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Describing analytically the transport properties of electrolytes, such as their conductivity or the self-diffusion of the
ions, has been a central challenge of chemical physics for almost a century. In recent years, this question has regained
some interest in light of Stochastic Density Field Theory (SDFT) – an analytical framework that allows the approx-
imate determination of density correlations in fluctuating systems. In spite of the success of this theory to describe
dilute electrolytes, its extension to concentrated solutions raises a number of technical difficulties, and requires sim-
plified descriptions of the short-range repulsion between the ions. In this article, we discuss recent approximations
that were proposed to compute the conductivity of electrolytes, in particular truncations of Coulomb interactions at
short distances. We extend them to another observable (the self-diffusion coefficient of the ions) and compare them
to earlier analytical approaches, such as the mean spherical approximation and mode-coupling theory. We show how
the treatment of hydrodynamic effects in SDFT can be improved, that the choice of the modified Coulomb interactions
significantly affects the determination of the properties of the electrolytes, and that comparison with other theories
provides a guide to extend SDFT approaches in this context.

I. INTRODUCTION

Predicting accurately the transport properties of elec-
trolytes, such as their bulk conductivity when submitted to a
constant electric field, or the self-diffusion coefficient of the
ions, is a central issue of chemical physics, with applications
in many research domains, from electrochemistry to soft mat-
ter physics. From a theoretical perspective, deriving analyti-
cal expressions of these observables starting from elementary
principles has been a continuing problem of statistical me-
chanics since the 1920s. Its difficulty lies in the fact this it
intertwines the Brownian diffusion of the ions, their pair in-
teractions (electrostatics at long-range, steric at short-range)
and hydrodynamic effects.

Determining the variation of transport coefficients as a
function of electrolyte concentration was initiated by Debye
and completed by Onsager1. By considering the ions as point
particles in a continuous medium, Onsager’s equations led to
limiting laws of evolution of these quantities as the square root
of the concentration. More realistic descriptions of the solu-
tion have provided mathematical expressions that extend the
scope of this theory. In particular, starting from the Smolu-
chowski equations with 2N particles, two-ions densities evo-
lution equations have been derived, which generalize the On-
sager equations2,3. These studies provide validation of the On-
sager’s equations for applications at low concentrations. As-
sessing the ionic conductivity involves the calculation of the
average ion flux in a uniform steady-state system, in the pres-
ence of an external electric field that is sufficiently weak to
ensure a linear response.

The case of dense electrolytes is more challenging, since
it requires to account for the short-range repulsion between
the ions, which becomes predominant when concentration in-
creases. From an analytical perspective, this requires an accu-
rate description of equilibrium pair distribution functions. For

ionic concentrations higher than 0.1 molL−1, the replacement
of the distribution functions of Debye and Hückel by those
given by the hypernetted chains (HNC) or mean spherical
approximation (MSA) theories turned out to be decisive4–7.
At last, mode-coupling theory (MCT), combined with time-
dependent density functional theory, led to self-consistent ex-
pressions of the relaxation and allowed its time dependence to
be obtained accurately8–12.

From a computational point of view, in the 1970s, new
simulation methods, that relied on continuous or implicit
descriptions of the solvent, allowed efficient computations
for simple electrolytes13, and accurate descriptions of their
properties14–16. Later on, the effect of hydrodynamic inter-
actions was added in these simulation schemes17,18. These
were compared with the aforementioned analytical schemes,
and it was shown that, to describe highly charged and concen-
trated electrolytes, the joint use of Smoluchowski’s equations
and these equilibrium distributions together led to a quanti-
tative representation of the simulations19. Finally, molecu-
lar simulations of electrolytes with an explicit description of
the solvent were also employed to predict transport properties
successfully20–22.

Recently, the analytical descriptions of bulk electrolytes has
gained a renewed interest in the context of Stochastic Density
Field Theory (SDFT). This approach consists in describing
the positions of the particles in the suspension as a collec-
tion of interacting overdamped Langevin processes. Using Itô
calculus23, and relying on the seminal works of Kawasaki24

and Dean25, stochastic evolution equations for the density
fields of the particles can be derived. Although these equa-
tions are quite difficult to study in their original form, lin-
earized expressions were shown to provide accurate estimates
of transport coefficients in different kinds of suspensions,
made of either charged or neutral particles – a detailed review
of these results will be provided in the next Section. However,
in spite of its convenience, this linearization of SDFT must be
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viewed as a perturbative expansion: it only holds when the in-
teractions between the particles are sufficiently weak, which
implies that short-range hardcore repulsion between the ions
cannot be accounted for. Recently, Avni et al.26 proposed a
way to circumvent this difficulty by truncating the Coulomb
interaction potential below a cut-off radius – an approach that
provided acceptable estimates for the conductivity of simple
electrolytes up to concentrations of a few molL−1. This lin-
earized SDFT approach also led to an analytical description of
the Wien effect27, namely nonlinear corrections to Ohm’s law,
that was predicted within Onsager’s approach28,29, and that
also received a surge of interest with explicit- and implicit-
solvent simulations21,22.

The goal of this article is to discuss the use of linearized
SDFT to study analytically the transport and diffusion proper-
ties of concentrated electrolytes. We first give a brief overview
of SDFT and recall in which contexts its linearized version
has been applied. Then, relying on the modified Coulomb
potential introduced in Refs. 26,30 that is technically compat-
ible with linearized SDFT, we study systematically the elec-
trostatic and hydrodynamic contributions to the conductivity
and show how they differ from earlier theoretical approaches,
such as the mean spherical approximation (MSA), or Brow-
nian dynamics simulations, which both include more realis-
tic short-range interactions. From this observation, we fur-
ther show that the divergence of the hydrodynamic contribu-
tion to conductivity, that limits the use of linearized SDFT
to moderate concentrations, can be corrected using a refined
description of the boundary conditions for the solvent at the
surface of the ions. Then, relying on a recent extension of
SDFT31, we compute analytically the self-diffusion coeffi-
cient of the ions in the electrolyte and compare it to earlier
mode-coupling results. Finally, we offer a detailed discussion
of the approximate interactions potentials that are compati-
ble with linearized SDFT, and show how their choice strongly
affects the outcome of the calculations for both observables
(conductivity and self-diffusion).

II. A BRIEF REMINDER OF SDFT

A. General equations

We first recall the main equations of stochastic density field
theory (SDFT) and their derivation. For simplicity, we con-
sider a binary mixture of monovalent ions (N cations and N

anions of charge e± = ±e), submitted to a constant external
field E0 = E0ez. Their respective mobilities will be denoted
by µ±, and their bare diffusion coefficients by D± (we assume
that the fluctuation-dissipation relation holds, in such a way
that D± = µ±kBT , where T is the temperature of the solution
and kB Boltzmann’s constant). The starting point of stochastic
density field theory (SDFT) is the set of coupled overdamped
Langevin equations obeyed by the positions of the cations and
anions r±1 , . . . ,r

±
N :

d
dt
r±a (t) = µ±F

±
a +u(r±a (t))+

√

2D±ξ
±
a (t), (1)

where ξ±a (t) is a unit white noise:

〈ξ±
a,i(t)〉= 0, (2)

〈ξ α
a,i(t)ξ

β
b, j(t

′)〉= δabδαβ δi jδ (t − t ′), (3)

where i and j denote Cartesian coordinates, u is the velocity
field of the solvent, and F±

a is the total force undergone by the
considered ion a, which reads:

F±
a =± eE0 − ∑

b6=a

∇v±±(r
±
a (t)−r±b (t))

−∑
b

∇v∓±(r
±
a (t)−r∓b (t)). (4)

We denote by vαβ (r) is the pair interaction potential between
one ion of type α and one ion of type β separated by a distance
r.

The central ideal of SDFT is to start from the 2N over-
damped coupled Langevin equations (1), and to derive instead
the evolution of the stochastic density fields of cations and an-
ions, defined as

nα(r, t) =
N

∑
a=1

δ (r−rα
a (t)). (5)

Using Ito calculus and following the seminal approaches by
Dean25 and Kawasaki24, one can show that the densities obey
the following stochastic equations

∂tnα =−∇ ·jα , (6)

with the fluxes

jα = nαu−Dα ∇nα +µαfα −
√

2Dα nαζα , (7)

where ζα(r, t) are space-dependent unit white noises:

〈ζα(r, t)〉= 0, (8)

〈ζα,i(r, t)ζβ , j(r
′, t ′)〉= δαβ δi jδ (r−r′)δ (t − t ′), (9)

and fα is the force density originating from the external elec-
tric field E0 and the interactions between the ions:

fα = nα eαE0 −nα ∑
β=±

∫

dr′ nβ (r
′)∇vαβ (|r−r′|). (10)

The simplest way to account for hydrodynamic effects is to
assume that velocity field u and the pressure field p are the
solutions of the following equations:

∇ ·u= 0, (11)

η∇2u= ∇p−f+−f−, (12)

which correspond respectively to the incompressibility condi-
tion and to Stokes equation (η denotes the dynamic viscosity
of the solvent). Note that this is not the most general way to
account for hydrodynamic interactions32, but that it is valid in
the linearized limit33.

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
65

53
3



Accepted to J. Chem. Phys. 10.1063/5.0165533

On analytical theories for conductivity and self-diffusion in concentrated electrolytes 3

B. Linearization

The evolution equations of the density fields nα(r, t) [Eq.
(6), (7) and (10)], usually called ‘Dean-Kawasaki’ (DK) equa-
tions, are exact and completely explicit. However, under this
form, they are of limited practical use for several reasons: (i)
first, the quantities nα , defined as sums of delta-functions [Eq.
(5)] are very singular and lack physical interpretation (how-
ever, in spite of these singular definitions, the well-posedness
and meaning of the DK equations has been the subject of sev-
eral recent works in the mathematical34,35 and physical32 liter-
ature); (ii) the equations obeyed by the fields nα are non-linear
(note in particular the non-local couplings through the convo-
lution integrals in Eq. (10)); (iii) they involve multiplicative
noise, as seen in Eq. (7). Therefore, one needs to resort to
further approximations to use these evolution equations.

For instance, these equations can be linearized, assum-
ing that the density fields remain close to a constant value
and that the fluctuations around this base value remain small
(nα = n0

α + δnα with δnα ≪ n0
α ). For our simple monova-

lent electrolyte, we will denote by n the average density of
cations and anions: n = n0

+ = n0
−. In the absence of hydro-

dynamic effects, such a linearisation was first proposed in the
particular situation of non-charged colloids interacting via soft
potentials36, and to study the Casimir force between plates
in an electrolyte37. The validity of this approximation is re-
stricted to a limited range of parameters. In spite of this, this
linearization allows explicit calculations in different nonequi-
librium settings, which made it quite successful over the
years. Indeed, it was used in different contexts: microrheol-
ogy of colloidal suspensions36,38,39, active matter40–45, driven
binary mixtures46. More recently, it was applied to the
study of electrolytes, in order to compute the conductiv-
ity of ‘concentrated’ electrolytes without47 and with hy-
drodynamic interactions26,27,33,48,49, the density-density and
charge-charge correlations50,51, fluctuation-induced forces be-
tween walls52,53, or ionic fluctuations in finite observation
volumes54.

C. Modified Coulomb potential

The linearization of the SDFT equations can be seen as
a perturbative approach, that is only valid when the inter-
actions between particles are sufficiently ‘weak’. Moreover,
from a computational perspective, the resolution of the lin-
earized equations only holds when the potentials vαβ (r) can
be Fourier-transformed. Since this is the case for Coulomb in-
teractions, electrolytes can be studied within linearized SDFT.
Indeed, the standard Coulomb potential for monovalent ions
uαβ (r) = zα zβ e2/(4πε0εr) has a definite Fourier transform
ũαβ (k) = zα zβ e2/(ε0εk2) (which can be computed by intro-
ducing a screening exp(−λ r) that regularizes the integrals and
taking λ → 0).

However, in order to describe concentrated electrolytes, one
has to account for the finite size of the ions and the resulting
short-range repulsion, which plays an increasing role on the
transport properties of the electrolytes as the ionic density in-

creases. For instance, many theoretical approaches have fo-
cused on the ‘primitive model’ of electrolytes, where the ion-
ion short-range repulsion is modeled by a pure hardcore repul-
sion. Although very appealing for analytical developments,
this model cannot be treated using linearized SDFT, since the
infinite repulsion energy below a given cutoff value (which is
typically the average of the diameters of the ion) makes its
Fourier transform singular.

In order to apply linearized SDFT, another cutoff of the
Coulomb potential was proposed by Avni et al.26 (based on
earlier work by Adar et al.30): below a given value a, the in-
teraction energy is set to zero:

vαβ (r) = zα zβVco(r) = zα zβ
e2

4πε0εr
θ(r−a), (13)

where θ is the Heaviside function. As it will become appar-
ent throughout the paper, the outcome of the linearized SDFT
equations strongly depend on the choice of the ion-ion inter-
action potentials. For simplicity, when we will refer to ‘lin-
earized SDFT’, it will be implicit that we use the potential
defined in Eq. (13) – this choice will be discussed extensively
in Section VII.

Relying on this modified potential, the conductivity of the
electrolyte, defined as

κ = lim
E0→0

〈Jx〉
E0

, (14)

where Jx is the current density along the direction z of the ap-
plied field and 〈·〉 denotes an ensemble average, can be com-
puted within linearized SDFT. It can be split into different
contributions:

κ = κ0 +κel +κhyd, (15)

where κ0 = 2e2µ̄n is the conductivity at infinite dilution (µ =
(µ++µ−)/2 is the mean mobility), also known as the Nernst-
Einstein conductivity, and where κel (resp. κhyd) is the con-
tribution originating from electrostatic (resp. hydrodynamic)
effects. Here, we simply recall the expressions for the electro-
static and hydrodynamic contributions obtained with the mod-
ified potential given in Eq. (13)26:

κel =− 1
3π

κ0ℓB

λD

∫ ∞

0
dx

x2 cos2 x ax
λD

x4 + 3
2 x2 cos ax

λD
+ 1

2 cos2 ax
λD

, (16)

κhyd =− 2
π

κ0rs

λD

∫ ∞

0
dx

cos ax
λD

cos ax
λD

+ x2 , (17)

with the Bjerrum length ℓB = e2/(4πε0εkBT ) (for numer-
ical evaluations, we will take the value ℓB = 7Å, corre-
sponding to water at 25 ◦C) and the Debye screening length
λD = 1/

√
8πℓBn. Interestingly, we show in Section II C that

both these expressions can be derived starting from linearized
transport equations, completed with approximate expressions
of the ion-ion equilibrium distribution functions, that are de-
rived using the expression of the potential given in Eq. (13),
and the Ornstein-Zernike equation.
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III. FUOSS-ONSAGER APPROACH AND MEAN
SPHERICAL APPROXIMATION

A. Outline of the calculation

In this Section, we present expressions of the hydrodynamic
and electrostatic contributions to conductivity (κhyd and κel),
whose derivations rely on the theory by Fuoss and Onsager55.
In this approach, the electric field applied to the electrolyte
E0 = E0ez is assumed to be very small, in such a way that the
structure and dynamics of the fluid are weakly perturbed from
equilibrium. Within this linear-response description, and re-
lying on the physical considerations detailed below, the con-
tributions κhyd and κel are expressed in terms of the ion-ion
distribution functions. The latter can be evaluated in different
ways: using the Mean Spherical Approximation, or using the
modified Coulomb potential considered in this paper.

Mean Spherical Approximation.— First, the ion-ion distri-
bution functions can be computed within the Mean Spherical
Approximation applied to the so-called ‘primitive model’ of
electrolytes, where the pair potentials between ions of types
α and β read:

vαβ (r) =
zα zβ e2

4πε0εr
+ vHS(r), (18)

where vHS(r) denotes the simple hard-sphere potential (infi-
nite for distances smaller thant the average diameter of the
ions, and 0 otherwise). The pair distribution function gαβ (r)
between two ions of respective types α and β , separated by
a distance r and interacting via the potential defined in Eq.
(18), cannot be computed exactly for a finite density of ions,
but can be approximated. Let us introduce the total pair cor-
relation function hαβ (r) = gαβ (r)− 1, and the direct corre-
lation function cαγ(r), defined through the Ornstein-Zernike
relations56

hαβ (r) = cαβ (r)+n∑
γ

∫

dr′ cαγ(|r−r′|)hγβ (r
′), (19)

which takes the simpler, deconvoluted form in Fourier space:

h̃αβ (k) = c̃αβ (k)+n∑
γ

c̃αγ(k)h̃γβ (k). (20)

In the limit r → ∞, the direct correlation function has the ex-
act expression: cαβ (r) = −vαβ (r)/(kBT ). The idea of MSA
is to keep this expression even for finite values of r. Note that
assuming that it holds for any value of r is usually called the
‘random phase approximation’, and is known to be particu-
larly accurate for softcore potentials. However, in the present
case, this expression is obviously wrong at very short dis-
tances, where ions cannot overlap because of hardcore exclu-
sion. Therefore, the closing relation on which MSA relies is
chosen as:

{

gαβ (r) = 0 if r < a,

cαβ (r) =−vαβ (r)/(kBT ) if r > a.
(21)

Let us emphasize that the first equation is exact, while the
second one is the key hypothesis of MSA.

The procedure to determine the ion-ion distribution func-
tion dates back to the 1970s, and can be summarized as fol-
lows. The piecewise approximation given in Eq. (21) is used
in Eq. (19) with a procedure due to Baxter57. This yields
a general matrix equation, that was solved explicitly for the
primitive model electrolytes by Blum and and Hoye. We refer
the reader to Ref. 58 for the general method of resolution, and
to Ref. 59 for expressions of the pair correlation functions.
For completeness, we give in Appendix A the expressions of
the direct correlation functions c̃αβ (k), from which the ion-
ion distribution functions, that are then used as input in the
Fuoss-Onsager approach, can be determined.

Modified Coulomb potential.— Second, the ion-ion distri-
bution functions can be determined using the modified po-
tential defined in Eq. (13) (importantly, in this situation, the
distribution functions are not expected to vanish at short dis-
tances, as opposed to the key assumption of MSA). We then
find that the expressions derived from the linearized SDFT ap-
proach are retrieved. This is detailed in what follows.

B. Hydrodynamic contribution to the conductivity

We first evaluate the hydrodynamic contribution to the con-
ductivity. When a given ion is set in motion by an external
field E0 = E0ez, it drags the solvent, whose velocity field will
in turn affect the motion of each ion. In order to estimate this
effect, we need to calculate δu

hyd
α (r), the increment of veloc-

ity felt by a given ion of type α located at position r under
the effect of the electric field. It is the solution of the Stokes
equation η∇2δu

hyd
α = ∇p − ∑β fβ (completed with the in-

compressibility condition ∇ ·δuhyd
α = 0), where fβ is the force

density due to the displacement of the ions of type β , which
can be written in terms of the distribution functions as:

fβ (r)≃ nzβ eh0
αβ (r)E0. (22)

Here, h0
αβ (r) denotes the equilibrium distribution function be-

tween two ions of types α and β separated by a distance r.
Before evaluating this distribution function, we first write the
solution of the Stokes equation, which reads

δu
hyd
α (r) = ∑

β

∫

dr′ O(r−r′) ·fβ (r
′), (23)

where O(r− r′) is the Oseen tensor, recalled in Section V.
Writing

∫

dr′ O(r− r′) · fβ (r
′) =

∫ dk
(2π)3 eik·rÕ(k) · f̃β (k),

and taking r = 0 with no loss of generality, we get

δu
hyd
α = ∑

β

1
8π3η

∫

dk

(

f̃β

k2 −
k(k · f̃β )

k4

)

, (24)

where we used the expression of the Fourier transform of the
Oseen tensor given in Eq. (51). Performing the angular inte-
grals (using spherical coordinates for k, with the polar angle
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measured with respect to the orientation of E0), we find, for
the projection of the velocity increment along z,

δu
hyd
α,z =

n

3π2η ∑
β

ezβ E0

∫ ∞

0
dk h̃0

αβ (k), (25)

where h̃0
αβ (k) is the Fourier transform of the equilibrium dis-

tribution function between ions of type α and β , which can ei-
ther be estimated within MSA, or using the modified Coulomb
potential.

Mean Spherical Approximation.— If correlation functions
from MSA are used, δu

hyd
α and κhyd can be evaluated explic-

itly. It was obtained4

δu
hyd,MSA
α =− zα eE0

3πη

Γ

1+Γa
, (26)

where the screening parameter Γ is linked to the Debye length
λD by the relation

Γ =
λ−1

D

1+
√

1+2a/λD

. (27)

Deducing κhyd = ne
E0

∑α zα δu
hyd
α , we find the hydrodynamic

contribution to conductivity, normalized by its value at infinite
dilution:

κMSA
hyd

κ0
=− Γa

1+Γa
. (28)

This is the expression that was used to plot the hydrodynamic
contribution on Fig. 1.

Modified Coulomb potential.— When the ions interact via
the modified Coulomb potential [Eq. (13)], i.e. when
the short-range repulsion is not purely hardcore, the distri-
bution function can be estimated without MSA. Using the
random phase approximation c̃αβ (k) = −ṽαβ (k)/kBT (i.e.
c̃αβ (k) =−4πℓBzα zβ/k2 for the Coulomb potential), the cou-
pled Ornstein-Zernike equations [Eq. (20)] can be solved, and
one finds

h̃Coul
αβ (k) =

−4πℓBzα zβ/k2

1+2n ·4πℓB/k2 =
−4πℓBzα zβ

k2 +λ−2
D

, (29)

which coincides with the expression usually obtained from the
Debye-Hückel approximation60.

This prompts us to treat the modified Coulomb poten-
tial in a similar way. Under the random phase approxima-
tion, and using the expression of the Fourier transform of
vαβ (r), we write the direct correlation function as c̃αβ (k) =

−4πℓBzα zβ cos(ka)/k2. Solving the Ornstein-Zernike equa-
tions yields

h̃0
αβ (k) =−4πℓBzα zβ

cos(ka)

k2 +λ−2
D cos(ka)

. (30)

Reinjecting this formula in the expression of the velocity in-
crement from the Fuoss-Onsager approach [Eq. (25)] yields

δu
hyd
α,z =− zα eE0

3π2ηλD

∫ ∞

0
dx

cos
(

ax
λD

)

cos
(

ax
λD

)

+ x2
, (31)

where we used the change of variable x = kλD. Writ-
ing the corresponding contribution to conductivity as κhyd =
ne
E0

∑α zα δu
hyd
α , we find exactly the expression of κhyd that was

computed from linearized SDFT [Eq. (17)]. Finally, note that,
when taking the limit a → 0 in the expression of the hydrody-
namic contribution (both in that from MSA (28) and in that
from linearized SDFT (17)), one retrieves the hydrodynamic
contribution in the Debye-Hückel-Onsager calculation of con-
ductivity (expression recalled in the caption of Fig. 1).

C. Electrostatic contribution to the conductivity

We now turn to the electrostatic contribution to conductiv-
ity, that was denoted by κel in the main text. The physical ori-
gin of this contribution is as follows: at equilibrium, around a
given ion, the ionic atmosphere (with a globally opposite sign)
is spherical, and the resulting electrostatic force on the ion is
zero on average. However, in a nonequilibrium situation, for
instance when an external field is applied, the motion of the
ions perturbs the ionic atmosphere: the deformed ionic distri-
bution results in a nonzero net force on the ion. This force is
sometimes called ‘relaxation force’ in the literature.

In order to model this effect, one introduces the two-body
time-dependent distribution functions Fαβ (r1,r2, t), namely
the probability to find one ion of species α at position r1, and
one ion of species β at position r2, at time t. Neglecting three-
body effects, these functions obey the continuity equation

∂tFαβ (r1,r2, t) =−∇r1 · [Fαβ (r1,r2, t)Vαβ (r1,r2, t)]

−∇r2 · [Fβα(r2,r1, t)Vβα(r2,r1, t)],

(32)

where Vαβ (r1,r2, t) is the velocity of an ion of type α located
at r1, when there is an ion of type β at r2, at time t. This
velocity is typically evaluated as

Vαβ ≃ V s
α +µα ezα(−∇ψα +E0)− kBT µα ∇ lnFαβ . (33)

The first term is the contribution of the background solvent
– it will be ignored here as the electrostatic and hydrody-
namic contributions are considered separately, and the latter
was considered in the previous section. The second term is
the electrostatic contribution, where ψα is the electrostatic po-
tential around the ion α . The last term is the diffusion force.
Finally, this set of equations is completed by the Poisson equa-
tion obeyed by the electrostatic potential ψα , which reads

∇2ψα(r) =− e

εoεr

[

zα δ (r−rα)+n∑
β

zβ hαβ (r)

]

. (34)

We now focus on the stationary limit of the continuity equa-
tion (32), and relate the two-body distribution functions to the
total pair correlation function as follows:

Fαβ (r1,r2)≃ n2gαβ (|r1 −r2|) (35)

= n2[1+hαβ (|r1 −r2|)]. (36)
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With this rewriting, the continuity equation (32), together with
the Poisson equation (34), gives a closed set of equations for
the electrostatic potentials ψα and total pair correlation func-
tions hαβ . These are solved by writing these quantities as the
sum of an equilibrium term (with exponent 0) and a nonequi-
librium term (with the ‘prime’ exponent), that originates from
the external field E0:

hαβ = h0
αβ +h′αβ , (37)

ψα = ψ0
α +ψ ′

α . (38)

At leading order in the perturbation (i.e. keeping only terms
linear in h′αβ , ψ ′

α and E0), the continuity equation becomes

(

µα +µβ

)

∇2h′βα(r)+ kBTe[zα µα ∇2ψ ′
β (r)− zβ µβ ∇2ψ ′

α(r)]

= kBTe
(

zα µα − zβ µβ

)

E0 ·∇h0
βα(r). (39)

Relying on the linearity of Poisson equation (34), the latter
can be split into an equilibrium and a nonequilibrium part:

∇2ψ0
α(r) =− e

εoεr

[

zα δ (r−rα)+n∑
β

zβ h0
αβ (r)

]

, (40)

∇2ψ ′
α(r) = n∑

β

zβ h′αβ (r). (41)

Knowing the equilibrium distribution function h0
αβ (for in-

stance through mean spherical approximation, or through the
random random phase approximation), Eqs. (39) and (41) al-
low the determination of the nonequilibrium contributions to
the electrostatic potentials and the distribution functions. Fi-
nally, the electrostatic relaxation force is estimated as

δFα =−∑
β

nβ

∫ ∞

0
∇ναβ (r) h′βα(r) dr, (42)

from which one deduces the electrostatic contribution to con-
ductivity:

κel

κ0
=

δFα,z

zα eE0
. (43)

Mean Spherical Approximation.— Using the equilibrium
distribution functions h0

αβ computed within MSA, it was

found4

κel

κ0
=

δFMSA
α

zα eE0
=− ℓB

6a(1+Γa)2

× 1− e−
√

2a/λD

1+2
√

2ΓλD +4Γ2λ 2
D

(

1− e−a/
√

2λD

) . (44)

This is the expression plotted on Fig. 1.
Modified Coulomb potential.— As an alternative, by inte-

gration of the Poisson equation, the electric field can also be
evaluated from the convolution product of the Coulomb poten-
tial with the surrounding charge distribution. Now, in order to
recover the results by Avni et al.26, the Coulomb potential can

be replaced again by the modified Coulomb potential given
in Eq. (13). The equilibrium contribution to the electrostatic
potential is given by

ψ̃0
α(k) =

4πe

ε0εr

coska

k2

[

zα +n∑
β

zβ h̃0
αβ (k)

]

. (45)

Using the relation from the Debye-Hückel approximation:
h̃0

αβ (k) =−zα eψ̃0
β/kBT , the expression previously found [Eq.

(30)] is recovered. The contribution due to the external field
is given by

ψ̃ ′
α(k) =

4πe

ε0εr

coska

k2 ∑
β

nzβ h̃′αβ (k). (46)

Then, taking the Fourier transform of the continuity equation
(39), and expressing the electrostatic potentials as a function
of h̃′αβ (k), the latter can be determined from h̃0

αβ (k). The re-
laxation force is computed in Fourier space using the relation
(∇ψ ′

α)r=0 =− 1
8π3

∫

dk ik ψ̃ ′
α(k). This leads to

κel

κ0
=− ℓB

3πλD

∫ ∞

0
dx

x2 cos2 ax
λD

(

x2 + 1
2 cos ax

λD

)(

x2 + cos ax
λD

) , (47)

which is exactly the expression of κel that was computed from
linearized SDFT [Eq. (16)]. Finally, in the limit a → 0, both
Eqs. (44) and (16) yield the electrostatic contribution to con-
ductivity predicted within the Debye-Hückel-Onsager theory
(expression recalled in the caption of Fig. 1).

IV. CONDUCTIVITY: COMPARING RESULTS FROM
LINEARIZED SDFT AND MSA

The electrostatic and hydrodynamic contributions are plot-
ted on Fig. 1 for two simple monovalent electrolytes: NaCl
and KCl. As noted in Ref. 27, the electrostatic and hydrody-
namic contributions to conductivity diverge (to −∞ and +∞,
respectively) when the concentration of the electrolyte is too
high. In order to discuss the accuracy of the linearized SDFT
approach, we compare the behaviors of these two contribu-
tions with earlier analytical results, that relied on the Mean
Spherical Approximation (MSA).

On Fig. 1, we plot the conductivity obtained from lin-
earized SDFT [Eqs. (15)–(17), see Table I for the numerical
parameters] and the conductivity obtained from MSA (the un-
derlying assumptions and the derivation of the expressions of
κel and κhyd are given in Section II C). For both theories, we

electrolyte D+
0 (10−9m2 · s−1) D−

0 (10−9m2 · s−1) a (Å) rs (Å)
LiCl 1.03 2.03 2.57 –
NaCl 1.33 2.03 2.83 1.45
KCl 1.96 2.03 3.19 –

TABLE I. Summary of parameter values for the different electrolytes
considered in the manuscript.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

n (mol L−1)

0.5

0.6

0.7

0.8

0.9

1.0

κ
/κ

0

NaCl

0.0 0.5 1.0 1.5 2.0 2.5 3.0

n (mol L−1)

0.6

0.7

0.8

0.9

κ
/κ

0

KCl

lin. SDFT: 1 + κhyd/κ0

lin. SDFT: 1 + κel/κ0

lin. SDFT: 1 + κhyd/κ0 + κel/κ0

MSA: 1 + κhyd/κ0

MSA: 1 + κel/κ0

MSA: 1 + κhyd/κ0 + κel/κ0

BD hydro

BD no hydro

exp

Debye-Hückel-Onsager

FIG. 1. Comparison between linearized SDFT and MSA. Conductivity of NaCl (left) and KCl (right) electrolytes, rescaled by their value
at infinite dilution κ0, obtained from linearized SDFT (solid lines) and MSA (dashed lines). For KCl, we show results from Brownian
dynamics simulations17 (symbols), with and without hydrodynamics. The value of the conductivity is decomposed as the sum of its value at
infinite dilution, an electrostatic contribution and a hydrodynamic contribution [Eq. (15)]. For both electrolytes, we also show results from
experimental measurements of the conductivity (stars)61. Finally, we represent the classical result from the Debye-Hückel-Onsager approach1

(dotted lines), which reads: κ
κ0

= 1−
[ √

2
3
√

π

ℓ
1/2
B

ηµ̄ +
2
√

π(
√

2−1)
3 ℓ

3/2
B

]

n1/2.

plot separately the different contributions, and several com-
ments follow: (i) the main comment is that, although the total

expression of the conductivity obtained from MSA and lin-
earized SDFT appear to give very similar numerical values,
the behavior of their hydrodynamic and electrostatic contribu-

tions are qualitatively and quantitatively different. In partic-
ular, the hydrodynamic contribution predicted by SDFT ap-
pear to be non-monotonic. This observation is not in agree-
ment with Brownian dynamics simulations, which can be per-
formed with and without hydrodynamic interactions, in or-
der to decipher the role of the electrostatic and hydrodynamic
contributions (simulation results obtained in the case of KCl
electrolyte are also shown on Fig. 1). In addition, the electro-
static contribution is much more important in linearized SDFT
than in MSA, but both effects seem to compensate; (ii) when
compared to experimental measurements, the full expression
obtained from linearized SDFT (blue solid lines) does not im-
prove upon the MSA prediction (blue dashed lines). This ob-
servation prompted us to look for different ways to improve
linearized SDFT in this context. In the next Section, we will
see how the treatment of hydrodynamic interactions can be re-
fined. At the end of the manuscript, we will discuss the role
played by the details of the modified potential on the outcome
of the linearized SDFT calculations.

V. ACCOUNTING FOR THE FINITE SIZE OF THE IONS
IN THE HYDRODYNAMIC EQUATIONS

The result for the hydrodynamic contribution to the conduc-
tivity, given in Eq. (17), is obtained by assuming that, from
the point of view of hydrodynamics, the ions are point-like, so

that their finite size only plays a role in the modified electro-
static potential. Indeed, denoting by δu and δρ = δn+−δn−
the small perturbations around homogeneous states, the hy-
drodynamics equations read

η∇2δu= ∇δ p− eδρE0, (48)

∇ ·δu= 0. (49)

In the simplest possible description, their solutions are found
assuming that the ions are pointlike, and neglecting possible
boundary conditions at their surface. From a technical point
of view, this is achieved by using the Oseen tensor, defined as

Oi j(r) =
1

8πη

(

δi j

r
+

rir j

r3

)

, (50)

which is the Green’s function to Eqs. (48) and (49) un-
der these assumptions. The Fourier transform of this tensor
reads62

Õi j(k) =
1

ηk2

(

δi j −
kik j

k2

)

, (51)

and the solution of Eqs. (48) and (49) is26:

δ ũ= eÕ ·E0δ ρ̃(k), (52)

=
eE0

ηk2

(

δi j −
k2

x

k2

)

δ ρ̃(k). (53)

The expression of the hydrodynamic contribution to the con-
ductivity, given in Eq. (17), follows from this expression.

This calculation can be improved by assuming that, from
the point of view of hydrodynamics, the ions actually have a
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finite radius rs (the Stokes radius), and that the solvent has a
no-slip boundary condition at the surface of the ions: u(r =
rs) = 0. Under these assumptions, the Green’s function of
Eqs. (48) and (49) is now the Rotne-Prager tensor, whose
expression reads, in real space63

Ri j(r) =
1

6πηrs

{

3
4

( rs

r

)

(

δi j

r
+

rir j

r3

)

+
1
2

( rs

r

)3(

δi j −3
rir j

r2

)

}

. (54)

In principle, the anions and the cations have different hydro-
dynamic radii, so that the expression of the Rotne-Prager ten-
sor would actually depend on the considered pair. However,
we assume for simplicity that there is only one radius involved
in the Rotne-Prager tensor, which is a reduced Stokes radius
rs = 1/(6πηµ̄) (see Table I for numerical values). Note that
this keeps the hydrodynamic description consistent with the
modified potential given in Eq. (13), in which one assumes
that the cutoff radius a is the same for all the ion pairs. The
Fourier transform of the Rotne-Prager tensor can be deduced
quite easily from that of the Oseen tensor by noting that63:

∇2
(

δi j

r
+

rir j

r3

)

= 2
(

δi j

r3 −3
rir j

r5

)

, (55)

which yields64

R̃i j(k) =
1
η

(

δi j −
kik j

k2

)(

1
k2 − r2

s

3

)

. (56)

The expression of the perturbation to the velocity field in-
duced by the displacement of the ions is now δ ũ = eR̃ ·
E0δ ρ̃(k), and the result from κhyd now reads:

κhyd =− 2
π

κ0rs

λD

∫

2πλD
rs

0
dx

(

1− r2
s x2

3λ 2
D

) cos ax
λD

cos ax
λD

+ x2 . (57)

Note that introducing the Rotne-Prager tensor makes the x-
integral (i.e. the k-integral since we use the change of variable
x = kλD) divergent at large x. This is regularized by introduc-
ing an upper cutoff which corresponds to the size of the ion.
We show on Fig. 2 the linearized SDFT theory corrected by
using the Rotne-Prager tensor instead of the Oseen tensor, for
NaCl electrolyte. Interestingly, it seems like introducing this
no-slip boundary condition for the solvent at r = rs regularizes
the hydrodynamic contribution, or at least shifts its divergence
to higher concentrations. At this point, it would be tempting
to account for higher-order corrections in the treatment of the
hydrodynamic interactions. Indeed, the multi-body hydrody-
namic tensors, that allows one to go beyond the simple Rotne-
Prager treatment and to account for multi-body hydrodynamic
interactions, are known analytically63. However, this would
be inconsistent with the treatment of the other interactions be-
tween the ions, which are only accounted for at the pair level
in the usual DK framework [Eq. (1)].

0.0 0.5 1.0 1.5 2.0 2.5 3.0

n (mol L−1)

−0.3

−0.2

−0.1

0.0

κ
h
y
d
/κ

0

lin. SDFT, Oseen

lin. SDFT, Rotne-Prager

MSA

FIG. 2. Hydrodynamic description at the Rotne-Prager level.

Comparison of the different hydrodynamic contributions to the con-
ductivity of NaCl electrolyte, rescaled by their value at infinite di-
lution κ0, obtained from SDFT with the Rotne-Prager tensor (solid
lines, Eq. (57)), linearized SDFT with the Oseen tensor (dash-dotted
lines, Eq. (17)) and MSA (dashed lines, see Section II C for details).

VI. SELF-DIFFUSION COEFFICIENT

A. General equations

We now turn to another observable, namely the self-
diffusion coefficient of a tagged ion in the electrolyte. To
compute this quantity, it is not necessary to assume that the
electrolyte is submitted to a constant electric field force as in
the calculation of the conductivity. Without loss of general-
ity, our goal is to calculate the self-diffusion coefficient of the
first cation and denote its position by R(t) ≡ r+1 (t). The po-
sitions of the ions are still assumed to obey the overdamped
Langevin equations given by Eqs. (1)–(4) (with E0 = 0). We
now define the densities

n′+(r, t) =
N

∑
a=2

δ (r−r+a (t)), (58)

n′−(r, t) =
N

∑
a=1

δ (r−r−a (t)). (59)

Note that these quantities slightly differ from the densities de-
fined earlier, as the contribution from the ion that plays the
role of a tracer has been extracted from the summation. In
what follows, we drop the ‘primes’ to ease the notation. The
equation of motion for a cation (other than the tracer) then
reads

d
dt
r+a (t) = u(r+a (t))+

√

2D+η
+
a (t)

−µ+∇

∫

dr′ Vco(r
+
a (t)−r′)[n+−n−+δ (r′−R(t))],

(60)
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and that of an anion reads

d
dt
r−a (t) = u(r−a (t))+

√

2D−η
−
a (t)

−µ−∇

∫

dr′ Vco(r
−
a (t)−r′)[−n++n−−δ (r′−R(t))],

(61)

where we denote by Vco the modified Coulomb potential:

Vco(r) =
e2

4πε0εr
θ(r−a). (62)

We define ρ = n+−n−, and we summarize below the main
equations that constitute the starting point of our calculation.
The evolution equations for the densities n+ and n− are ob-
tained as before with Ito calculation25

∂tnα +∇ ·jα = 0, (63)

with the fluxes:

jα = nαu−Dα ∇nα −
√

2Dα nαζα

−µα zα nα

∫

dr′ ∇Vco(r−r′)[ρ(r′, t)+δ (r′−R(t))],

(64)

where z± = ±1, and where the noises ζα have zero average,
and correlations given by Eq. (9). The equation of motion of
the tracer particle reads

d
dt
R(t) = u(R(t))+

√

2D+η
+
0 (t)

−µ+∇

∫

dr′ Vco(R(t)−r′)ρ(r′, t), (65)

with 〈η+
0 (t)〉 = 0 and 〈η+

0,i(t)η
+
0, j(t

′)〉 = δi jδ (t − t ′). The ve-
locity field of the solvent, denoted by u, obeys the following
hydrodynamic equations (Stokes equation and incompress-
ibility condition):

∇ ·u= 0 (66)

η∇2u= ∇p−δ (r−R(t))
∫

dr′∇Vco(r−r′)ρ(r′, t)

−ρ(r, t)
∫

dr′ ∇Vco(r−r′)[ρ(r′, t)+δ (r′−R(t))] (67)

where p is the pressure field in the solvent.
These equations are then linearized using the perturbative

expansions:

n± = n+δn±, (68)

ρ = n+−n− = δn+−δn−, (69)

u= δu, (70)

p = p0 +δ p. (71)

Note that, although the densities n+ and n− do not correspond
to the exact same number of ions (N−1 for the cation density
and N for the anion density), we still linearize them around
the same constant value n = N/V , which is a valid approxi-
mation in the thermodynamic limit (N → ∞ and V → ∞ with

fixed number density n = N/V ). At leading order in these per-
turbations, we get the following evolution equations for the
densities δn+ and δn− in Fourier space

∂tδ ñα =−Dα k2δ ñα +
√

2Dα nk · ζ̃α(k)

−µα nzα k2Ṽco(k)ρ̃ −µα nzα k2Ṽco(k)e−ik·R(t). (72)

Interestingly, we observe that the velocity field does not ap-
pear anymore in the equations for the density fields δ c̃α . This
is due to the incompressibility condition:

∇ · (nαu) = ∇ · [(n+δnα)δu]≃ n∇ ·δu= 0 (73)

The hydrodynamic equations now read:

∇ ·u= 0 (74)

ηk2δ ũ=−ikδ p̃ (75)

At leading order, the forces exerted by the ions on the sol-
vent vanish, and the effect of solvent flows on the dynamics
of the ions is then negligible. Indeed, the interaction terms in
the Stokes equation vanish because they either involve con-
tributions of order δρ2 or terms of order δρ × δR(t), which
are negligible since |δR(t)| ∼ 1/V where V is the volume of
the system. Therefore, the choice of the right description for
boundary conditions at the surface of the ions, that was dis-
cussed in Section V, is here irrelevant .

We finally end up with the set of equations (with α =±1):

d
dt
R(t) = +

√

2D+η
+
0 (t)

−µ+∇

∫

dr′Vco(R(t)−r′)[δn+(r
′, t)−δn−(r

′, t)], (76)

∂tδ ñα =−Dα k2δ ñα +
√

2Dα nk · ζ̃α(k)

−µα nzα k2Ṽco(k)(δ ñ+−δ ñ−)−µα nzα k2Ṽco(k)e−ik·R(t),
(77)

that fully determine the dynamics of the tagged ion and that
of the ionic density fields within the linearized approximation.
The counterpart of these equations when the tracer is an anion
can be obtained straightforwardly.

B. Path-integral formulation

The first equation [Eq. (76)] can be seen as a simple
Langevin equation that describes the motion of the tracer par-
ticle. However, it is not easy to compute the associated effec-
tive diffusion coefficient. Indeed, this equation of motion in-
volves on its rhs a functional of the density fields δnα , whose
evolution equations [Eq. (77)] also depends on the tracer po-
sition R(t). We then end up with a set of equations which are
coupled nonlinearly.

A way to treat this coupling was proposed by Dean and
Démery65, who proposed a perturbative path-integral method,
to compute the effective diffusion coefficient of the tracer at
leading order in the coupling between the tracer and a fluc-
tuating environment. Here, the situation is more compli-
cated, because the tracer interacts with two fields at the same
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time (the density field of cations and that of anions). We re-
cently extended the Dean-Démery method to compute pertur-
batively the diffusion coefficient of a tracer coupled to multi-
ple fields31.

We apply this method to the present case and obtain the fol-
lowing expression for the diffusion coefficient of the tagged
cation rescaled by its bare value D+ (the formula below ap-
plies to both situations where the tracer is a cation or an an-
ion):

Deff,+

D+
= 1− ∑

α,β=±

Dαβ

D+
(78)

with

Dαβ

D+
=

µ+µβ

d

∫

ddk

(2π)d
k4nzαṼ 2

co ∑
γ

zγ

× ∑
ν=±1

2c
(ν)
αβ

(D+k2 +Λν)2



δγβ +(D+k2 −Λν) ∑
ε=±1

c
(ε)
γβ

Λν +Λε





(79)

where we defined the matrices,

m= k2
(

µ+(kBT +nṼco) −µ+nṼco
−µ−nṼco µ−(kBT +nṼco)

)

, (80)

c(±) =
1
2s

(

±m++∓m−−+ s ±2m+−
±2m−+ ∓m++±m−−+ s

)

, (81)

the eigenvalues

Λ± =
m+++m−−

2
± 1

2

√

(m++−m−−)2 +4m+−m−+,

(82)
and the quantity

s =
√

(m++−m−−)2 +4m+−m−+. (83)

In order to get a more compact expression of the diffusion
coefficient, it is convenient to introduce a dimensionless inter-
action potential Ũ(k) = nṼco(k)/kBT . Relying on the fact that
the integrand in the k-integral from Eq. (79) is spherically
symmetric to perform the angular integration, specifying this
expression to the case d = 3, we get the following formula,
which applies to both situations where the tracer is a cation or
an anion (D0 denotes the corresponding bare diffusion coeffi-
cient):

Deff

D0
= 1−

∫ ∞

0
dk

32k2

π2n
(3+∆)(3∆Ũ +2∆+Ũ +2)∆Ũ2

× [((Ũ +3)+(Ũ +1)∆)2 −S2]−2[((Ũ +1)2(∆+1)2 −S2]−1

(84)

where we introduced the shorthand notation

S =
√

(∆+1)2Ũ2 +(∆−1)2(2Ũ +1), (85)

and where ∆ = D−
0 /D+

0 (resp. D+
0 /D−

0 ) if the tracer is a cation
(resp. an anion). Eq. (84) provides an explicit and general
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ā = 0

ā = 0.1

ā = 0.2

ā = 0.5

FIG. 3. Self-diffusion: case where cations and anions have the

same mobility. (a) Self-diffusion coefficient as a function of the
square-root concentration n1/2 as obtained from the ‘full expression’
[Eq. (87)] and the ‘simplified expression’ [Eq. (88)]: the latter is
obtained by neglecting the effect of the tracer on the bath. In both
cases, we take ā = a/ℓB = 0.3. (b) Self-diffusion coefficient as a
function of the square-root concentration n1/2 as given by Eq. (87),
for several values of the rescaled cutoff value ā. For ā = 0, we used
the expression Eq. (89).

expression for the effective diffusion coefficient of a tagged
ion in the electrolyte, and it is the main result of this Sec-
tion. Although the k-integral can be divergent depending on
the analytical expression of the interaction potential31,65, we
will focus on the truncated potential given in Eq. (13), which
does not cause any small-k or large-k divergence, and which
yields the following rescaled potential ũ:

Ũ(k) = 4πnℓB

cos(ka)

k2 . (86)

Consequently, the general expression given in Eq. (84) only
depends on three parameters: the electrolyte concentration n,
the cutoff of the truncated potential a (which will typically be
measured in units of the Bjerrum length, setting the dimen-
sionless parameter ā = a/ℓB), and the ratio between the bare
diffusion coefficient ∆. We now consider a few limit cases of
Eq. (84).

C. Case where anions and cations have the same mobility

We first focus on the particular case (which applies to KCl)
where anions and cations have the same mobility. In this situ-
ation, we get the following expression for the effective diffu-
sion coefficient of the tracer, which is very simple and explicit:

Deff

D0
= 1−

∫ ∞

0
dk

8k2

3
nℓ2

B cos2(ka)

×
{

[4π cos(ka)ℓBn+ k2][8π cos(ka)ℓBn+ k2]
}−1

. (87)

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
65

53
3



Accepted to J. Chem. Phys. 10.1063/5.0165533

On analytical theories for conductivity and self-diffusion in concentrated electrolytes 11

This expression is plotted on Fig. 3(a): as expected, the self-
diffusion coefficient of an ion in the electrolyte is a decreasing
function of the concentration.

A frequent simplification of the derivation presented in Sec-
tion VI B consists in neglecting the effect of the tracer on
the dynamics of the density fields. This is referred to as
the ‘passive case’ in Ref. 65), and has been used in differ-
ent contexts66–69. Concretely, this is equivalent to neglecting
the last term in the rhs of Eq. (77). This yields the following
expression for the effective diffusion coefficient of the tracer:

Deff

D0
= 1+

∫ ∞

0
dk

32πk2

3
n2ℓ3

B cos3(ka)

×
{

[4π cos(ka)ℓBn+ k2]2[8π cos(ka)ℓBn+ k2]
}−1

(88)

It is interesting to note that this simplified version actually
predicts an unphysical behavior for the diffusion coefficient,
which becomes an increasing function of the overall concen-
tration, and therefore exceeds its bare value as concentration
increases (Fig. 3(a)). This observation indicates that this sim-
plification should be used with caution.

D. Case of a vanishing interaction radius (a → 0)

We now consider the limit of vanishing interaction radius
(a → 0) in Eq. (84). In this situation, the integral over k can
be computed exactly, and yields:

lim
a→0

Deff

D0
= 1− 2

√
π

3

(

√
2−
√

1+3∆

2(1+∆)

)

√

nℓ3
B. (89)

Interestingly, this coincides exactly with the limiting law pre-
dicted by Onsager55,70.

In order to investigate the accuracy of this simplified ex-
pression, we compare it to results obtained from Eq. (84) with
a fixed value of ∆ and several values of the rescaled cutoff
value ā = a/ℓB (Fig. 3(b)). Although the truncated potential
is very simplified, we observe that introducing a cutoff value a

below which the potential vanishes has a significant impact on
the self-diffusion coefficient of the tracer. A similar conclu-
sion was reached when comparing the conductivity predicted
by the Debye-Hückel-Onsager theory with the results from
SDFT26.

E. General case and comparison to mode coupling
theory/MSA

We finally confront the result we obtained from linearized
SDFT [Eq. (84)] with earlier results obtained from a combina-
tion of mode-coupling theory (MCT) and the mean spherical
approximation (MSA)7,10 . We consider three electrolytes:
LiCl, NaCl and KCl. As input to our analytical theory, we
use the values of the bare diffusion coefficients given in Ref.
10 and the values of the cutoff distances for the modified
Coulomb potential given in Ref. 26. These values are re-
called in Table I. Results are shown on Fig. 4. We find that,

for these three electrolytes, the self-diffusion coefficients esti-
mated from linearized SDFT calculations are very close to the
MSA results. We may attribute this to the fact that the hydro-
dynamic contributions, that appear to be wrongly estimated
by linearized SDFT (at least when it comes to the conductiv-
ity, see Section V) do not have any effect on the self-diffusion
coefficient at this order of approximation. A similar property
held within the MSA/MCT treatment mentioned above.

VII. IMPORTANCE OF THE CHOICE OF THE MODIFIED
POTENTIAL

So far, we considered the modified Coulomb potential given
in Eq. (13), which is obtained by truncating the Coulomb
interaction below a radius r = a and setting the interaction
energy to 0 below this cutoff. In this Section, we will show
how the modifications of this potential, by changing the nature
of the short-range part, can affect the observables we have
considered so far, namely conductivity and self-diffusion. For
this purpose, we rewrite the potential vαβ (r) under the form:

vαβ (r) = zα zβVco(r)+uαβ θ(a− r). (90)

The first term corresponds to the truncated potential studied
so far, the second term is a step ‘repulsion’ term, written as
a simple rectangular function whose magnitude can be con-
trolled with the parameter uαβ (uαβ = 0 corresponds to the
case studied so far, and is represented on Fig. 5). In what fol-
lows, we study different possible choices for this parameter.

A. Conductivity

A first option consists in assuming that the repulsion pa-
rameter uαβ depends on the considered pair. More precisely,
we make the choice:

uαβ = zα zβ u0, (91)

in such a way that uαβ = u0 (resp. −u0) if both ions have
the same charge (resp. opposite charges). Although this is
not the most physical choice (short-range repulsion is usually
modeled by a charge-independent contribution), this choice
is motivated by the fact that it can be used to make the in-
teraction potential vαβ continuous at the cutoff value r = a,
with the choice u0 = ℓB/a. The case where the short-range
contribution is charge-independent (uαβ = u0) is discussed in
Appendix B.

The Fourier transform of the modified potential now reads

ṽαβ (k) =
kBT

2nλ 2
Dk2

[

coska+
u0

ℓBk
(sinka− kacoska)

]

. (92)

It is straightforward to show that the corresponding expres-
sions of κel and κhyd are obtained from Eqs. (16) and Eqs.
(17) by making the substitution:

cos
ax

λD

→ cos
ax

λD

+
λDu0

xℓB

(

sin
ax

λD

− ax

λD

cos
ax

λD

)

(93)
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FIG. 4. Self-diffusion coefficients of ions in the electrolytes LiCl, NaCl and KCl: results obtained from linearized SDFT (Eq. (84), solid
lines) and from the MCT/MSA calculation (Ref. 7, symbols). Dashed lines: Onsager limiting law [Eq. (89)].
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FIG. 5. Modified interaction potentials: as defined in Eq. (90), for
different choices of the parameter uαβ . The last case, where uαβ =
u0 for all pairs (α,β ), is discussed in Appendix B.

Importantly, the integrals involved in the expressions of κel
and κhyd diverge in the limit u0 → ∞, which is consistent with
the general idea that linearized SDFT cannot account for hard-
core interactions. We show on Fig. 6 the influence of the
value of u0 on the electrostatic contribution to the conductiv-
ity. Starting from u0 = 0, which corresponds to the previ-
ous situation, and increasing u0 up to the value (ℓB/a)kBT ,
where the modified potential becomes continuous at r = a,
we observe that the electrostatic contribution gets closer and
closer to the value predicted by MSA. When u0 ≫ kBT , the
magnitude of the electrostatic contribution tends to diverge,
as can be predicted from its analytical expression. Therefore,
it seems that there exists an optimal value for the parameter
u0, that significantly improves the estimates from linearized
SDFT when compared to earlier analytical schemes. A sim-
ilar observation can be made about the hydrodynamic contri-

bution, which appears to be closer to predictions from MSA
calculations when u0 is in the range 1−2 kBT (Fig. 6).

B. Self-diffusion

The effect of the value of the repulsion parameter on self-
diffusion can be studied in a similar way, by modifying the
results obtained in Section VI. Technically, in Eq. (84), we
replace the potential ũ by the expression given in Eq. (92).
We observe that, just like the conductivity, the self-diffusion
coefficient is highly sensitive to the value of the repulsion pa-
rameter, and that its choice significantly affect the quality of
the predictions from linearized SDFT when compared to re-
sults from the MCT-MSA framework (Fig. 7).

VIII. CONCLUSION

In this work, we discussed several analytical theories for the
conductivity and self-diffusion in concentrated electrolytes.
Among them, linearized SDFT has been used quite exten-
sively during the past years, and it allowed very successful
predictions in the limit where electrolytes are very dilute. Re-
cently, this analytical method was extended to study concen-
trated electrolytes, in which the short-range repulsion between
ions plays a predominant role. A small-distance truncation of
the Coulomb potential, which is tractable within linearized
SDFT, has been put forward in order to account for short-
range effects in a very simple fashion.

We showed that, within this approximation, the output
of linearized SDFT contradicts earlier analytical (Mean-
Spherical Approximation) and numerical (Brownian dynam-
ics) estimates of the conductivity of concentrated electrolytes.
However, the linearized SDFT treatment can be improved in
several ways: (i) the hydrodynamic effects can be accounted
at the Rotne-Prager level rather than at the Oseen tensor,
which regularizes the hydrodynamic contribution to conduc-
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FIG. 6. Influence of the repulsion parameter on the conductivity. Electrostatic (left) and hydrodynamic (right) contributions to conductivity,
with the modified Coulomb potential given in Eq. (90), and the repulsive contribution from Eq. (91), for different values of the repulsion
parameter u0 (solid lines). The value u0 = 2.52 corresponds to u0 = a/ℓB. Dashed lines: results from MSA calculations [Eqs. (44) and (28)].

0.0 0.5 1.0

n1/2 (mol1/2 L−1/2)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
eff
/D

0

Na
+

u0 = 0

u0 = 1

u0 = 2.52

u0 = 4

u0 = 6

MSA

0.0 0.5 1.0

n1/2 (mol1/2 L−1/2)

0.7

0.8

0.9

1.0

Cl
−

u0 = 0

u0 = 1

u0 = 2.52

u0 = 4

u0 = 5

MSA

FIG. 7. Influence of the repulsion parameter on self-diffusion.

Self-diffusion coefficients of ions in NaCl electrolyte, with the mod-
ified Coulomb potential given in Eq. (90), and the repulsive contribu-
tion from Eq. (91), for different values of the repulsion parameter u0
(solid lines). The value u0 = 2.52 corresponds to u0 = a/ℓB. Dashed
lines: results from MSA/MCT calculations.

tivity, or which at least shifts any unphysical divergence to
higher densities; (ii) the short-range interaction energy be-
tween ions, which was set to zero in earlier treatments, can
instead be set to a finite value, which may indeed improve the
validity of the results by Avni et al.26 when compared to other
analytical schemes such as MSA. Finally, we also computed
the self-diffusion coefficient of ions within SDFT: as opposed
to the conductivity, it appears that the dependence of this ob-
servable over ionic concentrations can be captured more easily
by the truncated interaction, but that it is still highly dependent

on the short-range details of the potential.
In conclusion, linearized SDFT is a particularly appealing

tool to compute transport and diffusion properties in fluctu-
ating systems of interacting particles, given its relative sim-
plicity and ability to yield explicit expressions. However, we
emphasize that, in spite of its advantages, it should be handled
with caution, in particular when it comes to describing effects
dominated by the short-range interactions between particles.
Earlier analytical schemes, which often treat these interactions
in a more thorough manner, should be used as a guide for the
approximations that are implemented within linearized SDFT.
Finally, we emphasize that computational approaches that rely
on an implicit or coarse-grained representation of the solvent,
and which often correspond to the same level of description
than SDFT, constitute a very fertile field of research71–73, that
usefully complement analytical descriptions.
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Appendix A: Direct correlation functions under the Mean
Spherical Approximation

In this Appendix, we recall the expression of the direct cor-
relation functions that can be derived under the Mean Spher-
ical Approximation (see Section III A for details and refer-
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ences). These functions can be written under the form:

c̃αβ (k) =−
4πzα zβ ℓB

k2 + c̃s
αβ (k). (A1)

While the random phase approximation consists in assuming
c̃s

αβ (k) = 0, the mean spherical approximation yields:

c̃s
αβ (k) =

4πa3

K6 [24dαβ −2bαβ K2 + eαβ K4

− [24dαβ −2(bαβ +6dαβ )K
2

+(aαβ +bαβ +dαβ + eαβ )K
4]cosK

+[−24dαβ K +(aαβ +2bαβ +4dαβ )K
3]sinK],

(A2)

where we use the shorthand notation K = ka for the dimen-
sionless wavevector, and where we define:

aαβ =− (1+2η)2

(1−η)4 −2B

(

a

λD

)

ℓB

a
zα zβ , (A3)

bαβ =−6η(1+η/2)2

(1−η)4 +

[

B

(

a

λD

)]2 ℓB

a
zα zβ , (A4)

dαβ =−η(1+2η)2

2(1−η)4 , (A5)

eαβ =
ℓB

a
zα zβ , (A6)

B(x) =
x2 + x− x

√
1+2x

x2 , (A7)

with η = π
6 a3(n++n−) the total packing fraction.

Appendix B: Alternative modification of the Coulomb
potential

In this Appendix, we consider an alternative modification
of the Coulomb potential, and assume that the repulsive part

does not depend on the charge of the ion (uαβ = u0 for all pairs
α , β ). We actually consider the following general expression
for the pair potential:

vαβ (r) = zα zβ
e2

4πε0εr
θ(r−a)+ vrep(r), (B1)

where the repulsive part can first remained unspecified. With
this choice, the symmetry relation V++ =−V+− does not hold
anymore. Consequently, the field-field correlations (which
are found as the solutions of the linearized DK equations for
the cation and anion density fields) have different symmetries
than in the situations considered before. First, we find that,
under these conditions, the repulsive part of the potential vrep
has no influence on the hydrodynamic contribution. Therefore
it is sill given by Eq. (17).

Second, we find the following expression for the electro-
static contribution:

κel =−2eµ̄

∫

dk
(2π)3 n2k2

z (ṽco(k)− ṽrep(k))
2

×
[

4k2(
1
2
+nṽco(k))(

1
2
+nṽrep)[1+n(ṽco + ṽrep)]

]−1

(B2)

where we introduced ṽco(k) = Ṽco(k)/kBT and ṽrep(k) =
Ṽrep(k)/kBT . In order to get a more explicit expression, we
write the repulsive part as before, under the form Vrep(r) =
kBTu0θ(a− r). We get the following expression for the elec-
trostatic contribution:

κel =− 1
3π

κ0ℓB

λD

∫ ∞

0
dx

x2
(

cos ax
λD

− u0λD

ℓBx
ϕ
(

ax
λD

))2

(

x2 + cos ax
λD

)(

1+ u0λD

ℓBx3 ϕ
(

ax
λD

))(

x2 + 1
2 cos ax

λD
+ u0λD

2ℓBx
ϕ
(

ax
λD

)) , (B3)

where we introduced the shorthand notation ϕ(X) = sinX −
X cosX . We show on Fig. 8 the electrostatic contribution to
conductivity as a function of the electrolyte concentration, for
different values of the parameters u0. As opposed to the case
considered in Section VII, it is difficult to improve the predic-
tions from linearized SDFT with this choice of the repulsive
contribution.

1L. Onsager, “Report on a revision of the conductivity theory,” Trans. Fara-
day Soc. 23, 341–349 (1927).

2H. Falkenhagen and W. Ebeling, “Statistical derivation of diffusion equa-
tions according to the Zwanzig method,” Phys. Lett. 15, 131 (1965).

3H. Falkenhagen, W. Ebeling, and W. D. Kraeft, “Mass Transport Proper-
ties of Ionized Dilute Electrolytes,” in Ionic Interactions, Vol. 1, edited by
S. Petrucci (Academic Press, New York, 1971) Chap. 2.

4O. Bernard, W. Kunz, P. Turq, and L. Blum, “Conductance in electrolyte
solutions using the mean spherical approximation,” Journal of Physical
Chemistry 96, 3833–3840 (1992).

5O. Bernard, W. Kunz, P. Turq, and L. Blum, “Self-Diffusion in Electrolyte
Solutions Using the Mean Spherical Approximation,” J. Phys. Chem. 96,
398–403 (1992).

6A. Chhih, P. Turq, O. Bernard, J. M. G. Barthel, and L. Blum, “Trans-

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
65

53
3



Accepted to J. Chem. Phys. 10.1063/5.0165533

On analytical theories for conductivity and self-diffusion in concentrated electrolytes 15

0.0 0.5 1.0 1.5 2.0 2.5 3.0
n (M)

−1.0

−0.5

0.0

0.5

1.0

1
+
κ
el
/κ

0

u0 = 0

u0 = 1

u0 = 2.52

u0 = 4

u0 = 6

MSA

FIG. 8. Influence of the repulsion parameter on the conduc-

tivity. Electrostatic contribution to conductivity, with the modified
Coulomb potential given in Eq. (B1) for different values of the re-
pulsion parameter u0 (solid lines). The value u0 = 2.52 corresponds
to u0 = a/ℓB. Dashed line: results from MSA [Eq. (44)].

port coefficients and apparent charges of concentrated electrolyte solu-
tions - Equations for practical use,” Berichte der Bunsengesellschaft für
physikalische Chemie 98, 1516–1525 (1994).

7J. F. Dufrêche, O. Bernard, S. Durand-Vidal, and P. Turq, “Analytical theo-
ries of transport in concentrated electrolyte solutions from the MSA,” Jour-
nal of Physical Chemistry B 109, 9873–9884 (2005).

8A. Chandra and B. Bagchi, “Ion conductance in electrolyte solutions,” Jour-
nal of Chemical Physics 110, 10024–10034 (1999).

9A. Chandra and B. Bagchi, “Beyond the classical transport laws of electro-
chemistry: New microscopic approach to ionic conductance and viscosity,”
Journal of Physical Chemistry B 104, 9067–9080 (2000).

10J. F. Dufrêche, O. Bernard, P. Turq, A. Mukherjee, and B. Bagchi, “Ionic
self-diffusion in concentrated aqueous electrolyte solutions,” Phys. Rev.
Lett. 88, 095902 (2002).

11C. Contreras Aburto and G. Nägele, “A unifying mode-coupling theory for
transport properties of electrolyte solutions. I. General scheme and limiting
laws,” Journal of Chemical Physics 139, 134109 (2013).

12C. C. Aburto and G. Nägele, “A unifying mode-coupling theory for trans-
port properties of electrolyte solutions. II. Results for equal-sized ions elec-
trolytes,” Journal of Chemical Physics 139, 134110 (2013).

13P. Turq, F. Lantelme, and H. L. Friedman, “Brownian dynamics: Its appli-
cation to ionic solutions,” The Journal of Chemical Physics 66, 3039–3044
(1977).

14J. Trullàs, A. Giró, and J. A. Padró, “Langevin dynamics study of NaCl
electrolyte solutions at different concentrations,” The Journal of Chemical
Physics 93, 5177–5181 (1990).

15W. Kunz, P. Calmettes, and P. Turq, “Structure of nonaqueous electrolyte
solutions by small-angle neutron scattering, hypernetted chain, and Brow-
nian dynamics,” The Journal of Chemical Physics 92, 2367–2373 (1990).

16M. Canales and G. Sesé, “Generalized Langevin dynamics simulations of
NaCl electrolyte solutions,” Journal of Chemical Physics 109, 6004–6011
(1998).

17M. Jardat, O. Bernard, P. Turq, and G. R. Kneller, “Transport coefficients of
electrolyte solutions from Smart Brownian dynamics simulations,” Journal
of Chemical Physics 110, 7993–7999 (1999).

18G. Batôt, V. Dahirel, G. Mériguet, A. A. Louis, and M. Jardat, “Dynamics
of solutes with hydrodynamic interactions : Comparison between Brownian
dynamics and stochastic rotation dynamics simulations,” Phys. Rev. E 88,
043304 (2013).

19V. Dahirel, O. Bernard, and M. Jardat, “Can we describe charged nanopar-
ticles with electrolyte theories? Insight from mesoscopic simulation tech-

niques,” Journal of Molecular Liquids 303, 111942 (2020).
20T. Hoang Ngoc Minh, J. Kim, G. Pireddu, I. Chubak, S. Nair, and B. Roten-

berg, “Electrical noise in electrolytes: a theoretical perspective,” Faraday
Discuss. , – (2023).

21D. Lesnicki, C. Y. Gao, B. Rotenberg, and D. T. Limmer, “Field-Dependent
Ionic Conductivities from Generalized Fluctuation-Dissipation Relations,”
Physical Review Letters 124, 206001 (2020).

22D. Lesnicki, C. Y. Gao, D. T. Limmer, and B. Rotenberg, “On the molec-
ular correlations that result in field-dependent conductivities in electrolyte
solutions,” Journal of Chemical Physics 155 (2021), 10.1063/5.0052860,
arXiv:2103.13907.

23C. W. Gardiner, Handbook of Stochastic Methods (Springer, 1985).
24K. Kawasaki, “Stochastic model of slow dynamics in supercooled liquids

and dense colloidal suspensions,” Physica A: Statistical Mechanics and its
Applications 208, 35–64 (1994).

25D. S. Dean, “Langevin equation for the density of a system of interacting
Langevin processes,” J. Phys. A: Math. Gen. 29, L613 (1996).

26Y. Avni, R. M. Adar, D. Andelman, and H. Orland, “Conductivity of Con-
centrated Electrolytes,” Physical Review Letters 128, 98002 (2022).

27Y. Avni, D. Andelman, and H. Orland, “Conductance of concentrated elec-
trolytes: multivalency and the Wien effect,” J. Chem. Phys. 157, 154502
(2022).

28R. M. Fuoss and L. Onsager, “Conductance of unassociated electrolytes,”
J. Phys. Chem. 61, 668 (1957).

29R. M. Fuoss and L. Onsager, “The Conductance of symmetrical elec-
trolytes. I. Potential of total force,” J. Phys. Chem. 66, 1722 (1962).

30R. M. Adar, S. A. Safran, H. Diamant, and D. Andelman, “Screening length
for finite-size ions in concentrated electrolytes,” Phys. Rev. E 100, 042615
(2019).

31M. Jardat, V. Dahirel, and P. Illien, “Diffusion of a tracer in a dense mix-
ture of soft particles connected to different thermostats,” Phys. Rev. E 106,
064608 (2022).

32A. Donev and E. Vanden-Eijnden, “Dynamic density functional theory with
hydrodynamic interactions and fluctuations,” Journal of Chemical Physics
140 (2014), 10.1063/1.4883520, arXiv:1403.3959.

33J. P. Péraud, A. J. Nonaka, J. B. Bell, A. Donev, and A. L. Garcia,
“Fluctuation-enhanced electric conductivity in electrolyte solutions,” Pro-
ceedings of the National Academy of Sciences of the United States of
America 114, 10829–10833 (2017), arXiv:1706.06227.

34B. Fehrman and B. Gess, “Well-Posedness of Nonlinear Diffusion Equa-
tions with Nonlinear, Conservative Noise,” Arch. Rational Mech. Anal. 233,
249–322 (2019).

35V. Konarovskyi, T. Lehmann, and M. K. von Renesse, “Dean-kawasaki
dynamics: Ill-posedness vs. triviality,” Electron. Commun. Probab. 24, 1–9
(2019).

36V. Démery, O. Bénichou, and H. Jacquin, “Generalized Langevin equations
for a driven tracer in dense soft colloids: construction and applications,”
New J. Phys. 16, 053032 (2014).

37D. S. Dean and R. Podgornik, “Relaxation of the thermal Casimir force
between net neutral plates containing Brownian charges,” Phys. Rev. E 89,
032117 (2014).

38V. Démery and É. Fodor, “Driven probe under harmonic confinement in a
colloidal bath,” J. Stat. Mech 2019, 033202 (2019).

39V. Démery, “Mean-field microrheology of a very soft colloidal suspension:
Inertia induces shear thickening,” Phys. Rev. E 91, 062301 (2015).

40M. Feng and Z. Hou, “Effective Dynamics of Tracer in Active Bath: A
Mean-field Theory Study,” (2021).

41A. Poncet, O. Bénichou, V. Démery, and D. Nishiguchi, “Pair correlation
of dilute active Brownian particles: From low-activity dipolar correction to
high-activity algebraic depletion wings,” Physical Review E 103, 012605
(2021).

42L. Tociu, É. Fodor, T. Nemoto, and S. Vaikuntanathan, “How Dissipation
Constrains Fluctuations in Nonequilibrium Liquids: Diffusion, Structure,
and Biased Interactions,” Physical Review X 9, 41026 (2019).

43É. Fodor, T. Nemoto, and S. Vaikuntanathan, “Dissipation controls trans-
port and phase transitions in active fluids: Mobility, diffusion and biased
ensembles,” New Journal of Physics 22, 013052 (2020).

44G. Rassolov, L. Tociu, E. Fodor, and S. Vaikuntanathan, “From predicting
to learning dissipation from pair correlations of active liquids,” J. Chem.
Phys. 157, 054901 (2022).

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
65

53
3



Accepted to J. Chem. Phys. 10.1063/5.0165533

On analytical theories for conductivity and self-diffusion in concentrated electrolytes 16

45D. Martin, C. Nardini, M. E. Cates, and Fodor, “Extracting maximum
power from active colloidal heat engines,” Europhys. Lett. 121, 60005
(2018).

46A. Poncet, O. Bénichou, V. Démery, and G. Oshanin, “Universal long
ranged correlations in driven binary mixtures,” Phys. Rev. Lett. 118, 118002
(2017).

47V. Démery and D. S. Dean, “The conductivity of strong electrolytes from
stochastic density functional theory,” J. Stat. Mech. , 023106 (2015).

48J. P. Péraud, A. Nonaka, A. Chaudhri, J. B. Bell, A. Donev, and A. L.
Garcia, “Low Mach number fluctuating hydrodynamics for electrolytes,”
Physical Review Fluids 1, 1–27 (2016), arXiv:1607.05361.

49A. Donev, A. L. Garcia, J. P. Péraud, A. J. Nonaka, and J. B. Bell, “Fluctu-
ating Hydrodynamics and Debye-Hückel-Onsager Theory for Electrolytes,”
Current Opinion in Electrochemistry 13, 1–10 (2019), arXiv:1808.07799.

50H. Frusawa, “Transverse density fluctuations around the ground state distri-
bution of counterions near one charged plate: Stochastic density functional
view,” Entropy 22, 34 (2020).

51H. Frusawa, “Electric-field-induced oscillations in ionic fluids: a unified
formulation of modified Poisson-Nernst-Planck models and its relevance to
correlation function analysis,” Soft Matter 18, 4280 (2022).

52S. Mahdisoltani and R. Golestanian, “Long-Range Fluctuation-Induced
Forces in Driven Electrolytes,” Physical Review Letters 126, 158002
(2021).

53S. Mahdisoltani and R. Golestanian, “Transient fluctuation-induced forces
in driven electrolytes after an electric field quench,” New Journal of Physics
23, 073034 (2021).

54T. Hoang Ngoc Minh, B. Rotenberg, and S. Marbach, “Ionic fluctuations
in finite volumes: fractional noise and hyperuniformity,” , to appear in
Faraday Discussions, arXiv:2302.03393 (2023).

55L. Onsager and R. M. Fuoss, “Irreversible Processes in Electrolytes. Diffu-
sion, Conductance and Viscous Flow in Arbitrary Mixtures of Strong Elec-
trolytes,” J. Phys. Chem. 11, 2689 (1932).

56J. P. Hansen and I. R. McDonald, Theory of simple liquids, 2nd ed. (Aca-
demic Press, 1986).

57R. J. Baxter, “Ornstein-Zernike relation and Percus-Yevick approximation
for fluid mixtures,” The Journal of Chemical Physics 52, 4553 (1970).

58L. Blum, “Mean spherical model for asymmetric electrolytes I. Method of
solution,” Molecular Physics 30, 1529–1535 (1975).

59L. Blum and J. S. Hoye, “Mean Spherical Model for Asymmetric Elec-
trolytes. 2. Thermodynamic Properties and the Pair,” J. Phys. Chem. 81,
1311–1316 (1977).

60K. S. Pitzer, “Electrolyte theory - improvements since Debye and Hueckel,”
Acc. Chem. Res. 10, 371–377 (1977).

61D. G. Miller, “Application of irreversible thermodynamics to electrolyte

solutions. I. Determination of ionic transport coefficients lij for isothermal
vector transport processes in binary electrolyte systems,” Journal of Physi-
cal Chemistry 70, 2639–2659 (1966).

62Throughout the paper, we will use the following convention for Fourier
transformation:

f̃ (k) =
∫

dr e−ik·r f (r),

f (r) =
∫

dk
(2π)d

eik·r f̃ (k).

.
63S. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected

Applications (Dover, 2005).
64C. W. J. Beenakker, “Ewald sum of the Rotne – Prager tensor,” J. Chem.

Phys 85, 1581 (1986).
65V. Démery and D. S. Dean, “Perturbative path-integral study of active-

and passive-tracer diffusion in fluctuating fields,” Phys. Rev. E 84, 011148
(2011).

66D. S. Dean, I. T. Drummond, and R. R. Horgan, “Effective transport proper-
ties for diffusion in random media,” Journal of Statistical Mechanics: The-
ory and Experiment (2007), 10.1088/1742-5468/2007/07/P07013.

67S. M. Leitenberger, E. Reister-Gottfried, and U. Seifert, “Curvature cou-
pling dependence of membrane protein diffusion coefficients,” Langmuir
24, 1254–1261 (2008).

68S. Marbach, D. S. Dean, and L. Bocquet, “Transport and dispersion across
wiggling nanopores,” Nature Physics (2018), 10.1038/s41567-018-0239-0.

69Y. Wang, D. S. Dean, S. Marbach, and R. Zakine, “Interactions en-

hance dispersion in fluctuating channels via emergent flows,” (2023),
arXiv:2305.04092 [cond-mat.soft].

70L. Onsager, “Theories and Problems of Liquid Diffusion,” Annals of the
New York Academy of Sciences 46, 241–265 (1945).

71D. R. Ladiges, J. G. Wang, I. Srivastava, A. Nonaka, J. B. Bell, S. P. Car-
ney, A. L. Garcia, and A. Donev, “Modeling electrokinetic flows with the
discrete ion stochastic continuum overdamped solvent algorithm,” Physical
Review E 106, 035104 (2022).

72M. Kuron, G. Rempfer, F. Schornbaum, M. Bauer, C. Godenschwager,
C. Holm, and J. De Graaf, “Moving charged particles in lattice Boltzmann-
based electrokinetics,” Journal of Chemical Physics 145, 214102 (2016),
arXiv:1607.04572.

73I. Tischler, F. Weik, R. Kaufmann, M. Kuron, R. Weeber, and C. Holm,
“A thermalized electrokinetics model including stochastic reactions suit-
able for multiscale simulations of reaction–advection–diffusion systems,”
Journal of Computational Science 63, 101770 (2022).

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
65

53
3


	On analytical theories for conductivity and self-diffusion in concentrated electrolytes
	Abstract
	Introduction
	A brief reminder of SDFT
	General equations
	Linearization
	Modified Coulomb potential

	Fuoss-Onsager approach and Mean Spherical Approximation
	Outline of the calculation
	Hydrodynamic contribution to the conductivity
	Electrostatic contribution to the conductivity

	Conductivity: Comparing results from linearized SDFT and MSA
	Accounting for the finite size of the ions in the hydrodynamic equations
	Self-diffusion coefficient
	General equations
	Path-integral formulation
	Case where anions and cations have the same mobility
	Case of a vanishing interaction radius (a 0)
	General case and comparison to mode coupling theory/MSA

	Importance of the choice of the modified potential
	Conductivity
	Self-diffusion

	Conclusion
	Acknowledgments
	Direct correlation functions under the Mean Spherical Approximation
	Alternative modification of the Coulomb potential


