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Behavioral and brain responses to verbal 
stimuli reveal transient periods of cognitive 
integration of the external world  
during sleep

Başak Türker1,5, Esteban Munoz Musat1,5, Emma Chabani1,5, 
Alexandrine Fonteix-Galet1, Jean-Baptiste Maranci1,2, Nicolas Wattiez3, 
Pierre Pouget    1, Jacobo Sitt1, Lionel Naccache    1,4,6, Isabelle Arnulf1,2,6 & 
Delphine Oudiette    1,2,6 

Sleep has long been considered as a state of behavioral disconnection 
from the environment, without reactivity to external stimuli. Here we 
questioned this ‘sleep disconnection’ dogma by directly investigating 
behavioral responsiveness in 49 napping participants (27 with narcolepsy 
and 22 healthy volunteers) engaged in a lexical decision task. Participants 
were instructed to frown or smile depending on the stimulus type. We found 
accurate behavioral responses, visible via contractions of the corrugator or 
zygomatic muscles, in most sleep stages in both groups (except slow-wave 
sleep in healthy volunteers). Across sleep stages, responses occurred more 
frequently when stimuli were presented during high cognitive states than 
during low cognitive states, as indexed by p re st im ulus e le ct ro en ce ph-
al ography. Our findings suggest that transient windows of reactivity to 
external stimuli exist during bona fide sleep, even in healthy individuals. 
Such windows of reactivity could pave the way for real-time communication 
with sleepers to probe sleep-related mental and cognitive processes.

Sleep has classically been considered a state in which we cannot react 
to external stimuli. However, congruent evidence from event-related 
potentials (ERPs)1–3 and intracranial recordings4,5 has shown that at least 
low-level sensory processing is preserved across sleep stages. Further 
studies indicated that sleepers can even process symbolic stimuli at 
different cognitive levels of representation, including semantic and  
decisional stages6–9. Learning-related sensory cues presented  
during sleep positively impact subsequent recall of cue-related  
material upon awakening10–12. Moreover, new associations can be 

learned during sleep13 and can even influence participants’ behavior 
(for example, smoking reduction) a week later14. Recent studies suggest 
that word-association learning during sleep is possible15,16 and could 
generalize into wakefulness in a cross-modal manner17. While all these 
examples of sensory processing during sleep are thought to occur 
automatically and unconsciously4, some studies have shown an incor-
poration of sensory stimuli into reported dream content18,19, suggesting 
that, at least sometimes, external stimuli could be processed up to 
conscious level during sleep. However, the lack of single-trial evidence 
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participants with narcolepsy and participants without narcolepsy. 
Regardless of the group or sleep/wake stages, responsiveness was 
associated with previously validated electrophysiological markers 
of higher cognitive states. Finally, we found electrophysiological and 
subjective (postnap reports) evidence for conscious processing of 
external stimuli during lucid REM sleep. Our findings demonstrate 
that sleepers can transiently process external stimuli at a high cogni-
tive level and behaviorally respond to them across most sleep stages.

Results
Sleeping participants can respond to auditory stimuli
In this study, we tested participants’ ability to behaviorally respond 
to auditory verbal stimuli across different sleep stages. We included 
both participants with narcolepsy (NP, n = 27) and HP (n = 21). Their 
sleep/wake stage was continuously monitored by polysomnogra-
phy (electroencephalography (EEG), electrooculography (EOG) and 
EMG). Words and pseudowords were verbally presented in a pseudor-
andomized order during daytime naps; 1-min periods of stimulation  
(ON periods) alternated with 1-min periods without stimuli (OFF periods;  
Fig. 1). Participants were instructed to perform a lexical decision task 
by frowning or smiling three times according to the stimulus type 
(behavior–stimulus matching was counterbalanced across partici-
pants) every time they heard a stimulus, whether they were awake or 
asleep. As we previously showed19, such behavioral responses are visible 
on surface EMG sensors measuring corrugator (frowning) and zygo-
matic (smiling) isometric contractions (see Fig. 2, Extended Data Fig. 1  
and Supplementary Figs. 1–11 for examples). At the end of each nap, 
participants reported the following: (1) their mental content during the 
nap, (2) whether they had a lucid dream during the nap and (3) whether 
they recalled having actively performed the lexical task while sleeping. 
They also underwent an old/new task (Supplementary Results). Each 
nap was labeled as lucid or nonlucid according to participants’ postnap 
subjective reports, and all REM-sleep trials from this nap were labeled 
as lucid or nonlucid accordingly. Participants were also instructed to 
signal their lucidity (if any) with a ‘mixed code,’ by frowning and then 
smiling once. These objective dream-lucidity signals typically matched 
participants’ subjective reports upon awakening (Extended Data Fig. 2).

We assessed responsiveness to task stimuli across sleep stages in 
the two groups, by visually inspecting the corrugator and zygomatic 

of stimulus integration during sleep complicates the exploration of the 
neurophysiological basis of this complex and variable phenomenon. 
Obtaining behavioral responses that serve as real-time indicators of 
subjective reports could enable us to analyze brain dynamics associ-
ated with sensory and cognitive integration in a trial-by-trial manner.

Because behavioral responses have long been assumed to be 
possible only during wakefulness, they are either rejected from the 
analysis8,20 or not collected at all in sleep studies. The rare studies that 
measured behavioral responses in sleeping participants discovered 
manual behavioral responses during N1 sleep (sleep onset)3,21–24, but 
not in deeper sleep stages. However, the loss of limb muscle tone could 
mask behavioral responses during consolidated sleep. Facial muscles, 
which are less affected by muscle atonia than the limbs25, could be 
more suited for assessing behavioral responsiveness. For example, eye 
movements persist during rapid eye movement (REM) sleep and can 
be used to signal lucidity in people who are aware of dreaming while 
asleep19,26 (that is, lucid dreamers). Combining eye movements and 
zygomatic/corrugator contractions, we showed that lucid dreamers 
could respond to queries sent during their dreams in polysomnography 
(PSG)-verified REM sleep19.

In the present work, we capitalized on this research strategy to 
further question the behavioral disconnection dogma in sleep and to 
explore stimuli integration at the behavioral and neurophysiological 
levels. Based on our previous results19, we reckoned that such respon-
siveness would most likely occur during lucid dreaming. We aimed 
to first assess behavioral responses during lucid REM sleep and then 
test whether these results could extend to nonlucid REM sleep and 
other sleep stages. We recruited 27 participants with narcolepsy, who 
present excessive daytime sleepiness, a short REM sleep latency and 
a high frequency of lucid dreams27, making them an ideal population 
to collect multiple lucid dreams in the laboratory28. We additionally 
recruited 21 healthy participants (HP; nonlucid dreamers). Participants 
were explicitly instructed to perform an auditory lexical decision task 
while napping by frowning or smiling three times depending on the 
stimulus type (word versus pseudo-word). Facial electromyography 
(EMG) on corrugator and zygomatic muscles was recorded in addition 
to usual polysomnography signals.

We discovered that behavioral responses were possible across 
most sleep stages, including N2 sleep and nonlucid REM sleep, in both 
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Fig. 1 | Experimental design. Participants with narcolepsy went through five 
20-min naps during the same day. In each nap, periods with stimulation (ON) 
alternated, every minute, with periods when no stimulus was presented (OFF). 
During the ON periods, participants were presented with words and pseudo-
words and asked to either frown (corrugator muscle contractions) or smile three 
times (zygomatic muscle contractions) in response to the stimuli. Stimuli were 

presented every 10 s (±1 s). Following each nap, participants were asked to report 
whether (1) they had any dream, (2) they were lucid and (3) they recalled any 
words presented during the nap. Immediately after this debriefing, participants 
performed a forced-choice ‘old/new’ recognition task. Healthy participants went 
through the exact same procedure except that they had a single 100-min nap.
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EMG while blind to the sleep stage and the presence/absence of a stimu-
lus. Results from our visual scoring were consistent with those provided 
by an automatic algorithm (Supplementary Note and Extended Data 
Figs. 3 and 4) We compared response rates (including both correct and 
incorrect responses from the two muscles) during ON and OFF stimula-
tion periods (Fig. 3a and Extended Data Fig. 5). Notably, we excluded 
all responses performed during micro-arousals, keeping only periods 
when participants were asleep according to the sleep scoring rules29. 
As expected, we found significantly higher response rates during ON 
versus OFF periods, both during wakefulness (HP: 78.8% versus 1.5%, 
z = 30.02, P < 0.0001; NP: 86.1% versus 2.1%, z = 27.02, P < 0.0001, after 
false discovery rate (FDR) correction) and N1 sleep (HP: 22.2% versus 
1.5%, z = 10.99, P < 0.0001; NP: 64.2% versus 1.7%, z = 18.29, P < 0.0001) 

in both groups. Crucially, we also found, in both HP and NP, signifi-
cantly higher response rates in ON versus OFF periods during N2 (HP: 
4.7% versus 1.9%, z = 4.52, P < 0.0001; NP: 20.27% versus 2.2%, z = 16.57, 
P < 0.0001) and (nonlucid) REM sleep (HP: 6.5% versus 2.2%, z = 3.59, 
P = 0.0003; NP: 34.2% versus 1.4%, z = 13.93, P < 0.0001). We did not find 
a significant difference between ON and OFF periods in HP during N3 
sleep (0.2% versus 0.9%, z = −1.23, P = 0.22), but we found significantly 
more responses during ON than OFF periods in N3 sleep in participants 
with narcolepsy (5.7% versus 2.4%, z = 3.31, P = 0.0009). Note that the 
response rates were higher in NP than in HP during ON stimulation peri-
ods in all sleep stages (N1: z = 4.74, P < 0.0001; N2: z = 4.44, P < 0.0001; 
N3 sleep: z = 3.66, P = 0.0002; REM: z = 4.95, P < 0.0001). This was not 
true for OFF stimulation periods, during which the two groups had 
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Fig. 2 | Examples of behavioral responses during N2 sleep in healthy 
participants (top) and during lucid REM sleep in participants with 
narcolepsy (bottom). Wake periods corresponding to the same participants are 
shown on the left side of the figures as a comparison. The orange vertical line on 

the last channel indicates the stimulus onset. In these examples, we observed the 
typical markers of N2 sleep: spindles (EEG); and REM sleep: low chin tone (EMG), 
rapid eye movements (EOG) and θ rhythm (EEG).
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similar contraction rates (χ²(1) = 0.03, P = 0.87) in all sleep stages (no 
interaction). Response rates during ON periods decreased significantly 
from wake to N1 sleep, REM sleep and then N2 sleep (in order) in both HP 
and NP (Fig. 3a and Supplementary Table 1). Thus, participants could 
provide behavioral motor codes during most sleep stages, but response 
frequency decreased in function of sleep depth. Interestingly, only NP 
reported having performed the task during sleep upon awakening.

To verify that participants actually performed a lexical decision 
while asleep, we next computed participant-level accuracy scores 
(Fig. 3b and Supplementary Fig. 12). Note that we did not have enough 
responsive trials per participant to perform this analysis in REM sleep 
in HP. Both HP and NP performed the task significantly more accurately 
than the chance level in all tested sleep stages, with median accuracy 
above 71% (HP: wake 94.2%, P < 0.0001; N1 83.3%, P = 0.0002; N2 84.5%, 
P = 0.007. NP: wake 87.9%, P < 0.0001; N1 84.1%, P < 0.0001; N2 71.8%, 
P = 0.002; nonlucid REM sleep 73.37%, P = 0.002). We observed a signifi-
cant main effect of the sleep stages on accuracy in both HP (χ²(2) = 11.01, 

P = 0.004) and NP (χ²(4) = 38.23, P < 0.0001), indicating a decrease in 
performance from wake to deeper sleep stages. Moreover, accuracy 
was positively correlated with increased responsiveness (Supple-
mentary Results). Interestingly, accuracy was higher in HP than in NP 
(χ²(1) = 13.65, P = 0.0002) in all tested sleep stages.

We then wondered if one behavioral hallmark of lexical decision 
task during wakefulness—slower response times (RTs) for pseudowords 
than for words30—persisted in our sleeping participants. Only correct 
responses were included in this analysis. For both NP and HP, we found 
a main effect of both sleep stages (HP: χ²(2) = 25.47, P < 0.0001; NP: 
χ²(4) = 82.5, P < 0.0001) and stimulus type (HP: χ²(1) = 45.59, P < 0.0001; 
NP: χ²(1) = 36.9, P < 0.0001) on RTs; crucially, there was no significant 
interaction effect between these two factors (HP: χ²(2) = 2.7, P = 0.25; 
NP: χ²(4) = 7.3, P = 0.1), suggesting that the effect was not modulated by 
sleep stage (Supplementary Fig. 13). Reponses to pseudowords were 
on average 100 ms slower than responses to words in HP (median for 
words: 1.29 s) and 130 ms slower in NP (median for words: 1.42 s). This 
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Fig. 3 | Accurate behavioral responses in both populations. a, The overall 
response rate across different sleep stages during OFF (blue) and ON (green) 
stimulation periods in participants without (left) and with (right) narcolepsy. The 
total number of trials in a given condition is indicated on top of the bars. We used 
binomial generalized mixed-linear models with participants as a random factor 
for statistical analysis. All P values are corrected for multiple comparisons using 
the Benjamini–Hochberg procedure. Response rates were significantly larger in 
ON than in OFF periods (pairwise post hoc two-sided comparisons) in HP during 
wakefulness (P < 0.0001), N1 (P < 0.0001), N2 (P < 0.0001), REM (P = 0.0003) 
and in NP during wakefulness, N1, N2, REM and lucid REM sleep (all P < 0.0001). 
b, Accuracy was computed over responsive trials in the lexical decision task for 

participants without narcolepsy—HP (left) and with narcolepsy—NP (right). Only 
participants with at least three responses were included in this analysis (number 
of HP: wake = 21, N1 = 17, N2 = 10; number of NP: wake = 24, N1 = 25, N2 = 24, 
REM = 12, lucid REM = 15). Each dot represents a participant and dashed lines 
indicate the 50% chance level. The boundaries of the boxes represent the first 
and third quartiles (Q1 and Q3, respectively), the midline represents the median 
and the whiskers depict Q1 − 1.5× IQR and Q3 + 1.5× IQR. One-sided Wilcoxon 
signed-rank test revealed that both HP and NP were significantly more accurate 
than chance in all tested sleep stages (corresponding P values are indicated in the 
figure). IQR, interquartile range. ****, P < 0.0001; ***, P < 0.001.
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was also the case for each sleep stage independently. In NP, responses 
were faster during wakefulness than during sleep (median RT: wake, 
1.36 s versus N1 sleep 1.56 s, P = 0.034; N2 sleep 1.59 s, P = 0.0001; non-
lucid REM, 1.49 s, P = 0.0001), whereas no significant differences were 
found between sleep stages (Fig. 4a). A similar pattern was observed 
for HP, including significantly shorter reaction times in wakefulness 
and N1 than in N2 sleep (wake versus N2 sleep: t = 4.6, P < 0.0001; N1 
versus N2 sleep: t = 2.64, P = 0.008). Moreover, we found significantly 
shorter reaction times in accurate trials compared to inaccurate ones 
in wake (t = −6.91, P < 0.0001), N1 sleep (t = −2.31, P = 0.021) and N2 
sleep (t = −3.82, P = 0.0001) in HP and in wake (t = −5.56, P < 0.0001), 
N1 sleep (t = −2.24, P = 0.025) and REM sleep (t = −5.275, P < 0.0001) 
in NP. We also examined the response latencies of the two response 
types (zygomatic and corrugator contractions) to ensure that they 
had the same level of difficulty. We found similar response latencies for 
the two muscles in all sleep stages (no interaction was found with the 
sleep stage) for both participants with (t = 1.38, P = 0.18) and without 
narcolepsy (t = 0.88, P = 0.38).

We finally assessed whether lucid and nonlucid REM sleep differed 
on the behavioral and subjective levels. Only NP reported lucid dreams 
upon awakening, in 33/134 naps (24.6%). Like in nonlucid REM sleep, 
response rates were higher during ON versus OFF periods in lucid REM 
sleep (52.7% versus 6%, z = 18.04, P < 0.0001). Accuracy was also better 
than chance (65% versus chance level at 50%, P = 0.0008, one-sided  
Wilcoxon signed-rank test) and not statistically different than in non-
lucid REM sleep (t = 1.24, P = 0.3). Reaction times were significantly 
shorter in accurate trials compared to inaccurate ones (t = −2.61 
P < 0.009). Notably, lucidity significantly increased the response rate 
in REM sleep (z = 7.97, P < 0.0001) to a level similar to the one observed 
in N1 sleep (Fig. 3a and Supplementary Table 1). Interestingly, RT was 
significantly longer during lucid REM sleep than during wakefulness but 
also than during other sleep stages (median RT: lucid REM sleep, 2.1 s 

versus N1 sleep, 1.56 s, P < 0.0001; versus N2 sleep, 1.59 s, P = 0.0001; 
versus nonlucid REM sleep, 1.49 s, P = 0.002; Fig. 4a). Finally, after 
naps associated with at least one behavioral response during sleep, 
participants who reported lucidity recalled more frequently having 
performed the task during sleep (task recall after 75.8% of lucid naps 
versus 15.5% of nonlucid naps; χ²(2) = 36.15, P < 0.0001; Fig. 4b).

Local brain activations during sleep in responsive trials
Sleep/wake stages were scored according to established guidelines29 
by a certified sleep expert blind to the responses (corrugator and 
zygomatic EMG channels were removed for sleep scoring). Figure 2, 
Extended Data Fig. 1 and Supplementary Figs. 1–11 show 15 examples 
of responses during bona fide sleep for both HP (in N2 and REM sleep) 
and NP (in N2, REM and N3 sleep). Given the novelty and importance 
of this result, we performed additional analyses to confirm that these 
responsive trials indeed occurred during sleep periods.

First, we performed spectral analyses during both the baseline 
period (−1,000 to 0 ms relative to stimulus presentation) and the 
poststimulus period (0–8,000 ms; Fig. 5a). For both time windows, as 
well as for all sleep stages in both HP and NP, power spectral densities 
(PSDs) in responsive trials reflected the expected profile of the given 
sleep/wake stage. Compared to wake trials, all responsive trials were 
associated with lower α and higher δ spectral power (see Fig. 5a and 
Supplementary Table 4 for the statistical comparisons). Additional 
analyses quantifying classical sleep graphoelements (spindles and slow 
waves) in responsive and nonresponsive non REM (NREM) sleep are 
provided in Supplementary Results. Overall, our results are in line with 
the manual sleep scoring and confirm that the background brain activ-
ity in responsive sleep trials presents the typical signatures of sleep.

We next wondered what differences in brain processing could 
account for the presence or absence of behavioral responses dur-
ing sleep. We performed a mass-univariate stimulus-locked 
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time–frequency analysis independently for each group and each sleep 
stage. We applied a log-ratio baseline correction relative to the −1,000 
to 0 ms time window to only capture the time–frequency activity 
induced by stimulus processing. The average time–frequency matrix 
for responsive and nonresponsive trials is presented in Fig. 5b for NP 
(N2 and REM sleep) and in Extended Data Fig. 6 for HP (N1 and N2 sleep). 
This analysis revealed the following: (1) the absence of significant 
δ-band modulation by responsiveness; (2) compared to nonresponsive 
trials, a more pronounced and more sustained activation in α (8–12 Hz) 
and β (12–30 Hz) bands, mostly observed in frontal electrodes, and 
roughly spanning from 1,200 ms to 3,800 ms poststimulus presenta-
tion (see Extended Data Fig. 7 for the exact time-intervals for each 
frequency band). To assess whether this α- and β-band modulation 
was due to ultrashort arousals (shorter than the usual 3 s criteria defin-
ing micro-arousals) or to cognitive and motor processes induced by 
the stimuli, we performed a response-locked time–frequency analy-
sis (Fig. 5b, right), as well as response-locked ERPs (Extended Data  
Fig. 8). We observed a power increase in α- and β-frequency bands start-
ing from 700 ms before the behavioral response; this power increase 
was predominant on frontal sites and during the period following the 
response. This spatial profile of activity is different from the typical, 
occipital activation observed during micro-arousals. Crucially, com-
parison between the response-locked time–frequency matrix and ERPs 
revealed that the observed preresponse α and β band activation was 
concomitant with a motor preparation potential (Bereitschafts poten-
tial), observed mainly on frontal electrodes, in all wake/sleep stages 
in both NP and HP. This frontal location is consistent with the known 
physiology of facial muscles motor preparation and execution31–33.

In sum, our results suggest that participants’ responses  
happened on a global background of sleep brain activity (with a similar 
stage-specific physiology compared to nonresponsive trials), but that 
they involve local (in time and space) brain activations likely linked 
to cognitive and motor processing of the stimulus. Taken together 
with our behavioral results, these results demonstrate that sleepers 
can perceive verbal stimuli, make a lexical decision and perform an 
adequate motor response while remaining asleep in N1, N2 and REM 
sleep. The fact that participants’ responses were accurate and slower 
for pseudowords than for words suggests that stimuli were processed 
at a high cognitive level (at least beyond the lexical level). These results 
overall suggest the existence of transient states that allow respon-
siveness to external information during sleep, whose frequency and  
duration depend on the sleep stage.

EEG markers of high cognitive states predict responsiveness
To explore whether responsiveness during sleep could be explained 
by an ongoing, richer cognitive state before stimulation in nonlucid 
participants (NP and HP), we computed electrophysiological markers 
known for distinguishing high versus low cognitive states34,35. These 
markers were previously shown to differentiate patients with unre-
sponsive wakefulness syndrome from patients in a minimally conscious 
state and HP34,36,37, as well as wakefulness and REM sleep from N3 sleep38. 
In addition to classical spectral measures (normalized PSDs in δ, θ, 
α, β and γ frequency bands), we included one connectivity measure 
(weighted symbolic mutual information (wSMI) in the θ band), and 

three complexity measures (the Kolmogorov complexity (KC), the  
permutation entropy in the theta band (PE θ) and the sample entropy 
(SE)). Crucially, we computed these markers in the 1,000 ms time 
window before the stimulus presentation; therefore, these markers 
reflected the ‘resting-state’ brain dynamics of the participants just 
before the stimulus presentation, and not the evoked activity of the 
stimulus or the response.

To ensure that these markers would provide meaningful informa-
tion about the cognitive state of our participants, we first assessed 
how the markers varied in different sleep stages as a sanity check (NP: 
Extended Data Fig. 9, HP: Extended Data Fig. 10). As expected, we 
found that complexity, connectivity values and high-frequency PSD 
decreased from wake to N1 sleep, REM sleep, N2 sleep and N3 sleep 
(in order), this descending profile mirroring the response rates (see 
Supplementary Tables 3 and 4 for statistical comparisons between the 
different sleep stages, for each marker and each group). The reverse 
was observed for δ PSD. These results demonstrated that our markers 
can reliably distinguish participants’ sleep/wake stages.

Next, we assessed how these electrophysiological markers differed 
in responsive and nonresponsive trials, except during REM sleep in HP 
(not enough remaining responsive trials after EEG preprocessing). 
Figure 6 shows the difference in the estimated marginal means of the 
z-scored marker values in responsive and nonresponsive trials for 
each sleep stage in nonlucid NP (left) and HP (right; see Supplemen-
tary Tables 7 and 8 for detailed comparisons). Positive marker values 
indicate an increase of the markers in the responsive trials compared 
to nonresponsive trials, whereas negative marker values signify a 
decrease in the responsive trials. Our analysis revealed similar patterns 
of variations in nonlucid NP and HP, including an increase in the EEG 
complexity and in the high-frequency PSD, and a decrease in the δ PSD 
in responsive trials versus nonresponsive trials. Connectivity (wSMI) 
did not differ in the two conditions.

To further explore the predictive power of these EEG markers  
on responsiveness, we trained a random forest classifier using a  
multivariate combination of these markers collected in nonlucid NP 
and did so independently for each sleep stage. We then tested whether 
this classifier could predict responsiveness on a trial-by-trial basis in 
both NP (using a classical stratified cross-validation procedure) and 
HP trials (in N2 sleep). The balanced accuracy score was above 60% 
for all sleep stages in NP nonlucid naps (reaching 67% for REM sleep) 
and reached 58% for N2 sleep in HP (Fig. 7). All balanced accuracy 
scores were significantly different than the chance level computed 
by a 500-permutation procedure (P < 0.002 for all stages in NP, and 
P = 0.006 for N2 sleep in HP), with a mean balanced accuracy score of 
permutation trials around 50% for all stages (Supplementary Table 9).

One could argue that these EEG markers measure differences in 
motor capacities (that is, more or less motor inhibition) rather than 
differences in cognitive capacities. To explore this possibility, we 
tested whether our classifier better predicted responsiveness when 
including only correct responses. Prediction performance increased 
for all sleep stages in both NP and HP (except for N1 in NP where per-
formance slightly decreased while remaining significantly higher than 
chance; Fig. 7b). Balanced accuracy reached 72% for REM sleep in NP 
and 61% for N2 sleep in HP (P = 0.002, 500-permutation procedure). 

Fig. 5 | Participants exhibit sleep activity in responsive trials, with local brain 
activations associated with responsiveness. a, Normalized PSD values in α 
(PSD |α|) and δ (PSD |δ|) frequencies in responsive trials across different sleep 
stages in prestimulus and poststimulus periods. Prestimulus marker values are 
computed over the 1 s-period before the stimulation, whereas poststimulus 
marker values are calculated in the 8s-period following the stimulation. Data are 
presented as mean values ± 95% confidence intervals. n depicts the number of 
datapoints included in the statistical analysis, taken from 25 NP (22 in wake, 24 in 
N1, 23 in N2 and 15 in REM) and 21 HP (21 in wake, 21 in N1 and 20 in N2). Please note 
that marker values in different sleep stages were never at wake level as revealed 

by a linear mixed model with participant ID as random effect (****P < 0.0001 in 
pairwise post hoc two-sided comparisons, adjusted for multiple comparisons), 
indicating that participants were indeed asleep while they were responding.  
b, Time–frequency analysis (TFA) performed on the Fp1 (top) and the O1 
(bottom) electrodes in N2 (23 nonresponsive participants and 21 responsive 
participants) and REM sleep (15 nonresponsive participants and 14 responsive 
participants) of NP. Left and middle, stimulus-locked TFA in nonresponsive 
and responsive trials, respectively. Right, response-locked TFA. Transient 
and spatially localized increases in α and β frequencies were associated with 
behavioral responsiveness to the task.
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Next, we tested the opposite by including only incorrect responses. 
Interestingly, prediction performance drastically decreased, falling 
to chance level for all sleep stages other than N1 sleep in NP (where it 
also decreased significantly while remaining higher than chance level; 
Fig. 7c). The fact that prediction performance was driven by correct 
responses is a strong indicator that the differences in brain dynam-
ics measured by the EEG markers reflected differences in cognitive 
processing between responsive and nonresponsive trials, and not 
mere motor capacities.

In sum, our EEG results suggested that a particular brain state 
before the stimulation, characterized by increased complexity and 
faster oscillations, allowed responsiveness during sleep. A multivari-
ate combination of these markers predicted the presence/absence of 
response in a trial-by-trial level. The facts that (1) the markers varied 
with responsiveness similarly in nonlucid NP and HP and (2) the clas-
sifier trained with NP data could classify responsive trials in HP better 
than chance strongly suggest that the same brain dynamics underlie 
responsiveness in both participants with and without narcolepsy (in 
nonlucid sleep). Finally, the finding that the predictive power of those 
markers was driven by correct trials strongly suggests that behavioral 
responses were due to higher cognitive processing of the stimulus.

Conscious processing of external stimuli in lucid dreaming
To investigate the specificities of lucid REM sleep in NP, we first com-
pared the electrophysiological markers between responsive and non-
responsive trials in this condition. Interestingly, none of these markers 
differentiated responsive from nonresponsive trials in lucid REM sleep 
(all uncorrected P > 0.05; Fig. 8a and Supplementary Table 8). Using a 
Bayesian analysis, we confirmed a true absence of difference between 
responsive and nonresponsive trials in lucid REM sleep; for each marker, 
the Bayes factor comparing our full mixed-linear model to the one of a 
‘null model’ with only the random effect ranged from 0.21 to 0.08, indi-
cating moderate (<0.33) to strong (<0.1) evidence for the null model39.

We next investigated how the marker values in lucid REM sleep 
differed from the ones in nonlucid (ordinary) REM sleep. Lucid  
trials were associated with higher complexity (SE), higher normalized 
PSD of γ and lower normalized PSD of δ values compared to nonlucid 
trials. Statistical analyses (both frequentist and Bayesian) restricted 
to responsive trials revealed similar values in lucid and nonlucid con-
ditions for all markers, indicating comparable brain activity during 
responsive trials between nonlucid and lucid REM sleep (Fig. 8a and 
Supplementary Table 11).

In sum, lucid REM sleep was characterized by a systematic increase 
in EEG markers of higher cognitive states, irrespective of behavioral 
responsiveness to the task, with a pattern of markers similar to the 
one observed in nonlucid/responsive trials (that is, faster oscillations 
and higher complexity compared to nonlucid/nonresponsive REM 
trials). This suggests a ceiling effect for marker values in lucid REM 
sleep, indicating a sustained high cognitive state during this condition.

This neurophysiological profile combined with the subjective 
report of having performed the task during sleep (Fig. 4) suggests 
that NP consciously processed the stimuli when in lucid REM sleep. 
Several signatures of conscious processing have been described in the 
literature, including the late P3b component in evoked related poten-
tials40–42 or the square-like shape pattern in the temporal generalization 
method43,44 (such a pattern reflects a late, stable and sustained process-
ing stage that has been previously related to conscious access43–45) 
Given our unbalanced dataset, we primarily used the temporal gen-
eralization approach to explore consciousness of external stimuli in 
lucid REM sleep (see Supplementary Fig. 14 for stimulus-locked ERPs). 
Briefly, this analysis tests how stimulus-induced brain activity differs 
from baseline activity; it consists in training a linear classifier at each 
time point to differentiate stimulus-present versus stimulus-absent 
epochs and testing its performance for all the other time points 
(for example, training the classifier at t = 2 and testing its ability to 
correctly classify at t = 1,2,3,4,5,…, obtaining thus a whole matrix of 
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Fig. 6 | EEG markers of high cognitive states computed before stimulus 
presentation vary with responsiveness to stimuli. After the z score transform 
of marker values, we subtracted the marginal estimated mean of nonresponsive 
trials (NR) from responsive (R) trials for each marker and each stage (represented 
by bars). Statistical comparisons between the responsive and nonresponsive 
trials were made using linear mixed models with participant ID as random 
effect. Asterisks represent statistical significance in pairwise post hoc two-sided 
comparisons. ****, P < 0.0001; ***, P < 0.001; **, P < 0.01; P < 0.05; red stars indicate 

significance after FDR correction for 72 comparisons. All adjusted P values and 
averaged marker values can be found in Supplementary Tables 7 and 8. Almost all 
markers showed a variation in the direction corresponding to increased cognitive 
states when contrasting responsive trials to nonresponsive trials (for example, 
increased EEG complexity and decreased EEG δ power), both in participants with 
(left) and without narcolepsy (right). Note the similarity with Fig. 3 in ref. 33 that 
contrasted conscious to nonconscious states in patients suffering from disorders 
of consciousness. R, responsive; NR, nonresponsive.
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performance for each training time point/testing time point). We found 
that responsive trials during lucid REM sleep were associated with the 
expected square-like shape pattern starting from 350 ms poststimulus 
presentation (Fig. 8b). This pattern was similar to the one observed 

in responsive wake trials, indirectly supporting our hypothesis that 
NP are conscious of the stimuli presented during responsive trials in 
lucid REM sleep. In contrast, we did not find any discernible decoding 
pattern for nonresponsive trials in lucid REM sleep, suggesting that 
NP are not conscious of external stimuli when they do not respond. 
This result might seem at odds with our previous observation that 
marker values computed before the stimulation were similarly high 
in responsive and nonresponsive trials (Fig. 8a) in lucid NP. It sug-
gests that high marker values are indicative of a rich cognitive state, 
which is permissive (but not necessarily sufficient) for responsiveness  
during sleep.

Lucid REM sleep trials were therefore associated with (1) a subjec-
tive report of having performed the task while sleeping; (2) a systematic 
increase in EEG markers of higher cognitive states; (3) an electrophysi-
ological signature of conscious processing of external stimuli in respon-
sive trials (temporal generalization pattern) and (4) longer reaction 
times, suggesting that participants were engaged in a dual task during 
which external information (outside world, including verbal stimuli) 
and internal information (ongoing dream) competed for attention9. All 
these findings hint that lucid participants could consciously integrate 
and respond to external stimuli during sleep.

Discussion
Our results provide compelling evidence that sleeping humans present 
transient windows of sensory connection with the outside world during 
which they process external information at a high cognitive level and 
can physically respond. Until now, behavioral responsiveness had only 
been demonstrated during the sleep onset period3,21,22 or in the unique 
case of lucid REM sleep19. Our findings go further by demonstrating the 
possibility of behavioral responsiveness to external stimuli in bona fide 
sleep in a large group of participants. Responses were associated with 
temporally and spatially localized activations in the sleeping brain. 
Although remaining rare in HP, we argue that the existence of these 
transient windows of behavioral reactivity provides a much more com-
plex picture of sleep/wake phenomena than previously considered. 
Furthermore, we show that these transient windows of cognitive and 
behavioral connection are associated with specific brain dynamics 
(faster oscillatory activity and higher signal complexity), which predict 
responsiveness on a trial-by-trial basis. Finally, for the particular case 
of lucid REM sleep, we provide strong arguments in favor of conscious 
processing of external information, including the presence of a neural 
signature of conscious access43 in responsive trials and explicit recall 
of having performed the task during sleep.

Our study presents several limitations. First, we primarily chose 
to assess behavioral responses using a visual inspection of the cor-
rugator and zygomatic muscle activity on EMG channels. We favored 
this method to an automated algorithm, which requires choosing 
an arbitrary threshold and would need to be validated against a gold 
standard (which does not exist). Note however that our visual scoring 
was consistent with an automatic detection of responses based on EMG 
signal variance (Supplementary Note and Extended Data Figs. 3 and 4).  
Second, we only investigated responsiveness during daytime naps, thus 
preventing us from fully assessing behavioral responsiveness during 
N3 sleep (not enough trials) and more generally during night-time 
sleep. Third, our ten-electrodes montage with a mastoid reference was 
not ideal for computing the wSMI connectivity measure46, making the 
results of this analysis difficult to interpret. Fourth, we used postnap 
subjective reports to determine lucidity instead of the gold standard, 
objective signal of lucidity26,28,47. Nevertheless, we also collected an 
objective lucidity signal (successive corrugator and zygomatic con-
tractions) that substantially matched participants’ subjective reports 
upon awakening, confirming the reliability of subjective reports in 
determining participants’ lucidity. Finally, we only obtained lucid naps 
in patients with narcolepsy. Therefore, our results for lucid REM sleep 
need confirmation in lucid HP.

Confusion matrix of a random forest classifier trained with only 
correct trials (R vs NR) for REM sleep (NP)
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Fig. 7 | EEG markers of high cognitive states computed before stimulus 
presentation predict responsiveness to stimuli in each nonlucid sleep  
stage. a,b, We fed a random forest classifier with our nine EEG markers and 
trained it to classify R trials versus NR ones using a tenfold cross-validation 
method. We conducted this analysis considering all responses (in blue), then 
separately for both correct (in green) and incorrect responses (in red). A 
confusion matrix for correct REM sleep trials in nonlucid naps of participants 
with narcolepsy is shown in a, with a description of the balanced accuracy 
measure that we computed to take unbalanced datasets into account. The 
confusion matrix for each stage and group can be found in Supplementary  
Table 9. Balanced accuracy scores are plotted in b for different sleep stages, in 
function of response accuracy, both for participants with narcolepsy (wake, N1, 
N2, REM sleep; left) and without narcolepsy (N2, right), with the corresponding 
statistical significance against chance level computed with a 500 permutations 
test (all trials: all NP P values = 0.002, HP P value = 0.006; correct trials: all  
P values = 0.002; incorrect trials: wake P = 0.002, N1 P = 0.04. Note that 0.002 
is the smallest P value obtainable via 500 permutations). Data are presented as 
mean values ± 95% confidence intervals. n represents a number of datapoints in 
all (correct + incorrect) trials, taken from 22 NP in wake, from 24 NP in N1, from 
23 NP in N2, from 15 NP in REM and from 20 HP. TP, responsive trials classified 
as responsive; TN, nonresponsive trials classified as nonresponsive; FP, false 
positives (NR trials classified as responsive). FN, false negatives (R trials classified 
as nonresponsive).
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Although the response rate was minimal during OFF periods  
(compared to ON periods), it was still greater than zero, which might 
appear surprising in the absence of stimuli. This can be due to the  
following factors: (1) participants might have had spontaneous contrac-
tions, (2) they might have dreamt about the task and contracted their 
muscles in response to a dreamt auditory stimulation or (3) we might 
have overestimated the contraction rates. Spontaneous single contrac-
tions called ‘twitches’ are common during REM sleep. However, we only 
considered two or more successive contractions as responses, thereby 
eliminating all twitches. Moreover, behavioral responses were assessed 
blind to the sleep stage and to the stimulation period (ON versus OFF), 
ensuring that any putative false detection bias is uniformly distributed 
in all sleep stages and stimulation periods. Therefore, any differences in 
the response rates between ON and OFF periods reflect a genuine effect.

One might argue that the behavioral responses we observed  
during sleep occurred during brief episodes of wakefulness. Yet, all 
trials containing a micro-arousal (before and/or after the stimulation) 
were excluded from all analyses to ensure that participants were indeed 
asleep while responding, at least according to the well-accepted sleep 
scoring rules29. Moreover, EEG spectral measures in responsive sleep 

trials reflected the expected sleep stage variations, with significantly 
higher δ power and significantly lower α power compared to wake 
trials. Finally, poststimulus analyses revealed an increase in α and β 
power in responsive trials. However, given the frontal localization of 
these modifications and the timing relative to the motor preparation 
potentials, we argue that they reflect cognitive and motor processes 
rather than micro-arousals, at least in the classical sense. Recent studies 
suggest that the discrete frontiers between wake and sleep might be 
fuzzier than the international sleep criteria would allow29. For example, 
local sleep-like phenomena can be observed during wake and influence 
cognitive capacities and behavior48,49. In the same way, it is possible 
that our participants had ‘local wake events’ (in space and/or time) 
allowing them to respond to external stimuli while sleeping. Our cur-
rent gold-standard sleep scoring guidelines are not suited to detect 
such subtle variations in brain dynamics. By calling into question the 
assumption that behavioral and coarse physiological measures of 
sleep always align, our study could precipitate the development of 
finer-grained sleep scoring that better captures cognitive capacities 
including behavioral responsiveness in the wake-sleep continuum. 
Such endeavor may be clinically relevant. For example, sleepwalking 
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Fig. 8 | Effect of lucidity on EEG markers and response to stimuli in 
participants with narcolepsy. a, Top, Kolmogorov complexity (left), 
normalized γ PSD (norm-γ; middle) and normalized δ PSD (norm-δ; right) 
before stimuli onset as a function of whether the stimulus will be followed by 
a behavioral response (in blue) or not (in orange), for lucid and nonlucid REM 
sleep in participants with narcolepsy. Data are presented as mean values ± 95% 
confidence intervals. Statistical differences computed via linear mixed models, 
adjusted for multiple comparisons are indicated (NS, nonsignificant). A number 
of datapoints in the model are 229 (from 13 participants) for responsive REM 
sleep, 358 (from 15 participants) for nonresponsive REM sleep, 353 (from 15 
participants) for responsive lucid REM sleep and 333 (from 16 participants) 
for nonresponsive lucid REM sleep. Kolmogorov complexity and norm-γ were 
significantly higher for responsive trials compared to nonresponsive trials in 
nonlucid naps for all participants. Conversely, the norm-δ was significantly 

lower in responsive trials in nonlucid naps. No such differences were observed 
in lucid naps, suggesting a ceiling effect for markers of high cognitive states 
in lucid naps (see Supplementary Table 10 for statistical details). Overall, 
Kolmogorov complexity and norm-γ were higher, and norm-δ was lower in lucid 
naps compared to nonlucid naps irrespectively of the responsiveness. b, Time-
generalization decoding of stimulus-related brain activity compared to baseline 
brain activity, in trials with (top) and without (bottom) response, in wake (left) 
and lucid REM sleep (right). The logistic regression classifier was trained on 
each time point and then tested on all the time points to obtain a generalization 
pattern. Each intersection point of a training time and a testing time shows the 
AUC of the classifier. Time points with an AUC > 0.5 and that are statistically 
significant are outlined in black (two-sided nonparametric sign test across 
participants with FDR correction for 41,616 comparisons, P < 0.05).
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could be interpreted as extreme forms of these local wake events, still 
happening on a global background of sleep brain activity50,51.

While both participants with and without narcolepsy displayed 
responses during sleep, those with narcolepsy responded more. 
Because both groups had similar contraction rates during OFF periods, 
patients’ increased responsiveness is not due to an overall decrease in 
the detection criterion. Enhanced responsiveness in patients could 
be due to (1) an acquired capacity to remain connected with their 
surroundings while sleeping as an adaptation to their tendency to fall 
asleep in unconventional situations, (2) a reduced muscle atonia com-
pared to healthy controls52 and (3) a higher proneness to experience 
‘local wake events’ due to narcolepsy-related sleep-wake instability52. 
Even though participants with narcolepsy responded more frequently 
during sleep, both populations shared common EEG marker modifica-
tions in responsive trials. Crucially, the performance of a classifier 
trained with data from participants with narcolepsy generalized to 
HP. These two findings strongly suggest that the existence of these 
transient windows of behavioral reactivity is a general feature of sleep, 
of which narcoleptic participants present an exacerbated profile.

Our results enhance our understanding of the lucid dream phe-
nomenon and of its neural correlates47,53. We found modifications 
in spectral power (increase in normalized PSD of γ and decrease in 
normalized PSD of δ) as well as an increase in signal complexity (SE) 
during lucid REM sleep, compared to nonlucid REM sleep, supporting 
the findings from a recent study54. Notably, we provide strong evidence 
that lucid participants perceived stimuli in a conscious manner. This 
evidence included subjective report (the gold standard for assessing 
conscious access) and the presence of neural responses previously 
shown to reflect conscious perception43–45 (a stable and sustained brain 
activity in response to stimuli). These results show that lucid dream-
ing is not only characterized by a reemergence of metacognitive and 
volitional capacities55,56 but also by a capacity to consciously process 
external information.

To what extent were nonlucid sleepers conscious when responding 
to stimuli remains an open question. Indeed, contrarily to lucid dream-
ers, nonlucid dreamers typically could not recall having performed the 
task during sleep and we could not perform temporal generalization 
decoding due to the insufficient number of trials in these participants. 
Either way, our findings have major consequences for consciousness 
research. If nonlucid sleepers unconsciously processed stimuli, the 
fact that they could make a lexical decision associated with a behavioral 
response would push further the boundaries of what is considered pos-
sible for an unconscious process. On the other hand, if nonlucid sleep-
ers were actually conscious when responding, our experimental design 
could help in probing the minimal core of cortical activity required for 
conscious processing. In our opinion, several lines of evidence favor 
conscious processing in N2 and nonlucid REM sleep. First, neurophysi-
ological markers computed before the stimulation in responsive tri-
als were similar to the ones in lucid participants, suggesting that the 
neural state associated with responsiveness was comparable in both 
cases. Furthermore, the unconventionality of the response modality  
(corrugator or zygomatic muscle contractions) makes the automa-
tization of the task difficult. Finally, reaction times to stimuli largely 
exceeded the one classically observed for automatic and unconscious 
processing (typically around 200 ms versus several seconds in our 
task)57. One may wonder why participants would fail to report having 
done the task if they had consciously performed it. We hypothesize 
that the rich neural states presumably allowing responsiveness need 
to be sustained over a certain time to be encoded. These rich states 
might have been less stable in nonlucid participants, as suggested 
by the difference in neurophysiological markers between responsive 
and nonresponsive trials (not found in lucid participants), preventing 
episodic memory encoding and thus subjective reports.

The standard view of sleep/wake states assumes that we would 
be either awake or asleep. Overall, our findings suggest that this view 

does not account for the richness and high variability within each 
of these states. This intuition goes along with a recent theory in the 
memory domain58, arguing that the high prevalence of aperiodic brain 
activity during sleep (up to 50% of brain activity without prominent 
oscillations, even in N3 sleep) could have a central role in processing 
internal stimuli (that is, imprinting memories into existing networks). 
Our results supplement this view by showing that access to external 
information might fluctuate even in traditionally defined states of 
consciousness (for example, a given sleep stage) depending on the 
ongoing brain activity. We could imagine sleep and wake as a con-
tinuum of stages whose physiology is more (for example, wake) or 
less (for example, N3 sleep) favorable for the emergence of the rich 
neural states that enable conscious access and behavioral response to  
external stimuli59.

Our study opens the way for many exciting studies investigating 
sleepers’ cognitive capacities and their associated phenomenology. 
By implementing a second probe about a participant’s current mental 
state, we could assess metacognition during responsive moments (for 
example, do sleepers know that stimuli come from the outside, or do 
they integrate them in their dream?). We could also test the extent to 
which the sleeping brain is able to acquire new information, hence 
fueling the debate on whether sleep learning is limited to condition-
ing13 and implicit memory processes15 or could extend to the formation 
of an explicit memory trace. By tracking how the neurophysiological 
markers indexing a rich cognitive state fluctuate in real time and by 
sending stimuli depending on their values, we could test the causal 
relationship between the neural state and responsiveness. Moreover, 
we could target these brief windows of reactivity in sleep to attempt 
real-time communication with individuals across different sleep stages, 
which would open the exciting possibility to inquire about any sleepers’ 
mental states beyond the particular case of lucid dream19. Our find-
ings also raise questions relevant for clinical practice—are responsive 
periods during sleep less recuperative than unresponsive periods? Our 
methods could be used to investigate ‘sleep depth’ in patients suffering 
from excessive daytime sleepiness or for bringing mechanistic insights 
into the puzzling mismatch between subjective wake perception and 
classical sleep markers in paradoxical insomnia. By demonstrating the 
existence of windows of behavioral responsiveness across most sleep 
stages, our study provides a new tool for unlocking the mystery of what 
happens in sleepers’ minds.
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Methods
Participants
Participants with narcolepsy. Thirty participants with narcolepsy 
were recruited for this study (14 women, mean age: 35 ± 11 years) from 
the patients followed in the National Reference Center for Narcolepsy 
in the Pitié-Salpêtrière Hospital. Twenty-four of them (80%) were fre-
quent lucid dreamers who reported more than three lucid dreams per 
week on average (others reported less than one lucid dream per year).  
Participants met the international criteria for narcolepsy60, including 
(1) excessive daytime sleepiness occurring daily for at least 3 months; 
(2) a mean sleep latency lower than or equal to 8 min and two or more 
sleep onset REM sleep periods on the multiple sleep latency tests (five 
tests performed at 08:00, 10:00, 12:00, 14:00 and 16:00 and (3) no other 
better cause for these findings, including sleep apnea syndrome, insuf-
ficient sleep, delayed sleep phase disorder, depression and the effect 
of medication or substances or their withdrawal. They were required to 
pause their medication for the day of the experiment to facilitate sleep 
onset. We recruited patients with narcolepsy type 1 (n = 17, with clear 
cataplexy or hypocretin deficiency) and type 2 (n = 13, no cataplexy or 
hypocretin deficiency). Among the 30 participants, three (two women) 
were discarded from the analyses because of technical issues affect-
ing the recordings. In total, data from 27 participants with narcolepsy  
(21 frequent lucid dreamers) were analyzed in this study.

HP. Twenty-two HP (all nonlucid dreamers) were recruited for this 
study (ten women, mean age: 24 ± 4 years). They had no or little expe-
rience with lucid dreaming (less than two lucid dreams in their lives). 
They had no sleep disorder and were in good shape, as assessed by a 
sleep clinician. To further facilitate sleep onset, we asked participants 
to sleep about 30% less than usual during the night preceding the 
experiment (either by going to bed later or waking up earlier) and to 
avoid stimulants on the day of the experiment. Fourteen went through 
the experiment in the morning and eight of them went through the 
experiment in the afternoon. One participant was discarded from the 
analysis because of technical issues affecting the recordings.

All participants were native French speakers and gave written 
consent to participate in the study. No statistical methods were used to 
predetermine sample sizes, but our sample sizes were similar to those 
reported in previous publications8,21. The protocol had been approved 
by the local ethics committee (CPP Ile-de-France 8). Participants with 
and without narcolepsy were paid €200 and €70, respectively, as com-
pensation for their participation in the study (participants with narco-
lepsy also took part in an unrelated experiment the following day; the 
results of this second study are not described here).

Experimental design
In this study, we tested participants’ ability to perceive, discriminate 
and respond to auditory stimuli while asleep. Participants lay in a bed in 
a sound-attenuated room in the sleep unit. They were asked to perform 
a lexical decision task in which words and pseudowords were verbally 
presented in a pseudorandomized fashion. Participants with narco-
lepsy went through five 20-min naps, with an 80-min break between 
each nap (Fig. 1). Before the experiment, participants underwent a short 
training (10 min) to familiarize themselves with the type of stimuli and 
the task (ten repetitions). Stimulus presentation volume was 48 dB on 
average and adjusted for each participant during the training period. 
Each nap session contained ten ‘ON’ stimulation periods during which 
six stimuli (three words and three pseudowords) were presented every 
9–11 s on top of continuous white noise presented throughout the 
nap. Each stimulus was presented only once in the entire experiment. 
The ‘ON’ stimulation periods were separated by 1 min nonstimulation 
periods (OFF periods) during which only white noise was presented. 
Following a previously validated response paradigm during sleep19, 
participants were instructed to decide whether the stimulus was a 
word or a pseudo-word and indicate their response by making three, 

brief, successive contractions of either the corrugator (frowning) or 
the zygomatic (smiling) muscles, depending on the stimulus type (for 
example, contracting the corrugator if they heard a pseudo-word and 
the zygomatic if they heard a word). The muscle-stimulus association 
was counterbalanced across participants. Notably, the stimulation 
started when the participants were still awake, but participants were 
explicitly authorized to fall asleep while performing the task. They were 
asked to perform the task before falling asleep, if they woke up during 
a nap and if they heard the stimuli in their sleep. If participants were 
lucid dreaming but did not hear any stimuli (word or pseudowords), 
they were instructed to communicate their lucidity with a ‘mixed’ 
signal, alternating a single corrugator muscle and a single zygomatic 
muscle contraction. Note that we chose not to use the gold-standard 
method to signal lucidity here (left–right–left–right ocular code) for 
the following three reasons: (1) the ocular code ‘pollutes’ the EOG chan-
nel, which might lead to bias when scoring REM sleep, (2) several lucid 
dreamers with narcolepsy explicitly told us that facial codes were easier 
to perform, less disturbing of the ongoing dream, and less awakening 
than the ocular code and (3) our experiment required three different 
codes (one for each stimulus type and one for signaling lucidity if 
no sounds were heard). After each nap, participants were awakened 
by an alarm that rang until they pressed a button. They were asked 
to report ‘what was going through their mind’ before the alarm and 
indicate whether (1) they had a lucid dream, (2) they communicated 
their lucidity with the mixed signal, (3) they heard the stimuli dur-
ing the nap, (4) they responded to the stimuli and (5) they remember 
any stimuli (word or pseudo-word) from the nap (free recall). Finally, 
participants performed an old–new recognition task, during which 
they were presented with stimuli they heard during the preceding nap 
and new stimuli that were never presented during the experiment. 
Participants had to indicate whether they had heard the stimuli during 
the preceding session with one of the following responses: (1) I heard 
it from the dream (for example, a person from their dream saying the 
word), (2) I heard it from the outside world (pronounced by the com-
puter), (3) I am not sure I heard it, (4) I am sure I did not hear it. They 
responded by pressing the corresponding button without any time 
pressure. The four options were explained to the participants during 
training, before the first session.

HP went through the same procedure except that the five naps 
were combined into a single, longer, 100-min daytime nap.

Stimuli
Stimuli were French words and pseudowords pronounced by a female 
voice, taken from the MEGALEX database61. All stimuli were controlled 
for their duration (690 ms), and the words were controlled for their 
frequency and valence. Five distinct lists (one for each nap session) 
of 60 stimuli (30 words and 30 pseudowords) were created for each 
participant in a randomized fashion. Participants heard each stimulus 
only once during the day. Stimuli were presented through speakers 
using the Psychtoolbox extension62 for MATLAB (MathWorks). Stimuli 
were played every 9–11 s (random uniform jitter) after a 60-s OFF period 
(without stimuli). Button-press responses in the old–new recognition 
task were collected through a regular keypad.

Electrophysiological recording
EEG (ten channels: Fp1, Fp2, Cz, C3, C4, Pz, P3, P4, O1, O2, referenced to 
the right mastoid (A2 electrode); 10–20 montage), EOG (two channels, 
positioned above the right superior canthus and the left inferior can-
thus), EMG (one channel on chin muscle for sleep staging, one channel 
on zygomatic and one channel on corrugator muscles for recording 
participants’ behavioral responses) and electrocardiography (EKG, 
one channel) were continuously recorded during the nap sessions. All 
signals were recorded simultaneously at a 2,048 Hz sampling rate. EEG 
data were amplified through a Grael 4K PSG:EEG amplifier (Medical 
Data Technology, Compumedics).
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Sleep scoring and identification of muscular responses
Sleep scoring. Sleep stages were scored offline by a certified sleep 
expert according to established guidelines29 using Profusion software 
(Compumedics, Medical Data Technology). For scoring, the EEG and 
EOG signals were filtered between 0.3 and 15 Hz, the EMG and EKG 
signals were filtered between 10–100 Hz and 0.3–70 Hz respectively.  
A 50 Hz notch filter was applied on all channels. Sleep scoring was 
visually performed on 30-s time epochs, each scored as wakefulness, 
N1, N2, N3 or REM sleep, according to the American Academy of Sleep 
Medicine international rules. Detailed information on the sleep charac-
teristics can be found in Supplementary Table 12. Micro-arousals were 
scored when α rhythm was present for more than 3 s and less than 15 s 
(if longer, the epoch was scored as wake) and, in REM sleep, when there 
was an increase in chin muscle tone in addition to the α rhythm. Trials 
containing micro-arousals were excluded from further analyses. A nap 
was considered lucid based on the subjective report (if the participant 
reported having a lucid dream during the nap). In this case, all REM 
sleep epochs of this nap were then considered as lucid REM sleep. Note 
that HP never reported having a lucid dream.

Identification of muscular responses. The recording of the nap 
was divided into 120 mini-epochs of 10 s. The sleep stage for each 
mini-epoch was defined by the sleep score of the corresponding 30-s 
epoch. Mini-epochs containing a micro-arousal were discarded from 
the analyses. The presence of zygomatic or corrugator muscle contrac-
tions was assessed visually, looking offline at the EMG signal for each 
mini-epoch. Notably, the scorer was blind to the sleep stage and to 
whether a stimulus was presented during the mini-epoch (correspond-
ing to an ON period) or not (corresponding to an OFF period). Muscle 
contractions were considered as a response if they contained at least 
two consecutive contractions. Single contractions were considered 
as a twitch and scored as a no-response. To ensure the quality of the 
scoring, 10% of the data was later re-evaluated by another blind scorer 
who showed 84% consistency with the first scorer.

EEG preprocessing and analysis
Only the EEG segments corresponding to the ‘ON periods’ were 
analyzed.

Preprocessing. Raw files were set to a right mastoid reference (A2 
electrode).

Following the previous work34, raw EEG files were band-pass fil-
tered between 0.1 and 45 Hz, with 50 and 100 Hz notch filters. Data 
were downsampled to 250 Hz. Trials were then segmented in the fol-
lowing way:

 1. from −1,000 to 8,000 ms relative to stimulus onset for raw 
spectral analyses (PSDs in the prestimulus and poststimulus 
periods).

 2. from −1,000 to 4,000 ms relative to stimulus onset for ERPs and 
time–frequency analyses.

 3. from −350 to 1,700 ms for temporal generalization decoding 
against baseline analysis.

 4. from −1,000 to 0 ms relative to stimulus onset for computation 
of electrophysiological markers of higher cognitive states and 
related machine learning analyses.

The obtained epochs were cleaned, based on their voltage maxi-
mum peak-to-peak amplitude, using a fully automatic procedure with 
the autoreject63 algorithm. The Python64 implementation of the autore-
ject algorithm allows for the automatic calculation of an optimal global 
rejection threshold for a set of epochs, using a cross-validated machine 
learning algorithm. For each wake/sleep stage in our data (wake, N1, N2, 
N3 and REM sleep), we calculated a separate global rejection threshold 
(the same for all participants in each group for a given sleep/wake stage) 
and we rejected all trials with at least one EEG channel exceeding the 

given threshold. Note that this drastic rejection method was associ-
ated with high rejection rates but ensured the quality of our data. More 
conservative automatic cleaning methods such as interpolation of 
bad channels were not applicable to our ten channels EEG montage. 
All epochs from two participants with narcolepsy were rejected due 
to our strict rejection criterion. Therefore, only 25 participants with 
narcolepsy were included in the EEG analyses.

All trials were labeled as belonging to a particular sleep/wake 
stage (wake, N1, N2, N3 or REM sleep) according to the sleep scoring 
described above (corresponding 10 s mini-epoch), as being respon-
sive or nonresponsive according to the presence or absence of a valid 
behavioral response (corrugator or zygomatic muscle contraction) and 
as lucid or nonlucid according to the global label of the nap (cf. above).

Automatized detection of spindles and slow waves
Raw EEG files were band-pass filtered between 0.1 and 45 Hz, with 50 
and 100 Hz notch filters. Data were downsampled to 250 Hz. Trials were 
then segmented from −1,000 to 8,000 ms relative to stimulus onset. We 
analyzed N2 trials of HP using a previously validated automatized sleep 
scoring algorithm (YASA64). For each trial (from −1,000 to 8,000 ms 
relative to stimulus onset) we assessed whether at least one spindle 
or slow wave (independently for each one of these two sleep graphoe-
lements) was present during the duration of the trial, in at least two 
different channels. We then computed for each sleep graphoelement, 
each participant and each condition (responsive versus nonresponsive 
trials), the proportion of trials containing graphoelements (spindles or 
slow waves). We studied the effect of responsiveness (responsive versus 
nonresponsive) and sleep/wake stage (N2 sleep versus wake), as well as 
their interaction, over the proportion of trials containing at least one 
spindle or slow wave (independently for these two sleep graphoele-
ments), using repeated measures analysis of variance. We corrected 
P values for lack of sphericity using a Greenhouse–Geisser correction.

Spectral analyses of prestimulus and poststimulus periods
We computed the PSDs in δ (1–4 Hz) and α (8–12 Hz) frequency bands, 
using Welch’s method. The length of each Welch segment (windowed 
with a Hamming window) was set to be equal to the length of the fast 
Fourier transform and equal to 250 samples (1,000 ms). The obtained 
segments were then averaged, to obtain a single value per epoch, chan-
nel and frequency. To obtain the normalized PSDs in each frequency 
band of interest (α and δ), we (1) added the raw power of all the frequen-
cies in each frequency band of interest; (2) computed for each trial and 
each electrode the normalized PSD by normalizing the raw frequency 
band PSD by the total power of the given electrode and (3) averaged all 
the channels to obtain a single PSD value per frequency band per trial.

Time–frequency analysis
We computed single-trial stimulus-locked time–frequency representa-
tion for each group and each sleep/wake stage using Morlet wavelets. 
We choose the wavelets frequencies (n = 30) on a logarithmic scale with 
a lower bound of 2 Hz and an upper bound of 30 Hz (frequencies: 2, 2.2, 
2.4, 2.6, 2.9, 3.2, 3.5, 3.8, 4.2, 4.6, 5, 5.6, 6.1, 6.7,7.4,8.1, 8.9, 9.8, 10.7, 11.8, 
12.9, 14.2, 15.6, 17.1, 18.8, 20.6, 22.7, 24.9, 27.3 and 30 Hz). The number 
of cycles was adapted to each frequency (n_cycles = frequency/2). For 
computational reasons, we applied a decimation factor of 2 before 
conducting this analysis. We obtained a time–frequency power matrix 
for each trial and each electrode. We then applied a log-ratio baseline 
correction relative to the −1,000 to 0 ms time period. For statistical 
analysis on predefined frequency bands (δ (2–4 Hz), α (8–12 Hz) and β 
(12–30 Hz)), we extracted the total power in the given frequency band 
for each time sample and conducted a mass-univariate analysis over 
the time dimension for each electrode (Statistical analysis).

For response-locked time–frequency analysis, we realigned the 
baseline-corrected time–frequency matrices relative to the behavio-
ral response onset. The new realigned trials spanned from −1,500 to 
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1,000 ms relative to response onset (we dropped for further analysis all 
trials with insufficient time points either before or after response onset).

Response-locked ERPs
After baseline correction (−1,000 to 0 ms relative to stimulus onset), 
we realigned time-domain signals of responsive trials relative to the 
behavioral response onset. We then averaged trials to obtain ERPs, 
independently for each group and each sleep/wake stage. For visuali-
zation purposes, we applied a low-pass filter of 10 Hz before plotting 
the obtained response-locked ERPs.

Stimulus-locked ERPs
For each group (HP and NP) and for each sleep/wake stage, we aver-
aged stimulus-locked trials to obtain ERPs (after baseline correction 
relative to the −1,000 to 0 ms time period). We then conducted a 
mass-univariate analysis on time dimension, independently for each 
EEG channel, using mixed-linear models with responsiveness as the 
explanatory factor, and participant ID as a random effect. We corrected 
P values for multiple comparisons using an FDR procedure. Results are 
presented in Supplementary Fig. 14. For visualization purposes, we 
applied a low-pass filter of 10 Hz.

Calculation of electroencephalographic markers tracking 
cognitive modifications
Previous work has shown that cognitive and consciousness state 
modifications can be tracked using different spectral, connectivity 
or complexity measures derived from the scalp or intracranial elec-
troencephalographic recordings. By combining these markers, it is 
possible to distinguish conscious participants, patients in a minimal 
consciousness state and patients with unresponsive wakefulness syn-
drome34,36. These measures can also differentiate sleep stages (REM 
sleep and wakefulness versus N3)38 and track cognitive and conscious-
ness modifications related to psychedelics or meditation35.

In our study, we selected the following three types of measures 
among those markers:

 1. Spectral measures—we computed the normalized PSDs in δ 
(1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz) and γ (30–45) 
frequency bands using the same methods described above.

 2. Connectivity measures—we computed the wSMI, a functional 
connectivity measure capturing linear and nonlinear coupling 
between sensors, which relies on the symbolic transforma-
tion of the EEG signal. We computed the wSMI in the θ band 
(4–8 Hz)36. The choice of the θ frequency band was based on 
previously reported results34,36, showing that the wSMI calcu-
lated on this frequency band was the most efficient in detecting 
residual consciousness in brain-injured patients with a disorder 
of consciousness.

 3. Complexity measures—we computed three different  
complexity measures, the KC, the PE θ and the SE.

See Supplementary Material in ref. 34 for a detailed description 
of each measure and its computation. Details regarding the SE can be 
found in ref. 65.

Each one of the previously described markers was computed 
during the 1,000 ms time window preceding the presentation of the 
stimulus (word or pseudo-word), during the ON periods, independently 
for each participant, trial and for every electrode (n = 10) or pair of 
electrodes (n = 45) for the wSMI. A wSMI global score for each electrode 
was computed by calculating the median connectivity of each electrode 
with all the other electrodes. Finally, for each participant and each trial, 
each marker was summarized by calculating the mean across channels, 
resulting in a single scalar per marker per trial.

Prediction of responsiveness using a decision tree algorithm
We aimed at predicting, independently for each sleep/wake stage,  

if a given trial would contain a response or not based on the EEG mark-
ers computed during the 1,000 ms time period preceding the stimulus 
presentation. We used a random forest algorithm, a classification algo-
rithm consisting of many decision trees. This algorithm implements 
bootstrapping and feature randomness when building each tree, which 
ensures the construction of an uncorrelated forest of trees. Because the 
different trees in the forest are uncorrelated, their global prediction by 
committee is more accurate than that of any individual tree. Random 
forest has shown to be among the best currently used machine learning 
classifiers, in a very wide range of different datasets (n = 112) from sev-
eral research fields66, outperforming other choices as SVM classifiers.

We conducted an independent analysis for each sleep/wake stage. 
For each trial, the classifier was provided with ten features, as well as the 
label (‘responsive’ versus ‘nonresponsive’) of the trial. The ten features 
were the nine EEG markers described in the previous section and the 
participant identity. The random forest classifier was composed of 
100 estimators (trees). Because our data were unbalanced in terms 
of the number of responsive trials compared to nonresponsive ones, 
the weights of each class were adjusted in an inversely proportional 
manner to class frequencies.

The following two different training/testing strategies were used:

•	 For the participants with narcolepsy, we used for each stage a 
standard tenfold stratified cross-validation procedure. In each 
fold, data were split into training (9/10 of the trials) and testing 
(1/10 of the trials) sets, in a manner that preserved class frequen-
cies in each split. Trials of each class were shuffled before splitting 
in a pseudorandomized manner. In each fold, the predictions of 
the classifier for the testing set were used to compute the balanced 
accuracy score and the F1 score of the classifier (see definition and 
method for calculation of these scores below). We then computed 
the mean balanced accuracy and F1 scores across folds, as well as 
their confidence interval. F1 scores can be found in Supplementary 
Fig. 15 and Supplementary Table 9.

•	 For the participants without narcolepsy, because responsive  
trials were scarce in particular during N2 sleep and REM sleep, 
we decided to train our classifier with the data of the participants 
with narcolepsy and to test its performance on data from partici-
pants without narcolepsy. Specifically, we fitted our classifier with 
the N2 sleep trials from participants with narcolepsy and then 
tested its predictions on N2 sleep trials from the participants 
without narcolepsy. As before, we computed balanced accuracy 
and F1 scores. To obtain a distribution of scores in the absence 
of cross-validation, we repeated the fitting and testing steps ten 
times (note that the random parameters of the random forest 
classifier allowed us to obtain a distribution of—closely related—
scores in this manner).

As mentioned above, we computed two scores to measure the 
performance of our classifier, both measures being well adapted to 
unbalanced datasets67 as ours (with more nonresponsive trials than 
responsive ones during sleep):

•	 The balanced accuracy score corresponds, in binary classifica-
tion problems, to the mean of the sensitivity—also called recall  
(‘How many relevant items are retrieved?’) and the specificity  
(‘How many nonrelevant items are correctly identified’). In terms 
of true positives (TP), false negatives, true negatives (TN) and false 
positives (where, in our case, TP are responsive trials correctly 
identified by the classifier, and TN nonresponsive trials correctly 
identified by the classifier), the balanced accuracy score can be 
computed by the following formula:

Balanced accuracy =
TP

TP+FN
+ TN

TN+FP
2
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•	 The F1 score corresponds, in binary classification problems, to 
the harmonic mean of the precision (‘How many retrieved items 
are relevant?’) and the sensitivity. It can be computed by the  
following formula:

F1 score = 2

( TP
TP+FN

)
−1
+ ( TP

TP+FP
)
−1

We first run an analysis taking into account all responses (correct 
and incorrect). Then, we separately studied the prediction accuracy 
when considering only correct or incorrect responses.

Decoding of stimulus-related brain activity
We aimed at assessing brain responses to stimuli in function of partici-
pants’ sleep/wake stages and of their responsiveness to the task using a 
multivariate pattern analysis with the temporal generalization decod-
ing method43. The idea of this analysis is to test, for a given time point 
after stimulus presentation, how different the multivariate pattern of 
activity across electrodes was at this specific time point compared to 
the pattern at baseline (before stimulus presentation), for the differ-
ent conditions.

To reduce computation time, we first downsampled our data to 
100 Hz (decimation factor of 2.5). To ensure a correct features/num-
ber of trials ratio, we restricted our analysis to three centroparietal  
electrodes (Cz, Pz and P3), and, for each condition (sleep stage/respon-
siveness), we only included in our analysis the participants who had at 
least 15 trials of the given condition. Given these restrictions, we only 
had enough participants for statistical analysis for lucid REM sleep 
(ten participants for responsive trials and nine participants for non-
responsive trials) and for wake (14 participants for responsive trials). 
Then, for each condition, participant, trial and channel, we computed 
the mean voltage during the 350 ms baseline period before stimulus 
presentation and used this value to create dummy ‘baseline’ trials with 
the same dimensionality as the original trials. Note that after this step, 
for each condition and each participant, we obtained a balanced set 
of dummy ‘baseline trials’ (reflecting baseline brain activity before/
without stimulus presentation) and actual trials where the stimulus 
was presented.

Then, independently for each condition and each partici-
pant, we trained a linear classifier to decode stimulus-present ver-
sus stimulus-absent trials (‘baseline’ dummy trials versus actual 
trials), using an L2-regularized (C = 1) logistic regression, in a fivefold 
cross-validation procedure. In each fold, all the trials were shuffled in a 
pseudorandomized manner and split into a training set (4/5 of the trials) 
and a testing set (1/5 of the trials). The features (channel amplitudes) 
were standardized across training trials before being provided to the 
classifier for training. This training procedure was applied at each time 
step independently. Following the time-generalization approach, the 
model trained at each time step was then tested at all the time steps on 
the testing set trials, at each cross-validation fold. The classifier perfor-
mance at each training and testing time was evaluated by the area under 
the receiver operating curve (AUC) at each cross-validation fold. At the 
end of the cross-validation procedure, the global performance of the 
classifier at each training and testing time was obtained by averaging 
the intermediate values obtained at each fold, for each participant 
and each experimental condition. Group-level performance for each 
condition was finally obtained by averaging across participants, in 
dependently for each condition (stage/responsiveness).

Statistical analysis
Most statistical analyses were conducted in R68 using the lme4  
(ref. 69), emmeans70, BayesFactor71, car72 and DHARMa73 packages. For 
the machine learning analysis, statistics were conducted in Python64 
using the numpy74, scipy75, pingouin76 and scikit-learn77 packages. All 

statistics were corrected for multiple comparisons using the FDR  
Benjamini–Hochberg procedure. FDR corrections were applied sepa-
rately to each group of statistical tests (each panel in the Figs. 3–6, and 8).  
For example, one correction was performed for Fig. 3a, combining 
NP and HP and all sleep stages. Assumptions of the generalized linear 
models were evaluated using DHARMa73 package in R68. For linear 
mixed models, the distributions of residuals as well as Q–Q plots were 
visually inspected but were not formally tested. The significance of 
single factors was tested with Wald χ2 tests using car72 package. When 
the statistics were computed at the participant level rather than at the 
single-trial level, the observations were weighted according to the 
number of trials that each participant had.

Behavior. Linear mixed models with participant ID as a random factor 
(random intercept) were used for all statistical analyses. We evaluated 
participants’ ability to respond to stimuli in different sleep stages  
(Figs. 1 and 3). First, we focused on the comparison between the ON and 
OFF periods separately for each sleep stage. Binomial generalized linear 
mixed models with stimulation period (ON versus OFF) as the inde-
pendent variable and responsiveness (response versus no response; 
both contraction types combined) as the dependent variable were 
used in this analysis. Next, we focused on the ON stimulation periods 
during which participants were presented with stimuli. The model had 
sleep stages (wake, N1, N2, N3, REM sleep in HP and wake, N1 N2, N3, 
nonlucid REM and lucid REM sleep in participants with narcolepsy) 
as the independent variable and responsiveness (response versus no 
response) as the dependent variable. For accuracy, we computed the 
percentage of correct responses for each participant at each sleep 
stage and compared them to the 50% chance level using the Wilcoxon 
signed-rank test. Only participants with at least three responses were 
included in this analysis. Finally, the differences in reaction times 
in different sleep stages were assessed using a linear mixed model  
(Fig. 4). An inverse transformation was applied to the reaction times 
(1/RT) to better fit the model assumptions.

Bayesian statistics. Bayes factors were computed using default set-
tings of BayesFactor71 package as implemented in Python64. For detailed 
information about priors and settings, refer to the documentation.

EEG markers (spectral, connectivity and complexity). To investigate 
how different neural markers differ in trials with a response and without 
any response, we first z-scored marker values at the participant level. 
We then used a mixed-linear model for each EEG marker with partici-
pant ID as a random factor (random intercept), responsiveness as the 
independent variable and the EEG marker as the dependent variable. 
The analysis was conducted at a single-trial level. Because responsive-
ness and sleep stages were not independent (for example, in wake we 
observed more responses than in N2 sleep), we could not include sleep 
stage as an additional independent variable in the models. Thus, we 
performed the tests separately for each sleep stage, resulting in a test 
for each marker in each sleep stage. We performed a similar analysis 
to compare, in REM sleep, lucid and nonlucid trials.

Time–frequency analysis. We conducted a mass-univariate analysis 
over the time dimension on preselected frequency bands of interest 
(δ, α and β), using mixed-linear models with responsiveness as the 
independent explanatory factor and participant ID as a random factor 
(the power in each time sample being the dependent variable). This 
analysis was conducted independently for each group, sleep/wake 
stage and electrode. A correction for multiple comparisons was applied 
using the FDR procedure.

Prediction of responsiveness at a trial level using a random forest 
classifier. We scored classifier performance at each sleep/wake stage 
and for each group using the balanced accuracy score and the F1 score 

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01449-7

(cf above). To assess how different these scores were from chance 
level, we performed, independently for each score, a 500-permutation  
procedure. At each permutation, trial labels (responsive versus 
nonresponsive) were randomly shuffled, and the entire tenfold 
cross-validation procedure was performed, allowing us to obtain a 
distribution of chance-level scores. To calculate the P value for each 
state, we counted the number of permutation scores equal or higher to 
our true score and divided it by the number of permutations plus one.

Decoding of stimulus-related brain activity using temporal  
generalization decoding. For each experimental condition (sleep 
stage/responsiveness), classification performance at each training 
and testing time was tested against 0.5 (chance) using a two-sided 
nonparametric sign test across participants, and these statistics  
were then corrected for multiple comparisons using the FDR  
Benjamini–Hochberg procedure. In Fig. 8b, significant time points 
(P < 0.05 FDR corrected) with an AUC > 0.5 are outlined in black.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
All data that support the findings of the study can be found in OSF 
(https://osf.io/gbtjd/?view_only=254e0addb97a4b108e2fe35
cce076799). Source data are provided with this paper.

Code availability
Examples of custom analysis scripts can be found in OSF (https://osf.io/ 
gbtjd/?view_only=254e0addb97a4b108e2fe35cce076799).
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Extended Data Fig. 1 | Examples of response during N2 (upper panel) 
and during N3 sleep (lower panel) in participants with narcolepsy. Wake 
periods corresponding to the same participants are shown on the left side of 
the figures. The orange vertical line on the last channel indicates the stimulus 

onset. Responses to stimuli corresponded to contractions of the zygomatic or 
corrugator muscles. All raw EEG and behavioral data are available on OSF  
(see Data Availability statement).
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Extended Data Fig. 2 | Mixed contractions to signal lucidity. (a) Number of 
mixed contractions (objective lucidity code) in different sleep stages during naps 
that participants reported to be lucid (sky blue) or non-lucid (green). The relative 
number of lucidity codes can be found on top of the bars. (b) Number of lucidity 
codes exhibited by each participant in lucid REM sleep. We did not observe 
any mixed contractions in participants without narcolepsy (HP). On the other 
hand, we observed a total of 117 mixed contractions from 12 participants with 

narcolepsy (NP) in 19 different naps. Importantly, all 19 naps contained responses 
to the stimuli during N2 and/or REM sleep. Among the 117 mixed contractions, 
93 were observed in REM sleep, 92 being in naps that were reported (upon 
awakening) to be lucid (Supplementary Fig. S7). Moreover, 18 contractions were 
observed in N2 sleep (12 being in lucid naps) and 6 contractions were observed in 
N1 sleep (5 being in lucid naps).
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Extended Data Fig. 3 | Automatic detection of the response contractions. 
Upper panel: Examples of EMG traces showing corrugator (pink) and zygomatic 
(green) muscles contractions in Wake, N2 and REM sleep in healthy participants 
(HP). Lower panel: EMG variance modulations computed by the response 
detection algorithm in the corresponding trials. EMG variance drastically 

increases in the very time when contractions are visible on the EMG signal and 
only for the contracted muscle. Note that this method is robust to the slow 
drifts in the EMG signal (as shown in Wake, left panel) and only detects sudden 
modulations in the signal such as muscle contractions.
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Extended Data Fig. 4 | Automatic response detection algorithm detects 
significantly more contractions during ON stimulation periods compared 
to OFF stimulation periods in different sleep stages and mirrors the manual 
scoring. (a) Statistical significance of differences in contraction rates between 
ON and OFF stimulation periods in healthy participants (left) and participants 
with narcolepsy (right) found by the algorithm using different parameter 
combinations [Threshold k: 5, 7, 10; Window size: 1 or 2 seconds]. Significant 
differences revealed by post-hoc two-sided pairwise comparisons following 
linear mixed models are indicated (****: p < 0.0001, ***: p < 0.001, **: p < 0.01,  
*: p < 0.05, dot: p < 0.1. (b) Response rates in ON and OFF stimulation periods 
found by the algorithm using the strictest parameter combination: threshold 

k = 10 and window size = 2 seconds. The algorithm labeled a trial as responsive 
if the variance of a 2 second window exceeded 10 times the baseline variance. 
Post hoc two-sided pairwise comparisons revealed significant differences in 
HP during wake (z = 33.82; p < 0.0001), N1 (z = 9.49; p < 0.0001), N2 (z = 4.45; 
p < 0.0001) and REM sleep (z = 1.98;p = 0.048); and in NP during wakefulness 
(z = 26.34; p < 0.0001), N1 (z = 15.73; p < 0.0001), N2 (z = 7.27; p < 0.0001),  
N3 (z = 2.11; p < 0.0001); REM (z = 10.16; p < 0.0001) and lucid REM sleep (z = 9.85; 
p < 0.0001) after correction for multiple comparisons using Benjamini-Hochberg 
procedure. Please note the similarity between this figure and Fig. 3a, indicating 
that response rates found by the algorithm followed the same trend as the 
manual scoring.
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Extended Data Fig. 5 | Number of trials during ON and OFF stimulation periods in different sleep stages in participants with (left) and without (right) 
narcolepsy. The partition of trials containing a response is filled with dark red color in both stimulation periods.
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Extended Data Fig. 6 | Time-frequency analysis. Time-frequency analysis (TFA) performed on the Fp1 (upper panel) and the O1 (bottom panel) electrodes in N1 and 
N2 sleep of HP. The Left and middle panels are stimulus-locked TFA in nonresponsive and responsive trials respectively. The right panels show response-locked TFA.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Timing of statistical differences in the time-frequency 
analysis. Differences in power across time in delta, alpha, low beta/sigma and 
high beta bands, in responsive (R) and unresponsive (NR) trials during N2 and 
REM sleep in participants with narcolepsy (upper panel) and during N1 and 
N2 sleep in healthy participants (lower panel). Time-frequency analysis was 

performed over Fp1 and O1 electrodes. The error bands depict 95% confidence 
intervals. Significant differences are indicated by yellow shade (FDR corrected 
p-value < 0.05, mass-univariate analysis on time dimension using mixed-linear 
models with responsiveness as the explanatory factor and participant ID as a 
random effect).
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Extended Data Fig. 8 | Response-locked ERP analysis in participants with narcolepsy (upper panel) and healthy participants (bottom panel). Dashed vertical 
lines indicate response start. Please note the motor preparation potential over frontal electrodes in all tested sleep stages.
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Extended Data Fig. 9 | Evolution of electrophysiological markers across 
sleep stages in participants with narcolepsy (NP). Three complexity measures 
(the Kolmogorov Complexity -KC, the Permutation Entropy -PE, and the Sample 
Entropy -SE), one connectivity measure (weighted symbolic mutual information 
(wSMI) in the theta band), and five spectral measures (normalized power spectral 
densities (PSD) of delta, theta, alpha, beta and gamma frequency bands) were 
computed separately for the wake (N = 961 from 22 NP), N1 (N = 505 from 24 NP), 
N2 (N = 1186 from 23 NP), N3 (N = 435 from 16 NP), and REM (N = 587 from 15 NP) 
sleep stages in participants with narcolepsy. The results in healthy participants 

can be found in Supplementary Fig. S3. Each dot indicates marginal means 
estimated by a mixed-linear model including sleep stage as an independent 
variable, EEG marker as the dependent variable, and participant ID as a random 
variable. Error bars depict 95% confidence intervals. Complexity and high-
frequency PSD decreased in sleep compared to wake (wake > N1 > REM sleep 
> N2 > N3), whereas delta PSD increased with sleep (N3 > N2 > REM sleep > N1 
> wake). Details of the statistical comparisons can be found in Supplementary 
Table S5.
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Extended Data Fig. 10 | Evolution of electrophysiological markers across 
sleep stages in healthy participants (HP). Three complexity measures (the 
Kolmogorov Complexity -KC, the Permutation Entropy -PE, and the Sample 
Entropy -SE), one connectivity measure (weighted symbolic mutual information 
(wSMI) in the theta band), and five spectral measures (normalized power spectral 
densities (PSD) of delta, theta, alpha, beta and gamma frequency bands) were 
computed separately for the wake (N = 981 from 21 HP), N1 (N = 373 81 from  
21 HP), N2 (N = 1339 from 20 HP), N3 (N = 166 from 8 HP), and REM (N = 451 from  

10 HP) sleep stages in HP. Each dot indicates marginal means estimated by a 
mixed-linear model including sleep stage as an independent variable, marker 
as the dependent variable, and participant ID as a random variable. Error bars 
denote 95% confidence intervals. Complexity and high-frequency PSD decreased 
in sleep compared to wake (wake > N1 > N2 ≈ REM > N3), whereas delta PSD 
increased with sleep (N3 > N2 ≈ REM > N1 > wake). Theta PSD was higher in N1 
and lower in N3 sleep. Details of the statistical comparisons can be found in 
Supplementary Table S6.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Stimuli were presented through speakers using the Psychtoolbox extension for MATLAB (The MathWorks). EEG data were amplified through a 

Grael 4K PSG:EEG amplifier (Medical Data Technology, Compumedics Ltd, Australia).

Data analysis Sleep stages were scored offline using Profusion software (COMPUMEDICS, Medical Data Technology); spindles and slow waves were 

computed using the YASA (v0.6.3) algorithm. For the pre-processing of EEG data, we used the MNE (v 1.4.2) package and the Autoreject 

algorithm (v 0.4.2). Most statistical analyses were conducted in R using lme4, emmeans, BayesFactor, car, and DHARMa packages. For the 

machine learning analysis, statistics were conducted in Python using the numpy (v 1.22.1), scipy (1.9.1), pingouin (0.5.3), and scikit-learn 

packages (1.3).  

Examples of custom analysis scripts can be found in OSF (https://osf.io/gbtjd/?view_only=254e0addb97a4b108e2fe35cce076799).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data that support the findings of the study can be found in OSF (https://osf.io/gbtjd/?view_only=254e0addb97a4b108e2fe35cce076799). 

 

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender During the recruitment process, we seek to ensure an equal representation of male and female participants (participants' sex 

was self-reported). We did not conduct a sex-based analysis of our results as we did not have specific hypotheses about 

putative differences and such analyses would reduce statistical power.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

During the recruitment process, we did not ask volunteers to report their race, ethnicity, or other socially relevant 

information. 

Population characteristics See below

Recruitment Healthy participants were recruited via an internet survey. Participants who met the selection criteria (e.g., adults, no sleep 

disorders, native french speakers, no hearing disability; ability to nap easily) were randomly selected. Note that the database 

from which we selected participants include a large proportion of young adults (<35 y.o) interested in cognitive experiments 

and might thus not represent the entire diversity of the general population. 

Patients with narcolepsy were recruited from the database of the the National Reference Center for Narcolepsy in Pitié-

Salpêtrière University Hospital. The clinicians pre-selected patients based on their ability to lucid dream. All these patients 

were contacted and the available ones participated in the study. 

Participants with and without narcolepsy were paid €200 and €70 respectively, as compensation for their participation in the 

study (participants with narcolepsy also took part in a second experiment, not described here).  

All participants gave their written consent to participate to the study.

Ethics oversight The protocol had been approved by the local ethics committee (CPP Ile-de-France 8).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In this study, participants were invited to nap while hearing words or pseudo-words verbally delivered via a speaker. Whenever they 

heard a stimulus, be it while awake or while sleeping, they were instructed to frown or smile twice depending on the stimulus type 

(e.g. frowning for word or smiling for pseudo-word). Participants' sleep/wake state was constantly monitored via polysomnography, 

and behavioral responses to stimuli were assessed via corrugator (frowning response) and zygomatic (similing response) EMG.

Research sample Participants with narcolepsy: Thirty participants with narcolepsy were recruited for this study (14 women, mean age: 35 ± 11 years) 

from the patients followed in the National Reference Center for Narcolepsy in Pitié-Salpêtrière University Hospital. 

Healthy participants: Twenty-two healthy participants (all non-lucid dreamers) were recruited for this study (10 women, mean age: 

24 ± 4 years). 

We chose to include participants with narcolepsy because: 1) we first aimed to examine behavioral responsiveness in an admitted 

conscious sleep state, -lucid dreaming-, because we reckoned that it would be the sleep stage during which behavioral responses are 

the most likely to happen given our previous results (Konkoly et al., Current Biology 2021) and 2) lucid dreaming is more frequent and 

easier to capture in a laboratory setting in this population (Oudiette et al., Sci Reports 2018). Healthy participants were recuited as 



3

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

well to test the generalisibility of behavioral responsiveness beyond lucid REM sleep in narcolepsy. We randomly select healthy 

participants who met the inclusion criteria from an internet survey. This procedure should increase the representativity of our 

sample, but is restricted to young individuals living in France.  

 

Sampling strategy Healthy participants were recruited via an internet survey. Participants who met the selection criteria (e.g. no sleep disorders, native 

french speakers, no hearing disability; ability to nap easily) were randomly selected. Patients with narcolepsy were recruited from 

the database of the the National Reference Center for Narcolepsy in Pitié-Salpêtrière University Hospital. The clinicians pre-selected 

patients based on their ability to lucid dream. All these patients were contacted and the available ones participated in the study. 

No statistical methods were used to pre-determine sample sizes but our sample sizes were similar or higher to those reported in 

previous studies investigating sensory processing during sleep (Strauss et al., PNAS 2015; Andrillon et al., J Neuro 2016). 

Furthermore, our design included repeated measures within participants, thus increasing statistical power. We used mixed model 

with subjects as random effect to take into account inter-subject variability.

Data collection Behavioral data were collected via the Psychtoolbox extension for MATLAB (The MathWorks) on a computer. EEG data were 

 collected through a Grael 4K PSG:EEG amplifier (Medical Data Technology, Compumedics Ltd, Australia). Dream reports were 

collected through a microphone and recorded on a computer. The researcher(s) in charge of the data collection were not blind to the 

group and were aware of the study hypotheses.

Timing The data were collected from 9th of May 2019 to 9th of March 2021

Data exclusions Data from 4 participants were discarded from the analyses because of technical issues affecting the recordings

Non-participation No participants dropped out

Randomization Single condition, no randomization

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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