutant MN cultures were analyzed separately, the 
proportions of MNs with adaptive AP were significantly 
lower than those in control MNs in mutant SOD1 and 
C9orf72 MNs at T2 and at both T2 and T3, respectively 
(Fig. 6b). These decreased proportions were concomitant 
with increased proportions of mutant MNs with repetitive 
AP firing compared to control MNs. Then, AP parameters 
were measured, including RMP (resting membrane 
potential), AP half-width, AP threshold, rheobase, max 
AP frequency, the delay of first AP, AP peak amplitude 
and AP amplitude. We measured significant differences 
in RMP, AP half-width and AP threshold measures, but 
only in C9orf72 MNs compared to SOD1, TARDBP and 
control MNs between T2 and T3, while the other parameters 
remained unchanged (Fig. 6c–g; Supplementary Fig. 12b-
d). Next, we performed voltage-clamp recordings. In this 
mode, the recorded inward current had the fast activation 
and inactivation characteristics of voltage-gated sodium (Na) 
channel, while the outward current had slow activation and 
no inactivation of the voltage-gated potassium (K) channel. 
Interestingly, recordings showed that INa/IK density ratio 
significantly increased with time in SOD1 and C9orf72 
MNs, while the ratio had a trend to decrease in TARDBP 
MNs (Fig. 6h). Analysis of Na and K current densities 
showed no significant alterations of Na and K current 
densities in ALS MNs (Fig. 6i, j). Taken together, these 
data suggest that mutant C9orf72 and SOD1 MNs acquire 
some excitability defects with time in culture, a phenotype 
in agreement with AIS alterations.

Discussion

In the present study, we compared phenotypic defects 
between mutant SOD1, C9orf72, TARDBP and control 
MNs and identified specific alterations in ALS MNs. The 
ALS MNs were generated with the same efficiencies and 
kinetics as control MNs and characterized as MNs with 

characteristics of MN innervating limb muscles. With time 
in culture, ALS MNs showed signs of degeneration, with 
NF-L accumulations in their soma, as well as fragmented 
neurites. Interestingly, when pNF-M/H accumulated in 
proximal axonal regions of C9orf72 and SOD1 mMNs, 
major alterations in the axonal proximal region were 
measured altering the axon hillock (or the GAP) and AIS 
molecular and geometric organizations. Neither pNF-M/H 
accumulations nor AIS modifications were observed in 
TARDBP MNs. Moreover, at late time points, SOD1 and 
C9orf72 MNs progressively acquired excitability alterations. 
Taken together, these results suggest a strong correlation 
between pNF-M/H accumulations and AIS alterations. These 
results expand our understanding of how NF accumulations 
could dysregulate components of the axonal cytoskeleton, 
and in particular of the AIS, an axonal sub-compartment 
crucial for polarity and excitability of MNs.

The RNA sequencing analysis we performed on iPSC-
derived MNs allowed to characterize MN subtypes present 
in our cultures, to confirm that they were representative 
models of ALS vulnerable MNs. We showed that progenitors 
expressed markers of the pMN domain of the embryonic 
spinal cord [43] and that post-mitotic MNs were skeletal, 
cholinergic and able to fire AP. Moreover, the protocol 
allowed the generation of MN subtypes with an HOX 
cervical identity and expressing LMC- and alpha-MN 
markers, specific of limb-innervating MNs, the MNs that 
are primarily affected in ALS patients [47, 65]. Our analysis 
also showed that control and ALS MNs shared similar 
expression patterns, suggesting that the different defects 
observed between SOD1, C9orf72 and TARDBP MNs were 
not related to different MN subtypes present in the cultures. 
However, it cannot be completely excluded that phenotypic 
differences may be related to unknown intrinsic differences 
between MN cultures. For example, as MNs were generated 
without muscle cells to focus our study on MN intrinsic 
defects, MNs were probably not fully mature and thus could 
be in different intermediate states that we cannot identify.

To our knowledge, our study is the first one showing ALS 
phenotypic defects in iPSC-derived MNs characterized by 
their specific expression of LMC and alpha MN markers. 
This is an important step forward in the field of ALS 
modeling with human iPSC, as generation and analysis 
of both affected and not affected MNs in the same culture 
could mask disease-specific phenotypic differences. 
The mechanisms underlying the different MN death 
susceptibilities in ALS remain not fully understood, but 
it is highly likely that the vulnerability of certain MNs to 
degeneration is related to anatomical specificities and their 
transcriptome profiles [41, 66]. Therefore, studies analyzing 
specific MN subtypes affected in the disease can strengthen 
and provide clearer interpretations of results.
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A hallmark of many neurodegenerative diseases is the 
presence of protein inclusions in post-mortem tissues of 
patients. Despite years of research there is still a debate 
on whether aggregates are protective or deleterious to 
MNs. In ALS iPSC-derived MN models, abnormal protein 
accumulations were rarely described [67, 68] and were 
always observed in young MNs, suggesting that they 
could be involved early in the pathological process. In 
the present study, we analyzed by immunofluorescence 
whether SOD1, C9orf72 and TARDBP MNs accumulated 
abnormal proteins. We were able to observe accumulations 
of misfolded SOD1 proteins in soma of SOD1 MNs 
compared to control MNs (Supplementary Fig. 5e). This 
observation is consistent with Shi et al. who showed that the 
N139D mutation can destabilize rapidly the SOD1 protein 
conformation leading to an accelerated rate of aggregation 
[69]. In TARDBP MNs, we detected very rare nuclear 
TDP-43 dots and soma inclusions of the phosphorylated 
form of TDP-43 (Supplementary Fig. 5f, g). Interestingly, 
TDP-43 and SOD1 proteins were shown to interact and 
modulate NF-L mRNA stability [70], and recently DPRs 
were suggested to promote TDP-43 aggregation [71]. Taken 
together, these studies suggest that in SOD1, C9orf72 and 

TARDBP MNs, the expression of NF-L subunits could be 
directly or indirectly altered by mutant proteins, and this 
could explain the abnormal NF-L accumulations in soma 
and decreased NF-L expression in neurites, we observed in 
ALS MNs. Besides the impact of mutated proteins on NF-L, 
mutant SOD1 and DPRs could also have a direct impact on 
the AIS stability through their interactions with specific Nav 
subunits known to interact with AnkG [72, 73].

NFs abnormalities have been so far only described in 
few studies of iPSC-derived MNs from two SOD1 patients 
[74], two TARDBP patients [75] or one TARDBP and two 
sporadic cases [76]. None of these studies analyzed AIS 
alterations. The strength of the present study is that we made 
the choice to look for NF defects in the three main ALS 
forms (with mutations in SOD1, C9orf72 and TARDBP 
genes), with the idea that comparing three different mutated 
genes in a same experimental context could bring more 
information on differences between ALS forms. Our study 
showed that NF-L was accumulating in soma and was 
reduced in neurites of SOD1, C9orf72 and TARDBP MNs 
compared to control MNs. To our knowledge, this is the 
first report showing such detailed NF-L alterations in ALS 
MNs. As NF-L was shown to play a role in axonal transport 
[77, 78], our results suggest that these alterations could 
be part of transport defects in ALS MNs. Recently, NF-L 
was shown to be involved in the regulation of organelle 
trafficking in iPSC-derived MNs [79], and this could be 
due to its interaction with the myosin-Va motor protein 
[80]. Evidence of such transport defects were originally 
suggested from observations in ALS patients [12, 77, 81, 
82], and more recently from studies that provided evidence 
for axonal transport deficits in ALS MNs in animal and iPSC 
models [20, 67, 68, 83–90]. With NF-L being crucial for 
correct NF heteropolymer formation and axonal cytoskeletal 
stability [78], NF-L neuritic alterations could be early signs 
of neurodegeneration and would lead to NF-L leakage. 
This would require an assay to measure NF-L in culture 
supernatants to assess if it is possible to mimic with iPSC-
derived MNs the in vivo situation of increased NF-L levels 
in blood of ALS patients [3, 8].

We also show that pNF-M/H accumulated in axonal 
proximal region of SOD1 and C9orf72 MNs. As it is well 
known that NF-M and NF-H phosphorylation is crucial 
for NF stability [91], other consequences of altered NF-L 
expression could be an impact on NF heteropolymer 
assembly (which requires a strict stoichiometry of 
each NF subunit) and the abnormal accumulations of 
phosphorylated NF-M and NF-H. Thus, a disorganization 
of the cytoskeleton and of its interactions with other axonal 
components including microtubules [92] could have also an 
impact on the stability of the AIS which is anchored onto 
microtubules. Consistent with this hypothesis, it is known 
that the different constituents of the cytoskeleton, including 

Fig. 4  Structural alterations of the proximal axonal regions in mutant 
SOD1 and C9ORF72 iPSC-derived MNs in the presence of pNF-
M/H accumulations. a, b Representative images of C9orf72 MNs 
co-immunostained with antibodies against pNF-M/H, AnkG and 
MAP2, to identify axonal pNF-M/H accumulation, AnkG-positive 
AIS and MAP2-positive dendrites, respectively. Low levels of 
MAP2 expression were detected in axons compared to dendrites, in 
agreement with previous reports showing that MAP2 is enriched in 
dendrites, but not fully specific as its MAP2c isoform detected by 
the antibody (Synaptic Systems) can also be present in axons [116]. 
Scale bars: 20  µm. A confocal image of pNF-M/H accumulation is 
shown in b. Nuclei were stained with Hoescht H33342. Arrowheads 
indicate pNF-M/H accumulations. Scale bars: a 20  µm, b 10  µm. c 
Representative images of SOD1 MNs with or without (w/o) pNF-
M/H accumulation (Acc.) labeled with antibodies against pNF-
M/H and AnkG. Dotted lines indicate soma localizations. Nuclei 
were stained with Hoescht H33342. Scale bars: 10  µm. d Drawing 
representing an MN and its different regions of interest: the soma 
area, the GAP and the AIS along the proximal axonal region. The 
red dotted line indicates how the soma was delimitated in each 
neuron with concave lines crossing both sides of each neurite entry 
zone, as described previously [35]. e–k Graphs show the different 
quantifications done on images acquired in cultures of control, 
SOD1, C9orf72 and TARDBP MNs with or without pNF-M/H 
accumulations (Acc) (see “Materials and methods”): e soma areas, f–
k length, mean axonal caliber and area of AIS (f, g, h) and GAP (i, j, 
k). Statistical significance shown are either between ALS and control 
MNs or between MNs with or without accumulation by Kruskal–
Wallis with Dunn’s test (**p < 0.01, ***p < 0.001, ****p < 0.0001). 
n = number of analyzed MNs from three independent experiments. 
Controls (Ctrl33, Ctrl69-2): n = 81; SOD1 (SOD1-1, SOD1-2): n = 72 
(with acc.)/n = 68 (without acc.); C9orf72 (1C9orf72-1, 2C9orf72-
2): n = 63 (with acc.)/n = 71 (without acc.). TARDBP (TARDBP-1, 
TARDBP-2): n = 64. See Supplementary Fig. 10 for data in individual 
clones

◂
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NFs and microtubules, interact with cytolinker proteins 
that connect the different elements of the cytoskeleton 
with each other [93]. Among them, the plectin protein was 
identified in the MNs of the spinal cord [94] and shown to 
bind to microtubules and each NF subunit [95]. According to 
BIOGRID (the Biological General Repository for Interaction 
Datasets), plectin could also interact with AnkG. Taken 
together, these data suggest that pNF-M/H could interact 
with plectin, AnkG and the microtubules, thereby creating 
a complex in which the alteration of one component could 
have an impact on the others.

Moreover, we show that pNF-M/H accumulation is 
strongly correlated with several alterations in molecular and 
geometric organizations of both AH and AIS, suggesting 
that all the axonal trafficking, before and after the AIS, 
could be disturbed. Indeed, the AIS plays an essential role 
in the axo-dendritic polarity regulating protein mobility and 
vesicular trafficking between the soma and the axon, with 
both a surface and cytoplasmic diffusion barrier [25, 58, 
96]. In parallel, we did not observe any alteration of AIS 
organization in axonal proximal regions in mutant TARDBP 
MNs, a result that strengthens a possible direct link between 
the presence of pNF-M/H accumulations in this region and 
AIS alterations. However, we cannot exclude that absence 

of this AIS phenotype in TARDBP MNs could be due to the 
specific mutation we studied or to a time lag of phenotype 
onset. This latter hypothesis is in line with Fujimori et al., 
suggesting a time-dependent initiation of different cell death 
mechanisms in FUS and TARDBP iPSC-derived MNs 
[97] and consistent with our results. Indeed, we showed 
different timings of phenotype appearances with pNF-M/H 
invading both AH and AIS, followed by electrophysiological 
defects within C9orf72 MNs, while SOD1 MNs had milder 
electrophysiological defects with pNF-M/H invading only 
the AH.

The AIS is a highly structured axonal segment that has 
crucial roles in neuron homeostasis. An essential role of the 
AIS in neurons is that it is the unique axonal region where 
APs are generated and shaped before their propagation 
along the axon [27, 98]. MNs, like other neuronal types, 
display a specific AIS plasticity and geometry, responsible 
for their excitability properties, which depend on AIS 
length, its distance from the soma and its combination 
and distribution of voltage-gated ion channel isoforms 
[99–102]. Interestingly, we showed such AIS alterations 
in ALS MNs, with the AIS shifting distally, combined 
with increased axonal calibers and modified distribution 
of Nav channels in SOD1 and C9orf72 MNs. Moreover, 
our electrophysiological recordings suggested excitability 
modifications in more mature SOD1 and C9orf72 MNs, 
resulting agreement with the findings assessing a correlation 
between an AIS distal shift and neuron excitability [101, 
102]. Taken together, these data strongly suggest that AIS 
alterations observed in mutant SOD1 and C9orf72 MNs 
could explain excitability defects. However, with iPSC 
models, MNs mature progressively and in our experiments 
AIS alterations were observed at a time point when MNs 
were not able to fire AP, suggesting that AIS alterations 
could occur independently of any electric activity. In 
agreement with this hypothesis, individual NF-M and 
NF-H phosphorylation was shown to play a role as signals 
for their assembly and organization within neurons [93]. 
Thus, increased phosphorylation of NF-M and NF-H could 
be a response to an NF-L altered expression, and also to the 
abnormal accumulation of proteins in the AH because of 
axonal transport defects. The increased Nav channels we 
measured in the GAP could be part of this accumulation and 
be linked to their increased endocytosis [22]. However, our 
experiments do not allow us to conclude whether excitability 
alterations are secondary or primary events in the pathology, 
which remains an ongoing debate due to conflicting results 
in the literature [103]. Nevertheless, our data agree with 
recent reports on MN diseases, showing AIS plastic changes 
around symptom onset in the  SOD1G127X mouse model [104, 
105], and altered AP waveform and shorter AIS in mutant 
VRK1 iPSC-derived MNs of patients with hereditary motor 
neuropathy associated with upper MN signs [106]. However, 

Fig. 5  Mislocalization of Nav channels in the GAP of mutant 
SOD1 and C9orf72 iPSC-derived MNs in the presence of pNF-
M/H accumulations. a Representative images of SOD1 MNs with or 
without (w/o) pNF-M/H accumulation (Acc.) labeled with antibodies 
against pNF-M/H, AnkG and panNav. Dotted lines show soma 
localization and the arrowhead indicates pNF-M/H accumulation. 
Nuclei were stained with Hoescht H33342. Scale bars: 10  µm. b–h 
Integrated densities of pNF-M/H and panNav signals were calculated 
to assess their distributions in the GAP and the AIS. b–d pNF-M/H 
integrated density measured b between the soma and the end of 
the AIS (GAP + AIS), c in the GAP and d in the AIS. e–g panNav 
integrated density measured e between the soma and the end of the 
AIS (GAP + AIS), f in the GAP and g in the AIS. h Ratio of panNav 
integrated density in the AIS to the GAP. n = number of analyzed 
MNs from three independent experiments per lines. Controls (Ctrl33, 
Ctrl69-2): n = 81. ALS without accumulation: SOD1 (SOD1-1, 
SOD1-2): n = 74, C9orf72 (C9orf72-1, 2C9orf72-2): n = 71, TARDBP 
(TARDBP-1, TARDBP-2) n = 71. ALS with accumulation: SOD1 
(SOD1-1, SOD1-2): n = 69, C9orf72 (C9orf72-1, 2C9orf72-2): 
n = 63. Kruskal–Wallis with Dunn’s test (mean ± SEM). Statistical 
significance shown either between ALS and control MNs or between 
MNs with or without accumulation. ****p < 0.0001, ***p < 0.001, 
*p < 0.05. See Supplementary Fig.  11 for data in individual clones. 
i Schematic representation of control and ALS MNs, with pNF-M/H 
(in blue), the GAP (in white), the AnkG-positive AIS (in orange), Na 
channels (red dots) and soma NF-L (green dots). In the presence of 
pNF-M/H accumulations, we measured: increased GAP lengths, a 
distal shift of the AIS, increased axon areas and calibers in SOD1 and 
C9orf72 axons compared to TARDBP and control axons, and Nav 
channels increase in the GAP. In TARDBP MNs, neither pNF-M/H 
accumulation nor AIS alterations were observed, but they showed 
NF-L soma accumulation and neurite decrease, as in SOD1 and 
C9orf72 MNs (drawing based on images from Servier Medical Art 
(http:// smart. servi er. com/))

◂
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Fig. 6  Electrophysiological properties are altered in ALS motor 
neurons. Whole-cell patch-clamp recordings of iPSC-derived MNs 
from control subjects and ALS patients at T2 and T3. Recordings 
were done on the largest RFP-positive neurons visualized after gene 
transfer with a lentiviral vector encoding RFP under the control 
of the HB9 MN-specific promoter. n = number of recorded MNs 
from two or three independent experiments. Controls (Ctrl69-1, 
Ctrl69-2): T2, n = 51; T3, n = 74; SOD1-2: T2, n = 18; T3, n = 15; 
1C9orf72-1: T2, n = 24; T3, n = 22; TARDBP-1: T2, n = 17; T3, 
n = 21. a–g Current-clamp recordings. a AP firing patterns of iPSC-
derived MNs in response to injected currents (step 1  s, 5–100 pA) 
ranged in four groups: none, one spike, adaptive firing and repetitive 

firing. b Percentages of ALS and control MNs per firing pattern at 
T2 and T3. White numbers represent percentages of firing MNs. 
Statistical significances are shown for the adaptive AP firing groups 
between control and SOD1 MNs at T2, and between control and 
C9orf72 MNs at T2 and T3 (Fisher’s exact test with adjusted p value. 
*p < 0.5; ***p < 0.001). c Resting membrane potential (RMP), d AP 
half-width, e AP threshold, f rheobase, g maximum frequency. h–j 
Voltage-clamp recordings. h Ratio of  Na+(peak) and  K+(low) current 
densities during voltage steps of various amplitudes. i  Na+(peak) 
current density. j K.+(low) current density. C–j Kruskal–Wallis with 
Dunn’s test (*p < 0.05, **p < 0.01, ***p < 0.001) shows significant 
differences between T2 and T3
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none of these reports established, as we do in the present 
study, a correlation with one of the most established human 
ALS pathological signs, NF accumulations.

At the molecular level, we were interested to look for 
common deregulated genes between ALS forms and 
controls. When we analyzed each ALS form separately and 
compared differences between yMNs and mMNs, only few 
deregulated genes were identified and none was in common. 
However, when comparing all different ALS mMNs as a pool 
to control mMNs, we identified upregulation of the CHL1 
gene. Interestingly, CHL1 encodes a protein able to bind 
and to recruit AnkG to the plasma membrane [57, 59]. A 
hypothesis would be that the CHL1 upregulation, measured 
in SOD1 and C9orf72 MNs, would occur in response to 
AIS geometry and plasticity alterations due to progressive 
accumulation of pNF-M/H and subsequent obstruction of 
the AH. Moreover, it was shown that increasing CHL1 
expression could promote ALS MN neuritogenesis and 
survival in response to degeneration [60, 61], which 
could help explain why CHL1 increases in TARDBP 
MNs that showed no AIS alterations. Strengthening the 
early involvement of AIS alterations in ALS pathology, 
two transcriptomic studies revealed that the AnkG gene 
transcription was downregulated in whole spinal cord grey 
matter post-mortem tissues of five patients with sporadic 
ALS and two patients with familial ALS, including one 
SOD1 patient with an A4V mutation [107] and in human 
motor nerves (obtained from diagnostic biopsies) of eight 
sporadic ALS patients, at a time representing an early phase 
of the disease [108].

Interestingly, during the past decade, several studies have 
assessed if AIS plasticity and alterations of its components 
could be implicated in neurodegenerative and psychiatric 
diseases, as well as in brain trauma [22, 58, 109–111]. For 
example, in a mouse model of Alzheimer’s disease (AD), 
amyloid-β plaques were shown to disrupt AIS with reduction 
of their numbers and lengths [112]. Also, Sohn et al. showed 
that the frontotemporal dementia (FTD)-causing V337M 
mutation in MAPT impaired structural AIS plasticity, 
leading to excitability modifications in iPSC-derived neurons 
from FTD patients [113]. Here, we go one step further and 
show a strong correlation between AIS alterations, pNF-M/H 
accumulations and ALS pathology, and we suggest that one 
target for ALS therapy could include preservation of the AIS 
structure. Consistent with this idea, Schafer et al. showed 
that calpain inhibitors can preserve the AIS after ischemic 
injury [114], and recently Zhang et al. showed that mDia1, 
a formin, can contribute to maintain AIS composition and 
structure [115]. Whether these approaches would work for 
ALS remains to be determined.
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