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(Dated: October 31, 2023)

1



Abstract

We investigate experimentally the dissolution of an almost spherical butyramide particle during

its sedimentation, in the low Reynolds high Péclet regime. The particle sediments in a quiescent

aqueous solution, and its shape and position are measured simultaneously by a camera attached to

a translation stage. The particle is tracked in real time, and the translation stage moves accordingly

to keep the particle in the field of the camera. The measurements from the particle image show

that the radius shrinking rate is constant with time, and independent of the initial radius of the

particle. We explain this with a simple model, based on the sedimentation law in the Stokes’

regime and the mass transfer rate at low Reynolds and high Péclet numbers. The theoretical and

experimental results are consistent within 20%. We introduce two correction factors to take into

account the non-sphericity of the particle and the inclusions of air bubbles inside the particle,

and reach quantitative agreement. With these corrections, the indirect measurement of the radius

shrinking rate deduced from the position measurement is also in agreement with the model. We

discuss other correction factors, and explain why there are negligible in the present experiment.

We also compute the effective Sherwood number as a function of an effective Péclet number.

I. INTRODUCTION

The mass transfer from a solid soluble particle in a fluid is of major relevance in chemical

engineering [1], for example in food industry [2] and in pharmaceutical industry [3, 4]. Mass

transfer from particles associated to phase change also occurs in a geophysical context, for

instance the melting of rocks in magma [5], the sublimation of ice drops in the atmosphere

[6], or the melting of snow and hail when reaching a sea [7].

The dynamics of dissolution is different for isolated particle and for a suspension of

particles. In the latter case, the particles interact through the concentration of the solute in

the fluid phase, and due to the hydrodynamic interaction between the particles [8]. Moreover,

the dissolution of the particle can affect the density of the fluid phase, inducing buoyancy

effects like the formation of plumes. In the present article we focus on the case of an isolated

particle.
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All these rather different configurations correspond to different regimes, which have been

classified following the two main dimensionless parameters which control the mass transfer

from a single spherical particle. A usual choice (which will be ours, see next section) is to

use the Reynolds Re and the Péclet Pe numbers. An alternative to Pe is to use the Schmidt

number Sc, where these three numbers are related by Pe = Re×Sc. Both Re and Pe vanish

for a motionless particle, for which the mass transfer is only due to molecular diffusion. In

gases, these two numbers are usually similar, whereas in liquids the Péclet number is several

orders of magnitudes higher than the Reynolds number. The dimensionless mass transfer

is the Sherwood number Sh, defined here (see Eq. 5 below) as the ratio of the total mass

transfer by its purely diffusive component. Many past studies have performed experiments

or numerical simulations, or developed models, to relate Sh to Re and Pe. Finally, in order to

better cover the subject, it is also important to consider heat transfer from a particle, which

is analogous to mass transfer within some hypotheses, in particular negligible radiation. In

the case of heat transfer, the analog to Pe is the thermal Péclet number defined with the

thermal diffusivity, the equivalent to Sc is the Prandtl number Pr, and the equivalent to Sh

is the Nusselt number Nu.

The first regime is when both Re and Pe are small. It has for example been investigated

experimentally by [9], measuring the size of an almost spherical succinic acid particle in

unstirred water as a function of time. The results are compatible with a purely diffusive

mass transfer (i.e. Sh = 1 with our definition). The diffusive mass transfer has also been

verified experimentally in the case of a droplet of hexadecane levitated in an eletrodynamic

balance and undergoing a flow of N2 and helium [10]. Since the fluids are at rest, the

expected result is similar for a liquid or a solid particle in this regime.

The regime we are particularly interested in this work is the case of small Re and large

Pe, which, as we already said, is possible in a liquid. A fundamental analytical calculation

for a sphere has been performed by [11], which gives Sh ∝ Pe1/3. This scaling law has

been confirmed by numerical simulations [12, 13] as well as experiments using two rotating

cylinders to impose an homogeneous flow and electrochemical measurements to obtain the

mass flux [14]. A similar configuration is the sinking of small spheres in a turbulent flow,

which has been investigated experimentally and numerically by [15].

Finally, many experiments and simulation have been performed in the regime where both

Re and Pe are large, for a fixed particle submitted to a uniform flow or a free falling particle.
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In this case, one expects the scaling law Sh ∝ Re1/2Sc1/3 [16], and most of the results are

effectively compatible with a correlation Sh ∝ Re1/2Scα, α is in the range 0.3–0.4, plus

correction terms. Using numerous simulations, [17] have found α = 0.36 in the case of

heat transfer for 3 × 10−3 < Pr < 101 and 102 < Re < 5 × 104. The experiments include

various systems: sedimentation and dissolution of urea spheres in a vertical glass column

[18], dissolution of benzoic acid spheres in a flow (natural or forced convection) of water

or propylene glycol [19], dissolution of ice ball in a hydrodynamic channel with water flow

[20], dissolution of hard candy submitted to a flow [21]. However, some other experimental

configurations with a very different flow, like large ice balls melting in a turbulent von

Kármán flow [22], leads to different scalings.

Spherical versus non-spherical particles have also been studied in this large Re-Pe regime.

One can in particular mention experiments on the dissolution of neutrally buoyant particles

with rectangular cuboid initial shapes in isotropic turbulent environments [23]. Numeri-

cally, simulations of heat transfer past spheres, cuboids and ellipsoids been performed by

[24], and empirical correlation for non-spherical ellipsoids have been obtained by [25–28].

Finally, several correction factor to the mass transfer, associated with the aspect ratio of

non-spherical particles, the thermal effect due to dissolution, and the finite solubility effect

have been discussed in [13, 29].

In the present work, we investigate the dissolution of an almost spherical particle that

sediments in an aqueous solution at rest. These experiments belong to the low Reynolds and

high Péclet regime, which, in comparison to the high Reynolds regime, has been less studied.

In the next section 2, we present the theoretical framework that we need to interpret the

results, showing in particular that we expect a constant reduction rate of the particle size.

We describe the experimental setup in section 3 which allows us to measure simultaneously

the position and the shape of the particle during its sedimentation. We emphasise the use of

particles made of butyramide, a chemical which does not change the density of water when

dissolving, hence preventing any buoyancy effect in the fluid. Section 4 is devoted to the

comparison of our experimental results with the model, and we show that we can make it

quantitative accounting for shape and density correction factors. Finally, conclusions and

perspectives are drawn in section 5. Some technical aspects are gathered in supplementary

material.
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II. THEORY FOR A SPHERICAL PARTICLE

We present in this section the theory of a spherical particle falling in a quiescent fluid.

We focus on the regime for which the particle Reynolds number Re = ρfaU/η is low, where

a is the particle radius, U its settling velocity, η is the dynamic viscosity of the fluid and

ρf its mass density. It means that the fluid motion around the particle can be described by

the Stokes equations, where the fluid inertia can be neglected. The particle velocity then

results from the balance of the three relevant forces: the downward force of gravity Fg, the

upward buoyant force Fb, and the drag force Fd, which classically express as:

Fg =
4

3
πa3ρpg, (1)

Fb =
4

3
πa3ρfg, (2)

Fd = 6πηaU. (3)

ρp is density of the particle and g is gravity acceleration. The resulting settling velocity of

the particle is:

U =
2

9

(ρp − ρf )g

η
a2. (4)

This particle can dissolve in the fluid, and we assume that it does so in the regime where

its Péclet number, defined as Pe = Ua
D
, where D is the diffusion coefficient of diffusion of

the dissolved matter composing the particle into the fluid, is large. Both small Re and large

Pe are encountered for small soluble particles in liquids as one typically has D ≪ η/ρf

(Parameters can be found in Table I).

In this regime, following the analytical calculation of [11], the mass transfer rate ṁ of the

sphere, i.e. the mass the particle losses per unit time when is dissolves, can be expressed in

terms of the Sherwood number as:

Sh = − ṁ

4πDac0
≃ 2

π
Pe1/3, (5)

where the dot denotes time derivative, and c0 is the concentration (in kg/m3) of the dissolved

matter that closes to the particle. In first approximation, c0 is the saturated concentration

of the solute. Relating the mass of the sphere to its radius m = 4
3
πρpa

3, the mass transfer

rate can also be written as:

ṁ = 4πρpa
2ȧ. (6)
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Equating (5) and (6), we obtain

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0
ρp

(
(ρp − ρf )g

η

) 1
3

. (7)

All factors on the right hand side of the above expression only depend on the characteristics

of the fluid and the particle. The rate at which the particle size decreases over time is

thus constant, i.e. independent of the radius of the particle, resulting in a linear relationship

between a and t. We will test this remarkably simple behaviour experimentally in the present

article.

III. EXPERIMENTAL SET-UP

We have built an experiment to investigate the dynamics of such a particle that sediments

and continuously dissolves, resulting in a reduction of its size and mass. The setup consists in

an elongated tank and a particle tracking system, as illustrated in Figure 1. The tank has an

inner width of 10mm and an inner length of 150mm. As the particles we consider are rather

small (on the order of 100 µm), and thus easily disturbed by small velocity fluctuations,

the tank is placed in a larger water bath (internal width of 30mm) to avoid convective

disturbances inevitably caused by small temperature differences between the two sides of the

experiment. The transparency of the two tanks allows for visual observation of the particle

sedimentation process. The reliability of the entire experimental device has been verified

through the sedimentation of plastic beads in distilled water. The two tanks are joined at

the top by a detachable connector to ensure the verticality of the inner tank and prevent

temperature fluctuations in the water bath caused by evaporation. In the present study,

a camera with a resolution of 1936 × 1216 pixels, manufactured by IDS industrial camera

company, was used. Prior to the experiments, careful scale calibration was performed, with

a typical resolution of 5 pixels/µm. The particle tracking was controlled by a self-written

Labview program, inspired by [30]. The camera was connected to a computer to measure in

real-time the position of the particle in the image, enabling to move the linear stage from

PI (Physical Instrument) and thus the camera to follow the particle. Thus, synchronous

position information and images of the particle were obtained from the tracking system.

The density of the aqueous solution containing the dissolved matter from the solid particle

is usually larger than that of the pure water – this is the case for NaCl for example. Here
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we use particles of butyramide, a chemical whose saturated solution has a density very close

to that of pure water, which minimise the effect of density increase around the particle

during its sedimentation-dissolution motion. At 21 ◦C, the typical temperature at which

experiments were run, we indeed measured with a pycnometer and a precision scale that the

density of the saturated butyramide is 0.998 ± 0.001 g cm−3, i.e. similar to the density of

water at the same temperature (see Table I). Butyramide is also very soluble in water [31],

and the crystals have a bulk density of 1.032 g cm−3. We made the particles using a stainless

steel tip with an inner diameter of around 1 mm, resulting in particles with a shape similar

to a cylinder with an aspect ratio close to unity.

Before the experiment is started, two different layers are prepared in the tank. The

upper layer is a saturated butyramide solution in which the particle cannot dissolve. The

lower layer is water with some dissolved NaCl, in order to make it slightly heavier than the

upper layer for stability. The amount of NaCl is such that the density of this lower layer

is 1.014 g cm−3. We assume that this moderate presence of NaCl does not influence the

dissolution process of butyramide in water. Once prepared, the two solutions are first put in

a vacuum pump to remove air bubbles before being placed in the experimental tank. At the

beginning of the experiment, pure water at room temperature is injected into the water bath.

The sedimentation tank is then carefully placed and attached by the detachable connector.

After the NaCl solution is poured at the bottom of the tank, the saturated butyramide

is carefully injected using a syringe with a small-sized tip, providing a more stable flow.

This process results in a narrow transition layer, and the interface between the upper and

lower layers can be visually distinguished. The vertical thickness of the lower layer solution

is 95mm, and that of the upper layer solution is 45mm. Butyramide particles that have

been pre-stocked in a saturated solution are drawn into a syringe without a tip, and the

syringe is then placed vertically on top of the tank. At this point, the saturated solutions

in the syringe and in the tank are connected and the particles can start to sediment. Once

a particle is in the field of view of the camera, the tracking system captures it immediately,

and track it until its size becomes smaller than ≃3 µm.

Moreover, the different physical parameters involved in this experiment have been care-

fully measured or determined, the value of them shown in Table I. The dynamic viscosities of

the saturated butyramide and NaCl solutions, respectively denoted ηb and ηn, were measured

with high precision using a rheometer Anton Paar specifically for liquids with a viscosity
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similar to water. The saturated butyramide concentration c0 is well calibrated as a function

of temperature in [31]. For the diffusivity D, we recorded with a camera the refraction angle

of the interface of a stratified solution consisting of a saturated butyramide solution and still

water over time. D was deduced from the square relationship between maximum reflected

angle and time. More details about these measurement can be found in the supplementary

material.

Particle Saturated butyramide solution NaCl solution Water

ρp D c0 ρf η ρf ηf ρf

g cm−3 m2 s−1 g cm−3 g cm−3 mPa s g cm−3 mPa s g cm−3

1.032 7.2× 10−10 0.182 0.998 1.853 1.014 1.018 0.9980

±0.4× 10−10 ±0.005 ±0.001 ±0.002 ±0.001 ±0.006 ±0.0001

TABLE I. Parameters of the experiment at 21 ± 0.5 ◦C. The column about water is given for

comparison.

FIG. 1. Schematic diagram of the experimental set-up. In the tank, the upper layer I is saturated

butyramide and the lower layer III is the NaCl solution. The transition layer is numbered II.
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IV. RESULTS AND DISCUSSION

A. Simultaneous measurements of radius and position of the particle

Figure 2 illustrates the dissolution process of the particle during its sedimentation. We

observe that the particle shrinks over time, gradually rounding off into a shape slightly

elongated in the vertical direction. We can also notice a slight rotation of the particle. More

quantitatively, we estimated the volume change of the particle by image analysis: binarising

the picture of the particle with a suitable gray threshold and finding boundaries after convex

hull, which fills the holes inside of binarised image, we could extract a projected area of the

particle. From that surface, a centroid, which we take as the effective location z of the

particle, and an equivalent radius a can be defined (Figure 2, bottom line). Following these

quantities picture after picture, we could this way measure z and a as functions of time, as

displayed in Figure 3.

FIG. 2. Dissolving process of the particle over time. The top line shows the original pictures, as

captured by the camera during the experiment. The bottom line shows the corresponding processed

images, where the white area A, obtained after convex closure of the binarised picture, represents

the projected surface of the particle. On each of these bottom images, the blue-star point indicates

the centroid of the white area, and the red circle, centred on that point, has the same surface as

the white area, i.e. gives the equivalent radius a =
√
A/π of the particle.

After the particle is released from the syringe, it first sediments in the upper layer com-

posed of a saturated butyramide solution. During this period (stage I), as the particle does

not dissolve, its equivalent radius remains constant. Slight fluctuations can however be ob-
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served, caused by the rotation of the particle. By taking the average particle radius during

this stage, the initial particle radius, denoted as a0, can be obtained. The settling velocity

of the particle also remains constant, and an initial value U0 can be similarly computed from

the average slope of the particle vertical displacement z(t).

At time t = t0 the particle enters the transition layer where the upper-layer butyramide

and lower-layer NaCl solutions are mixing. This is a rather thin transition layer, but its

stratification causes a significant drop of the particle settling velocity associated with an

enhanced drag [32]. During this stage II, the particle begins to dissolve, and it does so with

an almost constant radius shrinking rate. At time t = t1 the particle has reached the lower

layer and its velocity is back to normal settling values. As shown in Figure 3(a), throughout

its sedimentation in this layer (stage III) the particle equivalent radius continues to decrease

at a constant rate, which is consistent with the theoretical expectation (7). A linear fitting

of the data a(t) gives a direct measurement of the radius shrinking rate, denoted as ȧ1. We

shall see below that this rate can be also estimated in another way.

Simultaneously, the particle velocity continuously decreases and notably reaches zero

at some time tup, after which the particle motion is reversed, see Figure 3(b). This is

due to some air bubbles trapped inside the particle during its preparation. As we detail

in the following analysis, we will need to account for the fact that the effective density

of the particle must be corrected by a factor βb, associated with the presence of these

bubbles. As the density difference ρp − ρf is small, even a value of βb close to unity has a

significant quantitative effect. Of course, such a constant correction factor cannot reproduce

the particle motion reversal. Instead, close to that moment, the volume of the bubbles Vb

inside the particle can be assumed constant, so that, as the particle matter further dissolves,

its effective density becomes less than that of the surrounding fluid solution and it eventually

rises. One can one then can compute Vb at that reversing time with

Vb (ρp − ρg) =
4

3
π (ρp − ρf ) a

3(t = tup), (8)

where ρg = 1.2 kg/m3 is the air density. Notice that, interestingly, the value of the rate ȧ

remains unchanged during the rising stage. We define the time t2 at which Vb represents 1%

of the overall particle volume. Later analysis will then be restricted to times between t1 and

t2, so that the effect of these bubbles in the particle sedimentation is small.

The radius shrinking rate can be alternatively obtained from the particle position. As
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FIG. 3. Time evolution of the equivalent radius a (a) and the vertical displacement z (b) of the

particle. Blue circles: experimental data. The vertical dashed lines show the times separating the

different stages: t0 end of the saturated layer, t1 end of the transition layer, tup motion reversal.

Those times were determined using the velocity deduced from the derivative of the displacement

(b), see supplementary material. Solid black line: time before which the volume of the air bubbles

attached to the particle is less than 1%. Red line: linear fit in stage III of the radius decrease to

deduce ȧ1. Yellow line: linear fit in stage I of the particle position to deduce U0. Green curve:

fit of z(t) in stage III with Eq. 9, from which another estimate ȧ2 of the radius shrinking rate is

obtained.
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ȧ is a constant (Eq. 7), a in the expression of the settling velocity U (Eq. 4) can then be

replaced by a = a1 + ȧ(t − t1), where a1 = a(t1). Integrated once, the vertical position of

the particle thus writes

z =

∫ t

t1

Udt′ =
2

9

(ρp − ρf )g

η

[
1

3
ȧ2(t− t1)

3 + a1ȧ(t− t1)
2 + a21(t− t1)

]
+ z1, (9)

where the z1 is particle vertical position at the beginning of stage III (time t1). Fitting this

expression to the data z(t) allows us to get a value of ȧ, which we denote as ȧ2 to distinguish

with the more direct estimate ȧ1. Importantly, in this fitting process, two other parameters

are determined by fit: a1 and z1. The precision on fitting parameters is good (the maximal

error bar for ȧ2 is ±0.05 µms−1), and we have for instance checked that imposing a1 from

the measurement a(t) in the fitting of z(t) leads to consistent results.

B. Radius shrinking rate ȧ

As theoretically expected and showed in Figure 4, we find both ȧ1 and ȧ2 constant, i.e.

independent of the initial size a0 of the particle. The prediction from (7) is above the ȧ1

measurements by 20%. Moreover, although on the same order, ȧ2 is systematically smaller

than ȧ1 by a factor of ≃ 2. These discrepancies prompt us to revisit the above theoretical

expressions in order to understand where the idealised case of a homogeneous spherical

particle we have considered must be corrected. We have already mentioned in the previous

section that the presence of trapped air bubbles must be accounted for with an effective

particle density corrected by a factor βb. Another important aspect is the geometry of the

particle. Since we have only access to a projection of the particle shape, it is unlikely that

the effective radius a we have introduced quantitatively works for the particle volume. This

volume is key for the computation of the gravity and buoyancy forces. To account for this

volume uncertainty, we introduce a correction factor βa that will multiply the radius in the

expression of these forces. We will discuss later in section IVC why we do not introduce

correction factors for the other variables. With these two correction factors βa and βb, the
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expressions for U , ȧ and z rewrite

U =
2

9

(βbρp − ρf )g

η
β3
aa

2, (10)

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0

β2
aβbρp

(
(βbρp − ρf )g

η

) 1
3

, (11)

z =

∫ t

t1

Udt′ =
2

9

(βbρp − ρf )g

η
β3
a

[
1

3
ȧ2(t− t1)

3 + a1ȧ(t− t1)
2 + a21(t− t1)

]
+ z1. (12)

Using the data in stage I (upper layer), where U0 and a0 are measured accurately and for

which the density as well as the viscosity of saturated butyramide are known, (10) gives a

first relationship between the correction factors βa and βb. Similarly, with the linear fit of the

radius reduction in stage III (lower layer) giving the rate ȧ1, layer in which the density, the

viscosity as well as the diffusivity of NaCl solution are known, (11) gives a second relationship

linking βa and βb. They can be solved numerically, and, upon ensemble averaging over 13

independent experimental runs, we obtained βa = 0.921 ± 0.002 and βb = 0.988 ± 0.002.

With these values, the fit of the curve z(t) in stage III with (12) allows us to deduce a

new value of ȧ2. As shown in Figure 4, the theoretical prediction of ȧ now fits the direct

measurements ȧ1 as it should, and the corrected ȧ2 are now quantitatively consistent with

ȧ1. Importantly, these corrections assume that these factors can be taken constant over the

whole sedimentation process (in fact, until time t2).

A value of βb so close to unity may seem surprising, but because we are dealing with

a small density difference between particle and fluid, these numerical adjustments are very

sensitive. In fact, trying to impose βb = 1, we were not able to reach a quantitative matching

of ȧ1, ȧ2 and theory as in Figure 4 playing with βa only. Furthermore, the value we got for

βa corresponds to an actual volume of the particle about 3/4 times smaller than deduced

from the surface-induced effective radius a. This is consistent with particles in the form of

an ellipsoid with its major axis parallel to the vertical, as observed in the experiments (see

supplementary material).

C. Other correction factors

Other correcting factors could of course be considered. First of all, if ellipsoid-shaped

particles are at play, the drag force is modified by the particle aspect ratio E, defined as

the ratio between the major and the minor axes lengths. Following the work of [33] for
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FIG. 4. Reduction rate of the particle radius ȧ from theory and data analyses for various initial

particle size a0. Red dots: direct measurement from the linear fitting of a(t) (see Fig. 3a). These are

what we denoted as ȧ1. Green dots: indirect values obtained from the fitting of z(t) (see Fig. 3b).

These are what we denoted as ȧ2. Light green points: fitting without any correction factors, i.e.

using Eq. 9. Dark green points: fitting accounting for correction factors, i.e. using Eq. 12. Gray

dash line: uncorrected theory (7). Black solid line: corrected theory (11). Data dispersion shows

the overall precision we can reach, but from the fitting process of a single experimental run, errors

bars are smaller than the symbol size.

spheroids, the Stokes drag correction factor for a motion parallel to the major axis follows

the relation

βdrag =

(
4

5
+

E

5

)
E−1/3. (13)

The analysis of the pictures of the sedimenting particles shows aspect ratios typically between

1 and 2, with an average around 1.3 (see supplementary material). This corresponds to a

drag correction factor βdrag ≃ 0.97. Accounting for it in the force balance, the above analysis

of the particle’s dynamics is not significantly affected: variations by less than a percent are

found for βa and βb, and around 1% for ȧ. At the first order, this shape effect on the drag

can then be ignored for the present problem.

The shape of the particle influences its mass and heat transfer processes as well. The

heat transfer from a particle, which is analogous to mass transfer within some hypotheses,

in particular negligible radiation. We use the work of [27] that provides Nusselt numbers
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for ellipsoids across a wide range of aspect ratios, E. Here with Re ≃ 0.1 and Sc ≃ 1400,

which are typical values of these experiments, we obtain βm ≃ 1.008 for the Sh ratio between

E = 1.3 and E = 1. Including this correction factor into the theoretical framework has a

negligible impact on the results. As demonstrated in the previous paragraph, deviations of

less than one percent are noted for βa, βb and ȧ.

The theory of [11] which gives equation (5) for the value of the Sherwood number rely

on the hypotheses that the concentration of the solute is infinitesimal, and that there is no

thermal effects during the dissolution. These two hypotheses are not verified for butyramide

[31]: the solubility of butyramide is large, and its dissolution in water is endothermic. In

the following we evaluate the corresponding correction factor βsol using the results of [29].

These results are valid in the case of high Péclet and Schmidt number, which is the regime

of the present experiments. The Sherwood number of equation (5) is modified by a factor

βsol =
1

γ−1 − J2/3/K
. (14)

In this expression γ is a correction factor introduced by [29] which depends on the weight

fraction of the solute at solid-liquid interface and in the bulk of the liquid. We estimate

γ = 1.09 for butyramide using a linear fit from the data of table 2 of [29]. J is ratio of

the molecular D of the solute by the thermal diffusivity of the liquid α. The value of α for

water is α = 1.45 × 10−7 m2 s−1 [34]. K is a dimensionless number involving the specific

heat of the liquid cp, the latent heat of absorption L and a coefficient d, which is the slope of

the relationship of the concentration and temperature. For water, the specific heat is cp =

4.15 kJ kg−1K−1, d = 0.01 K−1 and L = −400 kJ kg−1 was sourced from the measurements

by [31]. The positive value of d implies that heat absorbed during butyramide dissolution

results in a decrease of the interfacial temperature and equilibrium concentration. The value

of correction factor βsol experiences only a minor change when the two values evaluated based

on water are replaced by those calculated using NaCl solution: βsol changes from 1.057 to

1.062, so that we take βsol ≃ 1.06. Incorporating this value into the theoretical analysis

does not affect much the results, with, as in the above paragraph, variations by less than a

percent are found for βa and βb, and around 1% for ȧ. This correction can thus be neglected

at first order for the present analysis.
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D. Effective Péclet and Sherwood numbers

These experimental data finally allow us to assess the scaling law relating the Sherwood to

the Péclet numbers (5). Because we do not measure ṁ directly but the grain size reduction

rate ȧ instead, we rather define an effective Sherwood-like number as:

S̃h = βaβb
ρpaȧ

Dc0
. (15)

For a spherical particle, for which ṁ and ȧ are simply related (Eq. 6), and setting the

corrective factors βa,b to unity, both definitions of Sh and S̃h coincide. Here, we not only wish

to express this number with quantities we have direct access to, but also aim at accounting

for the corrections we have discussed above. Similarly, the effective Péclet number writes

P̃e = βa
Ua

D
(16)

It can be directly estimated along each experimental run, also accounting for the radius

correction. Plotting S̃h as a function of P̃e for all of our data clearly provides the expected

increasing trend (Fig. 5). Data scattering is important, on the order of 30%, which is similar

to what is displayed in Figure 4. For comparison to theory, S̃h is computed with U and

ȧ from their corrected expressions (10) and (11), setting the factors to the experimentally-

determined averaged values βa = 0.921 and βb = 0.988, and where a is deduced from P̃e

with (16). The agreement is quantitative, showing self-consistency with the fit of the theory

in Figure 4.

V. CONCLUSION

We have investigated the dissolution of an almost spherical particle during its sedimenta-

tion, in the low Reynolds and high Péclet regime. We use butyramide particles sedimenting

in aqueous solution so that the density contrast between the particle the solution is small,

and thus the sedimentation velocity. The advantage of butyramide is that the density of the

saturated solution is very close to the one of water, i.e. the dissolution does not affect the

density of the solution.

The particle sediments in a squared tube, where a saturated butyramide layer is placed

on top of a NaCl layer. The role of the top layer is to measure the sedimentation of the

particle without dissolution and to have time to focus on the particle. The shape and the
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FIG. 5. Effective Sherwood number vs effective Péclet number. Symbols: experimental data,

corrected by their factors βa and βb computed as explained in the text after equations (10-12).

The colours correspond to different runs. Gray dash line: uncorrected theory. Black solid line:

theory accounting for averaged correction factors.

position of the particle are measured simultaneously by a camera attached to a translation

stage. The particle is tracked in real time, and the translation stage moves accordingly to

keep the particle in the field of the camera.

We develop a simple model for a perfect sphere based on Stokes’ law (hypothesis of low

Reynolds number) and the mass transfer at low Reynolds and high Péclet derived in [11].

We obtain a radius shrinking rate ȧ which is constant in time, and only depends on the

properties of the solid and the aqueous solution. The position of the particle is a third order

polynomial of the time t. In the experiment, we define an equivalent radius from the image

of the particle. We find as expected by the simple model that ȧ is constant in time, and

independent of the initial radius of the particle. Moreover, the theoretical and experimental

results are consistent within 20% without any adjustable parameter.

In order to obtain an even more quantitative agreement, we introduce two correction

factors: one to take into account the non-sphericity of the particle in the evaluation of its

volume and weight (βa), and a correction of the density of the particle due to the inclusions

of air bubbles inside the particle (βb). The non-sphericity of the particle and the inclusion

of air bubbles are visible on the images. These two correction factors are close to one
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(βa = 0.921±0.002 and βb = 0.988±0.002). With these corrections, both the radius shrinking

rate deduced from the equivalent radius and the one deduced from the particle trajectory

are in quantitative agreement with the corrected model. We discuss other correction factors,

such as the correction of the drag due to the non-sphericity of the particle, the correction of

the mass transfer due to the non-sphericity of the sphere and the finite solubility and non-

isothermal effects in the dissolution of butyramide. We have shown that these corrections

factors have a negligible effect in the present experiment, in contrast with βa and βb. Finally,

we have defined an effective Sherwood number S̃h and an effective Péclet number P̃e, and

we have displayed the corresponding curve, which show the S̃h ∝ P̃e
1/3

scaling.
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[31] C. M. Romero and M. E. González, Solubility of acetamide, propionamide, and butyramide

in water at temperatures between (278.15 and 333.15) K, Journal of Chemical & Engineering

Data 55, 2326 (2010).

[32] J. Magnaudet and M. J. Mercier, Particles, drops, and bubbles moving across sharp interfaces

and stratified layers, Annual Review of Fluid Mechanics 52, 61 (2020).

[33] E. Loth, Drag of non-spherical solid particles of regular and irregular shape, Powder Technol-

ogy 182, 342 (2008).

20
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