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ARTICLE

Fronto-parietal networks shape human conscious
report through attention gain and reorienting
Jianghao Liu 1,2✉, Dimitri J. Bayle 3, Alfredo Spagna1,4, Jacobo D. Sitt1, Alexia Bourgeois5, Katia Lehongre 6,

Sara Fernandez-Vidal6, Claude Adam7, Virginie Lambrecq1,7,8, Vincent Navarro1,7,8,

Tal Seidel Malkinson 1,9,10✉ & Paolo Bartolomeo 1,10✉

How do attention and consciousness interact in the human brain? Rival theories of con-

sciousness disagree on the role of fronto-parietal attentional networks in conscious per-

ception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients,

while they detected near-threshold targets preceded by attentional cues. Clustering revealed

three neural patterns: first, attention-enhanced conscious report accompanied sustained

right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal

fasciculus (SLF) II-III, and late accumulation of activity (>300ms post-target) in bilateral

dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional

reorienting affected conscious report through early, sustained activity in a right-hemisphere

network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-

prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters

matching the identified brain clusters, elucidating the causal relationship between clusters in

conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric

fronto-parietal networks support attentional gain and reorienting in shaping human conscious

experience.
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How does attention impact consciousness? Decades of
research have revealed that attention is composed of a
family of neurocognitive processes, including endogenous

and exogenous spatial attention, featuring partially distinct
behavioral and neural dynamics1,2. However, how these processes
interact with consciousness remain unclear3–6. For example, the
available evidence suggests that endogenous, or top-down,
attention plays little role in supporting conscious perception4,6–8,
while exogenous (bottom-up or stimulus-driven) attention is a
necessary, although not sufficient, condition for conscious
perception9,10.

Rival theories of consciousness vary in the role ascribed to
attention in conscious perception, both conceptually and neu-
rally, and especially in the role of fronto-parietal (FP) networks11,
which are strongly associated with attention processing12,13.
Consequently, the proposed relationship between attention and
consciousness is one of the key distinctions between conscious-
ness theories14. Some theories explicitly include attention as a
modulating factor for consciousness, without taking into account
the full complexity of attentional processes6,15,16. According to
the global neuronal workspace hypothesis, to attain conscious
processing near-threshold stimuli must be attended and conse-
quently receive top-down amplification15. In conscious percep-
tion, neural information is sustained and globally broadcasted
across the brain, with an important role for dorsolateral pre-
frontal cortex (PFC) and inferior parietal cortex17. This idea
about the relationship between attention and consciousness is
also consistent with the gateway hypothesis16. In other theories,
consciousness depends partly or not at all on attention-associated
regions in the frontal or parietal cortex, without an explicit
conceptual role for attention. For example, the integrated infor-
mation theory18 postulates that conscious information is inte-
grated in a temporo-parietal-occipital hot zone19, and the
recurrent processing theory20 holds that conscious experience
emerges from reverberating activity in sensory areas. Both the-
ories postulate that FP networks contribute to post-conscious
cognitive processing and task relevance of targets, such as motor
planning or verbal report21,22, and claim that attention and
consciousness are distinct both conceptually and neurally.
Alternatively, attention and consciousness could be implemented
by distinct neural mechanisms but have cumulative influence on
the behavioral report. The cumulative influence hypothesis pos-
tulates the existence of an interaction between attention and
consciousness solely at the behavioral level, but not in neural
activity6.

One reason for this theoretical divergence might be that the
exogenous/endogenous distinction is not always taken into
account. In neurotypical participants, exogenous cues near the
spatial location of an upcoming near-threshold target increase the
target’s conscious detection7,9,23. This increase is accompanied by
a higher activation of the dorsal FP attentional network24 for seen
compared to unseen targets at attended locations25. Moreover,
neurological patients with signs of spatial neglect26 display a
systematic pattern of association between right-biased exogenous
attention and unawareness of left-sided events27. This clinical
evidence strongly suggests a specific role for right hemisphere FP
attention networks in conscious processing.

Despite this converging evidence, which points to the mod-
ulation of consciousness by exogenous attention in both behavior
and neural activity, it is still unclear where this interaction occurs
in the brain and how different brain networks interact to achieve
this effect. Further, the spatiotemporal resolution of neuroima-
ging techniques like fMRI and EEG used so far to study these
questions is too rough for establishing the neural basis of the
rapid and dynamic exogenous attention modulation of conscious
perception. Facing the divergence of theoretical predictions, and

the resolution limitations of the evidence collected hitherto, we
decided to use a data-driven approach to try to establish the
dynamics of the neural interactions between attention and con-
sciousness on a fine scale, by taking advantage of the excellent
spatiotemporal resolution of human intracerebral EEG (iEEG)
recordings. Using unsupervised clustering, we tested empirically
the division of functional clusters of iEEG contact based on the
neural temporal patterns of the interaction between exogenous
attention and conscious report (here, broadly defined as a set of
processes leading to conscious access and consequent report),
which was experimentally manipulated in a subjective conscious
report task. This allowed us to reveal the brain areas supporting
different patterns of interactions between attention and con-
sciousness. We further employed white-matter tractography to
collect connectomic evidence on the network architecture of the
functional clusters. Finally, we used recurrent neural network
models to causally examine the computations in the neural
clusters and elucidate inter-cluster interactions, which critically
contribute to behavior.

Results
Behavioral results: cue validity modulates target detection. We
recorded neural activity from 727 intracerebral contacts in 13
patients receiving presurgical evaluation of drug-resistant epilepsy
(age 34.7 ± 8.7 years; 7 women). Patients performed a near-
threshold target detection task28 (Fig. 1a), in which they
attempted to detect left- or right-tilted, near-threshold Gabor
patches (the targets), presented either left or right of fixation. The
target was preceded by supra-threshold peripheral non predictive
visual cues, which appeared either on the same side as the sub-
sequent target (Valid cues) or on the opposite side (Invalid cues).
All conditions (target side, cue validity) were randomly inter-
leaved, with 20% of cue-only, catch trials, where no target was
presented. Individual Gabor contrasts based on an individual
calibration procedure were used across all conditions. Partici-
pants had to discriminate the direction of the Gabor’s tilting, and
subsequently report the presence or absence of the Gabors. They
were informed that cues did not predict the location of the
upcoming targets.

To see whether exogenous attention modulates the conscious
perception of targets in the discrimination task, we performed a
two-way ANOVA with the factors of cue validity and conscious
report on the percentage of accurate responses. As expected,
participants were more accurate in discriminating target
direction when the targets were reported to be perceived
than when they went unseen (main conscious report effect:
F1;24 = 24.74, p < 0.001, η²= 0.315). Although the main validity
effect did not reach significance (F1;24 = 1.04, p= 0.31,
η²= 0.013), validity interacted with conscious detection,
because validly cued targets were more likely to be reported
than invalidly cued ones (F1;24 = 4.77, p < 0.05, η²= 0.061, see
Fig. 1b; post hoc t-test: valid vs. invalid for seen targets, two-
sided, degree of freedom= 12, t value= 3.04, p < 0.05, Cohen’s
d= 0.84). Signal detection theory (SDT) analysis showed that
on target-present trials valid cues induced a higher detection
rate (more seen targets; pairwise t-test, p < 0.05, Cohen’s
d= 0.58), and a more liberal response criterion (pairwise t-test,
p < 0.01, Cohen’s d= 1.03) than invalid cues did (Supplemen-
tary Fig. 1a). On catch trials where no target was presented,
participants (erroneously) reported more targets as occurring
on the cued side than on the uncued side (pairwise t-test,
p < 0.01, Cohen’s d= 0.87). However, no significant difference
emerged in sensitivity (pairwise t-test, p= 0.52). No significant
interaction effects were found in response times.
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Five neural clusters associated with consciously perceived tar-
gets form three patterns of interaction with attention. After
discarding epileptic artifacts, there were 727 usable contacts with
bipolar montage pooled across all participants (288 in the left
hemisphere; 439 in the right hemisphere; Fig. 1c, see Supple-
mentary Table 1 for details). For each contact, we extracted high-
frequency broadband power (HFBB; 70–140 Hz), which is gen-
erally considered as a proxy of neuronal population activity29,30,
but also see ref. 31. We then computed target-locked mean nor-
malized HFBB across the eight experimental conditions (2 × 2 × 2
design: target side [ipsilateral/contralateral] × cue validity [valid/
invalid] × conscious report [seen/unseen]). Neural activity com-
ponents of all contacts were visualized in a two-dimensional t-
distributed stochastic neighbor embedding (t-SNE) (Supplemen-
tary Fig. 1b).

Next, we applied a trajectory k-means clustering method32 to
identify the main groups of contacts that carry cue validity and
conscious report information (see Methods). This procedure
allowed us to group intracerebral contacts based on their
temporal profile of neural activities across the experimental
conditions. For each contact, we computed the temporal
trajectory in the eight-dimensional condition space, i.e., the path
of each contact’s HFBB power over time across all conditions
(target side, cue validity, conscious report). Using k-means
clustering, each trajectory was then assigned to the cluster with
the nearest trajectory-centroid, by iteratively minimizing within-
cluster Manhattan distances. A ten clusters solution reflected the
highest average silhouette score serving as the evaluation criterion
of the clustering results (Supplementary Fig. 2a). We explored
how our experimental manipulation of attention and conscious-
ness influenced the clusters’ activity. For each cluster, we
performed time-resolved 3-way ANOVAs in both the cue-target

period (from −300 ms to target onset) and the post-target period
(from target onset to 500 ms post-target) with the factors of target
side, validity, and conscious report. Five of the ten clusters
showed a main effect of conscious report, with higher levels of
activity for seen than for unseen targets (all ps < 0.018). The
number of contacts in these clusters was stable (Supplementary
Fig. 2d) and their cluster-level temporal profiles were similar
across k-means solutions with varying numbers of clusters. We
thus focused on these clusters for further analyses (see
Supplementary Table 1 for details about anatomical localization
in each cluster). The remaining five clusters didn’t show any
significant effects and were not included in further analysis. We
then explored how exogenous attention affects conscious reports
of the targets in the five clusters, by examining the interaction
between Cue validity and Conscious report (valid/invalid × seen/
unseen) in the above mentioned time-resolved ANOVA. This
analysis revealed 3 distinct patterns of neural activity. We will
describe the interaction patterns as well as the main effect of
conscious report in the cue-target and post-target periods for the
five clusters (Fig. 2a).

First, the first interaction pattern encompassed three out of the
five clusters and showed enhanced conscious report neural effect
for validly cued targets compared to invalidly cued targets: the
first cluster (42 contacts) showed an early transient post-target
effect, with stronger activation for seen targets compared to
unseen ones (90–350 ms and 380–430ms, all ps < 0.003; hereafter:
the Visual cluster). Additionally, the Visual cluster showed an
interaction between target side and cue validity in the cue-target
period (60–210 ms after cue onset, all ps < 0.006, Fig. S2E), with
higher neural activity for contralateral than for ipsilateral cues.
However, there was no significant Target side effect in the post-
target period, perhaps because of the low, near-threshold intensity
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Fig. 1 Near-threshold target detection task and human intracerebral recordings. a After a fixation dot lasting 1000–1500ms, a peripheral non-predictive
dot cue occurred for 50ms, followed by a left-sided or right-sided near-threshold tilted Gabor target presented for 16 ms. After a delay of 484ms,
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contacts on the lateral cortical surface and the gray dots for deeper contacts.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05108-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:730 | https://doi.org/10.1038/s42003-023-05108-2 | www.nature.com/commsbio 3

www.nature.com/commsbio
www.nature.com/commsbio


of the targets. No significant three-way interaction emerged (all
Fs < 8.17, ps > 0.20). This cluster mainly consisted of contacts in
the right posterior temporoparietal areas (there was no available
electrode in the homolog areas of the left hemisphere). To test
whether the cue-dependent potentiation of baseline in the cueing
period leads to subsequent increased target perception, we
compared the activity associated with seen and unseen targets

in the hemisphere contralateral to the cue, before target
occurrence. We observed that the cues which preceded conscious
target reports elicited higher neural activation in the Visual
cluster (−150 to −100 ms before target onset, all ps < 0.045,
Supplementary Fig. 2f); in the second cluster (148 contacts), the
conscious report effect was present both in early cue-elicited
(−140 to −90 ms before target onset, all ps < 0.016, see also
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Fig. S2F) and in later, target-related sustained neural activity
(160–200 ms, 240–300 ms, 340–430 ms, and 450–500 ms post
target, all ps < 0.003; hereafter, Sustained cluster). The contacts of
the Sustained cluster were mainly located in the bilateral temporal
cortex, the right angular gyrus, and the right PFC, around the
central portion of the right superior frontal gyrus; the activity of
the third cluster (67 contacts) slowly increased with over time
build-up in the post-target period for seen targets (300–500 ms,
all ps < 0.005; hereafter, Late accumulation cluster), but there was
no significant conscious report effect in the cue-target period.
Most of the contacts in the Late accumulation cluster were located
in the bilateral PFC, around the left inferior frontal gyrus (IFG),
the right orbitofrontal cortex and the caudal portion of the right
superior frontal gyrus. Similar to the attentional enhancement on
conscious report in behavior, there was an attention-related
enhancement interaction with conscious report in the three
neural clusters (Visual cluster: 190–220 ms, all ps < 0.03; Sus-
tained cluster: 270–330 ms, all ps < 0.002; Late accumulation
cluster: 360–430 ms, all ps < 0.006). The amplitude of this
interaction did not significantly differ across the three clusters
by direct comparison (three-way ANOVA with the factors of
cluster × validity × conscious report, all ps > 0.30), possibly due to
faint target contrasts. A further explorative analysis compared
this enhancement, by using Cohen’s d values which were derived
from time-resolved t-test for the interaction contrast (seen
valid− unseen valid)− (seen invalid− unseen invalid), around
the time points where the interaction was significant. The result
showed an increasing effect size gradient from the Visual cluster
to the Sustained and Late accumulation clusters (Supplementary
Fig. 3d, one-way ANOVA: F2;42 = 3.83, ps < 0.05, η²= 0.15, linear
polynomial contrast, p < 0.05, t= 2.48), suggesting an increasing
attention modulation on conscious report along these clusters.

Second, another neural cluster (19 contacts) showed a reversed
pattern when attention was reoriented from invalidly cued
locations to the target, with higher activity for seen targets after
invalid cues than for seen targets after valid cues, early after target
onset (160–190 ms, all ps < 0.002; hereafter, Reorienting cluster).
This cluster presented fast activity in the cue-target period (−250
to −220 ms and −130 to −90 ms before target onset, all
ps < 0.015), as well as early in the post-target period
(170–230 ms, all ps < 0.001), that resulted in seen reports for
uncued targets. This cluster was localized in the right hemisphere
temporoparietal junction (TPJ)/IFG. Activity in this cluster was
sustained after target onset, then showed a transient peak around
180 ms only for invalid seen targets; however, for seen targets
after valid cues, activity decreased once targets appeared. This
cluster thus was likely to reflect reorienting of attention from the
invalid cue to the opposite target24.

Third, the last neural cluster (38 contacts) showed a late
sustained neural activity selective for reported targets
(310–450 ms, all ps < 0.018), independent of cue validity

(hereafter, Conscious report cluster). This cluster contains
contacts from the left posterior portion of dorsolateral PFC,
around the left frontal eye field, and the bilateral posterior
temporal area.

The differences of temporal components of the three neural
patterns in the interaction between exogenous attention and
consciousness can be visualized in a two-dimensional t-SNE
decomposition (see Supplementary Fig. 3a). This visualization
corroborates the separation of neural dynamics of the five clusters
in the interaction between attention and conscious report.

We then sought to understand the functional roles of the
clusters by relating the neural activities to the behavioral
responses. In each cluster, we divided the trials (pooled across
conditions) into 20 quantiles according to their response time
(RT) in the discrimination task (see Methods; note that in the
discrimination task patients had to wait for the onset of a
response screen in order to respond). We tested the relation of
the neural activities in RT-bins using time-resolved one-way
repeated measures ANOVA, in a time window from target
onset to 1000 ms, to avoid the influence of neural activity in the
subsequent trial. The Late accumulation cluster showed target-
locked sustained neural activity in trials evoking slower RTs
(340–1000 ms, all ps < 0.003; see Supplementary Fig. 3b), but
not in trials with faster RTs. The other clusters had no or only
transient (less than 300 ms) RT effects for targets. We then
compared the neural activity of the ten fastest RT bins with
those of the ten slowest RT bins. The Late accumulation cluster
showed greater accumulating and sustained activity for slower
RTs responses than faster ones (Supplementary Fig. 3c).
Interestingly, the Visual cluster showed a stimulus-locked
higher neural activity for faster RTs, perhaps because faster
responses resulted from stronger evidence for target presence.
No significant effect emerged in other clusters. Next, we
visualized the neural activity across RT bins over a longer time
window, which contains the neural information until the
button press (target onset to 5000 ms, see Fig. 2b). Here,
activity might be affected by the subsequent trial; hence, we
report only observational findings without statistical testing.
We observed that the transient response elicited in the Visual
cluster was locked to visual modulations (i.e., the appearance of
cue, target, screen, and switching of the display after the
discrimination task). The Late accumulation cluster showed
accumulated and sustained activity until report. The Reorient-
ing cluster shows a late transient response. The Conscious
report cluster elicited sustained neural activity, which was
locked to the visual percept and was not associated with the
time of report. To test whether these activities were related to
motor preparation, we computed the beta band power
(16–28 Hz), which typically decreases with motor planning33.
There was no sign of decreasing beta activity in the Late
accumulation cluster and in the Conscious report cluster. This

Fig. 2 Trajectory k-means clustering revealed five clusters showing a conscious report effect and three patterns of interaction of exogenous attention
with conscious report. a Three neural patterns of the validity × conscious report interaction: i) three clusters (Visual, Sustained, Late accumulation)
showed enhanced conscious report effect for the validly cued targets. For each cluster, the figure shows: cluster contact localization; comparison of target-
locked neural activity for seen and unseen trials; comparison of interaction effect, SV: seen valid; SI: seen invalid; UV: unseen valid; UI: unseen invalid. Black
horizontal bar for all ps < 0.05, Holm-Bonferroni corrected, gray shading is ±SEM across electrodes. ii) Reorienting cluster showed early sustained neural
activity for invalidly cued targets. iii) a late Conscious report cluster differentiated seen from unseen targets independent of attention. Note that the
Sustained cluster and the Reorienting cluster also showed significant conscious target report effects during the cueing period, before target occurrence.
b Visual- and RT-modulation of target-locked neural activity. RT bins were sorted according to their mean RT from fastest to slowest, with neural activity
pooled across contacts in each cluster. Magenta full curve shows mean discrimination task RT, followed by dashed magenta curve for mean subjective
conscious report task RT. Neural activity in the Visual cluster synchronized with visual stimuli (cue, response screen and screen switching after
discrimination task). Late accumulation cluster showed sustained neural activity until the response. Conscious report cluster exhibited sustained neural
activity locked to the visual percept, but not to the report.
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result suggests that motor preparation had little role in eliciting
these clusters (Supplementary Fig. 3e).

Fronto-parietal white matter tracts connecting contacts in the
right hemisphere. To specify the anatomical connections
between contacts within each cluster, we performed white matter
tractography analysis paired with probability maps in 176 healthy
individuals from the Human Connectome database34. Figure 3
displays the white matter tracts connecting frontal contacts and
parietal contacts within each cluster. This result suggests that our
unsupervised cluster analysis mapped on existing anatomo-
functional networks12. We examined the frontal association tracts
described in ref. 35, and found that our frontal and parietal con-
tacts were connected by branches of the superior longitudinal
fasciculus (threshold-free cluster enhancement-based nonpara-
metric t-test, p < 0.05). Specifically, the Sustained cluster was
mainly connected by the right superior longitudinal fasciculus
(SLF) II (43.4%) and III (36.8%). The Late accumulation cluster
was mainly linked by the right SLF I (39.4%) and III (25.1%). The
Reorienting cluster was connected by right SLF III (84.2%). No
statistically significant tracts emerged from the analysis of the
Visual and the Conscious report cluster.

Task modeling with recurrent neural network. To better
understand the relation between activity dynamics and behavior,
we simulated the task with a recurrent neural network (RNN)
model (Fig. 4a). We separately modeled left- and right-sided
visual stimuli as two noisy signal inputs. The model had a single
layer containing 50 units recurrently connected to one another, of
which 80% were excitatory units and 20% were inhibitory units.
The network was trained by back-propagation to produce two
different outputs, one for each side, about the presence or absence
of the target. Similarly to the human task, two RNN outputs were
combined to measure a discrimination and a detection perfor-
mance. The task conditions were also similar to the human task,
and included valid trials, invalid trials, and 20% catch trials (see
examples of stimuli inputs, hidden units dynamic and network
outputs in Fig. 4b for valid trial and in Supplementary Fig. 4a for
invalid and catch trial).

The trained model displayed a detection psychometric curve,
resembling typical human performance33,36,37. This curve
differed from that characterizing an untrained model with
random Gaussian connectivity weights (all ps < 0.001 for stimulus
contrast above 0.03, see Fig. 4c). Further, in the trained model, the
improvement of target discrimination and detection with valid
cues emerged only at sufficiently high stimulus contrast levels
(Fig. 4c). Consistent with this task performance pattern, a t-SNE
visualization of RNN units’ components showed a difference for
valid vs. invalid trials only in intermediate or higher target
contrasts, but not with lower contrast levels (Supplementary
Fig. 4b,c). Thus, all further analyses on RNN units were
performed on the intermediate target contrast levels, correspond-
ing to near-threshold targets in the human task.

To identify the temporal patterns of activity of the RNN hidden
units, we used our trajectory k-means clustering method. Similar
to the human results, the clustering analysis with silhouette
evaluation resulted in five stable clusters (Supplementary Fig. 4d)
with different temporal trajectories. Four of these clusters showed
stronger unit activity for seen targets than for unseen targets
(Fig. 4d). Again similar to the human neural data, after an early,
transient activity in a Visual cluster (8 units, 110–300 ms, all
ps < 0.017), there was sustained unit activity in a Sustained cluster
(20 units, 140–750 ms, all ps < 0.032), and late activity in a Late
accumulation cluster (8 units, 300–730ms, all ps < 0.038).
Mirroring the model’s task performance, the higher the target
contrast, the greater the activity in these clusters. Importantly,
these clusters showed significantly enhanced activities for validly
cued targets at sufficiently high stimulus contrast (Fig. 4e), akin to
neural amplification. The fourth, Reorienting, cluster showed
early transient activity related to conscious detection (11 units,
170–230 ms, all ps < 0.019). A t-SNE visualization of unit activity
of these clusters showed distinct unit component patterns for
seen targets preceded by valid vs. invalid cues (Supplementary
Fig. 5).

To examine potential similarities between RNN clusters and
human neural clusters, we used a temporal trajectory correlation
analysis. RNN unit activity in the Sustained, Late accumulation,
and Reorienting clusters in the trained model were significantly
more similar to the equivalent human neural clusters than to the
clusters obtained from the untrained model (Fig. 4f, one-sided
permutation test, all ps < 0.001). We examined how these model
clusters are interconnected, and the nature of their computation.
In the trained model, we extracted input weights (sensory
enhancement gain), connection weights between units, and
output weights (report gain) (Supplementary Fig. 4e). The model
only constrained the total number of excitatory (E) and inhibitory
(I) units. After RNN training, both excitatory and inhibitory units
emerged in each cluster. After grouping separately excitatory and
inhibitory units in each of the three clusters (a total of six groups),
we computed a directed cluster connection graph by averaging
unit-to-unit connection weights from one group (pre-synaptic) to
each of the other groups (post-synaptic) and compared the
resulting connections to random weights (Fig. 4g, one-sample t-
test, all ps < 0.05, Holm-Bonferroni corrected). The stimuli input
was mainly connected to the excitatory units in the Sustained
cluster, which was associated with the conscious processing-
Sustained intracerebral cluster. The Late accumulation excitatory
units were connected to the decision output, confirming its role in
decision making. Notably, the Reorienting excitatory units also
received a branch of stimuli input and showed strong excitatory
connection to the inhibitory units in the Sustained and in the Late
accumulation clusters, reflecting the Reorienting cluster’s role in
early target monitoring and in executing inhibitory control over
stimuli processing and decision making units.

Finally, we lesioned each of the RNN clusters to assess their
causal contribution to task performance. For each cluster, we
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Fig. 3 FP white matter tracts connecting contacts in the right hemisphere. Tractography t-maps, showing the significant white matter voxels (threshold-
free cluster enhancement-based non-parametric t-test, p < 0.05), which connect frontal and parietal contacts within each cluster.
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Fig. 4 Task modeling with recurrent neural networks. a Recurrent neural network model and task. Left- and right-sided visual stimuli were separately
modeled as two noisy inputs. The model had a single layer containing 50 recurrent units. The network produced two outputs to decide whether a target
was present on the left or on the right side. b Example of a trial showing the task structure and hidden unit dynamic as well as outputs from a trained
model. After a fixation period, cue signal was presented on either the left or the right side, followed by a target signal presented on either side or absent. In
a valid trial, cue signal and target signal were presented on the same side. Gray vertical line indicates the response window. c Task performance. i)
discrimination psychometric curve for all targets (validly-cued targets, invalidly-cued targets and target-absent catch trials). Lines show the best-fitting
logistic function to 12 target contrasts. ii) comparison of accuracy of the trained model to the untrained model by t-test, *p < 0.001, Bonferroni-corrected;
discrimination psychometric curve. iii) comparison of discrimination accuracy for validly cued targets versus invalidly cued targets in trained model by
t-test, *p < 0.05, Bonferroni-corrected; and detection psychometric curve for validly cued targets versus invalidly cued targets. d Trajectory k-means
clustering of model unit activities. Four unit clusters showed distinct temporal trajectories in seen versus unseen trials for intermediate target contrast level.
Black lines for all *p < 0.05, Holm-Bonferroni corrected, shading is ±SEM across electrodes. a.u.: arbitrary unit. e Comparison of unit activities for valid
versus invalid trials in each cluster while increasing stimulus contrast. Late accum.: Late accumulation. Horizontal bar above the curves for all *p < 0.05,
Holm-Bonferroni corrected. a.u.: arbitrary unit. f Histograms of the correlation coefficient between the trajectory of neural activity and unit activity.
Permutation tests, ***p < 0.001 for trained model versus untrained model. g Directed cluster connection graph for groups of excitatory and inhibitory units
from three clusters. Magenta curves show excitatory connection and blue curves for inhibitory connection. Triangle or circle at the end of the connection
line represents the destination. Numbers denote the weight of connection, with significance level controlled at p < 0.05 in one-sample t-test, Holm-Sidak
corrected across groups of units. h Effect of cluster’s lesions for detection rate and discrimination accuracy. Intact control: unlesioned model; Late accum.:
Late accumulation; Reorienting. *p < 0.05 for the comparison of valid versus invalid trials by t-test. Boxplot shows values of median, upper quartile, lower
quartile, maximum and minimum, respectively.
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set all the unit weights to zero, and monitored the change in task
performance (Fig. 4h). Lesion of either the RNN Sustained cluster
or the Late accumulation cluster decreased the percentage of
detected targets (report units). Lesion of the Late accumulation
cluster additionally impaired discrimination accuracy. Lesion of
the Reorienting cluster led to a selective failure to detect and to
discriminate invalidly cued targets (reorienting units). However,
performance reverted to normal with very high target contrast
levels, presumably because these contrast levels were sufficient to
capture attention even without the contribution of the Reorient-
ing cluster.

Discussion
We combined human intracerebral EEG, white matter tracto-
graphy, and computational modeling to elucidate the fine-scale
spatiotemporal dynamics of brain networks underlying exogen-
ous attention modulation of conscious report. Unsupervised
temporal clustering revealed three patterns of neural activity
in fronto-parietal networks, partially diverging from the classical
model of dorsal and ventral attentional networks24. The three
neural patterns supported the interaction between exogenous
orienting and conscious report: (1) a Sustained cluster showed
attention-enhanced sustained activity for validly cued targets;
(2) a Late accumulation cluster with progressively showed
increasing activity until report; (3) a Reorienting cluster showed
an early, sustained response to invalidly cued targets. Using RNN
modeling, we discovered multiple clusters matching the identified
neural clusters, clarifying the nature of inter-cluster interactions
and uncovered the causal contribution of these clusters to beha-
vior. Altogether, our behavioral, neural, and modeling findings
consistently demonstrate that exogenous attention, the process
that makes external salient stimuli stand out in a visual scene,
modulates conscious report.

We demonstrated distinct neural dynamic patterns that
implemented signal enhancement and attentional reorienting
interacting with conscious report in three right-hemisphere FP
networks connected by branches of SLF, as well as inter-network
interactions.

At the behavioral level, despite no significant difference in
sensitivity between valid and invalid conditions, valid cues
increased both discrimination accuracy and detection rate of
near-threshold peripheral target and shifted the criterion toward
the liberal side, in line with previous findings7,10,23,38. Impor-
tantly, the discrimination task, which served as an objective
measure of performance, was performed first, closer to the cue
and target presentation, and thus the attentional benefits
(increased discrimination) were expected to be more readily
observable in it. The subjective conscious report task was per-
formed later, after an additional delay, and therefore the cueing
benefits (increased a’ sensitivity) might have been masked by
cognitive and motor processes related to the preceding dis-
crimination task (e.g., memory, decision making, action plan-
ning). Therefore, attentional benefits are expected to be observed
more in the discrimination task than in the subjective reporting
(detection) task. Our results are consistent with this prediction:
an attention/consciousness interaction benefit was observed in
the discrimination task (better discrimination for valid than
invalid in seen versus unseen trials), demonstrating the effec-
tiveness of cues in attracting participants' attention.

Dovetailing this attentional enhancement of conscious report
effect in behavior, we identified three neural clusters in which
validly cued seen targets elicited stronger neural activity than
invalidly cued ones. This enhancement occurred first in high-level
visual areas as a fast transient target-related activity, then in FP
and temporal regions showing a sustained activity, and finally in

bilateral PFC, presenting late accumulation activity, which lasted
until the motor response.

Previous evidence showed that attention modulates neural
responses across the visual cortical hierarchy, with an increasing
magnitude from early to higher-level visual areas39,40. The pre-
sent findings add to this evidence by indicating the neural loca-
tion of the effects of attention on conscious report in the visual
cortex. Our results clarified that spatial cuing potentiated report-
related activity in high-level visual areas (Visual cluster; fusiform
gyrus, middle temporal gyrus, inferior temporal gyrus and
inferior parietal cortex), but not in the early visual areas.

The Sustained cluster included hotspots around the right
superior frontal gyrus and inferior parietal lobule, which were
connected by the SLF II network. The attentional enhancement of
conscious perception in this cluster may reflect recurrent neural
activity which provides a specific neural substrate for neural
amplification as suggested by the global neuronal workspace
hypothesis15. The involvement of the SLF II in the attentional
modulation of conscious perception is in line with previous
clinical evidence showing that damage to the right SLF II is the
best anatomical predictor of the occurrence of neglect signs in
stroke patients26,41. Importantly, transitory electrical inactivation
of the SLF II in the human right hemisphere in a patient
undergoing brain surgery provoked severe, if transient, rightward
shifts in line bisection, akin to signs of left spatial neglect42. The
present evidence specifies the temporal dynamics of the right
hemisphere SLF II network, by demonstrating its role in atten-
tional amplification of future targets.

Importantly, our findings suggest that the SLF II network,
together with high-level visual cortex, support conscious report-
ing by modeling early cue-related baseline activity. Such activity is
likely to improve perception of the subsequent target, in line with
a wealth of previous research43–45.

The Late accumulation cluster included focal contacts around
the right mesio-frontal and supplementary motor areas connected
by SLF I-III network. This cluster showed a late accumulation
activity until report, which was enhanced by spatial cueing. This
interaction is consistent with its known role of SLF I network in
evidence integration and decision making46. Alternatively, the
activity of this cluster might reflect temporal expectancy for
conscious report of targets47,48. In line with early EEG studies49,
our results demonstrate that attention could enhance conscious
expectancy through this FP network.

A reversed pattern of interaction between attention and con-
scious report occurred when targets appeared at the uncued
location: when reported, these targets elicited early, sustained
activity in the right hemisphere TPJ and IFG (reorienting
network)50, connected by the SLF III. The activity of this Reor-
ienting cluster supports the role of the SLF III network in the
conscious perception of targets preceded by an invalid cue at the
wrong location. Previous neuroimaging evidence has shown
the implication of this network in reorienting attention from the
invalidly cued location to the targets occurring on the opposite
side24. Importantly, our time-resolved results specify that this
activity happens earlier than previously thought, before target
presentation. This early activity (pre-target until around 150 ms
post-target) suggests an anticipatory (lookout) activity for unex-
pected events such as invalidly cued targets and if necessary, it
reorients attention before the attentional enhancement imple-
mented by the SLF II network. Consistent with this hypothesis,
early SLF III network activity decreased when the reported targets
appeared at the validly cued location.

Finally, independent of attention, seen, but not unseen, targets
elicited late sustained activity in the Conscious report cluster
located around the posterior portion of left dorsolateral PFC. We
ascribed the function of this cluster as likely related to the set of
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processes associated with conscious access and the subsequent
report. In line with previous neuroimaging evidence51, this neural
activity might reflect the integration of sensory evidence and the
formation of decision variables in post-orienting processes that
are closely associated with conscious access mechanisms. Another
possibility is that the left dorsolateral PFC biases perceptual
decisions in conditions of uncertainty52, such as near-threshold
detection. It remains to be seen how our intracerebral data relate
to putative markers of consciousness derived from surface EEG21.

Our RNN model of the task displayed striking similarities
with the human intracerebral data, and allowed us to make
causal inferences on the inter-network interactions of the neural
clusters we observed. Two distinct components of the attention/
consciousness interactions, attentional enhancement and atten-
tional reorienting, clearly emerged in the trained RNNmodels. The
Sustained excitatory units receive the majority of stimuli input and
selectively enhance target-related information for conscious report.
The Reorienting excitatory units directly receive a smaller branch
of visual input. The inhibitory units in the Sustained and Late
accumulation RNN clusters receive excitatory input from the
Reorienting units. Critically, these results suggest that the right
Reorienting neural cluster reorients spatial attention by monitoring
the unexpected events in the environment and stopping the
ongoing stimulus processing by inhibiting inappropriate activities
of other clusters. RNN lesion data further support specific causal
contributions of the identified neural clusters and their associated
SLF networks in modulating conscious report of near-threshold
stimuli. Our model predictions are consistent with neuroimaging
evidence showing the involvement of right-hemisphere FP net-
works in attentional enhancement53 and inhibitory control12,54.
Additionally, a previous simulation study of physiological leftward
bias (pseudoneglect) found a similar excitatory influence of the
right ventral attentional network linked by the SLF III on the dorsal
attentional network55. Our results extended this prediction to an
excitatory-inhibitory neuronal interaction with conscious report, at
least for detecting near-threshold stimuli. Strong inter-regional
excitation, balanced by local inhibition, can enable reliable sensory
signal propagation to the PFC, which in turn can lead to global
ignition56 and pave the path to conscious visual processing, con-
sistent with the global neuronal workspace hypothesis57. More
direct causal evidence of the interplay of these FP attentional net-
works for conscious perception comes from the finding that
damage to the right dorsal PFC and decreased microstructural
integrity of the SLF III impaired the conscious perception of near-
threshold information58.

Taken together, the observed interactions between exogenous
attention and conscious report support current models of con-
sciousness, which explicitly conceptualize the role of attention in
consciousness, such as the gateway hypothesis16, and the global
neuronal workspace hypothesis17. Both theories postulate that the
dorsal FP attentional network gates the way to conscious access,
which our findings support and extend also to the ventral
attention network. However, our current study was not designed
to directly disentangle current theories of consciousness, and
other results may not be in total disagreement with the remaining
theories (e.g., Integrated information or Recurrent processing).
For instance, we observed an early activation of the high-level
visual cortex for the consciously perceived targets, a finding
potentially in line with the Recurrent processing theory. Our
findings specify the temporal dynamics and computational
mechanisms underlying attention and consciousness interactions.
More generally, our results shed light on the role of dorsolateral,
ventrolateral and orbital PFC as well as high-level visual cortex, in
human conscious report of near-threshold targets. Previous work
on non-human primates showed that reported stimuli were
associated with strong sustained PFC activity59. However, this late

extensive PFC activity might reflect decision-making instead of
conscious experience21,22. Our findings reconcile this debate by
demonstrating, on the one hand, the late accumulation activity in
right FP areas connected by SLF I–III, which lasted until target
report; on the other hand, our results also show the sustained
activity for consciously reported target in left PFC and right FP
areas connected by SLF II–III, independent of decision time.

The present study has some limitations. First, the use of a sub-
jective conscious report task to probe conscious perception, in
which participants had to choose between three alternatives indi-
cating the perceived location of the target (left or right) or its
absence. This measure provides information concerning whether
participants consciously perceived the target, but it does not pro-
vide more subtle information regarding the participants’ awareness
of their perception, unlike confidence ratings60. However, a recent
fMRI study using no-report paradigms to dissociate awareness-
related neural activation from potential decision-making effects
found results consistent with the present ones: activation of FP
attention networks was independent of task report and eye
movement activity61. Second, patients were instructed to maintain
central fixation, but the clinical setting did not allow us to use eye-
tracking recording. Third, our subjects had chronic epilepsy,
although contacts with epileptic activity were excluded from ana-
lysis. Fourth, cortical coverage was necessarily limited (e.g in the
superior parietal cortex), because it was obviously only determined
by clinical needs. The limited and uneven brain coverage across
patients also restricted our ability to analyze between-patient
variability. However, assessing between-patient variability would
not be informative regarding the generalizability of the findings to
the neurotypical brain, as the patients serve only as a model for
studying neurotypical cognition due to the inevitable lack of a
neurotypical control group62. Last, we didn’t have implanted
electrodes in thalamus in our patients, thus we have no empirical
data regarding, for example, the potential involvement of recurrent
thalamocortical loops, which may well be major contributors to
conscious processing63–66.

Despite these considerations, the present evidence establishes
the neural dynamics of distinct FP networks and high-level
visual areas in the attentional modulation of conscious report of
near-threshold stimuli, which is one of the hallmark concepts
distinguishing different consciousness theories11,14. Our findings
establish specific roles for the right-hemisphere SLF II network
in the attentional enhancement of near-threshold targets, for the
right-hemisphere SLF III network in perceiving previously
unattended targets, and confirm the hypothesized role of
left-hemisphere dorsolateral PFC in perceptual decision. This
attention/consciousness interaction relies on specific excitatory
and inhibitory inter-network interaction mechanisms that cau-
sally contribute to conscious perception of near-threshold targets.
Thus, distinct, hemisphere-asymmetric fronto-parietal networks
support attentional gain and reorienting in shaping human
conscious experience.

Methods
Participants and intracerebral recordings. We recruited sixteen patients who
underwent presurgical evaluation of pharmaco-resistant focal epilepsy with iEEG
implantation, at the Department of Neurosurgery of the Hôpital Pitié-Salpêtrière,
Paris, France. All participants had normal or corrected-to-normal vision (age
mean ± SD: 35.0 ± 8.2; 10 women; 14 right-handed) and provided their written
informed consent. The implantation of electrodes and the participation of patients
to cognitive tasks received approval from local ethic committee (CPP Paris VI,
Pitié-Salpêtrière Hospital, INSERM C11-16 (2012–2020); CPP INSERM C19–55).
Patients differed in their prescribed medical treatment, which was reduced or
stopped after implantation depending on each patient’s medical needs and the
delay between the surgery and the experimental recording (range 3–14 days). Three
patients were excluded from the data analysis due to poor data quality (two patients
had corrupted neural data files and one patient had response times inferior to
150 ms in 32% of trials), leaving a total of thirteen patients in the final sample (age
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mean ± SD: 34.7 ± 8.7; 7 women; 11 right-handed). Patients were implanted with
4–13 multilead stereotactic depth electrodes (AdTech®, Wisconsin) endowing 4–12
platinum contacts with a diameter of 1.12 mm and length of 2.41 mm, with nickel-
chromium wiring. The distance between the centers of two contiguous contacts was
5 mm. The location of electrode implantation was based exclusively on clinical
criteria. In five patients the neural activity was recorded with a 128 channels clinical
video-EEG recording system (SD LTM 64 BS, Micromed® S.p.A., Italy), sampling
at 1024 Hz with a band-pass filter of 0.15–250 Hz. In the other eight patients, the
recording was implemented with a Neuralynx system (ATLAS, Neuralynx®, Inc.,
Bozeman, MO) which allowed recording up to 160 depth-EEG channels sampled at
4 kHz with 0.1 Hz to 1000 Hz band-pass. The patient-dependent least active con-
tact, preferably in the white matter, was selected as the reference electrode.

Experimental task. The stimuli presentation was controlled by E-Prime 2.0 soft-
ware (SCR_009567) running on a laptop with a 60 Hz refresh rate. Three black
boxes (4.9° long and 3.6° large) were arranged around a central fixation point,
persisted for the whole duration of the trial, with 6° horizontally separating the
central box center from the peripheral boxes’ center. The two peripheral boxes were
located in the lower visual field, 4° of visual angle under the central box. Figure1a
illustrates the experimental procedure. Participants were instructed to fixate their
gaze at the central fixation cross throughout the test and to respond as fast and
accurately as possible. Following the appearance of the fixation and the three
placeholder boxes for 1000–1500 ms, a peripheral cue consisting of a black dot (1°
diameter), with an RGB value of 128/128/128 corresponding to a 50% simple
contrast, was presented for 50 ms at the upper external corner of one of the two
peripheral boxes. Three-hundred ms after the visual cue onset, a target stimulus
was presented for 16 ms in one of the two peripheral boxes (or not presented in
catch trials). The target stimuli were tilted Gabor patches with a spatial frequency
of 5 cycles and the diameter of 2.5° visual angle, chosen among 12 equally spaced
between 0° and 180°, excluding vertical and horizontal orientations. After a 484 ms
delay from the target offset, participants performed a 2-alternative forced choice
discrimination, indicating the direction of the tilt among two possibilities presented
on the screen and distant by 30° from one another (discrimination task). Then a
response screen appeared prompting the participants to report the perceived
presence or absence of the Gabors (subjective conscious report task), by selecting
one of two opposing arrows (indicating the perceived location of the target), or the
word “absent” under the arrows. Trials lasted until participant’s response or for a
maximum of three seconds. Participants performed eight recording blocks, each
consisted of 110 randomized trials including 88 target-present trials and 22 target-
absent catch trials. Participants were informed that cues were non-predictive, i.e.,
in target-present trials cues indicated the target location in 50% of trials (validly
cued) and the opposite location on the remaining 50% of the trials (invalidly cued).
Before the recording blocks, participants performed a target contrast calibration
session in order to estimate the individual perceptual threshold contrast for 50%
seen targets. The calibration consisted of two randomly interleaved, one-up one-
down staircases, converging toward a detection rate of 50%. The same cueing
paradigm was used for the staircase procedure and the same contrast was estimated
for valid and invalid conditions in the consideration of limited testing time on
patients. Staircase stimuli were the same as the main paradigm across all condi-
tions. These stimuli were created with maximum and minimum Michelson con-
trast of 0.92 (referred to as 100% contrast used in our manipulations) and 0.02 (1%
contrast) respectively. In our experiment, the contrast level of the presented target
was individually calibrated for each patient, with a typical contrast range of 10 to
25%. We asked each patient about their subjective perception of the cue; patients
explicitly reported that the cue was easily perceived and always visible along the
experiment. Additionally, looking at the visual activations for the Cue and for the
near-threshold Target, the Cue elicited stronger neural activation than the Target
(see Supplementary Fig. 2d), supporting the fact that the Cue was more visible than
the Target. Since the Target was adaptively set to be at the threshold of perception,
then the Cue should always have been above this threshold.

Behavioral analysis. For each participant, we first excluded trials with RT faster
than 150 ms or exceeding three standard deviations. Statistical tests in behavioral
analysis were performed using JASP software (version 0.16.0.0, https://jasp-stats.
org/). We performed a two-way ANOVA with the factors of cue validity and
conscious report (in the subjective conscious report task) on the discrimination
accuracy. RTs analysis was not reported since participants had to wait for the
response screen to give their responses.

Using a nonparametric measure67, we conducted SDT analysis68 to evaluate the
bias produced by the cue validity on participants’ perceptual sensitivity a’. We
computed the mean percentage of seen targets when the Gabor was presented (Hits)
and when the Gabor was absent (false alarms; FA). The criterion C summarizes the
distance of the threshold relative to the noise distribution from the threshold of an ideal
observer. A smaller value of C represents a more liberal threshold in target detection.

a0 ¼ 0:5þ ðHits� FAsÞ * ð1þ Hits� FAsÞ=½4 *Hits * ð1� FAsÞ� ð1Þ

C ¼ �ðZðHitsÞ þ ZðFAsÞÞ=2 ð2Þ
We compared detection rate, false alarm rate, sensitivity, and criterion between

valid and invalid trials with paired sample t-test.

iEEG preprocessing. Spatial localization of each electrode was recovered using
the Epiloc toolbox69 developed by the STIM engineering platform in the Paris
Brain Institute (https://icm-institute.org/en/cenir-stim) with co-registered pre-
implantation 1.5 T or 3 T MRI scans and post-implantation CT and MRI scans.
After the normalization of MRI-pre, MRI-post and CT-post into the MNI space,
contact localization was automatically labeled referring to Desikan-Killiany-
Tourville atlas parcellation70 in the patient’s native space, using Freesurfer image
analysis suite (https://surfer.nmr.mgh.harvard.edu/) embedded in the Epiloc tool-
box, followed by a manual verification and correction, if necessary. Figure 1c and
Supplementary Table 1 show the localization of usable contacts referring to
Desikan–Killiany–Tourville atlas parcellation:70 29 contacts (4%) from occipital,
332 (46%) from temporal, 78 (11%) from parietal, 202 (28%) from frontal, 24 (3%)
subcortical and 62 (9%) in white matter. There were 288 contacts in the left
hemisphere and 439 contacts in the right hemisphere.

Signal preprocessing was conducted using Matlab (R2018b, The MathWorks,
Inc.) and FieldTrip toolbox (fieldtrip-20210529)71. First, all signals were down
sampled to 512 Hz and all contacts were re-referenced to their adjacent neighbor
contact on the same electrode, yielding a bipolar montage, in order to ensure that
iEEG signals could be considered as originating from a cortical volume centered
within the two contacts. Coordinates of bipolar contacts were computed as the
mean of the MNI coordinates of two adjacent contacts composing the bipole.
An initial visual inspection of continuous signals was performed to remove time
segments showing transient epileptic or interictal activity. Contacts with excessive
epileptic spikes or near suspected epileptic focus were also rejected. We extracted
time courses from −1300 to 1200 ms around target onset for trial epochs. A second
artifact inspection was performed on the epoched data, where trials and contacts
with excessive maximal signal, z value, variance or kurtosis of the signal
distribution were rejected. After signal preprocessing, 727 of the bipolar contacts
out of 887 contacts were retained for further analysis.

We then adopted a pseudo-whole-brain analysis approach, by pooling contacts
across all thirteen patients on a standardized brain in MNI space. High-frequency
broadband (HFBB) power (70–140 Hz), a proxy of spiking activity of the local
neuronal ensemble29,30, but also see31, was extracted from each bipolar contact by
wavelet time frequency transformation using the Morlet wavelets implemented in
Fieldtrip (ft_freqanalysis), in fourteen equally spaced center frequency bands. We
kept high-frequency band power time courses from −800 to 1000 ms to target
onset to discard the 1/f signal drop off at the edges. Baseline normalization was
applied on each trial by means of a z-score relative to the period in the 200 ms prior
to cue onset. Finally, HFBB powers were down-sampled to 100 Hz for further
analysis.

Temporal embedding visualization with t-SNE. We visualized neural activities
and unit activities in a two-component space by a machine learning visualization
approach, t-distributed stochastic neighbor embedding (t-SNE). In neural data, we
averaged neural activities across contacts by conditions and time points, of which
the resulting matrix served as input to compute temporal embedding. t-SNE was
computed by an implementation in Scikit learn 1.0.2 in Python 3. We adopted a
perplexity of 30 and a learning rate of 100. The embedding was initiated with the
PCA option and optimized upon 1000 iterations, by default. The neural data in
each condition was projected to a two-dimensional t-SNE embedding. Thus, the
ensemble of time points formed a temporal trajectory of neural activities in a
reduced manifold. A larger difference between two trajectory components repre-
sented a more distinct neural activity pattern between the two conditions. In
RNN simulation, we averaged unit activity across units by condition and
time point, and kept the above parameters in computing its t-SNE temporal
embedding.

Trajectory k-means clustering. We applied a novel clustering approach based on
k-means clustering to classify contacts by their temporal profiles32, implemented
through Matlab (R2018b, The MathWorks, Inc.). This data-driven approach was
able to capture the prototypical patterns of neural dynamics that might be sen-
sitive to cue validity and seen/unseen reports. We conducted clustering on all
bipolar contacts. In each contact, we took the trajectories of the mean target-
locked activity across an 8-dimensional condition space (target side, cue validity
and seen/unseen report). Activity across conditions was z-scored relative to the
distribution of the trials’ entire duration. Contacts were then iteratively partitioned
(10000 iterations) into 2–12 clusters, in which each contact was assigned to the
cluster with the nearest centroid trajectory. This was achieved by minimizing the
sum of time-point-by-time-point Manhattan distances across conditions, to
quantify trajectories similarity while preserving temporal order. Based on the
silhouette evaluation (silhouette in Matlab), we adopted a ten clusters solution,
which reflected the highest average silhouette score (Supplementary Fig. 2a).
The partition of the 13 patients’ contacts to clusters is shown in Supplementary
Fig. 2b. In order to identify the consistency of clusters across different numbers
of clusters K, we inspected clusters’ trajectory profiles in each number of clusters.
We plotted the trajectories of five clusters that showed significant consciousness
effects in the K= 10 cluster solution (Supplementary Fig. 2d). The minimal var-
iation of the number of contacts in each cluster demonstrated the stability of
the contacts in the five selected clusters across k-means solutions (Supplementary
Fig. 2c).
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Conscious report and interaction-related neural activity. To explore how our
experimental manipulation of attention and consciousness influenced the clusters’
neural activity, we performed time-resolved three-way ANOVAs with the factors of
target side (left/right), cue validity (valid/invalid), and conscious report (seen/
unseen). We tested on HFBB power in both cue-target period (from −300 ms to
target) and post-target period (from target onset to 500 ms), across contacts on
each cluster. For each contact, we averaged HFBB power across trials by conditions.
Holm–Bonferroni correction was applied over all the time points for multiple
comparisons. For clusters showing significant consciousness effect, post-hoc
comparisons were performed on time points where the Cue validity × Conscious
report interaction was significant, with Holm-Bonferroni correction. Further, in
order to compare the degree of attentional enhancement across clusters that
showed higher neural activity for validly cued seen targets, we performed a linear
contrast testing around time points where the clusters showed significant effects.

Response time (RT) modulation of neural activity. To understand the functional
roles of neural clusters, we related the neural activity to the response time. In each
cluster, we pooled trials from all conditions and contacts. We then sorted the trials
and binned them into 20 quantiles according to their response time in the dis-
crimination task. We compared RT-bins neural activity using time-resolved one-
way ANOVA in a short time window (target onset to 1000 ms, to avoid the
influence by the neural activity of the subsequent trial). To specifically test whether
higher sustained neural activity was related to the slower response time, we then
compared the neural activity of the ten RT bins with slowest response to the neural
activity of the 10 RT bins with fastest response. Holm-Bonferroni correction was
applied over all the time points. We also visually compared the RT bins sorted
neural activity in a longer time window (target onset to 5000 ms) in order to
identify the neural activity patterns associated with visual modulation and task
report in each cluster.

White matter tracts dissection. We dissected white matter tracts connecting
parietal contacts with frontal contacts. We modeled each intracerebral contact by a
3 mm-sphere. In each cluster, we created two region-of-interests, respectively
consisting of frontal contacts and parietal contacts. The parcellation of contacts was
referred to Desikan–Killiany–Tourville atlas (see details in iEEG preprocessing and
Supplementary Table 1 for contact numbers). We used a dataset that includes 176
preprocessed healthy individuals tractography acquired at 7 tesla by the Human
Connectome Project team34. We performed tracts filtering in TrackVis toolbox72 to
obtain tracts connecting frontal contacts and parietal contacts in frontal association
tracts35 (three branches of the superior longitudinal fasciculus; uncinate; long and
anterior segments of the arcuate fasciculus; inferior fronto-occipital fasciculus). For
each cluster, the tractography maps of the 176 healthy individuals were subse-
quently binarised and then smoothed with a three-dimensional Gaussian filter (full
width at half-maximum was 5 mm, equivalent to a sigma of 2.123). To test the
presence of tracts across individuals, we used a threshold-free cluster
enhancement-based non-parametric test, with 1000 permutations (randomize
function in FSL) and a height threshold of 0.95 to control significance level at p <
0.05. We computed the volumetric ratio of the labeled tracts in each cluster with
those of the standard atlas in BCBtoolkit73 (http://toolkit.bcblab.com/), where we
filtered the atlas probabilistic maps with a threshold of 80% to reduce their
overlapping.

Task-optimized recurrent neural network model. Recurrent neural networks
(RNNs) are networks in which neurons (units) can send and receive feedback to
and from each other. Therefore, the activity of the units is affected not only by the
current external stimulus, but also by the current state of the network74, which
makes RNNs ideally suited for computations that unfold over time such as holding
the information of cue position or accumulating target-related evidence for deci-
sion making. When the trained RNN accomplishes the behavioral task with a
performance comparable to the human ones, the RNN hidden unit activities may
provide unique insight about its computations in task representation. Moreover,
RNN unit activities might also appropriately predict neural processing75,76.

Our RNN model contained a single layer trained with mini-batch gradient
descent learned by backpropagation. Before time discretization, the network
activity r follows a continuous dynamical equation:

τ
dx
dt

¼ �x þ f ðWrecr þ brec þWinuþ
ffiffiffiffiffiffiffiffiffiffiffiffi

2τσ2rec

q

ξÞ ð3Þ

r ¼ f ðxÞ ð4Þ

z ¼ Woutr þ bout ð5Þ
where u, x and z denote the input, recurrent state, and output vectors, respectively.
Win ,Wrec ,Wout are the connection weight matrices of the input layer (a 2 ×N
matrix), the recurrent layer (N ×N) and the output layer (N × 2). brec and bout are
constant biases into the recurrent and output units. The network is time-discretized
with positive activity. dt is the simulation time-step and τ is an intrinsic timescale

of recurrent units which was set to 100 ms. ξ denotes the independent Gaussian
white noise processes with zero mean and unit variance, and σrec is the strength of
the noise. f is a nonlinear transfer function, which was set as a rectified linear
activation function (ReLU).

Similar to previous studies which trained RNNs to perform cognitive tasks77–79,
we abstracted the relevant visual stimuli properties from the patient task (Fig. 1a),
rather than feeding the exact same visual inputs to the RNNs. Specifically, visual
stimuli from the left and the right fields of view were modeled as two separate noisy
inputs (Fig. 4b). The magnitude of the background visual noise along the trial was
set as Gaussian noise of the mean of zero and standard deviation of 0.05. The task
began with a fixation period of 200 ms followed by a visual cue randomly presented
at either the left or the right side. A target, separated from the cue by a fixed delay
period of 300 ms, was then presented on the cued position (validly cued) or on the
opposite side (invalidly cued) with equal probability, or absent in 20% of catch
trials. After a second fixed delay, the network produced two outputs, each ranging
from zero to one, to respond whether there was a target detected. Similar to the
human task, RNN outputs were combined to calculate a discrimination and a
detection performance. The discrimination accuracy is the ratio of correct response
with forced-choice in distinguishing target side when the target were presented.
The detection rate equals the ratio of trials in which the network made the correct
response about the target presence or absence.

We implemented the model training with PsychRNN80, a toolbox backended by
TensorFlow. We adopted the default setting of the package regarding the
regularizers (i.e., penalties added to prevent over-fitting to the training data),
weight initializer and the loss function (i.e., mean squared error). The noise in each
recurrent unit was set to 0.05. The input, output and recurrent weight was
randomly initiated by a glorot gauss distribution from −1 to 1. The transfer
function was rectified linear unit (ReLU). The loss function was defined as the
mean squared error. The connections between hidden units were constrained
according to Dale’s principle: neurotransmitters tend to be either excitatory or
inhibitory such that the post-synaptic weights of each recurrent unit are all of the
same sign78. There were 80% of units fixed to be excitatory and the remaining 20%
of units were inhibitory. The strong inhibitory signaling in the recurrent neural
network enables stable temporal dynamics77. The cue contrast was set as 0.30 SD
and we trained RNNs, one at a time, with various target stimulus levels from zero
to 0.13 SD, which mimics the near-threshold targets setting in the patient task. The
RNNs were trained with 150000 iterations and the model accuracy was tested on 50
batches of 50 sample trials for each target contrast, respectively. Finally, we fitted a
psychometric detection curve by logistic function in the subjective conscious report
task and in the discrimination task, respectively. To verify the validity of the model,
we compared the performance of trained models with an untrained model that was
initialized with random Gaussian connectivity weights without feeding stimuli
inputs for learning. We also tested RNNs with different hidden units’ size (128, 50,
32, and 16) and found out that those RNNs could not achieve human-level
performance when the units were less than 16. To keep sufficient units for further
clustering analysis, we adopted the number of hidden units N as 50 to balance the
model’s complexity and variability.

Trajectory k-means clustering on RNN unit activities. We applied the above-
mentioned trajectory clustering method to classify dynamic patterns of the 50
hidden units for intermediate target contrast (0.10 SD). We generated 20 batches of
50 trials (1000 trials in total) and averaged unit activity by condition (all condi-
tions: validly cued seen, invalidly cued seen and no target). Unit trajectories were
iteratively partitioned into 2–10 clusters across the three-dimensional condition
space. The highest averaged silhouette value was obtained while the number of
clusters equals five (Supplementary Fig. 4d). We compared seen/unseen trials by
time-resolved t-test in the post-target period (target onset to 1000 ms, see Fig. 4d)
which could include information after output responses. Holm-Bonferroni cor-
rection was applied over all the time points. We also conducted the same k-means
clustering analysis on a reduced target contrast (0.03 and 0.06 SD). However, only a
late cluster showed a significant consciousness effect. Other clusters may not have
reached the significance level because of the low target contrast.

Computing similarity between neural clusters and RNN clusters. In the four
neural clusters showing the cue modulation on conscious perception (Visual,
Sustained, Late accumulation, and Reorienting), we averaged neural activity in seen
and in unseen trials from cue onsets to 500 ms post-targets. We then generated 500
batches of 50 trials with the RNN model simulation for both trained and untrained
models. In each batch, we averaged RNN clusters’ unit activity in seen and in
unseen trials. The similarity was quantified by Pearson correlation coefficient
between the RNN clusters’ temporal trajectory to the neural cluster ones, with the
averaged coefficient of conditions. Therefore, we obtained a distribution of cor-
relation coefficients with 500 samples for the trained and for the untrained models.
Finally, we conducted a one-sided permutation test with 1000 permutations to
compare the two distributions, in order to identify the RNN clusters being sig-
nificantly more similar to the neural clusters in the trained model than in the
untrained model.
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Directed connection weight graph. The iEEG contacts of the neural clusters were
pooled from different patients, which limits the possibility to analyze their inter-
cluster connections. However, our modeling approach provides the possibility to
examine how unit clusters are inter-connected as an integrated model. To this end,
we extracted unit input weights, directed unit-to-unit connection weights and
output weights of the trained model (Supplementary Fig. 4e). In each cluster, we
observed both excitatory (E) and inhibitory (I) type units, of which the number was
fully task-optimized without any prior. The Sustained cluster contained 16 E and 4
I units. The Late accumulation cluster had six E and two I units. The Reorienting
cluster had eight E and three I units. We grouped units of the same E/I type in each
cluster, resulting in six groups in total. We then computed a directed cluster
connection graph by averaging unit connection weights from one group (pre-
synaptic) to each of the other groups (post-synaptic). For example, to compute the
connection weight from the Sustained excitatory group (16 units) to the Reor-
ienting excitatory group (8 units), we averaged a total 128 directed unit-to-unit
connection weights. One-sample t-test was performed with significance level
controlled at p < 0.05, Holm-Sidak corrected for multi-comparison among groups
of units.

RNN units lesion analysis. In order to ascertain the functional roles of the
clusters, we conducted lesion experiments where we individually disabled units
within each cluster and observed the resulting decrease in task performance. This
was achieved by setting unit’s connection weights with inputs, all recurrent units
and output to zero. We tested the task performance of the lesioned models with
generated 50 batches of 50 trials.

Statistics and reproducibility. We analyzed data from N= 13 epileptic patients.
The task was implemented using E-Prime 2.0 software (SCR_009567). Intracranial
data were processed using Matlab (R2018b, The MathWorks, Inc.) and FieldTrip
toolbox (fieldtrip-20210529). Tractography data were processed using TrackVis
toolbox (https://trackvis.org/) and BCBtoolkit (http://toolkit.bcblab.com/). The
RNN simulation was performed using PsychRNN (https://github.com/murraylab/
PsychRNN, version PsychRNN-1.0.0).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data for the plots and graphs in the figures are available as Supplementary Data 1.
The intracranial data that support the findings of this study are available from the
corresponding author J.L. upon reasonable request.

Code availability
The custom codes for trajectory k-mean clustering analysis and recurrent neural network
simulation are available at the Github https://github.com/jianghao-liu/attention-
conscious-report, with the identifie80 https://doi.org/10.5281/zenodo.8113973 (https://
zenodo.org/badge/latestdoi/658009571).

Received: 28 April 2023; Accepted: 6 July 2023;

References
1. Buschman, T. J. & Miller, E. K. Top-down versus bottom-up control of

attention in the prefrontal and posterior parietal cortices. Science 315,
1860–1862 (2007).

2. Chica, A. B., Bartolomeo, P. & Lupiáñez, J. Two cognitive and neural systems
for endogenous and exogenous spatial attention. Behav. Brain Res. 237,
107–123 (2013).

3. Chica, A. B. & Bartolomeo, P. Attentional routes to conscious perception.
Front. Psychol. 3, 1 (2012).

4. Maier, A. & Tsuchiya, N. Growing evidence for separate neural mechanisms
for attention and consciousness. Atten. Percept. Psychophys. 83, 558–576
(2021).

5. Nani, A. et al. The neural correlates of consciousness and attention: two sister
processes of the brain. Front. Neurosci. 13, 1169 (2019).

6. Tallon-Baudry, C. On the neural mechanisms subserving consciousness and
attention. Front. Psychol. 2, 397 (2011).

7. Chica, A. B. et al. Spatial attention and conscious perception: the role of
endogenous and exogenous orienting. Atten. Percept. Psychophys. 73,
1065–1081 (2011).

8. Koch, C. & Tsuchiya, N. Attention and consciousness: two distinct brain
processes. Trends Cogn. Sci. 11, 16–22 (2007).

9. Chica, A. B., Lasaponara, S., Lupianez, J., Doricchi, F. & Bartolomeo, P.
Exogenous attention can capture perceptual consciousness: ERP and
behavioural evidence. Neuroimage 51, 1205–1212 (2010).

10. Sergent, C. et al. Cueing attention after the stimulus is gone can retrospectively
trigger conscious perception. Curr. Biol. 23, 150–155 (2013).

11. Melloni, L., Mudrik, L., Pitts, M. & Koch, C. Making the hard problem of
consciousness easier. Science 372, 911–912 (2021).

12. Bartolomeo, P. & Seidel Malkinson, T. Hemispheric lateralization of attention
processes in the human brain. Curr. Opin. Psychol. 29, 90–96 (2019).

13. Scolari, M., Seidl-Rathkopf, K. N. & Kastner, S. Functions of the human
frontoparietal attention network: evidence from neuroimaging. Curr. Opin.
Behav. Sci. 1, 32–39 (2015).

14. Pitts, M. A., Lutsyshyna, L. A. & Hillyard, S. A. The relationship between
attention and consciousness: an expanded taxonomy and implications for
‘no-report’paradigms. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170348
(2018).

15. Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J. & Sergent, C. Conscious,
preconscious, and subliminal processing: a testable taxonomy. Trends Cogn.
Sci. 10, 204–211 (2006).

16. Posner, M. I. Attention: the mechanisms of consciousness. Proc. Natl Acad.
Sci. 91, 7398–7403 (1994).

17. Mashour, G. A., Roelfsema, P., Changeux, J.-P. & Dehaene, S. Conscious
processing and the global neuronal workspace hypothesis. Neuron 105,
776–798 (2020).

18. Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information
theory: from consciousness to its physical substrate. Nat. Rev. Neurosci. 17,
450–461 (2016).

19. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of
consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321
(2016).

20. Lamme, V. A. F. Challenges for theories of consciousness: seeing or knowing,
the missing ingredient and how to deal with panpsychism. Philos. Trans. R.
Soc. Lond. B Biol. Sci. 373, 1755 (2018).

21. Dembski, C., Koch, C. & Pitts, M. Perceptual awareness negativity: a
physiological correlate of sensory consciousness. Trends Cogn. Sci. 25,
660–670 (2021).

22. Sergent, C. et al. Bifurcation in brain dynamics reveals a signature of conscious
processing independent of report. Nat. Commun. 12, 1149 (2021).

23. Spagna, A. et al. The cost of attentional reorienting on conscious visual
perception: an MEG study. Cereb. Cortex https://doi.org/10.1093/cercor/
bhac192 (2022).

24. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven
attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

25. Chica, A. B., Paz-Alonso, P. M., Valero-Cabré, A. & Bartolomeo, P. Neural
bases of the interactions between spatial attention and conscious perception.
Cereb. Cortex 23, 1269–1279 (2012).

26. Bartolomeo, P. Visual neglect. Curr. Opin. Neurol. 20, 381–386 (2007).
27. Bartolomeo, P., Thiebaut De Schotten, M. & Chica, A. B. Brain networks of

visuospatial attention and their disruption in visual neglect. Front. Hum.
Neurosci. 6, 110 (2012).

28. Chica, A. B., Martin-Arevalo, E., Botta, F. & Lupianez, J. The Spatial Orienting
paradigm: how to design and interpret spatial attention experiments. Neurosci.
Biobehav Rev. 40, 35–51 (2014).

29. Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E.
High-frequency neural activity and human cognition: past, present and
possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301
(2012).

30. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local
field potential power spectra are correlated with single-neuron spiking in
humans. J. Neurosci. 29, 13613–13620 (2009).

31. Leszczyński, M. et al. Dissociation of broadband high-frequency activity and
neuronal firing in the neocortex. Sci. Adv. 6, eabb0977 (2020).

32. Seidel Malkinson, T. et al. From perception to action: intracortical recordings
reveal cortical gradients of human exogenous attention. bioRxiv
2021.01.02.425103 https://doi.org/10.1101/2021.01.02.425103 (2022).

33. Uka, T. & DeAngelis, G. C. Contribution of middle temporal area to coarse
depth discrimination: comparison of neuronal and psychophysical sensitivity.
J. Neurosci. 23, 3515–3530 (2003).

34. Vu, A. T. et al. High resolution whole brain diffusion imaging at 7 T for the
Human Connectome Project. Neuroimage 122, 318–331 (2015).

35. Rojkova, K. et al. Atlasing the frontal lobe connections and their variability
due to age and education: a spherical deconvolution tractography study. Brain
Struct. Funct. 221, 1751–1766 (2016).

36. Foley, J. M. & Legge, G. E. Contrast detection and near-threshold
discrimination in human vision. Vis. Res. 21, 1041–1053 (1981).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05108-2

12 COMMUNICATIONS BIOLOGY |           (2023) 6:730 | https://doi.org/10.1038/s42003-023-05108-2 | www.nature.com/commsbio

https://trackvis.org/
http://toolkit.bcblab.com/
https://github.com/murraylab/PsychRNN
https://github.com/murraylab/PsychRNN
https://github.com/jianghao-liu/attention-conscious-report
https://github.com/jianghao-liu/attention-conscious-report
https://doi.org/10.5281/zenodo.8113973
https://zenodo.org/badge/latestdoi/658009571
https://zenodo.org/badge/latestdoi/658009571
https://doi.org/10.1093/cercor/bhac192
https://doi.org/10.1093/cercor/bhac192
https://doi.org/10.1101/2021.01.02.425103
www.nature.com/commsbio


37. Wutte, M. G., Smith, M. T., Flanagin, V. L. & Wolbers, T. Physiological signal
variability in hMT+ reflects performance on a direction discrimination task.
Front. Psychol. 2, 185 (2011).

38. Botta, F., Ródenas, E. & Chica, A. B. Target bottom-up strength determines
the extent of attentional modulations on conscious perception. Exp. Brain Res.
235, 2109–2124 (2017).

39. Davidesco, I. et al. Spatial and object-based attention modulates broadband
high-frequency responses across the human visual cortical hierarchy. J.
Neurosci. 33, 1228–1240 (2013).

40. Sprague, T. C. & Serences, J. T. Attention modulates spatial priority maps in
the human occipital, parietal and frontal cortices. Nat. Neurosci. 16,
1879–1887 (2013).

41. Thiebaut de Schotten, M. et al. Damage to white matter pathways in subacute
and chronic spatial neglect: a group study and 2 single-case studies with
complete virtual ‘in vivo’ tractography dissection. Cereb. Cortex 24, 691–706
(2014).

42. Thiebaut de Schotten, M. et al. Direct evidence for a parietal-frontal
pathway subserving spatial awareness in humans. Science 309, 2226–2228
(2005).

43. Carrasco, M., Ling, S. & Read, S. Attention alters appearance. Nat. Neurosci. 7,
308–313 (2004).

44. Moran, J. & Desimone, R. Selective attention gates visual processing in the
extrastriate cortex. Science 229, 782–784 (1985).

45. Worden, M. S., Foxe, J. J., Wang, N. & Simpson, G. V. Anticipatory biasing of
visuospatial attention indexed by retinotopically specific α-bank
electroencephalography increases over occipital cortex. J. Neurosci. 20,
RC63–RC63 (2000).

46. Vergani, F., Ghimire, P., Rajashekar, D., Dell’acqua, F. & Lavrador, J. P.
Superior longitudinal fasciculus (SLF) I and II: an anatomical and functional
review. J. Neurosurg. Sci. 65, 560-565 (2021).

47. Bartolomeo, P., Zieren, N., Vohn, R., Dubois, B. & Sturm, W. Neural
correlates of primary and reflective consciousness of spatial orienting.
Neuropsychologia 46, 348–361 (2008).

48. Rozier, C. et al. Conscious and unconscious expectancy effects: a behavioral,
scalp and intracranial electroencephalography study. Clin. Neurophysiol. 131,
385–400 (2020).

49. Tecce, J. J. Contingent negative variation (CNV) and psychological processes
in man. Psychol. Bull. 77, 73–108 (1972).

50. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human
brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

51. Heekeren, H. R., Marrett, S. & Ungerleider, L. G. The neural systems that
mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479
(2008).

52. Summerfield, C. et al. Predictive codes for forthcoming perception in the
frontal cortex. Science 314, 1311–1314 (2006).

53. Kastner, S. & Ungerleider, L. G. The neural basis of biased competition in
human visual cortex. Neuropsychologia 39, 1263–1276 (2001).

54. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior
frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185 (2014).

55. Gigliotta, O., Seidel Malkinson, T., Miglino, O. & Bartolomeo, P.
Pseudoneglect in visual search: behavioral evidence and connectional
constraints in simulated neural circuitry. eNeuro 4, 6 (2017).

56. Joglekar, M. R., Mejias, J. F., Yang, G. R. & Wang, X.-J. Inter-areal balanced
amplification enhances signal propagation in a large-scale circuit model of the
primate cortex. Neuron 98, 222–234 (2018).

57. Dehaene, S. & Changeux, J.-P. Ongoing spontaneous activity controls access
to consciousness: a neuronal model for inattentional blindness. PLOS Biol. 3,
e141 (2005).

58. Colás, I. et al. Conscious perception in patients with prefrontal damage.
Neuropsychologia 129, 284–293 (2019).

59. Vugt, Bvan et al. The threshold for conscious report: signal loss and response
bias in visual and frontal cortex. Science 360, 537–542 (2018).

60. Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M. & Pessoa, L. Measuring
consciousness: relating behavioural and neurophysiological approaches.
Trends Cogn. Sci. 12, 314–321 (2008).

61. Kronemer, S. I. et al. Human visual consciousness involves large scale cortical
and subcortical networks independent of task report and eye movement
activity. Nat. Commun. 13, 7342 (2022).

62. Lachaux, J. P., Rudrauf, D. & Kahane, P. Intracranial EEG and human brain
mapping. J. Physiol. 97, 613–628 (2003).

63. Griffiths, B. J. et al. Rhythmic interactions between the mediodorsal thalamus
and prefrontal cortex precede human visual perception. Nat. Commun. 13,
3736 (2022).

64. Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive
control. Nat. Neurosci. 20, 1669–1679 (2017).

65. Redinbaugh, M. J. et al. Thalamus modulates consciousness via layer-specific
control of cortex. Neuron 106, 66–75 (2020).

66. Sherman, S. M. Thalamus plays a central role in ongoing cortical functioning.
Nat. Neurosci. 19, 533–541 (2016).

67. Pollack, I. & Norman, D. A. A non-parametric analysis of recognition
experiments. Psychon. Sci. 1, 125–126 (1964).

68. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics. vol. 1
(Wiley New York, 1966).

69. Pérez-García, F. et al. Automatic segmentation of depth electrodes implanted
in epileptic patients: a modular tool adaptable to multicentric protocols.
Epilepsia 56, 227 (2015).

70. Desikan, R. S. et al. An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31, 968–980 (2006).

71. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011, 156869
(2011).

72. Wang, R., Benner, T., Sorensen, A. G. & Wedeen, V. J. Diffusion toolkit: a
software package for diffusion imaging data processing and tractography.
Proc. Int. Soc. Mag. Reson. Med. 15, 3720 (2007).

73. Foulon, C. et al. Advanced lesion symptom mapping analyses and
implementation as BCBtoolkit. GigaScience 7, 3 (2018).

74. Barak, O. Recurrent neural networks as versatile tools of neuroscience
research. Curr. Opin. Neurobiol. 46, 1–6 (2017).

75. Kriegeskorte, N. Deep neural networks: a new framework for modeling
biological vision and brain information processing. Annu. Rev. Vis. Sci. 1,
417–446 (2015).

76. Yamins, D. L. et al. Performance-optimized hierarchical models predict neural
responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624
(2014).

77. Kim, R. & Sejnowski, T. J. Strong inhibitory signaling underlies stable
temporal dynamics and working memory in spiking neural networks. Nat.
Neurosci. 24, 129–139 (2021).

78. Song, H. F., Yang, G. R. & Wang, X.-J. Training excitatory-inhibitory
recurrent neural networks for cognitive tasks: a simple and flexible framework.
PLOS Comput. Biol. 12, e1004792 (2016).

79. Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T. & Wang, X. J. Task
representations in neural networks trained to perform many cognitive tasks.
Nat. Neurosci. 22, 297–306 (2019).

80. Liu, J. Code for Fronto-parietal networks shape human conscious report
through attention gain and reorienting. Zenodo https://doi.org/10.5281/
zenodo.8113973 (2023).

Acknowledgements
This work is supported by the Agence Nationale de la Recherche through ANR-16-CE37-
0005 and ANR-10-IAIHU-06, by the Fondation pour la Recherche sur les AVC through
FR-AVC-017, by Fondation Assitance Publique-Hôpitaux de Paris (EPIRES- Marie
Laure PLV Merchandising), and by special funding from Dassault Systèmes.

Author contributions
Conceptualization: D.J.B., P.B.; Data curation: K.L.; Formal analysis: J.L., D.J.B.; Meth-
odology: J.L., J.D.S., D.J.B., P.B., T.S.M.; Visualization: J.L.; Funding acquisition: P.B.,
T.S.M., V.N., C.A., J.L.; Project administration: P.B.; Investigation: D.J.B., T.S.M., A.B.;
Resources: K.L., S.F.V., V.N., C.A., V.L.; Software: J.L., D.J.B., J.D.S., S.F.V., T.S.M.;
Supervision: T.S.M., P.B.; Writing original draft: J.L.; Writing review & editing: J.L.,
D.J.B., A.S., J.D.S., K.L., A.B., S.F.V., V.N., C.A., V.L., T.S.M. P.B.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-05108-2.

Correspondence and requests for materials should be addressed to Jianghao Liu, Tal
Seidel Malkinson or Paolo Bartolomeo.

Peer review information This manuscript has been previously peer reviewed at another
Nature Portfolio journal. Communications Biology thanks Judith Domínguez-Borràs and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editor: George Inglis.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05108-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:730 | https://doi.org/10.1038/s42003-023-05108-2 | www.nature.com/commsbio 13

https://doi.org/10.5281/zenodo.8113973
https://doi.org/10.5281/zenodo.8113973
https://doi.org/10.1038/s42003-023-05108-2
http://www.nature.com/reprints
www.nature.com/commsbio
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05108-2

14 COMMUNICATIONS BIOLOGY |           (2023) 6:730 | https://doi.org/10.1038/s42003-023-05108-2 | www.nature.com/commsbio

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio

	Fronto-parietal networks shape human conscious report through attention gain and reorienting
	Results
	Behavioral results: cue validity modulates target detection
	Five neural clusters associated with consciously perceived targets form three patterns of interaction with attention
	Fronto-parietal white matter tracts connecting contacts in the right hemisphere
	Task modeling with recurrent neural network

	Discussion
	Methods
	Participants and intracerebral recordings
	Experimental task
	Behavioral analysis
	iEEG preprocessing
	Temporal embedding visualization with t-SNE
	Trajectory k-means clustering
	Conscious report and interaction-related neural activity
	Response time (RT) modulation of neural activity
	White matter tracts dissection
	Task-optimized recurrent neural network model
	Trajectory k-means clustering on RNN unit activities
	Computing similarity between neural clusters and RNN clusters
	Directed connection weight graph
	RNN units lesion analysis
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




