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摘要8

We investigate experimentally the dissolution of an almost spherical butyramide particle during its sedimentation,9

in the low Reynolds high Péclet regime. The particle sediments in a quiescent aqueous solution, and its shape and10

position are measured simultaneously by a camera attached to a translation stage. The particle is tracked in real11

time, and the translation stage moves accordingly to keep the particle in the field of the camera. The measurements12

from the particle image show that the radius shrinking rate is constant with time, and independent of the initial13

radius of the particle. We explain this with a simple model, based on the sedimentation law in the Stokes’ regime14

and the mass transfer rate at low Reynolds and high Péclet numbers. The theoretical and experimental results are15

consistent within 20%. We introduce two correction factors to take into account the non-sphericity of the particle16

and the inclusions of air bubbles inside the particle, and reach quantitative agreement. With these corrections, the17

indirect measurement of the radius shrinking rate deduced from the position measurement is also in agreement with18

the model. We discuss other correction factors, and explain why they are negligible in the present experiment. We19

also compute the effective Sherwood number as a function of an effective Péclet number.20

I. INTRODUCTION21

The mass transfer from a solid soluble particle in a fluid is of major relevance in chemical engi-22

neering [1], for example in food industry [2] and in pharmaceutical industry [3, 4]. Mass transfer from23

particles associated to phase change also occurs in a geophysical context, for instance the melting of24

rocks in magma [5, 6], the sublimation of ice drops in the atmosphere [7], or the melting of snow and25

hail when reaching a sea [8].26

The dynamics of dissolution is different for isolated particle and for a suspension of particles. In27

the latter case, the particles interact through the concentration of the solute in the fluid phase, and due28

to the hydrodynamic interaction between the particles [9]. Moreover, the dissolution of the particle29

can affect the density of the fluid phase, inducing buoyancy effects like the formation of plumes. In30

the present article we focus on the case of an isolated particle whose dissolution does not change the31

density of the surrounding fluid.32

The diverse environments where mass transfer involving soluble particles takes place are catego-33

rized into distinct regimes. This classification is based on the two main dimensionless parameters that34

predominantly control the mass transfer from a single spherical particle.Following many previous stud-35

ies, we choose to use the Reynolds number Re = ρfaU/η which characterises the flow regime, and the36

Péclet number Pe = aU/D which characterises the mass transfer regime. In the previous definitions,37

a is the particle typical size (the radius for a sphere), U its settling velocity, η is the dynamic viscosity38

of the fluid, ρf its mass density, and D is the diffusion coefficient of the solute composing the particle39

into the fluid. An alternative to Pe is to use the Schmidt number Sc, where these three numbers are40

related by Pe = Re × Sc. The Schmidt number is known to play an important role in the dissolution41

process [10]. Both Re and Pe vanish for a motionless particle, for which the mass transfer is only42

due to molecular diffusion. In gases, these two numbers are usually similar, whereas in liquids the43

Péclet number is several orders of magnitudes higher than the Reynolds number. The third relevant44
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dimensionless number in this context is the Sherwood number Sh, which quantifies the mass transfer45

and is defined as the ratio between the total mass transfer and its purely diffusive component for the46

same particle (an expression of the Sherwood number for our case is given later in equation (5). Many47

past studies have performed experiments, numerical simulations, or developed models, to relate Sh48

(the result) to Re and Pe (the control parameters). This approaches is valid if the chemical kinetic of49

dissolution is fast, like in the present article. Otherwise, a new dimensionless number should be taken50

into account, for example the Damköhler number which compares the dissolution rate coefficient to a51

characteristic diffusion velocity [10]. Finally, in order to better cover the subject, it is also important52

to consider heat transfer from a particle, which is analogous to mass transfer within some hypothe-53

ses, in particular negligible radiation. It means that dissolution processes are very similar to melting54

processes. In the case of heat transfer, the analog to Pe is the thermal Péclet number defined with55

the thermal diffusivity, the equivalent to Sc is the Prandtl number Pr, and the equivalent to Sh is the56

Nusselt number Nu.57

The first regime is when both Re and Pe are small. It has for example been recently investigated58

experimentally by [11], measuring the size of an almost spherical succinic acid particle in unstirred59

water as a function of time. The results are compatible with a purely diffusive mass transfer (i.e.60

Sh = 1 with our definition). The diffusive mass transfer has also been verified experimentally in the61

case of a droplet of hexadecane levitated in an eletrodynamic balance and undergoing a flow of N2 and62

helium [12]. Since the fluids are at rest, the expected result is similar for a liquid or a solid particle in63

this regime.64

The regime we are particularly interested in this work is the case of small Re and large Pe, which,65

as we already said, is possible in a liquid. A fundamental analytical calculation for a sphere has66

been performed by [13], which gives Sh ∝ Pe1/3. This scaling law has been confirmed by numerical67

simulations [14, 15] as well as experiments using two rotating cylinders to impose an homogeneous flow68

and electrochemical measurements to obtain the mass flux [16]. A similar configuration is the sinking69

of small spheres in a turbulent flow, which has been investigated experimentally and numerically by70

[17].71

Finally, many experiments and simulations have been performed in the regime where both Re and72

Pe are large, for a fixed particle submitted to a uniform flow or a free falling particle. In this case,73

one expects the scaling law Sh ∝ Re1/2Sc1/3 [18], and most of the results are effectively compatible74

with a correlation Sh ∝ Re1/2Scα, α is in the range 0.3–0.4, plus correction terms. Using numerous75

simulations, [19] have found α = 0.36 in the case of heat transfer for 3 × 10−3 < Pr < 101 and76

102 < Re < 5× 104. The experiments include various systems: sedimentation and dissolution of urea77

spheres in a vertical glass column [20], dissolution of benzoic acid spheres in a flow (natural or forced78

convection) of water or propylene glycol [21], dissolution of ice ball in a hydrodynamic channel with79

water flow [22], dissolution of hard candy submitted to a flow [23]. However, some other experimental80

configurations with a very different flow, like large ice balls melting in a turbulent von Kármán flow81

[24], leads to different scalings.82

Spherical versus non-spherical particles have also been studied in this large Re-Pe regime. One83

can in particular mention experiments on the dissolution of neutrally buoyant particles with rect-84
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angular cuboid initial shapes in isotropic turbulent environments [25]. Numerically, simulations of85

heat transfer past spheres, cuboids and ellipsoids been performed by [26], and empirical correlation86

for non-spherical ellipsoids have been obtained by [27–30]. Finally, several correction factor to the87

mass transfer, associated with the aspect ratio of non-spherical particles, the thermal effect due to88

dissolution, and the finite solubility effect have been discussed in [15, 31].89

In the present work, we investigate the dissolution of an almost spherical particle that sediments90

in an aqueous solution at rest. These experiments belong to the low Reynolds and high Péclet regime,91

which, in comparison to the high Reynolds regime, has been less studied. In the next section 2,92

we present the theoretical framework that we need to interpret the results, showing in particular93

that we expect a constant reduction rate of the particle size. We describe the experimental setup in94

section 3 which allows us to measure simultaneously the position and the shape of the particle during95

its sedimentation. We emphasise the use of particles made of butyramide, a chemical which does96

not change the density of water when dissolving, hence preventing any buoyancy effect in the fluid.97

Section 4 is devoted to the comparison of our experimental results with the model, and we show that98

we can make it quantitative accounting for shape and density correction factors. Finally, conclusions99

and perspectives are drawn in section 5. Technical details such as the fabrication of the particles, the100

behavior of their settling velocity, and the measurements of relevant parameters are comprehensively101

documented in the supplementary material (including references [32–38]).102

II. THEORY FOR A SPHERICAL PARTICLE103

We present in this section the theory of a spherical particle of radius a falling in a quiescent fluid.104

We focus on the regime for which the particle Reynolds number is low – this is consistent with our105

experiments for which Re in the range 0.3 − 0.8. It means that the fluid motion around the particle106

are well described by the Stokes equations, where the fluid inertia can be neglected. The particle107

velocity then results from the balance of the three relevant forces: the downward force of gravity Fg,108

the upward buoyant force Fb, and the drag force Fd, which classically express as:109

Fg =
4

3
πa3ρpg, (1)

Fb =
4

3
πa3ρfg, (2)

Fd = 6πηaU. (3)

ρp is density of the particle and g is gravity acceleration. The resulting settling velocity of the particle110

is:111

U =
2

9

(ρp − ρf )g

η
a2. (4)

This particle can dissolve in the fluid, and we assume that it does so in the regime where its112

Péclet number is large (in the range 300 − 1000 in our experiment). Both small Re and large Pe113

are encountered for small soluble particles in liquids as one typically has D ≪ η/ρf (Parameters114

can be found in Table I). In this regime, we follow the analytical calculations derived by [13] for a115

perfect sphere with the approximation of a thin concentration boundary layer around the particle. It116

4



yields the mass transfer equation predominated by convection as ṁ ≃ 8Dac0Pe1/3, where c0 represents117

the concentration (in kg/m3) of the dissolved matter closest to the particle, which is the saturated118

concentration of the solute. The derivation also assumes no change of fluid density, small solute119

concentration, isothermal dissolution, hypotheses which will be discussed later in the text. Moreover,120

the viscosity in this model is assumed to be the one of the solution far from the particle. Given the121

large Schmidt number, the size of the concentration boundary layer (∝ D/U) where the concentration122

of solute is significant is indeed much smaller than the size over which the velocity field varies (radius123

size ∝ a).124

Given that pure diffusion mass transfer rate for sphere is represented by ṁ = 4πDac0, the total125

mass transfer rate ṁ of the particle in our experiments, i.e. the mass the particle losses per unit time126

when is dissolves, can be expressed in terms of the Sherwood number as:127

Sh = − ṁ

4πDac0
≃ 2

π
Pe1/3, (5)

where the dot denotes time derivative.128

Relating the mass of the sphere to its radius m = 4
3
πρpa

3, the mass transfer rate can also be129

written as:130

ṁ = 4πρpa
2ȧ. (6)

Equating ṁ in (5) and (6), while making explicit the expression of the Péclet number and substituting131

U from (4), we finally obtain132

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0
ρp

(
(ρp − ρf )g

η

) 1
3

. (7)

All factors on the right hand side of the above expression only depend on the characteristics of the133

fluid and the particle. The rate at which the particle size decreases over time is thus constant, i.e.134

independent of the radius of the particle, resulting in a linear relationship between a and t. We will135

test this remarkably simple behaviour experimentally in the present article.136

III. EXPERIMENTAL SET-UP137

We have built an experiment to investigate the dynamics of such a particle that sediments and138

continuously dissolves, resulting in a reduction of its size and mass. The setup consists in an elongated139

tank and a particle tracking system, as illustrated in Fig. 1. The tank has a square cross-section,140

with an inner width of 10mm and an inner length of 150mm. As the particles we consider are rather141

small (on the order of 100µm), and thus easily disturbed by small velocity fluctuations, the tank is142

placed in a larger water bath, also with a square cross-section (internal width of 30mm), to avoid143

convective disturbances inevitably caused by small temperature differences between the two sides144

of the experiment. The transparency of the two tanks allows for visual observation of the particle145

sedimentation process. The reliability of the entire experimental device has been verified through the146

sedimentation of plastic beads in distilled water. The two tanks are joined at the top by a detachable147

connector to ensure the verticality of the inner tank and prevent temperature fluctuations in the water148
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bath caused by evaporation. In the present study, a camera with a resolution of 1936 × 1216 pixels,149

manufactured by IDS industrial camera company, was used. Prior to the experiments, careful scale150

calibration was performed, with a typical resolution of 5 pixels/µm. The particle tracking was controlled151

by a self-written Labview program, inspired by [39]. The camera was connected to a computer to152

measure in real-time the position of the particle in the image, enabling to move the linear stage from153

PI (Physical Instrument) and therefore the camera to follow the particle. Thus, synchronous position154

information and images of the particle were obtained from the tracking system.155

The density of the aqueous solution containing the dissolved matter from the solid particle is156

usually larger than that of the pure water – this is the case for NaCl for example. Here we use particles157

of butyramide, a chemical whose saturated solution has a density very close to that of pure water,158

which minimise the effect of density increase around the particle during its sedimentation-dissolution159

motion. At 21 ◦C, the typical temperature at which experiments were run, we indeed measured with a160

pycnometer and a precision scale that the density of the saturated butyramide is 0.998± 0.001g cm−3,161

i.e. similar to the density of water at the same temperature (see Table I). Butyramide is also very162

soluble in water [35], and the crystals have a bulk density of 1.032 g cm−3. The theory is simple for163

perfect spheres only. However, preparing spherical particles for this experiment is a challenge because164

butyramide crystals naturally tend to form plate-like shapes when cristallisation occurs in solution. In165

order to reproducibly get butyramide particles with an aspect ratio close to unity, we extract them166

from a layer of solid butyramide obtained by melting the crystals in a beaker, forming a homogeneous167

solid layer once cooled back to room temperature. As discussed below, this protocole also allows us168

to minimize the presence of air bubbles inside the particles. Using a stainless steel tip with an inner169

diameter of around 1 mm provide particles in the right range of size for our experiment, whose shape170

are typically like rounded cylinders. Additional details on the particle fabrication process are available171

in Section I of the supplementary material.172

Before the experiment is started, two different fluid layers are prepared in the tank. The upper173

layer labelled layer I in schematics of Fig. 1 is a saturated butyramide solution in which the particle174

cannot dissolve. The lower layer (layer III) is water with a bit of dissolved NaCl, in order to make175

it slightly heavier than the upper layer, for stability. The amount of NaCl is such that the density176

of this lower layer is 1.014 g cm−3. The upper layer thus does not contain NaCl, and the lower layer177

does not contain butyramide. We assume that this moderate presence of NaCl does not influence the178

dissolution process of butyramide in water. Once prepared, the two solutions are first put in a vacuum179

pump to remove air bubbles before being placed in the experimental tank. At the beginning of the180

experiment, pure water at room temperature is injected into the water bath. The sedimentation tank181

is then carefully placed and attached by the detachable connector. After the NaCl solution is poured182

at the bottom of the tank, the saturated butyramide is carefully injected using a syringe with a small-183

sized tip, providing a more stable flow. This process results in a thin middle transition layer (layer II184

in Fig. 1) of intermediate concentration of butyramide and NaCl that appears due to diffusion, and the185

interface between the upper and lower layers can be visually distinguished. The vertical thickness of186

the lower layer solution is 95mm, and that of the upper layer solution is 45mm. Butyramide particles187

that have been pre-stocked in a saturated solution are drawn into a syringe without a tip, and this188
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syringe is then placed vertically on top of the tank. At this point, the saturated solutions in the syringe189

and in the tank are connected and the particles can start to sediment. Once a particle is in the field190

of view of the camera, the tracking system captures it immediately, and track it until its size becomes191

smaller than ≃3µm.192

Moreover, the different physical parameters involved in this experiment have been carefully mea-193

sured or determined. Their values are shown in Table I. The dynamic viscosities of the saturated194

butyramide and NaCl solutions were measured with high precision using a rheometer Anton Paar195

specifically for liquids with a viscosity similar to water. The saturated butyramide concentration c0 is196

well calibrated as a function of temperature in [35]. For the diffusivity D, we recorded with a camera197

the refraction angle of the interface of a stratified solution consisting of a saturated butyramide solution198

and still water over time. D was deduced from the square relationship between the maximum reflected199

angle and time. More details about these measurements can be found in the supplementary material.200

Particle Saturated butyramide solution NaCl solution Water
ρp D c0 ρf η ρf η ρf

g cm−3 m2 s−1 g cm−3 g cm−3 mPa s g cm−3 mPa s g cm−3

1.032 7.2× 10−10 0.182 0.998 1.853 1.014 1.018 0.9980
±0.4× 10−10 ±0.005 ±0.001 ±0.002 ±0.001 ±0.006 ±0.0001

表 I. Parameters of the experiment at 21± 0.5 ◦C. The column about water is given for comparison.

图 1. Schematic diagram of the experimental set-up. In the tank, the upper layer I is saturated butyramide and the
lower layer III is the NaCl aqueous solution. The transition layer is numbered II.
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IV. RESULTS AND DISCUSSION201

A. Simultaneous measurements of radius and position of the particle202

Figure 2 illustrates the dissolution process of the particle during its sedimentation. We observe203

that the particle shrinks over time, gradually rounding off into a shape slightly elongated in the vertical204

direction. We can also notice a slight rotation of the particle. More quantitatively, we estimated the205

volume change of the particle by image analysis: binarising the picture of the particle with a suitable206

gray threshold and finding boundaries after convex hull, which fills the holes inside of binarised image,207

we could extract a projected area of the particle. From that surface, a centroid, which we take as the208

effective location z of the particle, and an equivalent radius a can be defined (Fig. 2, bottom line).209

Following these quantities picture after picture, we could this way measure z and a as functions of210

time, as displayed in figure 3.211

图 2. Dissolving process of the particle over time. The top line shows the original pictures, as captured by the
camera during the experiment. The bottom line shows the corresponding processed images, where the white area
A, obtained after convex closure of the binarised picture, represents the projected surface of the particle. On each
of these bottom images, the blue-star point indicates the centroid of the white area, and the red circle, centred on
that point, has the same surface as the white area, i.e. gives the equivalent radius a =

√
A/π of the particle.

After the particle is released from the syringe, it first sediments in the upper layer composed212

of a saturated butyramide solution. During this period (stage I), as the particle does not dissolve,213

its equivalent radius remains constant. Slight fluctuations can however be observed, caused by the214

rotation of the particle. By taking the average particle radius during this stage, the initial particle215

radius, denoted as a0, can be obtained. The settling velocity of the particle also remains constant,216

and an initial value U0 can be similarly computed from the average slope of the particle vertical217

displacement z(t). With these initial values a0 and U0, which are the maximal radius and velocity of218

the particle during the sedimentation, we can evaluate the maximal Reynolds number of the particle219

by Re = a0U0ρf/η. Across all experimental runs, the average value of Re is found to be 0.5 (in the220

range 0.3− 0.8).221

At time t = t0 the particle enters the transition layer where the upper-layer butyramide and222
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lower-layer NaCl solutions are mixing by diffusion. In this thin transition layer the stratification223

causes a significant drop of the particle settling velocity associated with an enhanced drag [32]. During224

this stage II, the particle begins to dissolve, and it does so with an almost constant radius shrinking225

rate. At time t = t1 the particle has reached the lower layer and its velocity corresponds again to226

sedimentation in homogeneous solution (additional details on velocity are provided in Fig. B of the227

supplementary material). As shown in Fig. 3(a), throughout its sedimentation in this lower layer (stage228

III) the particle equivalent radius continues to decrease at a constant rate, which is consistent with the229

theoretical expectation (7). A linear fitting of the data a(t) in this stage gives a direct measurement230

of the radius shrinking rate, denoted as ȧ1. We shall see below that this shrinking rate can be also231

estimated in another way, and will be denoted as ȧ2.232

Simultaneously, the particle velocity continuously decreases and notably reaches zero at some time233

tup, after which the particle motion is reversed, see Fig. 3(b). This is due to some air bubbles trapped234

inside the particle during its preparation. As we detail in the following analysis, we will need to account235

for the fact that the effective density of the particle must be corrected by a factor βb, associated with236

the presence of these bubbles. As the density difference ρp−ρf is small, even a value of βb close to unity237

has a significant quantitative effect. Of course, such a constant correction factor cannot reproduce the238

particle motion reversal. Instead, close to that moment tup, the volume of the bubbles Vb inside the239

particle can be assumed constant, so that, as the particle matter further dissolves, its effective density240

becomes less than that of the surrounding fluid solution and it eventually rises. One can one then can241

compute Vb at that reversing time with242

Vb (ρp − ρg) =
4

3
π (ρp − ρf ) a

3(t = tup), (8)

where ρg = 1.2 × 10−3 g cm−3 is the air density. Notice that, interestingly, the value of the rate ȧ243

remains unchanged during the rising stage. We define the time t2 at which Vb represents 1% of the244

overall particle volume. Later analysis will then be restricted to times between t1 and t2, so that the245

effect of these bubbles in the particle sedimentation is small, a part a corrective factor for the particle246

bulk density.247

The radius shrinking rate can be alternatively obtained from the particle position. As ȧ is a248

constant (Eq. 7), a in the expression of the settling velocity U (Eq. 4) can then be replaced by249

a = a1 + ȧ(t− t1), where a1 = a(t1). Integrated once, the vertical position of the particle thus writes250

z =

∫ t

t1

Udt′ =
2

9

(ρp − ρf )g

η

[
1

3
ȧ2(t− t1)

3 + a1ȧ(t− t1)
2 + a21(t− t1)

]
+ z1, (9)

where the z1 is particle vertical position at the beginning of stage III (time t1). Fitting this expression251

to the data z(t) allows us to get a value of ȧ, which we denote as ȧ2 to distinguish with the more252

direct estimate ȧ1. Both values are presented in Fig. 4. Importantly, in this fitting process, two253

other parameters are determined by fit: a1 and z1. The precision on fitting parameters is good (the254

maximal error bar for ȧ2 is ±0.05 µm s−1), and we have for instance checked that imposing a1 from255

the measurement a(t) in the fitting of z(t) leads to consistent results.256
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图 3. Time evolution of the equivalent radius a. (a) and the vertical displacement z (b) of the particle. Blue circles:
experimental data. The vertical dashed lines show the times separating the different stages: t0 end of the saturated
layer, t1 end of the transition layer, tup motion reversal. Those times were determined using the velocity deduced
from the derivative of the displacement (b), see Fig. B in supplementary material. Solid black line: time before
which the volume of the air bubbles attached to the particle is less than 1%. Red line: linear fit in stage III of the
radius decrease to deduce ȧ1. Yellow line: linear fit in stage I of the particle position to deduce U0. Green curve: fit
of z(t) in stage III with Eq. 9, from which another estimate ȧ2 of the radius shrinking rate is obtained.

B. Radius shrinking rate ȧ257

As theoretically expected and showed in Fig. 4, we find both ȧ1 and ȧ2 constant, i.e. independent258

of the initial size a0 of the particle. The prediction from (7) is above the ȧ1 measurements by 20%.259

Moreover, although on the same order, ȧ2 is systematically smaller than ȧ1 by a factor of ≃ 2. These260

discrepancies prompt us to revisit the above theoretical expressions in order to understand where the261

idealised case of a homogeneous spherical particle we have considered must be corrected. We have262

already mentioned in the previous section that the presence of trapped air bubbles must be accounted263

for with an effective particle density corrected by a factor βb. Another important aspect is the geometry264
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of the particle. Since we have only access to a projection of the particle shape, it is unlikely that the265

effective radius a we have introduced quantitatively works for the particle volume. However, this266

volume is key for the computation of the gravity and buoyancy forces. To account for this volume267

uncertainty, we introduce a correction factor βa that will multiply the radius in the expression of these268

forces. We discuss later in section IV C why we do not introduce additional correction factors for the269

other variables. With these two correction factors βa and βb, the expressions for U , ȧ and z rewrite270

U =
2

9

(βbρp − ρf )g

η
β3
aa

2, (10)

ȧ = − 2

π

(
2

9

) 1
3 D

2
3 c0

β2
aβbρp

(
(βbρp − ρf )g

η

) 1
3

, (11)

z =

∫ t

t1

Udt′ =
2

9

(βbρp − ρf )g

η
β3
a

[
1

3
ȧ2(t− t1)

3 + a1ȧ(t− t1)
2 + a21(t− t1)

]
+ z1. (12)

Using the data in stage I (upper layer), where U0 and a0 are measured accurately and for which271

the density as well as the viscosity of saturated butyramide are known, (10) gives a first relationship272

between the correction factors βa and βb. Similarly, with the linear fit of the radius reduction in stage273

III (lower layer) giving the rate ȧ1, layer in which the density, the viscosity as well as the diffusivity274

of butyramide in water are known, (11) gives a second relationship linking βa and βb. They can be275

solved numerically, and, upon ensemble averaging over 13 independent experimental runs, we obtained276

βa = 0.921±0.002 and βb = 0.988±0.002. With these values, the fit of the curve z(t) in stage III with277

(12) allows us to deduce a new value of ȧ2. As shown in Fig. 4, the theoretical prediction of ȧ now278

fits the direct measurements ȧ1 as it should, and the corrected ȧ2 are now quantitatively consistent279

with ȧ1. Importantly, these corrections assume that these factors can be taken constant over the whole280

sedimentation process (in fact, until time t2).281

A value of βb so close to unity may seem surprising, but because we are dealing with a small282

density difference between particle and fluid, these numerical adjustments are very sensitive. In fact,283

trying to impose βb = 1 (resp. βa = 1), we were not able to reach a quantitative matching of ȧ1, ȧ2 and284

theory as in Fig. 4 playing with βa (resp. βb) only. Furthermore, the value we got for βa corresponds285

to an actual volume of the particle about 3/4 times smaller than deduced from the surface-induced286

effective radius a. This is consistent with particles in the form of an ellipsoid with its major axis287

parallel to the vertical, as observed in the experiments (see supplementary material).288

C. Other correction factors289

Other correcting factors could of course be considered. First of all, if ellipsoid-shaped particles290

are at play, the drag force is modified by the particle aspect ratio E, defined as the ratio between the291

major and the minor axes lengths. Following the work of [38] for spheroids, the Stokes drag correction292

factor for a motion parallel to the major axis follows the relation293

βdrag =

(
4

5
+

E

5

)
E−1/3. (13)

The analysis of the pictures of the sedimenting particles shows aspect ratios typically between 1 and 2,294

with an average around 1.3 (see supplementary material). This corresponds to a drag correction factor295
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图 4. Reduction rate of the particle radius ȧ from theory and data analyses for various initial particle size a0. Red
dots: direct measurement from the linear fitting of a(t) (see Fig. 3a). These are what we denoted as ȧ1. Green dots:
indirect values obtained from the fitting of z(t) (see Fig. 3b). These are what we denoted as ȧ2. Light green points:
fitting without any correction factors, i.e. using Eq. 9. Dark green points: fitting accounting for correction factors,
i.e. using Eq. 12. Gray dash line: uncorrected theory (7). Black solid line: corrected theory (11). Circles with plus
and cross symbols represent the experimental cases where the particle aspect ratio E respectively averages around
1.7 and 1 over t1 − t2, see also section IV C. These values correspond to the cases illustrated in Fig. H(b) and (c) of
the supplementary material. Data dispersion shows the overall precision we can reach, but from the fitting process
of a single experimental run, error bars are smaller than the symbol size.

βdrag ≃ 0.97. Accounting for it in the force balance, the above analysis of the particle’s dynamics is not296

significantly affected: variations by less than a percent are found for βa and βb, and around 1% for ȧ. At297

the first order, this shape effect on the drag can then be ignored for the present problem. Furthermore,298

as observed in Fig. 4, the cases with E ≃ 1.7 and E ≃ 1.0 exhibit nearly identical ȧ values, whether299

it is the direct measurement ȧ1 or the indirectly derived value ȧ2. This further substantiates that the300

impact of shape variation during the dissolution process on the ȧ is of second order in importance.301

The shape of the particle influences its mass and heat transfer processes as well. The heat transfer302

from a particle is analogous to mass transfer within some hypotheses, in particular when radiation is303

negligible. We use the work of [29] that provides Nusselt numbers for ellipsoids across a wide range of304

aspect ratios, E. Here with Re ≃ 0.5 and Sc ≃ 1300, which are typical values of these experiments,305

we obtain a correction factor βm ≃ 1.008 for the Sherwood number Sh when the particle aspect ratio306

is between E = 1.3 and E = 1. Including this correction factor into the theoretical framework has a307

negligible impact on the results. Similarly to the case addressed in the previous paragraph, we find308

deviations of less than 1% in βa, βb and ȧ.309

The theory of [13] which gives Eq. (5) for the scaling law relating the Sherwood number to the310

Péclet number, relies on the hypotheses that the concentration of the solute is infinitesimal, and311

that there is no thermal effects during the dissolution. These two assumptions are not verified for312
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butyramide: the solubility of butyramide is large, and its dissolution in water is endothermic [35]. We313

can evaluate the corresponding correction factor βsol using the results of [31]. These results are valid314

in the case of high Péclet and Schmidt numbers, which is the regime of the present experiments. The315

actual Sherwood number is then the one given by Eq. (5) multiplied by the factor:316

βsol =
1

γ−1 − J2/3/K
. (14)

In this expression γ is a correction factor introduced by [31] to take into account the finite solubility317

and J2/3/K accounts for the non-isothermal effects during the dissolution. We estimate γ = 1.09 for318

butyramide using a linear fit from the data of table 2 in [31]. J is ratio of the molecular diffusivity319

D of the solute by the thermal diffusivity of the liquid α. Its value for water is α = 1.45 × 10−7320

m2 s−1 [40]. K = cp/dL is a dimensionless number involving the specific heat of the liquid cp, the321

latent heat of absorption L and a coefficient d, which is the slope of the relationship of the concen-322

tration and temperature. For water, the specific heat is cp = 4.15 kJ kg−1 K−1, d = 0.01 K−1 and323

L = −400 kJ kg−1, as reported from the measurements by [35]. The positive value of d implies that324

heat absorbed during butyramide dissolution results in a decrease of the interfacial temperature and325

equilibrium concentration. The value of the correction factor βsol only slightly changes from 1.057 to326

1.062 when evaluated based for a NaCl solution, so that we can take βsol ≃ 1.06. Incorporating this327

value into our theoretical analysis does not affect much the results, with, as in the above paragraph,328

variations by less than a percent are found for βa and βb, and around 1% for ȧ. This correction can329

thus be neglected at first order for the present analysis.330

D. Effective Péclet and Sherwood numbers331

These experimental data finally allow us to assess the scaling law relating the Sherwood to the332

Péclet numbers (5). Because we do not directly measure ṁ but the grain size reduction rate ȧ instead,333

we rather define an effective Sherwood-like number as:334

S̃h = βaβb
ρpaȧ

Dc0
. (15)

For a spherical particle, for which ṁ and ȧ are simply related (Eq. 6), and setting the corrective335

factors βa,b to unity, both definitions of Sh and S̃h coincide. Here, we not only wish to express this336

number with quantities we have direct access to, but also aim at accounting for the corrections we337

have discussed above. Consequently, we write the effective Péclet number as338

P̃e = βa
Ua

D
(16)

It can be directly estimated along each experimental run, also accounting for the radius correction.339

Plotting S̃h as a function of P̃e for all of our data clearly provides the expected increasing trend (Fig. 5).340

The inset of Fig. 5 where the same data are displayed in log-log scale confirms that they verified the341

power law of Eq. (5) with a 1/3 exponent. Data scattering is important, on the order of 30%, which342

is similar to what is displayed in Fig. 4. For comparison to theory, S̃h is computed with U and ȧ343

from their corrected expressions (10) and (11), setting the factors to the experimentally-determined344
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averaged values βa = 0.921 and βb = 0.988, and where a is deduced from P̃e with (16). The agreement345

is quantitative, showing self-consistency with the fit of the theory in Fig. 4.346

图 5. Effective Sherwood number vs effective Péclet number. The inset displays the data in a log-log format. Symbols:
experimental data, corrected by their factors βa and βb computed as explained in the text after Eq. (10-12). The
colours correspond to different runs. Gray dash line: uncorrected theory. Black solid line: theory accounting for
averaged correction factors.

V. CONCLUSION347

We have investigated the dissolution of an almost spherical particle during its sedimentation, in348

the low Reynolds and high Péclet regime. We use butyramide particles sedimenting in aqueous solution349

so that the density contrast between the particle and the solution is small, and thus the sedimentation350

velocity. The advantage of butyramide is that the density of its saturated solution is very close to the351

one of water, i.e. the dissolution does not affect the density of the solution.352

The particle sediments in a squared tube, where a saturated butyramide layer is placed on top353

of a NaCl layer. The role of the top layer is to measure the sedimentation of the particle without354

dissolution and to have time to focus on the particle. The shape and the position of the particle are355

measured simultaneously by a camera attached to a translation stage. The particle is tracked in real356

time, and the translation stage moves accordingly to keep the particle in the field of the camera.357

We develop a simple model for a perfect sphere based on Stokes’ law (hypothesis of low Reynolds358

number) and the mass transfer at low Reynolds and high Péclet derived in [13]. We obtain a radius359

shrinking rate ȧ which is constant in time, and only depends on the properties of the solid and the360

aqueous solution. The position of the particle is a third order polynomial of the time t. In the361

experiment, we define an equivalent radius from the image of the particle. We find as expected by the362

simple model that ȧ is constant in time, and independent of the initial radius of the particle. Moreover,363
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the theoretical and experimental results are consistent within 20% without any adjustable parameter.364

In order to obtain an even more quantitative agreement, we introduce two correction factors: one365

to take into account the non-sphericity of the particle in the evaluation of its volume and weight (βa),366

and a correction of the density of the particle due to the inclusions of air bubbles inside the particle367

(βb). The non-sphericity of the particle and the inclusion of air bubbles are visible on the images.368

These two correction factors are close to one (βa = 0.921± 0.002 and βb = 0.988± 0.002). With these369

corrections, both the radius shrinking rate deduced from the equivalent radius and the one deduced370

from the particle trajectory are in quantitative agreement with the corrected model. We discuss371

other correction factors, such as the correction of the drag due to the non-sphericity of the particle, the372

correction of the mass transfer due to the non-sphericity, the finite solubility and non-isothermal effects373

in the dissolution of butyramide. We have shown that these corrections factors have a negligible effect374

in the present experiment, in contrast with βa and βb. Finally, we have defined an effective Sherwood375

number S̃h and an effective Péclet number P̃e, and we have displayed the corresponding curve, which376

shows the S̃h ∝ P̃e1/3 scaling.377
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