
HAL Id: hal-04260840
https://hal.sorbonne-universite.fr/hal-04260840v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Work-in-Progress: mixing computation and interaction
on FPGA

Loïc Sylvestre, Emmanuel Chailloux, Jocelyn Sérot

To cite this version:
Loïc Sylvestre, Emmanuel Chailloux, Jocelyn Sérot. Work-in-Progress: mixing computation and
interaction on FPGA. International Conference on Embedded Software (EMSOFT 2023), Sep 2023,
Hambourg, Germany. pp. 5-6, �10.1145/3607890.3608467�. �hal-04260840�

https://hal.sorbonne-universite.fr/hal-04260840v1
https://hal.archives-ouvertes.fr


Work-in-Progress: mixing computation and interaction on FPGA
Loïc Sylvestre

loic.sylvestre@lip6.fr
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France

Emmanuel Chailloux
emmanuel.chailloux@lip6.fr

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

Jocelyn Sérot
jocelyn.serot@uca.fr

Université Clermont Auvergne, CNRS,
Clermont Auvergne INP, Institut Pascal
F-63000 Clermont-Ferrand, France

ABSTRACT
This paper presents a programming language for the design and
implementation of reactive embedded applications. The language is
compiled to hardware descriptions for reconfiguring Field-Program-
mable Gate Arrays (FPGAs) using logic synthesis toolchains. It
features synchronous semantics for fine-grained control on timing
and parallelism in the applications. This enables interactions with
physical I/Os to be safely composed with algorithms.

1 INTRODUCTION
When developing embedded applications, a classical problem is
to combine computations (e.g., algorithms on data structures) and
interaction with the physical environment (i.e., reading inputs and
producing outputs in a reactive way). This is specially true when
these applications are implemented on reconfigurable architectures
such as FPGAs [3] and therefore encoded at the Register Transfer
Level (RTL) using a global clock.

We are currently designing a programming language within
which computations and interaction can be expressed in a unified
way. This language, relying on the concept of logical time from
synchronous languages [10], offers static guarantees of reactivity
by compilation into synthesizable RTL code. Generated hardware
designs can then be implemented on an FPGA while benefiting
from a wide range of simulation and verification tools.

This paper gives an overview of the programming possibilities
of this language on simple examples (Section 2). It then discusses
related work (Section 3) and presents the current implementation of
the language and the associated research perspectives (Section 4).

2 LANGUAGE OVERVIEW
The proposed language is a strict, statically-typed, functional-impe-
rative programming language inspired by OCaml1 and compiled
into RTL. It supports tail-recursion (without requiring a stack) and
data structures allocated in shared memory. The semantics of the
language is synchronous: execution is formalized as a sequence of
logical steps (or clock ticks). All language constructs react instanta-
neously (i.e., before the next tick) except tail-recursive function call
(taking one tick) and memory accesses (which are asynchronous).

Each program is modeled as a clock-driven instantaneous func-
tion mapped to physical devices, as in synchronous dataflow pro-
gramming [6]. This entry point can use auxiliary functions. Type-
checking assigns distinct types to instantaneous functions (of type
𝜏 ⇒ 𝜏 ′) and non-instantaneous functions (of type 𝜏 → 𝜏 ′), so that
non-reactive programs can be statically detected and rejected.

1https://ocaml.org

Expressing computations. On the left side of Figure 1 is a Finite
State Machine (FSM) implementing a computation in RTL. The
arrows of the diagram are transitions labelled with guarded actions
tick.condition

action meaning that on the next clock tick, if condition is true
then action is executed. This FSM specifies an algorithm running for
several logical steps until assigning a value to the variable result
(which is undefined during the computation). On the right side
of Figure 1 is a formulation of this algorithm, in our language,
as a function collatz using a tail-recursive inner function loop.
Synchronous semantics ensure that all tail-recursive function calls,
like loop(x,1) and loop(n/2,t+1), always pause until the next
tick: the timing behavior of loop is equivalent to that of the FSM
at left. This illustrates how tail-recursion is compiled into RTL.

start loop

end

tick.true
nBx,tB1

tick.n=1
resultBttick.n≠1.n mod 2=0

nBn/2,tBt+1

tick.n≠1.n mod 2≠0
nB3∗n+1,tBt+1 let collatz(x) =

let rec loop(n,t) =

if n == 1 then t else

if n mod 2 == 0 then

loop(n/2,t+1)

else loop(3*n+1,t+1)

in loop(x,1)

val collatz : int → int

Figure 1: RTL implementation of a computation

Expressing interaction with physical I/Os. Reactive components,
producing outputs synchronously to their inputs, are implementable
at the RT level as synchronous Moore machines. On the left side of
Figure 2 is for instance a block diagram specifying a synchronous
circuit aro driven by an input clock. Circuit aro returns false until
input a takes value true, and is reinitialized to false when reset
takes value true. On the right side of Figure 2 is a formulation of this
circuit, in our language, as an instantaneous function. This function
is stateful: it uses a language construct (reg 𝑓 last 𝑒) which rep-
resents the next input of a register initialized with expression 𝑒 and
updated with function 𝑓 (where both 𝑓 and 𝑒 are instantaneous).

a

reset

reg

false

or
&

not

x’

clock

x

aro: let aro(a,reset) =

let step(x) =

(x or a) & not reset in

reg step last false

val aro : bool * bool ⇒ bool

Figure 2: RTL implementation of an interaction

Running computations in interactions. The language construct
(exec 𝑒 default 𝑒′) computes asynchronously the expression 𝑒

https://orcid.org/0000-0002-1495-9605
https://orcid.org/0000-0002-2400-9523
https://orcid.org/0009-0008-4763-8163
https://ocaml.org


L. Sylvestre, E. Chailloux, J. Sérot

while providing a result at each tick. The result is either the value of
the instantaneous expression 𝑒′ (i.e., a default value) if the computa-
tion of 𝑒 is still running, or the value of 𝑒 if available. Once the com-
putation of 𝑒 terminates, it is restarted with current inputs. An extra
output rdy takes value true at the very instants in which the com-
putation of 𝑒 terminates, and false otherwise. Figure 3 defines, for
example, an instantaneous function main(m,n,threshold,reset)
containing two exec constructs which progress independently. This
function returns false until collatz(m) or collatz(n) produces
a value higher than threshold, using the function aro defined
Figure 2. This shows the inherent, fine-grained parallelism of the
language as well as the ability to encode coarse-grained parallelism.

let main(m,n,threshold,reset) =

let (t1,rdy1) = exec collatz(m) default 0 in

let (t2,rdy2) = exec collatz(n) default 0 in

let a = (rdy1 & (t1 > threshold)) or

(rdy2 & (t2 > threshold)) in

aro(a,reset)

val main : int * int * int * bool ⇒ bool

Figure 3: Mixing computation and interaction

Compilation into RTL. Well-typed programs are compiled down
to RTL through semantics-preserving compilation passes:

(1) globalization of all functions (by Lambda lifting);
(2) inlining (i.e., replication) of all non-recursive functions;
(3) sharing of non-simultaneous tail-recursive function calls;
(4) translation to RT-level FSMwith encoding ofmemory accesses

as asynchronous bus transactions (using additional I/Os).
This approach allows the frequency of the clock tick to be auto-
matically derived from the FPGA synthesis toolchain depending on
the target’s capabilities, without having to compute a Worst Case
Execution Time (WCET) on the generated code [5, 9].

As an example of compilation, consider a sequential composition
involving two calls to the function collatz defined Figure 1:

let z = collatz(y) in collatz(z)

The inner function loop is first globalized (1). Then, collatz is
inlined (2), leading to:

let rec loop(n,t) = · · · (∗ same definition as on figure 1 ∗) in

let z = loop(y,1) in loop(z,1)

The two calls to loop are shared to limit resource usage (3):
type loop_instances = I0 | I1 (∗ the two instances of loop ∗)
(∗ Calls to be shared use an extra parameter to select the continuation ∗)
let rec loop(n,t,instance_id) =

if n == 1 then (switch instance_id of

| case I0: let z = t in loop(z,1,I1)

| case I1: t)

else if n mod 2 == 0 then loop(n/2,t+1,instance_id)

else loop(3*n+1,t+1,instance_id)

in loop(y,1,I0)

Translation into RTL (4) is then similar to those illustrated Figure 1.

3 RELATEDWORK
Synchronous languages are a proven technology for the design
of reactive embedded systems [2]. Esterel [4, 7] and Lustre [9],
in particular, have been used to generate RTL code mapping logical
time to the clock of an FPGA. Our work is based on this approach.

Lustre modelizes discret systems using instantaneous computa-
tion steps. We generalize this programming style to express non-
instantaneous computations. Extensions of Lustre like Scade
use type-based analyses [6] similar to the static analysis we pro-
pose. These also offer control structures like state machines and
futures [5], what could be profitably implemented in our work.

Chisel [1] is a framework for RTL description, simulation and
verification in the Scala programming language. It offers software
abstractions, such as Scala classes, to improve RTL code reuse and
portability. In contrast, we propose a cycle-accurate programming
language compiled to RTL for the design of embedded systems.

4 IMPLEMENTATION AND PERSPECTIVES
An experimental tool, based on the ideas of this paper, is available
online (https://github.com/lsylvestre/EMSOFT23). It comprises:

• a type checker to ensure type safety and reactivity;
• an interpreter using the formal semantics of the language;
• a VHDL code generator for logic synthesis and simulation.

We are currentlyworking on the integration of this compiler onto
an FPGA-toolchain using O2B [11], which is a softcore implementa-
tion of the OCaml Virtual Machine. Reactive programs are directly
mapped to physical I/Os. Non-reactive functions can access shared
memory through a bus. Transactions on this bus and memory man-
agement remain sources of unpredictability to be analyzed [8].

Future evaluation on large applications mixing computation and
interaction will show if the proposed approach is applicable to the
design of mixed critical embedded systems on FPGA.

REFERENCES
[1] J Bachrach et al. 2012. Chisel: constructing hardware in a Scala embedded

language. In Proceedings of the 49th Annual Design Automation Conference
(DAC ’12), 1216–1225.

[2] A Benveniste et al. 2003. The synchronous languages 12 years later. Proceedings
of the IEEE, 91, 1, 64–83.

[3] C Bernardeschi, L Cassano, and A Domenici. 2015. SRAM-based FPGA systems
for safety-critical applications: A survey on design standards and proposed
methodologies. Journal of Computer Science and Technology (JCST), 30, 2, 373.

[4] G Berry. 1992. A hardware implementation of pure Esterel. Sadhana, 17, 95–130.
[5] A Cohen, L Gérard, and M Pouzet. 2012. Programming parallelism with futures

in Lustre. In Proceedings of the tenth ACM international conference on Embedded
software (EMSOFT ’12), 197–206.

[6] J-L Colaço, A Girault, G Hamon, and M Pouzet. 2004. Towards a higher-order
synchronous data-flow language. In Proceedings of the 4th ACM international
Conference on Embedded Software (EMSOFT ’04), 230–239.

[7] J Hammarberg and S Nadjm-Tehrani. 2003. Development of safety-critical
reconfigurable hardware with Esterel. Electronic Notes in Theoretical Computer
Science (ENTCS), 80, 219–234.

[8] F Restuccia et al. 2019. Is your bus arbiter really fair? restoring fairness in
axi interconnects for FPGA SoCs. ACM Transactions on Embedded Computing
Systems (TECS), 18, 5s, 1–22.

[9] F Rocheteau and N Halbwachs. 1992. Implementing reactive programs on
circuits a hardware implementation of Lustre. In Real-Time: Theory in Practice:
REX Workshop Mook 1991. Springer, 195–208.

[10] A Schulz-Rosengarten, S Smyth, R vonHanxleden, andMMendler. 2018. On rec-
onciling concurrency, sequentiality and determinacy for reactive systems—A se-
quentially constructive circuit semantics for Esterel. In 18th International Con-
ference on Application of Concurrency to System Design (ACSD). IEEE, 95–104.

[11] L Sylvestre, E Chailloux, and J Sérot. 2023. Accelerating OCaml programs on
FPGA. International Journal of Parallel Programming (IJPP), 51, 2-3, 186–207.

https://github.com/lsylvestre/EMSOFT23

	Abstract
	1 Introduction
	2 Language overview
	3 Related work
	4 Implementation and perspectives

