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Extended Abstract: Memory Development with Heteroskedastic
Bayesian Last Layer Probabilistic Deep Neural Networks

Georgios Velentzas!, Costas Tzafestas?, Mehdi Khamassi'

Abstract— Learning world models in model-based Reinforce-
ment Learning (MBRL) enables sample-efficient learning, while
avoiding model-bias via uncertainty estimates of the transition
dynamics. Moreover, it enables using Model Predictive Control
(MPC) or Recurrent Neural Networks (RNN) for efficient action
planning. However, current uncertainty estimates of the pre-
diction (transition) step are not provided in a closed-form that
could potentially be used for analytically estimating changes in
the dynamics function. Here, we propose a hybrid method to
capture both the aleatoric (data) uncertainty via Probabilistic
Deep Neural Networks (PrDNN), and the epistemic (model)
uncertainty through a Bayesian Last Layer.

I. INTRODUCTION AND RELATED WORK

Learning world models of the environment dynamics en-
ables Model Predictive Control (MPC), a process through
which an agent can anticipate environment states resulting
from specific actions, allowing to plan future action se-
quences. This has been widely used in MBRL and applied to
real-world robotic tasks (e.g., target reaching with a robotic
arm, locomotion control of a half-cheetah, etc.) [1]. However,
when uncertainty of transitions is overlooked, model-bias [2]
and sample-inefficiency are induced, as described in [3].

Probabilistic MPC methods have been proposed [4], while
methods for estimating the uncertainty of predictions in deep
learning have been thoroughly studied [5], [6], [7], [3], [8],
[9]. The validity of some approaches has been criticized
[10], nevertheless, the enriched usability of such estimates is
unquestionable; for example, adding an epistemic component
to the cost function would be a way to instantiate Active
Inference [11] in the Bayesian RL framework. However,
these methods are usually applied to stationary tasks, while
the absence of an analytic expression of the total uncertainty
of the predictive distributions limits the tools needed for real-
time capture of changes in the dynamics function.

Here, we derive an analytic way of estimating the pre-
dictive (transition) distribution of the dynamics function by
incorporating multivariate Bayesian regression at the last
layer of a PrDNN [3], [12]. Including heteroskedastic noise,
we utilize both types of uncertainty [13], aleatoric (data)
and epistemic (model), to recognize changes in the dynamics
that require to learn and memorize different world models.
We introduce a memory schema, and we show numerical
simulations of a 3-dof robotic arm in a target-reaching task.
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II. METHODS

We assume a world of infinite environments, where each
environment with index e = 1,2, ... is characterised by its
own dynamics. If s € RP denotes the state representation
vector, u € R* denotes the action vector, x = [s",u']T,
where x € R?, denotes the concatenation of those and
y = s’ — s denotes the state displacement vector after a
control u is applied for a time period of dt, we make the
assumption that the transition dynamics of the environment
with index e is described by y = f¢(x) + n®(x), where
f¢ : R® — RP is the dynamics function, and n®(x) ~
N,(0,3¢(x)) is a heteroskedastic transition noise which
encapsulates aleatoric uncertainty. With P¢ denoting the state
displacement transition distribution, the above implies that
Pe(ylx) = N(fe(x), X¢(x)). The agent’s objective is to be
able to perform a task in each different environment, without
having any prior knowledge of the environment’s index, and
quickly adapt after each transition. In this work, we assume
that each interaction with the environment is taking place in
episodes, where each episode’s time horizon is unknown.

A. Modeling the dynamics function for each environment

If X and Y denote the matrices of n transition observations
from a single environment, where the ¢-th rows of X and
Y are x; and y; respectively, we model the problem as
multivariate Bayesian linear regression with learned non-
linear features and heteroskedasticity, encapsulating both the
epistemic and aleatoric uncertainty, such as

Y = ., (X)B + Eo, (X) 0

where ®,,(X) is a n x d matrix with its i-th row being
ou(x;)", and ¢, : R® ~— R? denoting a parameterized
(by weights w) non-linear feature mapping function, B is
a d x p matrix of Bayesian weights. If 3,9 : R® — A
denotes a parameterized function (by weights w, 6), with A
being the set of positive definite matrices, E, ¢(X) isanxp
random matrix with independent rows, where the ¢-th row is
€ew,0(xi) ", with e, (x;) ~ N, (0, 3, 0(x;)). For simplicity,
we omit the parameter weights notation and take the matrix
vectorization of both sides of equation Eq.1, thus,

vec(Y') = [®(X) ® L] vec(BT) + vec(E(X) ")  (2)

We denote y = vec(Y'), B = vec(B'), ¢ = vec(E(X)T),
®; = &(X) ® I, therefore Eq. 2 can be simply written as
y = ®;8+¢, which implies that y|3 ~ N, x,(®18,SNET),
with Sy pr = diag(X(x1), ..., 3(X,)). This notation is con-
venient, as y denotes the concatenation of state displacement



vectors, with y = vec([yy,...,¥,]), thus for n =1, y = y;.
Setting a matrix-normal prior for the matrix of Bayesian
weights B, such that B ~ MN (B, U,V), is equivalent
with 3 ~ N(By, Xg), such that 3y = vec(B,) and X5 =
U® V. The posterior distribution is then analytically derived
as By ~ N(pgly, Bppy) with By, = [®]Sypr®r +
;7! and pg, = g, (@] Sypry + X5 Bo]. Finally,
the predictive distribution of the concatenation of the state
displacement vectors for given inputs X7, X5, ..., X is,

Pylx},....x}) = N (B pppy. 185,87 +Sher) 3

where P is the transition model that encapsulates the full
uncertainty (aleatoric and epistemic), ®5 = ®(X*) ®1I,, and
Sver = diag(X(x}), ..., X(x})). For estimating the weight
parameters w, 8, and therefore, for analytically deriving pg|,
and X Bly» WE USE the transition observation matrices X, Y to
train a PrDNN [3] and extract ®; and Sygr. The first N
layers of the network are used to model the feature mapping
function ¢, (+), while the last layer is comprised by a linear
and a non linear part. The linear part with weights ¢ predicts
the state displacement vector as y,, -(x), and the non-linear
part with weights € outputs the covariance matrix X, g(x).
The loss function used is the negative log-likelihood, which
for one training example (x;,y,) simplifies to

10g [Ze,0(x:)| + (¥ = Ye,e (%)) Bs,0(x:) " (¥ = Yeo,e (%))

After the network is trained, the full batch of data is used
once for extracting ®; and Sygr. During the prediction
stage (i.e., model is used for MPC), the linear part is removed
and substituted by the Bayesian layer which encapsulates the
epistemic uncertainty of the mapping between the features
and the predictions. The non-linear part is kept and represents
the aleatoric uncertainty, providing the full uncertainty quan-
tification described by the predictive distribution of Eq.3.

B. Memory Development and Adaptive Control

We make the assumption that the dynamics function f€(-)
and the transition noise n¢(-) are static within environments,
but might be different between environments. The agent
collects experiences and develops an incremental memory
with M = [J; M;, where M; = {P;,D;} denotes a
memory block consisting of a dynamics model P; and the
transition observations D; = {(x;,y;)}}; from which P;
is trained. The experiment is performed in episodes, where
at each episode the agent is arbitrarily placed in an envi-
ronment. During the first episode, the transition observations
Dy = {(x;,y;)}, are collected, the probabilistic transition
function P; is trained, and the memory is populated as
M= {Ml}, with M = {Pl,Dl}.

In each subsequent episode, the last recently used dynam-
ics model is utilized (after the first episode we default this to
P1) for taking actions using MPC with trajectory sampling
[3] (sampling from the predictive distribution) and a sample-
efficient Cross Entropy Method [14]. At each time step ¢ of
the control phase, a sliding window of length W of the most
recent transition observations {(x;,y;)};_, y is used for
computing the likelihood P, (y|X;—w, ..., X;) for all dynamic

models j in the memory. The index of the dynamics model
utilized at timestep £+1 is then arg max; P; (y[Xt—w, ..., X¢).
When the episode ends, the new transition data are used to
create a candidate memory block M. We then compare the
predictive distribution of P, with the predictive distributions
of all the dynamic models in memory M using a bi-
directional hypothesis test. In more specific, when comparing
dynamic models Py, P;, the mean predictions of the model
Py, on the inputs x in D; are used to perform a X? test
on the predictive distribution of P; and vice versa. If both
the p-values are over a threshold, the two memory blocks
are merged to a new memory block. If not, the candidate
memory block My is inserted in the main memory M.

ITII. EXPERIMENTS, RESULTS AND CONCLUSION

Episode 2 (e =1) Episode 3 (e =2) Episode 5 (e =2) Episode 7 (e = 1)

Fig. 1. Robotic arm in a target reaching task. The target’s color in each
episode denotes the environment’s index. The endpoint’s color denotes the
model P; used for MPC at the corresponding timestep within each episode.

Figure 1 shows the results obtained in a target reaching
task with a simulated 3-dof robotic arm. During Episode 0
(not shown in the figure), random movements are performed
for 1 second in environment e = 1 (a control vector is applied
every 0.01 seconds, resulting in 100 transition samples).
The agent then trains and employs the dynamics model P,
populating the memory with memory block M. In Episode
2 (after 2 seconds of experience), MPC enables the arm to
reach the target, demonstrating sample efficient learning. The
third episode takes place in environment e = 2, where the
polarity of two of the actuators is reversed. Due to the dif-
ferent dynamics, the use of model P; leads to inappropriate
trajectory. The deviation of the predicted dynamics taking
into account epistemic and aleatoric uncertainty leads to the
creation of a new memory block for learning a different
dynamics model: Ps. In Episode 5, P is already sufficient
for MPC to drive the arm to the target. In Episode 7 the
environment is reversed to e = 1. In the first two timesteps
(0.02 sec) P, is initially employed, but the change in the
dynamics is detected and P; is re-engaged from timestep 3
onward, with MPC being able to drive the arm to the target.
In our experiments, the agent was able to capture all changes
in 4 different environments by demonstrating fast adaptation
and employing the appropriate model, without populating
the memory with redundant memory blocks. Due to space
limitations we only show a single example.

In conclusion, our method for deriving predictive dis-
tributions with full uncertainty estimates, by disentangling
epistemic uncertainty from aleatoric uncertainty, enabled fast
recognition and adaptation to changes in the dynamics of
the environment. This paves the way for new applications of
world models in model-based deep reinforcement learning.
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