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SUMMARY
Sensitivity to numbers is a crucial cognitive ability. The lack of experimental models amenable to systematic
genetic and neural manipulation has precluded discovering neural circuits required for numerical cognition.
Here, we demonstrate that Drosophila flies spontaneously prefer sets containing larger numbers of objects.
This preference is determined by the ratio between the two numerical quantities tested, a characteristic
signature of numerical cognition across species. Individual flies maintained their numerical choice over
consecutive days. Using a numerical visual conditioning paradigm, we found that flies are capable of asso-
ciating sucrose with numerical quantities and can be trained to reverse their spontaneous preference for
large quantities. Finally, we show that silencing lobula columnar neurons (LC11) reduces the preference
for more objects, thus identifying a neuronal substrate for numerical cognition in invertebrates. This discov-
ery paves the way for the systematic analysis of the behavioral and neural mechanisms underlying the evolu-
tionary conserved sensitivity to numerosity.
INTRODUCTION

The cognitive capacity tomake decisions based on numerical in-

formation is not restricted to humans. By estimating numbers,

animals can dilute predation risks, increase predation effi-

ciency,1 and maximize food intake.2 They can also perceive

the number of social companions3 and better communicate

with conspecifics.4 Accordingly, sensitivity to numbers has

been documented in a wide variety of vertebrate species from

primates and other mammals5,6 to birds,7,8 amphibians,9,10

and fish11,12 (reviews are available elsewhere13–15).

The combination of numerical tasks with simultaneous neural

activity recordings allowed the exploration of the neural basis of

brain functions for numbers (reviewed in Lorenzi et al.16). It was

shown that single neurons in the prefrontal and posterior parietal

neocortices for humans17,18 and primates19 spontaneously

respond to specific numerosity. Similarly, ‘‘number neurons’’

have been reported in the telencephalic nidopallium caudolater-

ale of corvids.20 In fish, there is evidence for broad activation of

the caudal telencephalon during numerosity changes.21,22 Un-

derstanding how the brain computes numerical information will

require not only the recording of brain areas but also the manip-

ulation of specific brain regions during the execution of the nu-

merical task. Although a lesion study in primates23 and several

electrical stimulation studies in humans24–26 have been per-

formed, the study of the neurophysiological basis of numerical

cognition in vertebrates has thus far proved to be experimentally
This is an open access article under the CC BY-N
difficult due to a combination of challenges of accessibility,

complexity, and lack of tools.

Insects have long been used to explore the neuronal compu-

tations of complex behaviors (reviewed in Kinoshita and Hom-

berg27). Recent evidence shows that numerical skills also pro-

vide fitness advantages to invertebrates,28–30 suggesting that

numerical ability may have evolved in common ancestors of in-

sects and mammals. Number judgments allow increased repro-

ductive opportunities in beetles,31,32 improved predation strate-

gies in spiders33,34 and ants,35 estimation of the distance

traveled through step counting in desert ants,36,37 and enhanced

foraging strategies in bees.38 Several tasks have been devel-

oped to document the numerical abilities of insects. The most

common approach consists in simultaneously presenting two

stimuli that differ in numerosity. Observations suggest that ani-

mals often prefer larger sets of items. For example, individual

carpenter ants spontaneously discriminate between two piles

of dummy cocoons,39 while crickets spontaneously choose the

set with the larger number of shelters.40 Furthermore, it has

been shown that honeybees have a spontaneous preference

for multiple flowers only in comparisons where the number 1

was the lower quantity and where the ratio between the lower

and higher quantity was at least 1:3.41 The numerical abilities

of bees have also been demonstrated using associative learning

paradigms upon extensive training (30–100 trials42–47).

Despite significant behavioral evidence of numerical tasks in

invertebrates, the neuronal basis remains unknown. To our
Cell Reports 42, 112772, July 25, 2023 ª 2023 The Author(s). 1
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knowledge, numerosity perception has not been studied in

Drosophila. The fruit fly would offer an excellent experimental

platform to uncover the genetic and neurobiological processes

for numerical cognition mainly thanks to the availability of tools

to label, manipulate, and record activity of neurons and decipher

their connectome. Recent studies suggest the existence of

magnitude judgment in Drosophila. Flies adjust their defensive

behavior depending on the number of conspecifics in the group.

In response to inescapable threats, flies’ freezing behavior de-

creases with increasing group size.48 Another study showed

that fruit flies also tune their social interactions to group size

and density.49 Whether such changes in behavioral strategies

actually reflect a response to number or other continuous dimen-

sions of the stimuli is unknown.

Here, we report evidence of numerical discrimination in

Drosophila. We show that flies display robust preference for

more numerous sets of visual objects, and this discrimination de-

pendsmainly on their ratio. Each fly deploys one of three dynam-

ical behavioral patterns during numerical decisions and sustains

this behavioral strategy over time. Furthermore, spontaneous

preference can be modified by a single training trial of classical

Pavlovian conditioning. Finally, we report that silencing lobula

columnar neurons 11 (LC11) causes a decrease in spontaneous

and learned numerical preference. These findings thus identify a

neuronal component of the circuitry required for robust numeri-

cal discrimination in Drosophila.

RESULTS

Drosophila show a spontaneous preference for larger
numbers of items
To evaluate whether flies show spontaneous preference be-

tween sets of objects that differ in numerical size, we modified

the classical Buridan paradigm50 (Figure 1A). We measured the

amount of time each fly spent near a ‘‘preference zone’’ (i.e.,

occupancy) in the vicinity of each stimulus (Figure 1B) and

used the difference of durations divided by their sum as a prefer-

ence index (PI).

We first evaluated the spontaneous PI for a set of three stripes

versus a single stripe. Flies stayed significantly longer in the pref-

erence zone of the arena corresponding to the set of three stripes

(Figure 1C). The same preference prevailed when the position of

the stimuli was rotated 180� relative to the external environment

(Figure S1 A1 and A2) and no differences were found between

sexes (Figure S1 B1–B3). Interestingly, when examining the indi-

vidual trajectories of single flies, we observed ‘‘loop paths’’

around the edges of stripes next to the higher numerosity, which

may indicate that at least some flies track the edges of each

stripe separately (Figure S1C). Still, this preference among sets

differing in numerosity may result from a variety of potential con-

founds, including density, overall area of the display, dark area,

and size of the individual shapes. When flies were given a choice

between three stripes and a single wide stripe occupying the

same horizontal extension, they still preferred the three stripes

(Figure 1D) suggesting that the preference for the larger set

was not due to the horizontal extent of the stimuli or to the total

dark area, as thewide stripe had a larger dark area than the set of

three stripes.
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To test these findings with different displays, we replaced

stripes with squares. Flies confronted with two single squares

(1vs1) showed equal preference (Figure S1D). However, similarly

to our previous observations with stripes, flies confronted with

1vs3 squares preferred the more numerous set (Figure 1E).

Again, control experiments demonstrated that the preference

was not due to the horizontal extent of the set (Figure 1F), nor

to the total dark area (Figure 1G). Moreover, the pattern of pref-

erence remained the same when using discs (Figure S1E). Flies

also showed a significant preference for the more numerous

set in 1vs4 (Figure S1F) and 1vs2 (Figure S1G) squares tests.

These results may indicate that flies are either sensitive to nu-

merosity or are able to distinguish a single item from sets of

several items. To differentiate between these hypotheses, we

tested flies in a 2vs4 squares contrast. We found that flies prefer

the larger set (Figure 2A). In this experiment, stimuli were

equated for density and square size but not for overall area occu-

pied and total dark area. We next used the same numerical

contrast to run a set of control experiments manipulating

different variables that co-vary with number (Figure 2B). First,

to equate overall area and square size, we increased the dis-

tance between the two squares such that the outermost edges

of the two visual sets matched. Flies still showed a preference

for the set of four squares (Figure 2C). Next, we equated the total

dark area (while also keeping the horizontal extension equal) by

increasing the size of squares in the set of two. Consistent with

our previous findings, flies showed a significant preference for

the four squares (Figure 2D). Finally, we equated both dark

area and overall area (dashed line in Figure 2E) while moving

from a linear to a rectangular array of stimuli, providing a signif-

icant challenge to the numerical preference. Remarkably, flies

still favored the numerically larger set (Figure 2E). In addition,

we observed similar responses in settings using 2vs3 squares

contrast; flies showed a reproducible preference for the larger

set when controlling for density, overall area, dark area, and

spatial arrangement of the objects (Figures S2A–S2D). Finally,

the preference for three over two objects was maintained when

using other shapes, including stripes and discs (Figures S2E

and S2F).

Drosophila use the approximate number system to
discriminate between numerosities
Animals rely on two different cognitive systems to process

numbers in non-symbolic arrays, called the object tracking sys-

tem (OTS) and the approximate number system (ANS). The OTS

reflects the ability to simultaneously represent and track several

items (usually up to three or four),51 thus providing access to

exact numerosity for only small arrays. In contrast, the ANS rep-

resents the approximate numerosity of sets of objects with no

upper bound. Importantly, numerical discrimination by the ANS

is governed by Weber’s law: the ability to distinguish between

two stimulus magnitudes depends on their ratio. Ratio-depen-

dent discrimination has been observed in many species and is

considered to be a characteristic signature of ANS.14,39,52,53

To test whether flies use the OTS or the ANS, we asked if they

have a limit of discrimination at four items, as observed in other

insects.32,40,43,46,54 We tested flies in a 3vs4 squares contrast,

this time finding no preference (Figure 3A). We observed the
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Figure 1. Drosophila spontaneously prefers larger numbers of items in a 1vs3 choice test

(A) Schematic of the experimental setup.

(B) Representative example. Red dashed lines illustrate y-limits of the preference zone (red area) for each stimulus. Kernel density plots on the top and right of the

platform denote the position permanence of the fly along x and y axes respectively.

(C and D) At population level, flies show a significant spontaneous preference for three stripes over one stripe. (C) Left: heatmap illustrates the relative frequency of

the fly location at each position of the platform (red denotes high-frequency permanence, while blue denotes low frequency). Middle: kernel population y-density

plot. Right: mean population PI is significantly different from chance preference (n = 60, PI = 0.42 ± 0.38, p = 5.9e�09, Wilcoxon signed rank test). D. Control for

overall area occupied (n = 56, PI = 0.29 ± 0.40, t(55) = 5.41, p = 1.4e�06, one-sample t test).

(E–G) Flies kept their preference for more objects when tested with arrays of squares. (E) Flies’ performance in a 1vs3 squares contrast (n = 29, PI = 0.45 ± 0.31,

t(28) = 7.92, p = 1.27e�08, one-sample t test). (F) Control for overall area occupied (n = 60, PI = 0.14 ± 0.38, p = 8.7e�03,Wilcoxon signed rank test). (G) Control for

total dark area (n = 59, PI = 0.18 ± 0.34, t(58) = 4.00, p = 1.8e�04, one-sample t test).
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same lack of preference when equating for overall area (Fig-

ure 3B) and total dark area (Figure 3C). Importantly, this failure

to discriminate three from four was not due to the similarity in to-

tal dark area of the two numerical sets: when the equivalent dif-

ference in total dark area was presented in a 2vs3 squares

contrast, flies showed a significant preference for three squares

(Figure 3D), and this preference significantly differed from the

response in the 3vs4 experiment (t(108) = -3.23, p = 0.0016,Welch

two-sample t test).

The failure to discriminate between three and four is compat-

ible with both systems. On one hand, flies may fail because

numbers three and four are very close in terms of ratio (0.75),
and cannot be distinguished by their ANS. On the other

hand, flies may fail because the number four exceeds the

capacity of their OTS. To distinguish between these two hy-

potheses, we investigated whether flies can discriminate

numbers larger than four while equating for total dark area

and overall area occupied. Flies consistently preferred larger

numerosities in contrasts of 2vs6 (Figure 3E), 4vs8 (Figure 3F),

6vs8 tested in two different configurations (Figures 3G and 3H),

and 9vs12 (Figure 3I). These data suggest that flies may be us-

ing the ANS to perform numerical discrimination.

Next, we wondered which parameter of the visual numerical

stimuli best explains the numerical discrimination performance
Cell Reports 42, 112772, July 25, 2023 3
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Figure 2. Flies spontaneously present a preference for more units in a 2vs4 numerical discrimination test, irrespective of non-numerical
visual cues

(A) Flies preferred the four-squares stimulus (n = 60, PI = 0.27 ± 0.33, t(59) = 6.30, p = 4.13e�08, one-sample t test).

(B) Table illustrating the non-numerical features controlled in successive experiments.

(C–E) Series of experiments showing that the preference for numerically larger arrays is preserved when controlling for non-numerical cues. (C) Control for overall

area occupied (n = 60, PI = 0.49 ± 0.36 p = 4.62e�10, Wilcoxon signed rank test). (D) Control for total dark area and horizontal extension of the numerical sets (n =

60, PI = 0.12 ± 0.34, t(59) = 2.74, p = 8.1e�03, one-sample t test). (E) Control for spatial distribution (n = 60, PI = 0.10 ± 0.38, t(59) = 2.09, p = 0.04, one-sample t test).
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of the flies. Since it is impossible to control for all confounding

variables within a single experiment, we implemented a

forward and backward stepwise regression model to examine

the statistical relevance of each variable resulting in a selection

of variables that fit the numerical performance observed for flies

(n = 1,599 flies; see STAR Methods for details). The model pre-

dicts that flies primarily rely on the numerical ratio (t = �8.90,

p = 1.45e�18), which explains 75.9% of the model’s variance

and also highlights numerical distance as a variable explaining

5% of the variance (see Table S1 for details). To test the

model’s prediction, we plotted the PI against the numerical ratio

and observed a significant negative correlation (rho = �1,

p = 0.0028, Spearman correlation; Figures 3J and 3K). This anal-

ysis confirmed that flies principally use numerical parameters to

perform the discriminative task. Furthermore, the ratio depen-

dence of their performance strongly suggests that numerosity

processing in Drosophila is based on the ANS. Interestingly,

the model also highlights the total dark area as a continuous var-

iable that can influence preference (t = 4.51, p = 7.07e�06,

19.1% of the variance; Table S1), reflecting the importance of
4 Cell Reports 42, 112772, July 25, 2023
having controlled for it in our experiments (Figures 1G, 2D, 2E,

S2C, and S2D).

Flies display three individualized dynamical behavioral
patterns for numerical discrimination
To understand the behavioral strategies used by flies tomake ra-

tio-based preference decisions, we performed cluster analysis

of walking trajectories using all the spontaneous preference

data, providing a typology of dynamic behavior during the pref-

erence task55 (Figure 4). We found three main clusters of behav-

ioral patterns: (1) flies that rapidly chose the larger set and re-

mained there over most of the epoch (Figure 4Ai, green line in

Figure 4B); (2) flies that first hesitated between the two halves

of the arena before eventually choosing the larger set (Figure 4Aii,

orange line in Figure 4B); (3) flies with no initial preference but

later orienting weakly toward the smaller set (Figure 4Aiii, purple

line in Figure 4B). Next, we identified the corresponding cluster

for each individual behavior and studied the percentage of ani-

mals within each pattern. Animals tested with larger ratio con-

trasts (close to 0) predominantly display pattern 1, while animals
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tested with ratios closer to 1.0 displayed mainly patterns 2 and 3

(Table S4).

To examine whether this reflected stable individualized ten-

dencies, we repeatedly tested individual flies over two consecu-

tive days using a 2vs4 squares contrast. As expected, on

average flies chose the larger set on both sessions and the PI

did not differ between the 2 days (Figures 4C and 4D). Across

flies, there was a strong positive correlation between the PIs in

the two sessions (Figure 4E). Finally, we evaluated the stability

of the temporal pattern using the clusters defined in the previous

analysis. The fact that the clusters are defined on one dataset

and tested on an independent dataset is an additional replication

of the cluster validity. We assigned the trajectories of each fly on

both days independently to the corresponding trajectory cluster.

We first validated that cluster 1 was predominant on both days

(55.9% of flies on day 1, and 47.5% of flies on day 2). In addition

we found that flies were highly consistent in their temporal

pattern of preference in between days. In other words, the cho-

sen pattern on day 1 was the most likely pattern on day 2 (Fig-

ure 4F, p = 0.0014, Fisher’s exact test). These series of analyses

suggest that flies have stable individual preferences when mak-

ing number-based decisions.

Spontaneous numerical preference can be modified by
classical conditioning
We further tested the cognitive numerical capacities of flies by

askingwhether they can associate a learned valuewith a specific

numerosity and change their preferences accordingly. Based on

an appetitive classical conditioning paradigm, we endeavored to

teach flies to reverse their spontaneous preference for larger

numbers by associating sucrose (unconditioned stimulus [US])

with the set containing smaller numbers. Individual wet-starved

flies were placed in the arena and were trained in a single trial

of 3 min. We paired a sucrose stimulus with the single square

(conditioned stimulus [CS+]) in a 1vs3 squares contrast (trained

group [TR]). A control group (CT) was run in parallel by pairing

the single square with water. For both groups, the set of three

squares was water paired (CS�). Two hours after training, flies

from both groups were individually tested for 5 min in one non-

reinforced test with the same stimuli. In contrast to the control

group, flies that were trained to associate sucrose with the

single square significantly reduced their initial preference for

the set of three squares in the testing session (Figures 5A,

S3A, and S3B).
Figure 3. Flies use ANS to discriminate among numerosities

(A) Flies tested in a 3vs4 squares contrast showed no numerical preference (n =

(B) Control for overall area occupied (n = 58, PI = 0.08 ± 0.38, t(57) = 1.63, p = 0.1

(C) Control for total dark area and horizontal extension of the numerical sets (n =

(D) Flies preferred three squares in a 2vs3 contrast with the same dark area as 3

(E) Flies preferred six squares in a 2vs6 contrast (n = 60, PI = 0.16 ± 0.40, t(59) =

(F) Flies preferred eight squares in a 4vs8 contrast (n = 60, PI = 0.13 ± 0.36, t(59)
(G and H) Flies preferred eight squares in a 6vs8 contrast. (G) n = 60, PI = 0.14

t(59) = 2.49, p = 0.01, one-sample t test.

(I) Flies preferred 12 squares in a 9vs12 contrast (n = 60, PI = 0.11 ± 0.40, t(59) =

(J) Discriminative performance across numerical ratio (p < 2.2e�16, Kruskal-Wall

mean ±SD= 0.29 ± 0.39, p = 1.6e�31; 0.50, n = 360, mean ±SD = 0.24 ± 0.38, p =

mean ± SD = 0.08 ± 0.38, p = 1.05e�04; 1.00, n = 48, mean ± SD = 0.06 ± 0.42,

(K) Spearman correlation shows that discrimination accuracy decreases as the n
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The loss of preference observed after learning could be due to

two different causes. First, it may be that the flies simply

explored the arena in search for food without learning any asso-

ciation. Second, it could be that flies did learn the association but

that there was a competition between the learned response and

the strong spontaneous preference for three squares compared

to one. To disentangle these possibilities, we trained the

flies with a 2vs3 squares contrast that elicits a slightly weaker

spontaneous preference, thereby decreasing the competition

between the potentially learned and the spontaneous response.

In contrast to the control group (Figures 5B and S3D), flies

trained to two square-rewarded stimuli showed a switch in their

preference during the testing session, preferring the smaller

number of items (Figures 5B and S3C). The preferences of the

trained and control groups were also significantly different (Fig-

ure 5B right panel). Moreover, the conditioned preference for

the lower numerosity was significantly different when testing

the trained flies in a 2vs3 or a 1vs3 contrast (p = 0.0008,Wilcoxon

rank-sum test), suggesting a competition between the natural

preference to go for more items and the conditioned response.

Importantly, the change in preference toward the smaller numer-

osity in trained animals was not due to satiation. Trained flieswith

sugar associated with both numerical sets showed a significant

preference for the larger numerosity during the testing session

(Figures S3I and S3J).

Did flies learn to respond to numerosity or to other variables of

the visual displays? If the reversal of the preference is truly contin-

gent on the numerosity of the trained stimuli, it should not occur in

settingswhere flies are unable to distinguish stimuli based on their

numerosity. We thus trained flies using a numerical contrast of

3vs4, which does not elicit a significant spontaneous preference.

If flies had learned to respond to confounding variables—such as

total dark area—we should find that they again develop a prefer-

ence for the conditioned stimulus. In contrast, if flies learned to

respond to the numerical variable, they should not learn when

they cannot discriminate. We found that flies trained to

prefer either three or four in a 3vs4 squares contrast showno pref-

erence during the testing session after training (Figures 5C, 5D,

and S3E–S3H). Finally, conditioned performance between ani-

mals trained to prefer two in the 2vs3 squares contrast and ani-

mals trained to prefer three or four were significantly different

(2vs3-3vs4(CS+/3), p = 0.013; 2vs3-3vs4(CS+/4), p = 0.003,

Wilcoxon rank-sum test). Together, these findings suggest that

flies can learn to associate numerical sets with sucrose, and
50, PI = 0.05 ± 0.32, t(49) = 1.11, p = 0.27, one-sample t test).

1, one-sample t test).

60, PI = �0.04 ± 0.41, t(59) = 0.93, p = 0.36, one-sample t test).

vs4 (n = 60, PI = 0.25 ± 0.33, t(59) = 5.88, p = 1.96e�07, one-sample t test).

3.15, p = 0.003, one-sample t test).

= 2.82, p = 0.007, one-sample t test).

± 0.37, t(59) = 3.01, p = 0.004, one-sample t test; (H) n = 60, PI = 0.12 ± 0.37,

2.09, p = 0.04, one-sample t test).

is rank test. 0.25, n = 60, mean ± SD = 0.58 ± 0.31, p = 4.5e�11; 0.33, n = 384,

8.57e�25; 0.67, n = 399, mean ±SD= 0.20 ± 0.36, p = 5.86e�26; 0.75, n = 348,

p = 0.38, Wilcoxon signed rank test).

umerical ratio between quantities becomes closer to 1.0.
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Figure 4. Flies display three main stable behavioral patterns of numerical preference

(A) Mean trajectory for each pattern of behavior. Color code indicates the recording time (%). (i) Flies with stable preference for more items along all recording

time; (ii) hesitant flies that finally choose more items; (iii) Flies that show no preference at the beginning but then decide for fewer items.

(B) Y position over time for the three categories of behavioral preference.

(C) Population heatmap corresponding to each day.

(D) For each particular day, flies preferred four squares (day 1, n = 59, PI = 0.26 ± 0.44, t(58) = 4.48, p = 3.61e�05, one-sample t test; day 2, n = 59, PI = 0.24 ± 0.42,

t(58) = 4.45, p = 3.97e�05, one-sample t test). The performance is maintained between consecutive days (p = 0.71; t(58) = 0.37, paired t test).

(E) Pearson correlation plot. Gray shadow indicates confidence interval (95%).

(F) Matrix heatmap showing the relationship between patterns of behaviors in day 1 and day 2. The relative and absolute (between parentheses) number of

animals with the specific relationship are indicated in each box.
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non-numerical aspects of the visual pattern are not the properties

of the stimuli that flies associate during the learning process.

LC11 neurons mediate numerical discrimination
To our knowledge, there is no functional evidence linking specific

neuronal circuits to numerical abilities in insects. It has been pro-

posed that number-based behavior emerges in higher-order

areas of the insect brain such as the mushroom bodies (MBs)

or the central complex (CC).53 Other studies proposed that, in

contrast, the number sense is deeply ingrained in the primary

sensory system,29,56 as numerosity is mostly conceived as a pri-

mary sensory attribute.57 We examine these ideas in our model,

taking advantage of the neurogenetic toolkit that Drosophila of-

fers. We began by silencing several candidate neuronal popula-

tions by expressing the tetanus light chain (TNT) in different

neuronal subtypes and testing the flies in the 2vs4 squares

contrast task.We found that silencing theMBs or the CC respec-

tively did not affect the preference for the larger numerosity

(Figures S4A and S4B). Next, we evaluate the requirement of

different visual system neurons. We found that silencing

object orientation neurons, medulla dorsal cluster neurons

(M-DCNs),58 did not affect the ability of flies to prefer the larger

numerosity (Figure S4C). Next, we tested LC11 neurons, which

have been implicated in the adjustment of defensive behavior
depending on group size, perhaps by making flies less sensitive

to themovements of other flies.48 Wewondered whether LC11 is

also involved in the detection of group size. We found that flies

with silenced LC11 neurons were not able to discriminate be-

tween the stimuli (Figure S4D). LC11 neurons have also been

shown to be required for small-object response (�10�),59,60 as

were another set of LC neurons called LC10a.61,62 However,

silencing LC10a neurons had no effect on numerical discrimina-

tion performance (Figure S4E). Together, these data implicate

LC11 neurons in numerical behavior in Drosophila.

To further test the requirement of LC11 neurons in numerical

discrimination and rule out the potential confounding effect of

squares as small objects, we switched to large vertical stripes,

as it has been reported that LC11 neurons show weak responses

to stripes and blocking them in fact enhances responses to elon-

gated bars.59,60We found that silencing LC11 neurons (Figure 6A)

reduced numerical discrimination in a 1vs3 stripes contrast (Fig-

ure 6B) and abolished the preference in a 2vs3 stripes contrast

(Figure 6C). Importantly, LC10a-silenced flies (Figure 6D) tested

in 1vs3 stripes (Figure 6E) and 2vs3 stripes contrasts (Figure 6F)

were still able to discriminate.

However, in the case of 1vs3 stripes contrast, silencing LC10a

showed a decrease in the numerical performance. Unlike for

LC11 neurons, silencing LC10a neurons in 2vs3 stripes and
Cell Reports 42, 112772, July 25, 2023 7
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Figure 5. Flies’ numerical preference can be

modified by associative conditioning

Flies were trained to associate a non-preferred set of

squares (CS+) to sugar (US).

(A) Flies trained in a 1vs3 squares contrast showed

no preference for three squares in the testing ses-

sion. Left: testing session kernel density plot for each

group (pink, control group; yellow, trained group;

orange, overlap of the two curves). Control group

(CT) preferred the three squares while the trained

group (TR) showed no numerical preference. Right:

unlike the control group (n = 38, PI = 0.54 ± 0.36, p =

3.25e�09, Wilcoxon signed rank test), trained flies

showed no preference for the set of three squares

(n = 37, PI = 0.08 ± 0.36, t(36) = 1.31, p = 0.2, one-

sample t test; comparison between groups, p =

1.8e�06, Wilcoxon rank-sum test).

(B) Flies trained in a 2vs3 squares contrast showed

inverse numerical preference during the testing

session. Trained flies significantly preferred the

smaller set of squares (n = 45, PI = �0.20 ± 0.34,

t(44) = -3.93, p = 2.9e�04, one-sample t test),

opposite to the control group (n = 42, PI = 0.39 ±

0.36, t(41) = 7.19, p = 8.87e�09, one-sample t test;

comparison between groups, t(84) = 7.9, p =

7.94e�12, Welch two sample t test).

(C and D) Flies trained with a numerical contrast they

could not discriminate (i.e., 3vs4) did not show a

change in their preference during the testing ses-

sion. (C) Flies trained to sugar associate three

squares did not show a numerical preference (n = 41, PI = 0.008 ± 0.44, t(40) = 0.11, p = 0.91, one-sample t test), same as the control group (n = 40, PI = 0.08 ±

0.64, p = 0.33, Wilcoxon signed rank test; comparison between groups, p = 0.47, Wilcoxon rank-sum test). (D) Flies trained to associate four squares to

sugar did not show a numerical preference in the testing session (n = 45, PI = 0.08 ± 0.47, t(44) = 1.18, p = 0.24, one-sample t test), same as the control group

(n = 46, PI = 0.03 ± 0.60, p = 0.71, Wilcoxon signed rank test; comparison between groups, p = 0.25, Wilcoxon rank-sum test).
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2vs4 squares conditions did not result in a significant reduction

of preference for the larger numerosity. To further examine the

effect of the neuronal driver in the performance, a two-way

ANOVA was performed. The analysis revealed no statistically

significant interaction between the Gal4 driver and the numerical

ratio (F(1,225) = 0.11, p = 0.74). Instead, simple main-effects

analysis showed that numerical ratio (F(1,225) = 9.36, p =

0.0025) and the silenced neuronal driver (F(1,225) = 4.7, p =

0.03) have a statistically significant effect on the performance

(Table S2). This result confirms that the effect of silencing

LC11 is stronger than silencing LC10a neurons. Importantly,

silencing LC11 neurons did not alter the ability of the flies to

see and respond to the stripes per se (Figures S5A and S5B).

Are LC11 neurons required for numerical discrimination or for

numerical preference? To answer this question, we trained flies

with silenced LC11 neurons. If silencing LC11 neurons reduces

preference for larger numerosity, the presence of sugar will

create additional motivation and will result in greater preference

for the rewarded smaller numerosity after training. If, on the con-

trary, LC11 neurons are required for numerical discrimination,

the presence of reward will have no effect and the flies will not

learn what they cannot discriminate, as in the 3vs4 squares

learning experiment. We paired a sucrose stimulus with the

two-squares set in a 2vs3 configuration. The two-way ANOVA

analysis revealed a significant interaction between the silencing

and learning effect (F(1,437) = 8.94, p = 0.0029). Importantly,

simple main-effects analysis still showed the statistically signifi-
8 Cell Reports 42, 112772, July 25, 2023
cant effect of silencing LC11 neurons (F(1,437) = 4.3, p = 0.0387)

in this numerical contrast but also the effect of the classical con-

ditioning protocol (F(1,437) = 5.52, p = 0.0192) on the perfor-

mance of trained flies (Table S3). Post hoc comparisons reveal

that LC11-silenced flies showed no preference either before or

after training, indicating that LC11 are required for numerical

discrimination and not for spontaneous preference (Figures 6G

and 6H). In summary, these results show that silencing a specific

type of visual neurons in the lobula of the fruit flies disrupts nu-

merical discrimination.

DISCUSSION

Drosophila as a model for numerical cognition
Numerical sensitivity is a crucial cognitive ability that is wide-

spread across the animal kingdom. Here, we developed the fruit

fly Drosophila melanogaster as a model for the neuroscience of

numerical cognition. As a result, the powerful and versatilemolec-

ular, genetic, and behavioral toolkit of Drosophila can now be

exploited to unravel the neurobiological underpinnings of this

highly conserved adaptive trait while retaining individual-animal

resolution. Two main methodologies are described in the litera-

ture to study numerical cognition in different animal models:

spontaneous discrimination tests and training procedures. In

spontaneous choice tests, animals exposed to behaviorally rele-

vant stimuli, such as high-contrast objects in the case of fruit flies,

reveal the preferences of animals for numerical sets. On the other
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Figure 6. Silencing LC11 neurons diminishes

numerical discrimination

(A) Anatomy of LC11 neurons.

(B) Performance of flies with silenced LC11 tested in

a 1vs3 stripes contrast. LC11>TNT: n = 60, PI =

0.11 ± 0.30, p = 0.002, Wilcoxon signed rank test.

LC11/+: n = 60, PI = 0.27 ± 0.28, p = 3.74e�08,

Wilcoxon signed rank test. +/TNT: n = 60, PI = 0.30 ±

0.34, p = 3.43e�07.

(C) LC11-silenced flies tested in a 2vs3 stripes

contrast were unable to discriminate in opposition to

the control group. LC11>TNT: n = 53, t(52) = -0.47,

p = 0.64, PI =�0.02 ± 0.29, one-sample t test. LC11/

+: n = 55, t(54) = 3.53, p = 0.0009, PI = 0.14 ± 0.30,

one-sample t test. +/UAS: n = 56, t(55) = 3.27, p =

0.002, PI = 0.11 ± 0.25, one-sample t test.

(D) Anatomy of LC10a neurons.

(E) Numerical discrimination performance of flies

with silenced LC10a neurons in a 1vs3 stripes

contrast. LC10a>TNT, n = 58, t(57) = 5.12, p =

3.93e�06, PI = 0.19 ± 0.28, one-sample t test.

LC10a/+: n = 58, p = 6.63e�09, PI = 0.39 ± 0.33,

Wilcoxon signed rank test. +/TNT: n = 56, p =

1.67e�07, PI = 0.32 ± 0.33, Wilcoxon signed rank

test.

(F) Numerical discrimination performance of LC10a-

silenced flies in a 2vs3 stripes contrast. LC10a>TNT:

n = 56, p = 0.02, PI = 0.09 ± 0.29, Wilcoxon signed

rank test. LC10a/+: n = 57, t(56) = 3.39, p = 0.001, PI =

0.14 ± 0.31, one-sample t test. +/TNT: n = 57, t(56) =

2.10, p = 0.04, PI = 0.10 ± 0.36, one-sample t test.

(G and H) Flies with silenced LC11 neurons trained

by pairing two squares with sugar in a 2vs3 contrast.

(G) Kernel density plot for each group (pink, control

group; yellow: trained group. (H) LC11-silenced

flies showed no preference during the testing ses-

sion (LC11>TNT_CT vs LC11>TNT_TR: p = 0.8,

Wilcoxon rank-sum test). In contrast, both control

groups significantly diminished the magnitude

of their preference after learning (LC11/+_CT vs

LC11/+_TR: p = 0.009, Wilcoxon rank-sum

test. +/UAS_CT vs +/UAS_TR: p = 0.008, Wilcoxon

rank-sum test). Scale in (A) and (B), 50 mm.
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hand, training protocols reveal an animal’s capacity to extract nu-

merosities by assigning a positive value to a stimulus.We find that

flies possess both capacities.

Flies spontaneously discriminate and prefer the more

numerous sets with both small and large numerosities. This

observation is reminiscent of a study showing that ants can

discriminate between larger quantities of cocoons (2vs6,

2vs8).39 Further, we show that the discrimination is independent

of non-numerical continuous variables and that their perfor-

mance is ratio dependent, a hallmark signature of the ANS, pre-

sent in beetles32 and carpenter ants.39 Interestingly, we also

observed a numerical distance effect at 0.75 ratio where accu-

racy of performance potentially improves as the difference in

magnitude between two respective numbers increases. This ef-

fect has also been shown in macaque monkeys,63 crows,64 and

honeybees.65

A strict interpretation of Weber’s law, which is thought to

govern the ANS, might suggest that, when performing numerical

discrimination, flies, and likely other animals, predominantly use
ratio. Besides, there is evidence that Weber’s law approxima-

tions may not always apply and that humans and animals use

various representations of numerical values that are combinato-

rially deployed depending on the characteristics of the task.66

This aligns with our observations that flies also consider contin-

uous properties to discriminate among sets of visual objects. The

outcome of the numerical performance observed in flies may be

the result of the evaluation of numerical (ratio plus absolute nu-

merical distance) as well as non-numerical (total dark area) prop-

erties of the visual set. It has been shown that honeybees56 and

crickets40 are able to perform relative numerosity judgments

without knowing exactly the numerical value, rooting their esti-

mation in non-numerical information. Animals likely use both

types of parameters—as shown in fish11—depending on ecolog-

ical needs. Future experiments, such as ‘‘equal incongruent’’ or

‘‘incongruent opposite’’ performed in bees67 will be needed to

deeply explore the importance of non-numerical variables

in flies. Importantly, the possibility of manipulating specific

neuronal pathways offers a unique opportunity for a mechanistic
Cell Reports 42, 112772, July 25, 2023 9
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dissection of how different variables are encoded to produce a

coherent behavior.

In addition, we find that flies are able to learn to associate a

positive stimulus with numerical sets. Flies can reverse their pref-

erence for more items when fewer items are associated with su-

crose after a single learning trial in a classical conditioning para-

digm. This learning appears to be specifically associated with

numerosity. Under conditions where flies cannot discriminate

(3vs4), they fail to learn the position of the sucrose. Interestingly,

this occurs even though the two sets differ in non-numerical vari-

ables, which could potentially be learned. Importantly, a similar

discrepancy in dark area and total area occupied did not prevent

flies from learning the association in a 2vs3 contrast, where the

flies are able to discriminate numerosities. This supports the

conclusion that the main criterion for learning under our single-

training-session conditions is the numerical ratio.

Visual learning in adult flies has been extensively studied using

operant conditioning in the flight simulator assay and in freely

walking flies with single-fly and en masse approaches.68,69

Here, we established a behavioral paradigm for visual classical

conditioning in freely walking individual adult Drosophila. Our

single training trial protocol of 3 min generates a visual memory

that lasts at least 2 h, allowing the study of short-term visual

memories. It remains to be analyzed whether flies can form

long-term numerical memories. In addition, it will be interesting

to explore the range of flies’ numerical cognitive abilities in flies

using more extensive protocols.42–45

Stability of numerical preference
One of the great advantages of fruit flies as a cognitive model is

the possibility to study behavioral individuality in very large

numbers of single flies. By analyzing the temporal dynamics of

the numerical preference at individual-fly resolution, we show

that flies display three main behavioral patterns of numerical

preference. These categories allowed us to study the temporal

stability of how flies make their numerical decisions. In a prior

study,58 we established a link between variability in the brain vi-

sual system of flies and the emergence of individuality of animal

behavior. We find that individual flies show temporal consistency

in their numerical choice. Future studies connecting neuronal

morphology variation with the different numerical categories of

behavior described here will allow us to unravel the neural bases

of numerical preference. Moreover, it would be interesting to

see whether the progeny of animals with specific numerical

traits give rise to a behaviorally homogeneous population or

reproduce the population variance, as is the case with object

orientation.58

Number-processing neural circuitry
Amajor quest in the field of numerical cognition is to identify neu-

ral pathways required for it. Selective manipulation of neuronal

populations using available tools enabled testing of a limited

number of candidate subtypes involved in visual processing to

provide proof-of-concept evidence for numerical processing in

the fly brain. We describe the LC11 neuron as a neuronal type

required for numerical discrimination, establishing a starting

point in the neuronal circuitry of numerical processing in inverte-

brates. When silencing LC11 neurons, flies showed weaker nu-
10 Cell Reports 42, 112772, July 25, 2023
merical performance and failed to learn to associate numerosity

with reward, resulting in an inability to discriminate rewarded

from non-rewarded numerosities. Moreover, silencing a different

type of lobula columnar neuron (LC10a)—which, like LC11, also

responds to small objects—or the CC involved in visual naviga-

tion70,71 does not abolish spontaneous numerical preference.

This suggests not only some level of specificity for the role of

LC11 in numerical processing but also the emergence of numer-

ical discrimination relatively early in the visual system. Silencing

LC10a neurons resulted in a reduced preference for larger nu-

merosities in one case (1vs3 stripes). This could be due to tech-

nical variation (e.g., genetic background) or a ratio-specific ef-

fect, with lower ratios computed through different pathways

while only the LC11 pathway is used for higher ratios. Future

research combining numerical behavior and neuronal recordings

will clarify this further.

Recent studies demonstrate that insects achieve cognitive so-

lutions similar to those discovered by artificial neural networks. In

accordance with our work, biologically inspired deep neural net-

works demonstrate that number neurons can spontaneously

emerge even without the need for learning.72 Models as simple

as one73 or four74 elements (e.g., neurons) have been shown to

be capable of solving numerical tasks similar to insects. Vasas

and Chitka74 developed a model that offers a non-countable

magnitude estimation in which the success of discrimination is

expected to be ratio dependent. This model fits well with our re-

sults showing a ratio dependency in spontaneous and learned

number discrimination in fruit flies. Based on the model, LC11

would collect input from a neuron that detects brightness

changes (e.g., Tm375) and proportionally integrates those

changes to accumulate online evidence for the number of ob-

jects observed. Testing this model would require the develop-

ment of novel assays that allow the combination of controlled nu-

merical behavioral tasks while recording neuronal activity, ideally

of multiple neurons simultaneously, to investigate how the fly

brain computes numerical values. In this regard, Drosophila is

an ideal model for the future development of such an assay.

Eventually, the comparative study of neuronal architectures

across animals will unravel the evolutionary origin of number

sense.

Limitations of the study
It remains to be tested whether flies are also able to perform

more numerical tasks such as the extraction of discrete numer-

ical information. This requires the development of novel proto-

cols for extensive training trials similar to those used for honey-

bees.42,44 We showed that a specific type of lobula columnar

neuron (LC11) is required for numerical cognition. However, it

is highly likely that higher-order brain areas are required for solv-

ingmore complex numerical tasks, which remains to be explored

in future work. Finally, it will be critical to establish the physiolog-

ical bases of single-cell versus population response to numeros-

ity. This will require the development of novel virtual-reality nu-

merical cognition assays over the next few years that are

compatible with physiological recordings, such as calcium imag-

ing, and with optogenetics, as is the case with other visual be-

haviors. The versatility ofDrosophila behavioral and genetic tools

gives reason to believe that such assays are likely to be
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developed within a relatively short time to allow experimental

testing of the various theoretical models for how the insect brain

processes numbers.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
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to 20 until 5 days old at 25�C in a 12/12 h light/dark regime at 60%humidity. On day 5, the wingswere cut under CO2 anesthesia. They

were left to recover 48h within individual containers with access to fresh food before being transferred to the experimental set-up.

METHOD DETAILS

Behavioral arena
The behavioral arena used is a modification of the Buridan’s Paradigm.50 The arena consists of a round platform of 119 mm in diam-

eter, surrounded by a water-filled moat (Figure 1A). The arena was placed into a uniformly illuminated white cylinder. The setup was

illuminated with four circular fluorescent tubes (Philips, L 40w, 640C circular cool white) powered by an Osram Quicktronic QT-M 13

26–42. The four fluorescent tubes were located outside of a cylindrical diffuser (Canson, Translucent paper 180gr/m2) positioned

145 mm from the arena center. The temperature on the platform during the experiment was maintained at 25�C.

Visual stimuli
Accordingly with the particular experiment, different sets of black visual objects varying in width (w), height (h) and distance (dh and dv

for horizontal and vertical distance respectively) were fixed inside the diffuser drum and opposite presented in the arena. The size of

the dark area can be therefore described as: area = w x h. Apart from the stripes -that covered the whole vertical extension of the

drum-the lower limit of the different objects were fixed to 30mm subtending an angular high of 11.7� from the middle of the platform.

When the objects presented were discs, the diameter was fixed to 35mm. Generally, the distance between objects was 22mm sub-

tending retinal sizes from 6.12� to 16.35� (8.6� in the center of the platform) except for the experiments where we controlled for the

horizontal extension and the spatial distribution of the visual sets. Table S5 describes the parameters of the different visual stimuli

used in each experiment.

Spontaneous numerical preference
To check for the spontaneous preference of the animals for stimuli of different numerical contrast we placed the flies on the arena for

15 min and tracked the walking path trajectory by using the software BuriTrack (http://buridan.sourceforge.net.).50 Each fly was

tested once on a particular stimulus contrast. For half of the flies tested in each experiment, the drum was rotated 180� to exclude

any uncontrolled and systematic influence of other stimuli of the surroundings.

Trajectory k-means clustering
To reveal the animals’ prototypical temporal patterns of spatial exploration across experimental conditions, we adapted a clustering

approach based on k-means clustering, implemented through MATLAB (MATLAB R2016b and R2020a, The MathWorks, Inc.).55

Clustering was performed on the temporally resolved Y axis coordinate of each experiment/fly. Spatial trajectories across experi-

ments were fisher transformed and temporally smoothened. All trajectory recordings were temporally aligned from the beginning

of the experiment to a maximal length of 26500 samples (14.72 min). In this analysis when a fly’s trajectory could not be temporally

aligned in more than 90% of the experiment (for example, if the fly made several jumps outside the arena) we discarded that given

recording (45 flies rejected, 3.3% of the flies recorded).

Trajectories were iteratively partitioned into 2–16 clusters, in which each fly was assigned to the cluster with the nearest centroid

trajectory. In detail, the procedure is as follows: (1) we define N (2–16) initial centroids corresponding to pseudo-randomly chosen

individual trajectories (kmeans++ strategy, maximizing distance between initial centroids), (2) we compute the distance of each in-

dividual trajectory to the centroids by summing the euclidean distance -time point by time point-between each centroid and the given

individual trajectory, (3) the individual trajectory is assigned to the cluster with theminimal distance, (4) the centroids are re-computed

as the average -time point by time point-of all the trajectories assigned to that cluster, (5) the process is repeated until an stable

assignment is determined for each trajectory, (6) the overall process is repeated 2500 times with different initial centroids and the

iteration with minimal intracluster distance is selected.

The optimal number of clusters was determined using the elbowmethod. The intracluster distance showed a point of inflection for 3

clusters.

Stability of numerical preference
To check whether the natural tendency of the flies was stable over time we tested the spontaneous preference of individual flies over

two consecutive days. Flies were tested in a 2vs.4 squares contrast for 15min. After the first assay, each flywas placed back into their

individual vial until the following day. Flies were tested at the same time of the day. Using the pre-defined clusters (learn on indepen-

dent data, n = 1,599 flies), the behavior of each fly/trajectory was classed to the cluster with the nearest centroid trajectory. We did

this analysis for each fly and day separately. Then, we calculated how many flies were classified in each cluster for each day and

plotted the percentage of coincidence in the matrix.

Associative learning experiments
For appetitive conditioning, flies were starved by placing them on individual vials with wet filter paper (EVIAN mineral water) 21h

before the training trial. The associative training consisted in one single trial of 3 min. Each individual fly was positioned in the arena
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andwas trained once. Aswith the spontaneous preference test, the arena had two opposite sets of numerical cues. One set was used

as sucrose-paired conditioned stimulus (CS+) and the other was used as unpaired conditioned stimulus (CS-). For each training trial,

a round filter paper of 100mmof circumference (WhatmanCatNo 1001-110) was placed above the platform to support 2 to 3 drops of

high concentrated glucose on the CS + numerical set stimuli (1.5M, Sigma Aldrich G8270) and 2 to 3 drops of EVIANwater on the CS-

numerical set condition. Between flies, one new fresh filter paper was used. In parallel, a control groupwas run in a second behavioral

arena. Control flies had the samemanipulation as trained ones but during the training trial we presented 2 to 3 drops of EVIANmineral

water on both sets of numerical stimuli. For both groups, flies that visited only one zone of the platform (CS + or CS-) were discarded.

After the training trial, flies were placed back into their individual starved vial. The platform was cleaned with abundant distilled

water and ethanol 70%. In order to test the short term conditioning, 2h later each fly was individually positioned into the arena for

5 min. During the testing session, one clean dry filter paper was positioned above the platform. As in the training, between flies

the filter paper was renewed. Both groups were run in both set-ups and the position of the visual stimuli were rotated for half of

the animals of each group.

Silencing experiments
To drive expression of the silencer (TNT) in targeted tissues the Gal4/UAS system was used.76 The complete genotypes for each

figure are in Table S6.

Immunostaining
Adult brains of the following lines LC11-GAL4>UAS-GFP; LC10a-GAL4>UAS-GFP; MB-GAL4>UAS-GFP; CC-GAL4>UAS-GFP;

M-DCN-Gal4>UAS-GFP were processed for GFP expression. Brains were dissected in ice-cold PBS, fixed 20 min at room temper-

ature in 4% PFA. Samples were washed three times with PBST (0.3% PBT) for 20 min. Antibody incubations were performed in

PBST, normal anti-GFP rabbit serum 1:1000 (Invitrogen, RRID:AB_221569) and anti-nc82 mouse serum 1:100 (Hybridoma Bank,

RRID:AB_2314866), overnight at 4�C for primary antibodies and 2h at room temperature for secondary antibodies. After 3 washes

in PBST 0.3%, samples were mounted in Vectashield (Vector Laboratories, CA) and imaged using a 20X objective with a Leica

TCS SP8-X white laser confocal microscope. Acquired images are visualized and processed offline using Fiji.

Data analysis & statistics
Statistical data was analyzed using R (https://www.R-project.org/.).77 Transition plots were done as described before.50 Briefly, the

platform was divided in 60*60 hexagons and fly’s position raised the count of each hexagon by one in the arena. The scale starts at

0 (blue) and goes up until a value calculated by the 95%-quantile of the count-distribution (red). The arena was divided into three

zones. To calculate the preference index (PI) we sum the density of passage of the hexagons within zones close to the visual stimuli

(Red areas in Figure 1B) while the center part of the arena was not analyzed. Values indicate mean ± SD. The preference index was

calculated as

PI =
totaldensityðlargersetareaÞ � totaldensityðsmallersetareaÞ
totaldensityðlargersetareaÞ+totaldensityðsmallersetareaÞ

For the statistical analyses we first checked for normal data distribution using the Shapiro-Wilk normality test. Then, we chose the

appropriate parametric or non-parametric test. For the spontaneous preference test we compared the PI against 0 (chance prefer-

ence; 1 indicates preference for the larger set area and�1 indicates preference for the smaller set area) by using one-sample t test or

one sample Wilcoxon de of the platform by using paired t test or Wilcoxon Signed Rank Test. For the associative learning experi-

ments, we statistically compared groups with the non-parametric Wilcoxon rank-sum test. PI Boxplot: Each dot indicates the PI

for each fly tested. Occupancy boxplots: Each blue dot corresponds to the permanence of a single fly in the area of the platform cor-

responding to the smaller set and each red dot corresponds to the permanence of the same fly in the larger set area. Boxplot ele-

ments: Center line: median; box limits: upper (75) and lower (25) quartiles; and whiskers, 1.5x inter quartile range; gray dots indicate

outliers. Scale bar of all the density plots is 0.5 probability density. For all plots, asterisk indicates significance: *, p < 0.05; **, p < 0.01;

***, p < 0.001; ****, p < 0.0001; ns, not significant.

Linear regression model
A forward and backward stepwise linear regression was used to identify possible predictors of the outcome PI out of the following

candidate variables: total dark area, numerical ratio, total perimeter, larger numerosity, absolute numerical distance and total overall

area. At each step, variables were added based on the p value (<0.05) for an F-Test of the change in the sum of squared error that

results from adding the term (forward steps), and the p value (>0.1) was used to remove a variable included in the final model (back-

ward steps). With this algorithm the sequence of variables included in the model were: (1) numerical ratio, (2) total dark area, and (3)

absolute numerical distance. No variables were removed from the model. At each step of variable inclusion, we computed the

R-square of the partial model and compared it to the R-square of the complete model (i.e. R-square of the model with one variable –

ratio – versus R-square of the complete three variablemodel and R-square of themodel with two variables – ratio and total dark area -

versus R-square of the complete three variable model).
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