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BaSnF4 is a prospective solid state electrolyte for fluoride ion batteries. However, the

diffusion mechanism of the fluoride ions remains difficult to study, both in experiments

and in simulations. In principle, ab initio molecular dynamics could allow to fill this

gap, but this method remains very costly from the computational point of view. Using

machine learning potentials is a promising method that can potentially address the

the accuracy issues of classical empirical potentials while maintaining high efficiency.

In this work, we fitted a dipole polarizable ion model and trained machine learning

potential for BaSnF4 and made comprehensive comparisons on the ease of training,

accuracy and efficiency. We also compared the results with the case of a simpler

ionic system (NaF). We show that contrarily to the latter, for BaSnF4 the machine

learning potential offers much higher versatility. The current work lays foundations

for the investigation of fluoride ion mobility in BaSnF4 and provides insight on the

choice of methods for atomistic simulations.
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I. INTRODUCTION

Fluoride ion batteries (FIBs) are a promising alternative to Lithium-ion batteries due

to their improved safety, low cost, and high theoretical volumetric energy density. They

have therefore become increasingly investigated in recent years1–3. However, the low ionic

mobility of fluoride ions within the solid electrolyte and the requirement of high-temperature

operation are the main bottlenecks to overcome before a potential commercialization of

FIBs1. The best performance in terms of ionic conductivity are obtained with PbSnF4 that

can reach as high as 1× 10−3 S cm−1 at room temperature but its application is hampered

by the fact that both Pb and Sn can be oxidized and Pb will pose environmental issues.

Substituting Pb with Ba results in BaSnF4 which exhibits reasonably high room temperature

ionic conductivity, yet it remains far below that of Li-ion ionic conductors. The tetragonal

phase of BaSnF4 possesses ionic conductivity almost two orders of magnitude higher than

the cubic one4, and is of particular interest for solid-state electrolytes. The structure of

tetragonal phase BaSnF4 (simply referred as BaSnF4 in the remaining of the text) is shown

on Fig. 1 (a) and can be described as alternating Ba-Ba and Sn-Sn double layers. Notably,

the Sn atoms have stereoactive lone pairs pointing towards the near-empty Sn-Sn layer5.

Previous work using NMR technique has shown that two different fluoride ion sublattices

exist6. The fluoride ions lying between the Ba-Ba layers are immobile and require high

energy to migrate while the fluoride ions located between the Ba-Sn / Sn-Sn (the latter with

fractional occupation, not shown in the figure) layers are highly mobile and are under rapid

exchange even at room temperature. Interestingly, at high temperatures, the participation

of fluoride ions between Ba-Ba layers to the conduction can be observed from the 2D NMR

exchange spectra. Despite a few experimental and theoretical works on BaSnF4, the ionic

conduction mechanism between Ba-Sn/Sn-Sn layers is still unclear and understanding it

would significantly benefit to the rational design of FIB electrolytes.

Modeling accurately the interactions in BaSnF4 using computer simulations is challenging

since the lone-pair interactions are tricky to capture and the relatively low ionic conductivity

requires long molecular dynamics (MD) simulations. Density functional theory (DFT)-based

ab initio molecular dynamics (AIMD) provides an accurate description of the interactions,

but this method is limited to small system sizes and to trajectories of hundreds of picoseconds

due to its high computational cost. Classical MD allows to obtain trajectories over much
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longer time scales and has shown exceptional performance in numerous previous researches

of ionic conductors. This is because it involves classical interaction potentials (IP) which are

generally based on simple analytical expressions that try to mimic the physical phenomenon

at play. In particular, previous works have proved the accuracy of polarizable models (the

so-called dipole-polarizable ionic model (DIPPIM)) for simulating ionic materials,7,8 and

even ionic conductors such as PbF2
9 or Li7La3Zr2O12

10. However, the existence of Sn lone

pairs is hard to account for when using such classical IP.

This limitation may be overcome by using data-driven approaches instead. In particu-

lar, machine learning potentials (MLPs), since the initial work by Behler and Parrinello,

have received significant amount of attention11–13. They are expected to exhibit ab initio

accuracy at a computational efficiency comparable to that of classical IPs. MLP describes

the potential energy surface by establishing a statistical relationship between the energy

and structures, which are described by descriptors in MLPs. These descriptors are con-

structed in such a way that the energy of a structure is invariant in translation, rotation

and permutation of two chemically identical atoms. Previous work has shown that MLPs

works well for simple systems such as Si, Ni, Cu etc.14 and also provide accurate results

for relatively complex materials such as Li7La3Zr2O12
15 and liquids such as molten NaCl16.

The almost perfect agreement between MLP and DFT results reveals that MLP can capture

the local environmental variations very well although the physical terms are not explicitly

included. Although MLP has demonstrated excellent performance for CaF2
17, there has not

been significant work on MLP for fluoride ion conductors and it has so far not been applied

to systems with delicate interactions as BaSnF4.

In this work, we fitted classical IP and trained MLP for BaSnF4. To make effective

comparisons, we have included NaF as a reference system since it adopts a much simpler

rocksalt structure (Fig. 1 (b)) for which the DIPPIM is expected to perform well. For

both systems, the two methods are compared in terms of parameterization difficulty (i.e.

the amount of necessary data in the parameterization process), computational cost, and

accuracy for reproducing structural, thermodynamic and vibrational properties. We show

that the versatility of MLPs makes them more adequate for simulating systems with complex

interactions, despite a lower computational efficiency.
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Ba Sn NaF

(a) (b)

FIG. 1: (a) Crystal structure of BaSnF4 (b) Crystal structure of NaF

II. COMPUTATIONAL METHODS

A. Ab initio Molecular Dynamics

AIMD simulations were conducted using the Vienna ab initio simulation package (VASP)

within the density-functional theory (DFT) framework18,19. The electronic wave functions

were expanded in a plane-wave basis set. The core-valence interactions are described by

projector-augmented wave (PAW) pseudopotentials. For all the AIMD calculations, the

Brillouin zone is sampled at gamma point only to increase the efficiency and the electronic

convergence threshold is 10−6 eV. The Verlet algorithm is used to integrate Newton’s equa-

tions of motion, at a time step of 1 fs on an NVT ensemble where we fix the number of

atoms, the volume, and the temperature. Nosé-Hoover thermostat is used to control the

temperature at 298 K. The same set of parameters were used when applying MLP.

For NaF, the exchange-correlation energy is approached with Perdew-Burke-Ernzerhof

(PBE) functional20 with a kinetic energy cutoff of 700 eV. The valence configuration for Na
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and F are 2s22p63s1 and 2s22p5. We took the initial configuration from materials project

database21 and the AIMD calculations are made with a 2×2×2 supercell. For BaSnF4, the

calculations are performed with PBE for solids (PBESol) exchange-correlation functional22,

which was found to best reproduce the experimental data as shown in the Supplementary

Table I. The plane wave cutoff of BaSnF4 was set to 520 eV. The valence shell configurations

for Ba, Sn, and F are 5s25p66s2, 4d105s25p2, and 2s22p5 respectively. The initial configuration

is taken from the experiment and a 3×3×1 supercell is constructed for AIMD calculation.

B. Machine Learning Potential

1. Model

We employ on-the-fly MLPs following the methodology described and implemented in

VASP to generate MLPs for BaSnF4 and NaF. The underlying theory and training param-

eters are extensively described in the previous works23,24. In this context, we provide a

succinct overview of the pertinent theoretical aspects employed in this study only.

The potential energy surface of a given structure with N atoms is decomposed into

contributions from individual atomic energies:

U =
N
∑

i=1

Ui

The local energy is determined by the local environments, which can be represented by

the local atomic distribution:

ρi(r) =
N
∑

j=1

fcut(rij)g(r − rij)

where fcut is a cutoff function which excludes the contributions of environments outside the

cutoff radius and g(r − rij) is a Gaussian-type delta function. In VASP implementation,

radial (ρ
(2)
i ) and angular descriptors (ρ

(3)
i ) that can satisfy the rotational invariance are

constructed to describe the local environments. Therefore, we have:

Ui = F [ρ
(2)
i , ρ

(3)
i ]

The radial descriptor describes the probability of finding another atom j from the ith

atom with a distance r. The angular descriptor in this context refers to the probability of
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observing atom j at a distance r from atom i, and simultaneously observing atom k at a

distance s from atom i, with an angle ̸ kij = θ between them. In practice, the descriptors

are discretized and expanded into terms of radial basis functions and spherical harmonics:

ρ
(2)
i (r) =

1√
4π

N0
R

∑

n=1

cinχn0(r)

ρ
(3)
i (r, s, θ) =

Lmax
∑

l=0

N l

R
∑

n=1

N l

R
∑

µ=1

√

2l + 1

2
pinµlχnl(r)χµl(s)Pl(cosθ)

and the expansion coefficients for angular descriptors are given in P i
nlµ:

P i
nµl =

√

8π2

2l + 1

l
∑

m=−l

[cinlmc
i∗
µlm −

Na
∑

j

cijnlmc
ij∗
µlm]

where χµl and Pl denote normalized spherical Bessel functions and Legendre polynomials

of order l respectively. Here, cinlm, N
0
R, and N l

R respectively represent the expansion coeffi-

cients, number of radial basis functions for radial descriptors ρ
(2)
i (r), and number of radial

basis functions for angular descriptors ρ
(3)
i (r). The indices n, l,m represent the radial, an-

gular and magnetic quantum numbers. The descriptors are expressed as coefficients vectors

in the MLP:

x
(2)T

i = (ci1, c
i
2, ...)

x
(3)T

i = (pi110, p
i
111, ..., p

i
120, p

i
121, ...)

Finally, the energy can be written as weighted kernel function K(xi, xiB) where xi and

xiB respectively represent the local instantaneous and the local reference configurations:

F (xi) =
NB
∑

iB=1

ωiBK(xi, xiB)

The kernel function takes the following form:

K(xi, xiB) = [β(2)(x
(2)
i · x(2)

iB ) + β(3)(x̂
(3)
i · x̂(3)

iB ))]
ζ(3)

Here, the x̂
(3)
i denotes a normalized vector of x

(3)
i . β(2) and β(2) are weighting parameters.

ζ(3) controls the sharpness of the kernel function.
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2. Training

In this study, the MLP training process was performed on-the-fly, which involved con-

structing the potential during the AIMD calculations. The parameters for controlling the

AIMD part of the calculations were set up as described in the previous section. Now, we

provide a brief summary of the model training procedures and preliminary results.

To generate the MLP datasets for NaF, a 2×2×2 supercell containing 64 atoms was

utilized. The initial structure was equilibrated at 300 K for 30 ps using AIMD before the

training. Then, The ML model was trained by gradually heating the system from 250 K

to 600 K, which allows for a broader sampling of the potential energy surface. In the case

of BaSnF4, a slightly different setup was employed. A 3×3×1 supercell consisting of 108

atoms was used, and the model was trained by gradually heating the system from 200 K

to 500 K over 100 ps. The initial equilibration was performed at 298 K for 50 ps using

the on-the-fly training scheme. Following this equilibration, the MLP was abandoned and

the final configuration obtained from the equilibration step served as the starting point for

further training.

Here, we discuss some important hyperparameters used across the training. The cutoff

radius for radial ρ
(2)
i (r) and angular descriptors ρ

(3)
i (r) were set to 6 Å with a Gaussian

broadening width of 0.5 Å. The number of spherical Bessel functions for radial (N0
R) and

angular descriptors (N l
R) was set to 8 for both. Lmax, the maximum value of the angular

quantum number, was set to 4. The kernel function sharpness parameter ζ(3) was set to

4. Ultimately, the algorithm sampled 244 and 516 reference structure datasets (from which

the local reference configurations are extracted) for NaF and BaSnF4 respectively. For NaF,

240 and 221 local reference configurations are selected for Na and F, indicating that Na and

F local environments are equally complex. In the case of BaSnF4, 130, 606, and 1388 local

reference configurations for Ba, Sn, and F have been sampled by the code. Intuitively, the Ba

atoms have the most symmetric environment, thus requiring a smaller amount of reference

configurations to describe them. In the case of Sn atoms, the presence of stereoactive

lone pairs pointing towards the Sn-Sn empty layer results in the need for more reference

configurations. Finally, it is not surprising that we need the highest number of local reference

configurations for fluoride ions since they sit in various crystallographic site with different

cationic environment. In addition they are the conducting species inside the structure and
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are highly mobile even at room temperature.

C. Classical Interaction Potential: DIPPIM

1. Model

The DIPPIM has been previously reported and successfully applied to the study of many

ionic materials, including solid-state Li-ion batteries electrolytes10 and fluoride ionic conduc-

tors. While interaction potentials were previously reported for NaF25, they were generally

aimed at simulating the molten state, so that in the current work we have fitted a new set

of parameters to ensure its consistency with BaSnF4, a system for which the interaction

potential has never been previously reported. The DIPPIM comprises four components,

including charge-charge interaction, short-range repulsion, dispersion interaction, and the

dipolar interaction.

The coulombic or charge-charge interactions are defined by

V qq(rij) =
∑

i≤j

qiqj
rij

where rij denotes the interatomic distances and qi and qj are charges carried by atoms i and

j. The potential includes a short-range repulsive term with an exponential behavior within

the interionic separation range. A Gaussian function is added as a steep repulsive wall to

avoid unstabilities at high temperatures. This term is especially beneficial for systems with

highly polarizable ions, like oxygen, as it prevents numerical instabilities in dipoles at very

small anion-cation separations. Here, we have imposed the repulsive wall on Ba-F and Sn-F

interactions. This short-range potential reads:

V rep(rij) =
∑

i≤j

Bijexp(−ηijrij)

rnij
+

∑

i≤j

B′
ijexp(−η′ijr

2
ij)

The dispersion interactions include dipole-dipole and dipole-quadruple terms:

V disp(rij) = −
∑

i≤j

[

f ij
6 (rij)

C6
ij

r6ij
+ f ij

8 (rij)
D8

ij

r8ij

]

where C ij
6 and Dij

8 are the dipole-dipole and dipole-quadruple dispersion coefficients. The

Tang-Toennies functions26 are used to damp the dispersion terms at short range:
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f ij
n (rij) = 1− exp(−bijn rij)

n
∑

k=0

(bijn rij)
k

k!

Finally, the polarization part of the potential incorporates dipolar effects:

V pol(rij) =
∑

i,j

(qiµj,αf
ij
4 (rij)− qjµi,αf

ji
4 (rij))T

(1)
α (rij)−

∑

i,j

µi,αµj,βT
(2)
αβ (rij) +

∑

i

1

2αi

|µi|2

In the above expression, αi represents the polarizability of ion i, while µi denotes the

dipoles. Additionally, T (1) and T (2) correspond to the charge-dipole and dipole-dipole

interaction tensors, respectively. The components of these tensors are given by:

T (1)
α (rij) = −rα/r

3

T
(2)
αβ (rij) = (3rαrβ − r2δαβ)/r

5

The influence of short-range induction effects on the dipoles is considered by utilizing the

Tang-Toennies damping functions (f ij
4 )26. These damping functions, similar to those em-

ployed for damping dispersion interactions, take into account the overlap of charge densities

that affect the induced dipoles. The parameter bijn determines the range over which this

overlap has an impact. Furthermore, the damping of these induction effects necessitates the

inclusion of an additional pre-exponential parameter, cij, which determines the strength of

the ion’s response to this phenomenon:

f ij
n (rij) = 1− cijexp(−bijn rij)

n
∑

k=0

(bijn rij)
k

k!

Note that in the DIPPIM, the induced dipoles are treated as a set of additional degrees of

freedom, which are obtained by minimizing the energy at each timestep. This is formally

equivalent to determining them self-consistently, so that the polarization interactions have

a many-body character.

2. Fitting of the parameters and simulations details

The DIPPIM for NaF and BaSnF4 was fitted using a generalized force-fitting method.

Initially, 10 configurations were randomly selected from the AIMD trajectory, for which
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DFT calculations were performed to compute the forces. In addition, Wannier90 code was

utilized to identify the Wannier centers and calculate the dipoles on each atom27. Fitting

those in addition to the individual forces allows to reduce the risk of error cancellations

between the various parts of the potential28. It is important to note that in the DIPPIM,

the atomic charges are not treated as adjustable parameters; they are taken as the nominal

charges of the ions, i.e. +1 for Na+, -1 for F− and +2 for Ba2+ and Sn2+. The fitting process

is performed by minimizing the following objective function:

χ2 =

∑N
i |ADFT

i −AIP
i |2

∑N
i |ADFT

i |2

Here, ADFT
i and AIP

i comprise of the forces and dipoles for all atoms obtained from DFT

calculations and the fitted interaction potential, respectively. For NaF and BaSnF4, the

resulting objective function values were found to be 0.003 and 0.23, respectively. In the case

of BaSnF4, the objective function could not be further reduced primarily due to the stability

of the interaction potential.

All our calculations made with DIPPIM have been performed using Metalwalls29,30. The

room temperature is maintained by a Nosé-Hoover chain thermostat with a characteristic

period of 1 ps. Apart from this, the parameters are set to the same as those in AIMD

calculations to ensure consistency.

III. RESULTS AND DISCUSSION

A. Validation of the potentials on DFT forces

To validate the two different methods on a similar dataset, we randomly select 200 struc-

tures from an independent molecular dynamics trajectory, ensuring that these configurations

have not been encountered during the training/fitting process. The validation procedure

involves comparing the computed energies, forces, and stresses from the MLPs with the

corresponding values obtained from DFT. The validation of DIPPIM undergoes a similar

validation process, with the comparison primarily focused on the agreement of forces, given

the use of different codes for DFT (MLPs) and classical potentials.

The results presented in FIG. 2 (a) and (b) demonstrate the agreement between the

DIPPIM and the MLP with the DFT results in the case of NaF. The bins color intensities

10

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
69

34
3



Accepted to J. Chem. Phys. 10.1063/5.0169343

FIG. 2: (a)NaF forces comparison between DFT and DIPPIM. (b)NaF forces comparison

between DFT and MLP. (c)BaSnF4 forces comparison between DFT and DIPPIM. (d)

BaSnF4 forces comparison between DFT and MLP.

are proportional to the number of data points. In the case of MLP, the histogram displays a

highly Gaussian distribution of the errors, showing that the errors are random. For DIPPIM,

some deviations from Gaussian behavior are observed for the atoms with large absolute value

of the DFT forces, which reflects the fact that the model does not fully catch the electronic

structure effects. In terms of absolute error, the comparison of the root mean squared error

(RMSE) reveals that the MLP slightly outperforms the DIPPIM.

In the case of BaSnF4, we observe much more pronounced differences between MLP and

DIPPIM. Firstly, the RMSE for the DIPPIM is nearly 14 times higher compared to that of

the MLP. This higher RMSE for BaSnF4 compared to NaF results from the presence of more

complex local environments in BaSnF4, necessitating a more sophisticated and adaptable

approach, which the MLP effectively addresses. Secondly, we observe that the distribution

of errors for the DIPPIM presents some systematic errors, with a strong deviation from a

Gaussian behavior, which means that some important interactions are missed during the

fitting process.
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FIG. 3: Partial RDFs obtained at 298 K for NaF with AIMD (cyan, solid), DIPPIM

(purple, dashed) and MLP (orange, dotted)

B. Structure of the materials

Despite the largest errors observed for the prediction of BaSnF4 forces by the DIPPIM,

it is useful to compare the two potentials for structural and vibrational properties: Classical

IPs often remain predictive thanks to cancellation of errors between the various terms. In

order to characterize the structure of the crystals at finite temperature, we calculated the

radial distribution functions (RDFs) of NaF and BaSnF4. FIG. 3 displays the partial RDFs

obtained from the MLP, DIPPIM, and AIMD simulations for NaF. It is evident that the two

effective potentials yield a structure in good agreement with that obtained from the DFT

calculations.

However, for BaSnF4, we observe more significant differences as shown in FIG. 4. Al-

though the position of the first peaks, and thus the interatomic distances, are well caught by

the DIPPIM, this model is not able to reproduce well the shape in various cases. Notably,

in the Sn-Sn RDF around 4 Å, the DIPPIM fails to capture the peak splitting. We attribute

this discrepancy to the presence of stereoactive Sn lone pairs. The intensity and the shape
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FIG. 4: Partial RDFs obtained at 298 K for BaSnF4 with AIMD (cyan, solid), DIPPIM

(purple, dashed) and MLP (orange, dotted)

of the Ba-F and Ba-Sn first peaks are also not very well reproduced, contrarily to the case of

the MLP for which the agreement with DFT is almost quantitative. In conclusion, The DIP-

PIM model fails to account for the local environments of the atoms, whereas MLP showcases

enhanced versatility despite lacking an explicit representation of the Sn lone pairs.

C. Vibrational properties

In the following section, we further compared the capability of MLPs and DIPPIMs to

predict the vibrational properties of the materials by calculating the power spectrum and

the phonon dispersion relations.

Power spectrum can be used to determine vibrational-rotational normal modes, or the

vibrational density of states (VDOS) probed by experimental techniques such as infrared

and Raman spectroscopies31. The VDOS is calculated by taking the Fourier transform of

velocity autocorrelation function32.

V DOS(ω) = m
∫

< ν(τ)ν(t+ τ) >τ e−iωtdt

FIG. 5 and FIG. 6 show the simulated mass-weighted power spectrum for NaF and

BaSnF4, respectively. The power spectrum is calculated based on a separate 20 ps trajectory

to ensure the convergence. For NaF, both DIPPIM and MLP can capture the normal nodes
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FIG. 5: NaF mass-weighted power spectrum computed using AIMD (cyan, solid),

DIPPIM (purple, dashed) and MLP (orange, dotted)

FIG. 6: BaSnF4 mass-weighted power spectrum computed using DFT (cyan, solid),

DIPPIM (purple, dashed) and MLP (orange, dotted)

reasonably well in comparison to the AIMD results. However, the peak intensities and

positions predicted using DIPPIM show some slight deviations from the reference spectrum.

As for the structure, the differences become more significant in the case of BaSnF4. Unlike

MLP potential, which is still capable of reproducing the peak positions and intensities, the

DIPPIM almost fails to reproduce the DFT results. Specifically, in the Sn power spectra,

there are two major peaks below and above 100 cm−1. However, in the spectra obtained

from DIPPIM, the peak above 100 cm−1 is almost missing and the peak below 100 cm−1

also shifts towards higher frequency. The failure shows the deficiency of DIPPIM to model

the vibrational properties for BaSnF4.
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FIG. 7: Phonon dispersion of NaF obtained using DFT (cyan, solid), DIPPIM (purple,

dashed) and MLP (orange, dotted)-based calculations

To go further, the phonon description is critical to understand the vibrational dynamics

of a material and closely related to various thermal transport properties such as the thermal

conductivity. We calculated the phonon dispersion of NaF with the same supercell as we did

for our MLP training and DIPPIM fitting. The phonon dispersion results shown in FIG. 7

utilized the finite displacement method as implemented in Phonopy code33,34. We can see

that both methods agree well with the result from DFT.

On the other hand, the phonon dispersion undoubtedly demonstrates the superiority of

MLP when applied to BaSnF4 as shown in FIG. 8 . While the MLP phonon dispersion does

not perfectly match that of DFT, it qualitatively captures the essential features. As for

NaF, we calculated the phonon dispersion using a supercell of the same size to reproduce

the DFT results. As we can see the phonon frequency from DIPPIM significantly differs

from that of DFT. Note that the existence of imaginary modes in BaSnF4 indicates that this

structure is unstable at 0 K. This is consistent with experiments since it has been shown

that the tetragonal phase of BaSnF4 occurs upon annealing at 460 K4.
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FIG. 8: (a) Phonon dispersion of BaSnF4 obtained using DFT (cyan, solid) and MLP

(orange, dotted)-based calculations. (b)Phonon dispersion of BaSnF4 obtained using DFT

(cyan, solid) and DIPPIM (purple, dashed)-based calculations.

D. Equation of state

Finally, in order to test the transferability of the potentials within a range of physical

conditions not encountered during the training/fitting procedure, we computed the 0 K

equation of state (EOS) of NaF and BaSnF4. The EOS describes the material behavior

under varied pressure and are of critical importance to the development and application of

materials35. As shown in FIG. 9, we strained the volume from -10% ∼ 10% and plotted

the normalized energies with respect to the volume. Next, we fitted the energy-volume

relationship to Birch–Murnaghan equation of state36,37 and the fitted modulus of NaF is

44.70 GPa, 55.30 GPa and 55.83 GPa respectively for DFT, MLP and DIPPIM. In the case

of BaSnF4, we obtained the following bulk modulus for DFT, MLP and DIPPIM: 68.89

GPa, 62.61 GPa and 115.58 GPa. The MLP computed bulk modulus deviates by 23.7%

and 9.1% for NaF and BaSnF4 from the DFT computed one, which can be ascribed to the

fact that MLP has not been trained at various volumes. When pressure is close to zero, we

have a nearly perfect agreement, which is reasonable because the thermodynamic condition

is the same. For DIPPIM, the deviations of 24.8% and 67.8% are both larger than that of

MLP, albeit the difference is almost negligible in the case of NaF. It is worth noting that the

DIPPIM computed bulk modulus is astonishingly larger for BaSnF4, which again confirmed

the failure of this potential in correctly describing potential energy surface of BaSnF4.
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FIG. 9: (a) EOS of NaF as obtained with DFT (cyan, circle), MLP (orange, triangle), and

DIPPIM (purple, cross). (b) EOS of BaSnF4 as obtained with DFT (cyan, circle),DIPPIM

(purple, cross and MLP (orange, triangle))

TABLE I: Computational cost for typical simulations performed with the MLP and

DIPPIM

number of atoms number of nodes MLP (s/step) DIPPIM (s/step)

NaF 1728 2 0.4907 0.0448

BaSnF4 600 3 0.3782 0.0285

E. Computational performances

It is worthwhile to mention the efficiency of the two interaction potentials. Typical

timings are shown in Table. I. The calculations are performed on French supercomputer

Jean-Zay where each node comprises of 40 cores38. The current efficiency tests for MLP

were performed with the CPU compiled 6.3.2 version of VASP although the newer version

is claimed to have significantly boosted efficiency. The efficiency tests for DIPPIM were

performed with MetalWalls, compiled on CPU as well. We can see that in general, the

DIPPIM is more than 10 times more efficient than MLP. Therefore, from the computational

point of view, DIPPIM remains the solution of choice for systems for which it is accurate,

i.e. in the absence of specific interactions, while for more complex materials such as BaSnF4,

the accuracy gain makes MLP a better choice than classical IP.
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IV. SUMMARY

In summary, we have trained MLP and fitted DIPPIM for both NaF and BaSnF4. In

all the cases, the parameterization was made based on ab initio calculations only, i.e. no

experimental information was used during this process. As a first accuracy test, we com-

pared the forces computed from MLP and DIPPIM to those from DFT on the same set of

configurations. Although the error made by the two models is similar in the case of NaF,

the distribution of errors has a much more Gaussian behavior in the case of MLP, which

tends to show that the DIPPIM fails to capture some of the interactions. The difference is

much more pronounced in the case of BaSnF4 due to the lack of a term to represent the

stereoactive lone pairs of Sn in the DIPPIM.

To further compare the two methods, we computed a series of structural (RDF), vibra-

tional (power spectrum, phonon dispersion) and thermodynamic (EOS) observables. In all

cases, the results demonstrate that our trained MLPs for both are robust and versatile. We

also conclude that for simple systems like NaF, classical IP is sufficient to model the system

and give accurate representation of the potential energy surface at high efficiency. While for

materials with more sophisticated interactions as in BaSnF4, it is evident that fitting the

interaction potential fails to provide a correct description of the system and using MLP is

more advantageous.

SUPPLEMENTARY MATERIAL

The supplementary material contains the structural parameters obtained from geometry

optimization using different functionals, the DIPPIM parameters for NaF and BaSnF4 and

a summary of the convergence test for the DIPPIM fitting for BaSnF4.
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The data that support the findings of this study (input files for the simulations, raw data

used for the various figures) are available on Zenodo (http://dx.doi.org/10.5281/zenodo.8354419).
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