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On a flat map of the Earth, continents are inevitably distorted. Reciprocally,
curving simultaneously a plate in two directions requires a modification of in-
plane distances, as Gauss stated in his seminal theorem. Although emerging
architectured materials with programmed in-plane distortions are capable of
such shape-morphing, an additional control of local bending is required to
precisely set the final shape of the resulting 3D surface. Inspired by bulliform
cells in leaves of monocotyledon plants, we show how the internal structure of
flat panels can be designed to program simultaneously bending and in-plane
distortions when pressurized, leading to a targeted shell shape. These surfaces
with controlled stiffness and fast actuation are manufactured using consumer-
grade materials, and open a route to large-scale shape-morphing robotics ap-

plications.

One-Sentence Summary

Programming simultaneously bending and in-plane distortion of architectured surfaces pro-

motes surface-morphing robotics.



Plants leaves or petals provide remarkable examples of shape morphing induced by differ-
ential growth and are a source of inspiration for engineering (/). Materials capable of changing
shape find numerous applications, ranging from the fabrication of complex micro-structures (2),
the manipulation of fragile objects (3, 4) or soft-robotics devices (5—8) to locomotion in com-
plex environments (9) or the design of deployable shelters (/0). While basic grabbing devices
rely on bending linear beams through bilayer effects (/7), shape morphing of surfaces poses a
much greater geometrical challenge. If distances along the plane of a surface, ie the metrics,
are conserved, its Gaussian curvature (product of its two principal curvatures) is strictly con-
served, restricting the achievable shapes to families of isometries (e.g. cylinders or cones for a
sheet of paper). General morphing of a surface, such as when a plane takes on a doubly curved
shape, referred to here as Gaussian morphing, requires metric distortion (/2). In natural struc-
tures, such metric changes result from differential growth (/3, /4). Engineered systems rely
on equivalent non-homogeneous transformations such as swelling of hydrogels (/5-18), relax-
ation of liquid crystal elastomers (/9) or of prestretched polymeric filaments (20, 21), inflatable
structures (22—24), origami or kirigami tesselation (25-27). Although the shape of a surface is
rigorously defined by both curvature and metric tensors, these two parameters are generally not
addressed simultaneously, except in a few elegant exceptions involving very compliant materi-
als relying on relatively slow swelling actuation (28—30). Programming complete morphing in
stiff structures with fast actuation that are relevant for engineering applications still remains a

challenge.

In the realms of Botany, leaves of monocotyledon plants such as corn are able to curl in-
ward reversibly under dry conditions, limiting evaporation (Fig. 1A). Actuation relies on pecu-

liar bulliform cells that change significantly their volume depending on turgor pressure (317, 32),



producing in-plane extension or contraction of one side of the surface leaf. Inspired by this
example from Nature, we designed thin panels embedded with inflatable cells referred to as
pneumatic Gaussian cells. Both in-plane contraction and angular deflection of the panels can be
programmed simultaneously through the cell’s design, leading to stiff 3D structures. This qual-

itative step constitutes an important milestone towards versatile morphing robotics applications.

Contracting and bending simultaneously

The elementary unit of a Gaussian cell is based on trapezoidal channels 3D-printed on a layer
of airtight fabric (Fig. 1B). A heat-sealed layer of the same fabric closes the cell (see detailed
fabrication process in Supplementary Materials and Movie S1). The different channels embed-
ded in the thin sandwich are connected to a pressure source. Pneumatic actuation of the cells
induces the transformation of the initially flat panel into a complex shape such as a curve-folded
origami structure (Fig. 1C and Supplementary Movie S1). Figure 2A presents the deployment
mechanism of a plate composed of juxtaposed parallel Gaussian cells with spacial periodicity /.
As the base and the top of the cells are sealed with highly bendable but inextensible fabric,
the cells tend to bulge into circular arcs upon inflation, inducing an inward displacement and
rotation of the lateral walls. The general case of symmetric trapezoidal cross-section (in or-
ange) is characterized by the thickness of the plate /1, the shortest width W and the internal
angle [ of the cell walls (see Supplementary Materials for the case of asymmetric cells). The
inflated shape of a Gaussian cell is readily obtained from energy minimization (see details in

Supplementary Materials). The resulting folding angle ~y of the cell is a solution of:
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Inflation also reduces the length of the midsegment of the cell by a factor \ (Fig. 2B). This

quantity referred to as in-plane contraction is solution of:

)\:msm{(ﬁ—;> <Igcotﬁ+1>} (?[/cotﬁ—i-l) (2)

Two limit cases highlighted in yellow and green in Figure 2 correspond to cells of rectan-
gular (8 = 0°) and triangular (W/H = 0) cross-sections that only provide in-plane contraction
or deflection, respectively. Experimental values of v and A\ obtained over a wide range of ge-
ometrical parameter show an excellent agreement (Fig. 2B and C) with theoretical predictions
(Egs. 1-2). Figure 2C and D presents the wide palette of contraction ratio and folding angle
as a function of the geometry of inflatable cells parameterized by their internal angle 5 and
aspect ratio W/H. Large folding angles are found in the upper part of the parameter space,
where large internal angles 5 promote asymmetry across the thickness of the cell, and values
as large as v > 90° can be obtained. Largest contraction is intuitively obtained in the lower
right corner, for large W/H. Contraction ratio and folding angle are varying along different
patterns in the parameter space. For instance, point (7i) in Figs. 2D and E corresponds to the
same contraction as point (7) but to a larger folding angle. An important consequence is that

arbitrary combinations of (), ) can be programmed.

Stiff pneumatic Gaussian Cell

Gaussian morphing requires large in-plane deformations, and is therefore usually associated
with low stiffness (15, 17, 19, 28). Pneumatic Gaussian Cells provide remarkable load-bearing
capabilities, which can be adjusted by not only pressure but also the geometry of the cell, a
feature distinct from traditional inflatable structures. Their stretching stiffness is assessed by
testing the mechanical response of a symmetric cell (5 = 0°) loaded in the direction perpendic-

ular to the channels walls (Fig. 3A). Figure 3B shows the tension force F' as a function of the
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net displacement A for a given specimen. The theoretical prediction (see Supplementary Mate-
rials) is plotted in continuous lines and match precisely the force-displacement curves measured
experimentally. For a given applied pressure P, the effective Young modulus E. of a single cell

is inferred from the linear response of the cell for small displacement, and is expected to follow:

Oy + 0y sin 6
E. = tan g, <0 %05 3)
sin 6y — 6y cos 8y

where the initial spanned angle 6, obeys 6,/ cosfy = W/H (see Supplementary Materials).
The comparison of the normalised modulus E./P as a function of the aspect ratio W/H is in
excellent agreement with the theoretical prediction, confirming the dependence of the modulus
with the applied pressure and the geometry of the cell, solely (Fig. 3C). Conversely, for large
extension, the stiffness of the cell (Figure 3B) tends toward the stretching stiffness of the pair
of fabric laid flat, E,,,, = 2E;t/H (where E; and ¢ are the Young modulus and thickness of
the fabric sheet), which is independent of pressure.

The angular stiffness of a non-symmetric cell (5 # 0°) is obtained by measuring the
torque M as a function of the applied deflection angle + (Figs. 3D and E). The effective an-
gular stiffness [, of the cell (linearized response) is predicted to obey (see Supplementary

Materials):
K, W cos(p + B — ) + 20 sin(by + 8 — )
PLH? H 4603 cos 3 ’

4)

where 0y = %W is the initial value of spanned angle of arc W, L is the length of cell,
and the initial folding angle ~y, follows (Eq. 1).

These predictions (continuous line in Fig. 3F) are confirmed by direct experimental mea-
surements of the angular stiffness (with no adjustable parameter). Different configurations (e.g.
points 1 and 2 in the contour map from Fig. 3g are expected to display different actuated geome-

tries but similar structural stiffness (for the same pressure). Overall, we find that the mechanical

stiffness of an isolated Gaussian cell is directly proportional to its internal pressure, whereas its



activated geometry is independent of pressure, leaving the possibility to tune the stiffness inde-
pendently of the shape (see Supplementary Materials for a general discussion of the stiffness of

the shell structure as a function of the spatial periodicity of the cells.

Assembling Gaussian Cells into programmable structures

We now explore how elementary folding and contraction mechanisms of individual cells can be
used to program shape-morphing of plates into complex structures. The induced curvature can
be discretized as x = -y/¢, where ¢ is the spacial periodicity of the cells’ distribution (Fig. 2A).
As a consequence, developable surfaces, such as generalized cylinders or cones, are readily ob-
tained by controlling locally the deflection angle. Figure 4A illustrates different examples where
the sign of a constant curvature is alternated by piece, the amplitude of the curvature is propor-
tional to the curvilinear abscissa, or the direction of the bending direction is modified, leading
respectively to (i) an “S” shape, (ii) a spiral with linearly increasing curvature or (iii) a curly rib-
bon (see Movies S2). A developable helicoid is finally obtained by selecting the director lines
tangent to a central circle cut inside the initially flat structure, with an additional transverse
cut to allow for deployment (Fig. 4B and Movie S2). Fig. 4C and Movie S3 demonstrate with
the simple example of a slit annulus morphing into a cone, why curvature and metric changes
should be simultaneously used. Programming solely curvature without in-plane contraction on
such a slit annulus does lead to a cone (Fig. 4C(i)), but with an overlap angle 6+ = 27 (1—sin ¢),
where ¢ is the cone angle. Conversely, an annulus with cells solely programmed for in-plane
contraction will remain flat when actuated with an angular deficit = = 27(1 — A.ss), where
Aetyr 1s the effective contraction ratio at the scale of the whole structure (Fig. 4C(ii)). Only if
both active curvature and in-plane contraction are combined in the programming, do we observe

that the annulus deploys into a perfect target conical shape (Fig. 4C (ii1)).



In-plane contraction dictates the Gaussian curvature of the deployed structures. However,
targeting solely this quantity only restrains the resulting shape to a family of isometries (/2).
In practice, the observed realization relies on a minimization of the finite bending energy of
actual structures, which tends to limit the design space to peculiar solutions among these fam-
ilies (35, 36). Archetypal catenoid and helicoid - minimal surfaces commonly illustrated with
soap films - present the same distribution of Gaussian curvature. Programming solely in-plane
contraction using cells of rectangular cross-section is therefore not enough to select between
both configurations. However, adjusting the internal angle of the walls allows for the control
of the bending curvature in the direction perpendicular to the cells path. As a result two struc-
tures designed with similar cell outlines (the zigzag patterns provide bi-axial contraction (37)),
but precise adjustment of the internal angle lead to the desired helicoid (of programmed handi-
ness) or catenoid shapes respectively (38) (Fig. 4D and Movie S4, see Supplementary Materials
for the detailed design of the cells). Although Gaussian cells are capable of curvature in the
direction perpendicular to their axis, the use of alternating directions overcomes this constraint.

Large efforts have recently been devoted to the design of origami structures (25, 26). How-
ever, robust self-actuation still remains an issue (39, 40). Figure 5A presents a classical Miura-
ori tessellation pattern (4/) where “mountain” and “valley” creases have been programmed
using Gaussian cells. Upon inflation, the structure self-folds to the target configuration with a
stifftness high enough to support a relatively heavy load (see Movie S5). Beyond origami struc-
tures, remarkable stiffness, robustness to failure and fast actuation (see Supplementary Materials
for discussion on performances and scalability) bring pneumatic Gaussian cells as a promising
principle for applications in morphing robotics. Standard soft-robotics technologies generally
rely on bending actuation of grabbing beam elements (/7). However, robotic systems could
be developed harnessing the surface shape morphing achieved with Gaussian cells. Figure 5B

illustrates an initially flat disk that adopts in a fraction of second the shape of a crater based on



the cone transformation and traps an object rolling over (see Movie S6 which also demonstrates
how a ball can be guided by an active track). Although the presented examples are based on a
single inlet and interconnected cells, more complex kinematics could be obtained by separating
cells into subgroups that would be activated separately or by embedding mechanical valves be-
tween cells that could provide a sequential actuation (42, 43). Finally, active surfaces may also
be used to manipulate liquids. In Fig. 5C and Movie S7, a long strip is programmed to morph
into a curved gutter of positive Gaussian curvature (37) with a controlled bending direction,
transferring liquid to a different container, and demonstrating the versatile capabilities of the

technique.

Towards shape morphing robotics

Inspired by actuating cells observed in some plants, we have developed powerful and versa-
tile Gaussian cells that provide stiff, fast and reversible self-morphing of thin plates. As both
metric and curvature can be simultaneously programmed, these cells provide an acurate con-
trol of the deployed geometry, imparting a high degree of mechanical stability to the resulting
structure. Moreover the stiffness of the deployed shell (proportional to applied pressure) can be
tuned independently of its shape (dictated by the local configuration), opening the possibility
of developing large scale morphing structures. Pneumatic Gaussian cells combines stiffness to
a high level of control in shape-programming, holding significant promise for applications in
which avoiding mechanical instabilities is crucial, but also for haptic devices where both shape
and stiffness controls are valuable output information for the end user. Made through standard
3D printing techniques with consumer-grade materials, the resulting robust shape-changing sur-
faces bring the concept of material-machine closer to large-scale and general commodity prod-

uct.
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Figure 1: From leaf Bulliform cell to Pneumatic Gaussian Cell. (A) Leaves of corn open or
close as a function of weather conditions by inflating of deflating bulliform cells under turgor
pressure. (B) Fabrication of shape morphing structure based on Pneumatic Gaussian cells. (i)
Tilted Thermoplastic Polyurethane (TPU) walls are 3D-printed over a first layer of TPU coated
fabric. (ii) Gaussian cells (orange) are formed by sealing a second layer of fabric on the top
of the structure with a heating press. (C) Upon inflation (see Movie S1), an initially flat panel
composed of programmed Gaussian cells self-shapes into a complex 3D structure inspired by
Starshade project (33, 34).
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Figure 2: Programming deformation of Gaussian cells. (A) Schematic illustration of the the deploy-
ment of a flat plate based on three types of symmetric cells. Generic trapezoidal cell (orange) with walls
of thickness H tilted by an angle § and separated by a distance W. Upon inflation, the cell induces
a local deflection v and a contraction A with respect to the median line W.. Rectangular cell (yellow)
and triangular cell (green) configurations correspond to vertical walls (5 = 0) or to contacting bases
(W = 0), respectively. (B,C) Deflection angle v and contraction ratio A as a function of the dimension-
less width W/ H and of the tilt angle j3, for fixed values of 3 or W/H, respectively. Solid black lines
correspond to theoretical predictions (Egs. 1 & 2). (D,E) Landscape of programmable deformations.
Theoretical contour maps of the contraction ratio A and deployed angle v in a general configuration.
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Figure 3: Mechanical properties of an inflated cell. 1. Stretching modulus: (A) Inflated
rectangular cell at rest and under tension with span angle 6 and net displacement A. (B) Force-
displacement curve of an inflated rectangular cell of height H = 2.3 mm, dimensionless width
W/H = 5.5 under a pressure P = 10.0kPa (solid yellow circles). Comparison with theoretical
prediction (solid black line). (C) Dimensionless stretching modulus E./P as a function of
dimensionless width W/H for various pressures and different cell height. Comparison with
theoretical prediction from Eq. 3 (solid black line). II. Bending stiffness: (D) Bending test of
of an inflated trapezoidal cell. (E) Starting from an equilibrium deflection angle v, applying a
torque M results in a new angle v (H = 3.3mm, W/H = 2.78, § = 41.5°, P = 10.0kPa).
The slope of the curve in the vicinity of 7y = 50.8° corresponds to the rotational stiffness K.
(F) Rescaled rotational stiffness, K,./PLH? as a function of the dimensionless width W/H
(6 = 42.0°) and of the angle § (W/H = 2.6) at various pressures and different cell heights,
respectively. Solid orange lines show our nonlinear theoretical prediction (Eq. 4). (G) Contour
map of the dimensionless rotational stiffness as a function of W/H and £.
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Figure 4: Programming bending and Gaussian curvatures in multicellular structures (A)
Developable shapes based on triangular-cells (see Movie S2). (i) “S” shape with opposite cur-
vatures; (ii) Spiral with a linearly increasing curvature; (iii): Curling shape with variable curva-
ture direction; (B) Developable helicoid with generating lines tangent to the central circle (see
Movie S2). (C) A sectioned annulus with a radial cells can morph into (i) a truncated cone
with angular surplus (pure bending with triangular cells) ; (ii) a flat annulus sector with angular
deficit (metric change with rectangular cells); (iii) a perfect truncated cone when bending and
metric changes programmed simultaneously (see Movie S3). (D) Selection between isometries
(see Movie S4). The same metric change (programmed zigzag pattern) leads to degenerated
1sometric shapes from helicoid to catenoid. Controlling local bending breaks the degeneracy
(see inverse programming in Supplementary Material).

16



Inflating

T\ /3

“Valley”

Figure 5: Towards shape morphing robotics (A) Self-actuated Miura-ori panel (see Movie
S5). Cells function as stiff “mountain™ or “valley” creases (total load of 1kg). (B) Volcano
shaped actuator (see Movie S6). The initially flat disk is actuated in a fraction of second as a
cylinder rolls over it at 10 cm/s. The cylinder (weight 40 g) remains trapped inside the deployed
crater. (C) Upon inflation, a flat stripe bends into a doubly-curved gutter track that permits
manipulation and transport of liquids (see Movie S7).
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1 Materials and Methods

In this section, we provide details of the fabrication process of Gaussian cells illustrated in
Fig. S1 and Movie 1. A Nylon fabric coated with a layer of thermoplastic TPU (Honeycomb
pattern 70 den, thickness of 0.15 mm, weight per unit surface of 150 g/ m?® and Young modulus
of 140 MPa) is first placed on the platform of a 3D printer. The piece of fabric is maintained flat
on the printing bed by suction, which prevents it from sliding on the platform or from forming

wrinkles.

A 3D-Printing B Heat Press

Vacuum
™/ (" pump

Valley Mountain
configuration configuration

Bottom fabric layer

Figure S1: Fabrication methodology of Pneumatic Gaussian Cells. (A) A network of Thermoplastic
Polyurethane (TPU) cells with tilted walls are 3D-printed on a layer of TPU coated fabric. During the
printing process, the fabric is maintained in place by suction. Small apertures through the walls connect
the different cells. (B) A second layer of fabric is sealed on the top of the structure with a heat press. See
Movie S1 for a description of the fabrication technique.

We print TPU walls on the first layer of the fabric with a fused filament 3D printer (Artillery
Sidewinder X2, nozzle diameter of 0.4 mm). For the filament, we used Kimya TPU-92A of
diameter 1.75 mm, tensile modulus of 90 MPa. The 3D-printed TPU walls are designed using

OpenScad software and sliced with Ultimaker Cura software. To obtain optimal bonding be-



tween the 3D-printed TPU building blocks and the TPU coating layer of fabric sheet, we tune
the printing parameters based on tests (bed temperature 76°C, nozzle temperature 210°C and
printing speed 12 mm/s). When printing is finished, the structure is removed from the printing
bed and fixed on a 3 mm thick rigid glass plate with double-sided tape. Next, we close the
printed structure by the second flat fabric sheet, with boundaries are taped on the glass plate.
This second fabric sheet is finally bonded on the top of the printed structure with a heat press
(heating temperature of 184°C for 10s). As a result, airways are formed between the two fabric
membranes, surrounded by TPU building blocks. Upon inflation, air pressure tends to maximize

the volume of each individual cell and the whole structure may morph into a complex 3D shape.

The robustness of our structures is typically the same as in most inflatable equipment based on
airtight fabrics. In contrast with a rubber balloon, the membrane is almost inextensible. As
a consequence, a local puncture in one cell generally does not lead to a catastrophic rupture
(indeed propagating a crack does not release much elastic energy and the “ripstop” nylon fabric
selected for our cells is particularly tough). Membranes of low extensibility are particularly

easy to mend by applying a flexible patch with sufficiently good adhesion.

In the multi-cell structures discussed here, all the cells were interconnected by internal channels
embedded in the 3D printed TPU plates. A loss of pressure in one cell would then deflate all
the cells. For a better robustness it is however possible to compartmentalize the cells into
independent sections, as is customary with inflatable boats for instance. Another possibility is
to implement the internal communication channels with one-way valves that maintain internal

pressure of cells even if the neighboring cell looses pressure.



2 Geometry of a pneumatic Gaussian cell
Laser triangulation method

The geometrical characterisation of a Pneumatic Gaussian Cell upon actuation was inferred
from monitoring the intersection of a laser sheet with the structure. The principle is very sim-
ple: a cylindrical lens placed in front of a laser beam produces a sheet of light projected with an
oblique incidence to the structure. The profile of the intersection of the laser sheet with the sur-
face is geometrically related to the local topography. Viewed from above, the distortions of this
line are directly proportional to the height profile of the surface through a simple trigonometric
relation (Fig. S2):

H = htano (D

where h is the observed shift of the laser line. Images are captured with a digital camera (Nikon
D850) and analysed with ImageJ software. Using this method, we first measure precisely the
geometrical parameters of a single printed cell before bonding the top fabric sheet (printed
height H, shortest width IV, internal angle 3). Next, we measure geometrical parameters of an

inflated cell (folding angle ~, contraction ratio \).

Geometry of symmetric cell

Theoretical model based on force balance approach: We aim at modelling the geometrical
deployment induced by the pressurization of a general symmetric Pneumatic Gaussian Cell. We
respectively define H as the cell height, 11 as the length of short edge AB, W' as the length of
long edge C'D, W, as the length of midsegment E'F, and [ as the slope of the cell wall with

respect to the vertical direction (Fig. S3A).
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Figure S2: Schematic of setup for laser triangulation method.
Similarly, the length of midsegment is given by:
W.=W + Htanp 2)

The flat configuration can thus be totally described by the triplet of variables (H, W, /3).

We assume the fabric membrane to be inextensible, but infinitely bendable. We thus expect
the cell to maximize its volume upon inflation, forming a droplet-like arc shape and leading
to a rotation of the cell walls. We are interested in the resulting inflated shape, that is, the
folding angle v and in-plane contraction factor A\ corresponding to the change in length of the
midsegment (Fig. S3B). Under this assumption, the lengths of the short arc AB and of the long
arc C'D remain W and W', respectively. In this symmetric configuration, the shape remains

symmetrical with respect to the O — O’ axis. Following basic geometry, we obtain:
Wysina = Rysinfy — Ry sin 6, 3)

where Wy = H/ cos 3 is the length of the walls, 0 is the half span angle and R; = W/26, is
the corresponding radius of short arc AB, 65 is the half span angle and Ry = W'/20, is the

corresponding radius of long arc C'D. Finally, « corresponds to the internal angle between BC'

6



and the vertical direction.

A Flat B Inflated

W ic
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§ N / L
S

Figure S3: Schematic cross-section of a symmetric cell before and after inflation.

A simple geometrical relation relates the lengths to the thickness of the cell:
W' =W + 2H tan 3 4)

In a cross-section along the axis of symmetry O — O, we balance the force resulting from the

pressure P with the tensile force acting on the both fabric arcs, 7 and 7T5:
Ty + Ty = P[Ry(1 — cosBy) + Wy cosa+ Ry(1 — cosby)] (5)

In addition, the torque balance between the torque resulting from the tensile forces 77, 75 and

the pressure P with respect to the central point of O — O, results into:
(Ty —T1)[R1(1 — cosbq) + Wycosa + Ry(1l — cosby)] =0 (6)

The induced curvature and tension in the membrane are related to the applied pressure through
the equivalent of Laplace law for surface tension:

LT

p=_-1_2=2
R, Ry

(7)

Combining Eq. 3 and Egs. 5-7, we can express « as a function of the variables (H, W, ().

« = sin (3 cos {a (Hgn6+l)} (8)

7




From basic geometry, we obtain:
v =2(6-a) ©)

After inputting Eq. 9 into Eq. 8, we can express the folding angle v as a function of the variables

(5—%> = sin f3 cos [(5—%) (%COtﬁJrl)} (10)

We now focus on the midsegment. The contraction ratio A can be expressed as:

(H,W, ).

_|EG|+|FG]|

A
We

(11)

where |EG| and |F'G| are the length of segments FG and F'G in the inflated configuration,

which are given by:

siné’l Sin92
EGl=W -W)——— |FG|=W -W)—— 12
EG]=( )404008% PG = )404(308% (12)
with
w w’
91 =2« m and 92 =2« m (13)

Combining Eq. 11 and Eq. 12, one can express A as:

2 2

Theoretical model based on volume maximization: An alternate way to predict the shape of
the inflated cell consists in maximizing the volume of the cell for a given applied pressure. We

still restrain ourselves to the “inextensible” regime, for which the total potential energy reads:
U=-PV (15)

where V' is the equilibrium volume that corresponds to the shape which minimizes the energy.

Equivalently, it maximizes the volume V' of the cell shape in inflated configuration. The volume



(per unit width) reads:

0, — sin 6, cos 6, L

_ 2
V=W 462 403 * cos f3

W'H
20, T 20,

0y —sinfycosly  cosa (WH sin 0, , .. sin 92)

(16)
The maximization problem (including Eq. 13) is finally solved by using Matlab nonlinear opti-

mization toolbox with the constraints ; + o < 7/2 and 6, — o < 7/2.

Geometry of asymmetric cells

Theoretical model based on force balance approach: Although the different examples from
the main text illustrate symmetric cell, non-symmetric configurations are also possible. We
here examine the case of antisymmetric Pneumatic Gaussian Cell, where H is the cell height,
W is the width of edge AB and C D, f3 as the internal angle between vertical direction and AD.
When such asymmetric cells are activated, a shear deformation is induced, with the contrac-
tion A\ in horizontal direction and the contraction A in vertical direction. Remarkably, folding

deformation disappears in this case (Fig. S4).

A Flat B Inflated

/D C
e -
e —

Figure S4: Schematic cross-section of an antisymmetric cell before and after inflation.

W

We start by focusing on the direction of the symmetry axis O — O'. Similarly to the symmetric

case (Eq. 5), the balance of the force resulting from the pressure P with the tensile forces in the



fabric membranes (AB and CD) results into:
2T = P[2R(1 — cos 0) + W] (17)

where T is the tensile force in the fabric membrane (AB and C'D). 6 is the half span angle and
R = W/0 is the corresponding radius of arc AB and C'D. Wj is the length of AD and BC.

Inputting Wy = H/cosf into Eq. 7, we obtain:

7

cos

W
= Qﬁcosﬁ (18)

The span angle 6 can finally be obtained as a function of the set of variables (H, W, ).
Once 6 has been determined, the contraction ratio of the mid-segment £'F' can be inferred from
simple geometry:

sin 0

)\7«9

(19)

The projection of this contraction ratio in horizontal and vertical directions respectively read:

A = Acos 3 and ALzl—l—%/\smB (20)

3 Mechanics of a pneumatic Gaussian cell

In addition to the shape transformations, controlling mechanical strength is critical to guarantee
structural integrity and scaling up or down our system to a wide range of potential applications.
In this section, we describe the stiffness of an individual symmetric cell through tensile and

flexion tests.

Mechanical testing

To quantify the evolution of mechanical properties as a function of cell geometry, tensile and

flexion tests were performed with a force-displacement test machine (Instron 5865). In tensile

10



>
w

1 %0 1
0.8 1Mos

< \m 60 <
2 06 0.6 2
g g
C o C
S 04 = 04 S
g 80 g
€02 02 §
8 &5 = 385° v/ =31 8

0 0

0O 2 4 60 3 60 9
W/H B(°)
c 5 D 7
B =38.5° W/H = 3.1

4@ @ .
~< ~<
o 5 o
g 3 g
C —~ C
g 2 5 g
g ' 3 8
2 2
Q Ao o)
(@) (@)

0 1

Figure S 5: (A) Contraction ratio A\ measured experimentally (with theoretical predictions in solid
lines) as a function of the non-dimensional length W/ H or tilt angle, /3, for fixed values of 8 or W/H,
respectively. (B) Landscape of variations of )| as a function of W/H and 3. (C) Contraction ratio A
measured experimentally (with theoretical predictions in solid lines) as a function of the non-dimensional
length W/ H or tilt angle, j3, for fixed values of 8 or W/ H, respectively. (D) Evolution of the contraction
ratio \| as a as a function of W/ H and §.

tests (on symmetric cells with different W and 5 = (°), the cells are clamped along their TPU

walls to the load cell and the to the base of the machine. For flexion tests, L-shape structures

were 3D-printed in PLA to apply positive and negative torque.

Stretching stiffness of the symmetric cell (5 = 0°)

Theoretical model: Consider a rectangular cell of length L (in the direction perpendicular to
the plane of view, Fig. S7A), width W, height H, internal angle 5 = 0, and thickness of fabric
t, witht < W < L. Upon inflation, if P > Et? / W3, that is, if the pressure energy is large

compared to the bending energy of the fabric sheet - which is the case in our experiments - the

11
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Figure S 6: Examples of structures using anti-symmetric cells: (A, C) Self-deploying stair cases or
(B) High contraction beam (A = 0.7) obtained with alternate cells.

cell tends to maximize its volume. Both fabric membranes bend to form a droplet-like arc shape

with radius R, and half span angle 6,.

Following basic geometry, we obtain:

We now consider the edge of the cell walls AD. Balancing the force induced from the pressure

P with the tensile force in the fabric membrane (AB and C' D) results into:
PH = 2T, cos b, (22)

The tension in the fabric is related to the pressure and the radius of curvature of the inflated
bulge through Laplace law:

Ty = PRy (23)
Although we considered the fabric as inextensible in the previous chapter, we can account here

12



Figure S7: Stretching of asymmetric cell (5 = 0) in a direction perpendicular to the walls: (A)
Cross-section of an inflated cell at rest and (B) under traction. Applying a stretching force F’ leads to a
displacement A and to an opening of the span angle 6. In addition to the global change of the cell shape,
we may consider a finite extensibility of the fabric, leading to a strain ¢ when under tension.

for a finite strain € upon a stretching force F'.
Laplace’s law imposes the cross-sections of the cell of initial half span angle 6, to remain

portions of circles of half span angle # and corresponding radius of curvature R = W (1 +¢)/6,

where € is the (uniform) strain induced to the fabric sheet by the tension 7" (Fig. S7B):

PW(1
T — PR — PW(+e) (24)
260
In addition, the induced strain in the fabric is related the tension 7
T = Ete (25)

where ¢ is the thickness of fabric.

A simple force balance provides the following expression for the force F' (per unit length):

F+ PH = 2T cosf (26)

13



The corresponding total displacement A reads:

27)

A:S—50:W((1+e) S“;H - 512%)
0

Combining Egs. 21-26, finally leads to an expression for the pulling force F' (per unit length)

as a function of ¢:
2PW cos 6
F=——+——-PH 28
20 — % (28)
where Y = % is a small dimensionless number as discussed above.
The initial span angle 6, can be derived from W/Hcosty = 6, following Eqs. 21-23. The
relation between the total displacement A and @ is finally inferred from the combination of

Egs. 24, 25 and Eq. 27:

2sinfd  sinéby
A=W — 29
<20 - 4 ) (29)
Linearizing the ratio “3755% (where L is the cell length) around the unloaded inflated state

(6p), we extract an analytical expression for the effective stretching modulus perpendicular to

the cell direction for a small infinitesimal deformation:

E. = tan 6, C9890+QOSIHQOP (30)
sin 6y — 6y cos 8y

For minor deformations (as illustrated by the linear elastic region in Fig. 3B), it is reasonable to
treat the fabric as inextensible. Consequently, the stretching modulus E. is independent of the
material and is solely determined by the pressure and geometry of the cell. Nonetheless, under
significant deformations (¢ — 0), the radius of curvature R expands, causing an increase in
fabric tension ' = PR = PW/20. Eventually, the assumption of inextensibility for the fabric
sheet no longer holds and the maximum slope thus corresponds to the stretching modulus of the
fabric as shown in Fig. 3B (“stretching fabric”):

Est

Emam =2
H

€1y
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Figure S 8: Stretching an inflated cell. (A) Inflated rectangular cell at rest and under tension with
span angle 6 and net displacement A. (B-F) Force-displacement curve of an inflated rectangular cells of
different heights H and dimensionless widths W/H and for different pressures P (green data, 81 kPa;
orange, 100 kPa; pink, 119 kPa). Comparison with theoretical prediction (solid black lines).

where FE; is the young modulus of the fabric. Experimental measurements are in good agree-

ment with this simple argument (Fig. 3B and Fig. S8).

Bending stiffness of the symmetric cell

How does the structure resist to an applied torque? We consider an inflated symmetric cell
(8 # 0°) where a torque M is applied in the direction perpendicular to the walls. By convention,
a negative torque tends to open the cell (v decreases) while a positive torque tends to close the
cell is caused by negative torque and closing the cell (-y increase) as sketched in Fig. S9.

Theoretical model: We consider an inflated symmetric cell (8 # 0°) of length L, height H,

internal angle 3, the length of short edge AB = W, the length of long edge C'D = W', and the

15



Figure S9: Schematic cross section of an inflated cell submitted to a torque M.

length of the edges AD and BC' = W,.

From elementary geometry, we obtain:

Woysina = Rysinfly — Ry sinb, (32)
W =2R6, (33)
W' = 2Ry0, (34)
Wy = C(;[j 3 (35)

where R; and R, are the inner radii of arc AB and C'D and ¢, and 6, the corresponding half
spanned angles. « corresponds to the internal angle between AD and vertical line when a

torque M applied.

A simple force balance along the medium plane O — O’ gives the following expression:
Ty + T, = P[R(1 —cosbty) + Wycosa + Ry(1 — cos b)) (36)

where 1) and 75 are the tensions in the fabric membranes.
We now balance the torque induced by the tensile forces 77 and 75, and the pressure P with

respect to the middle of the symmetric plane of O — O’, which leads to:
1
M= (T, —Ty) 5 [R1(1 — cosby) + Wycosa + Ry(l — cosby)]| L (37)

16



Laplace law imposes:
T

P=—=— 38
R Ry (38)
Combining Egs. 37, 38, the applied torque can finally be written as:
w2 W2\ PL
M=\———7 | — 39
(%) )

To derive the torque M, we thus need to obtain the values of the two unknowns #; and 5. Note
that this last relationship implies W cos &« = Ry cos 6y + Ry cos 0. In other words, the centers
of the arc of circles AB and C'D coincide.

After inputting the geometrical relationships (Egs. 32-35) and the force balance (Eq. 36) into

Eq. 38, we finally obtain a system of two equations and two unknowns 6; and 6s:

w’ . w . 266 w’ w 26,0
Fﬁlsmeg—ﬁegsmﬁl— 2 _ —81C0892+ﬁ02C0891— co;; =0 40

cosfB H
As a starting point to numerically solve the system, we take the case with no applied torque,

that is, &« = «g. Once theta, and thetas are determined, the corresponding value of alpha is

deduced from the following combination of Eqgs. 32-34:

W' sin 6, B W sin 6,
Wo 260, Wy 26,

sina =

(41)

and the value of the deflection angle v from v = 2( — «). Experimental data obtained with a
range of geometrical parameters and different applied pressure are in excellent agreement with

the theoretical predictions (Figs. S10 and S11).

17
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Figure S10: Bending test for symmetric cells (3 = 42°) (A) Starting from an equilibrium deflection g,
applying a torque M results in a new deflection . (B-F) Torque vs deflection angle for cells of different
heights H and dimensionless widths W/ H for different applied pressures P (brown data points, 119 kPa;
orange, 100 kPa; pink, 81 kPa). Comparison with theoretical prediction (solid black lines).
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Figure S 11: Bending test for symmetric cells (1W/H = 2.6) (A) Starting from an equilibrium de-
flection ~q, applying a torque M results in a new deflection « . (B-F) Torque vs deflection for cells of
different heights H and dimensionless widths 1/ H for different applied pressures P (brown data points,
119 kPa; orange, 100 kPa; pink, 81 kPa). Comparison with theoretical prediction (solid black lines).
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4 Assembly of unit cells: shape programming and inverse
problem

From an annulus with a radial cut to a truncated cone

We consider an annulus with an outer radius Ry. pneumatic Gaussian cells (of triangular cross-
section) each panel folds by an angle v upon inflation, while azimuthal distances remain un-
changed (Fig. S12A). As a result, we obtain a cone of half angle ¢. In the limit of large values
of N, each panel can be considered as an infinitesimal element the bending curvature at the

outer edge of the cone thus follows:

dy Y
T s 27 Ry /N “2)

Basic geometry relates this bending curvature to the cone angle:

1
—cos ¢ = Rysin ¢ (43)
K
which leads to
27
t ~ 44
an ¢ N~y (44)

As the perimeter of the initial flat annulus is preserved, we obtain an overlap angle 6 as the
structure folds:

(27 + 0T)Rysin¢ = 2w Ry

leading to

+ 1 .
o —on (Sm - 1) (45)

We now consider a configuration where the initial flat annulus is divided into NV radial cells of
rectangular cross-section (Fig. S12B). Upon inflation the panels do not fold but the azimutal
direction contracts by an effective ratio:

NW
27TRO

Aefr=14+(A—-1) (46)
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where IV is the width and ) the contraction of an elementary cell at the outer diameter.

As a consequence, the annulus remains flat and opens by an angle:

NW
Ry

0" =27m(1 — Aess) = (1 — A) (47)

Morphing a flat annulus into a cone requires both bending and metric change. In other words,
the overlap and deficit angles ™ and 6~ corresponding to the both deformations have to match

as in the example illustrated in Fig. 4C.

A Original flat structure Cross-section at the base
Y z
zy 2 /N Lz
Lex
Ry
T \\
' A
B
B B
z 0
(1 LY
Ro
Y
L
C Original flat structure

Yy
YARN, ZT4Z; on /N Ly
R
<) \\ ;
.. N
B

Figure S12: A flat annulus with a cut morph into a flat annulus sector with angular deficit § = 27 (1 —\)
and a truncated cone with a half angle tan ¢ = A. See Movie S3 of a deploying cone.
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Inflatable curve-folded origami structure

We now consider the wrapping of a thin, flat membrane around a central hub, as proposed
by by Guest and Pellegrino (1992). The structure is here composed of 6 pairs of triangular
panels, following a design reminiscent of an optical diaphragm. Each pair is divided into 11
parallel elements actuated by 10 cells of triangular cross-section. These cells act as “mountain”
or “valley” folds in traditional origami (Fig. S13A). “Mountain” and ““valley” panels alternate
and thus tend to induce opposite bending directions. Upon inflation, the structure wraps around
a central hexagon. In the illustrated example, an initial flat disk of radius Ry = 65,mm self-

compacts into a cylinder of typical radius R ~ 27 mm (Fig. S13B).
B.

Figure S13: Inflatable space origami: (A) Design of the fold patterns inspired by Starshade project.
(B) wrapping of a flat, thin membrane around a central hub upon inflation. See the Movie S1 of the
folding of the structure upon inflation.

‘Mountain”

“Valley”

Programming Miura-ori plate

Fig. S14A describes the basic outlines of a Miura-ori structure in its flat configuration with
an elementary element shaded in grey. The structure is composed of alternating parallelogram
panels connected by “mountain” or “valley” creases. The actuation of an elementary element

is described in Fig. S14B. The parallelograms are characterized by their edges of length a and
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b, and the shear angle 5. Upon actuation, the crease in the symmetry axis adopts an angle
1Yy = m = 7, while the side creases reach a angle 1), = m — 5. Viewed from above, the angle
of the V shape of the structure changes from 2/ to #. As such origami structure has only one
degree of freedom, the 3 angles are related. The V shape angle # may be taken as the closing

parameter. Following Schenk & Guest (2013), we obtain:
sin(6/2)

i 2) = ——+ 48
sin(t1/2) sin 3 (48)
. tan(6/2)
2) = ———= 49
sin(ts/2) = <1 (49)
Similarly, the varying length scales can be parameterized with 6:
sin? 8 — sin? g
h=a i (50)
cos 5
w=2a"%" (51)
oS 5
.0
= 2bsin 3 52)

As a consequence, the longitudinal contraction ration of the whole structure is set by w/2a =

cos 3/ cos(6/2), while the effective contraction in the transverse direction follows I /2bsin § =

sin(6/2)/ sin B.

In the illustrated , we chose a = 40mm, b = 40mm, S = 36°. We targeted for the V angle
6 = 67° and the folding angles v; = m — 11 and 7, = 7 — 1, where programmed following

Eqgs. 48, 49, respectively. See Movie S5 for an actuation demonstration.

General recipe to select isometric shapes

Proof of Gaussian curvature invariant during the transformation between helicoid to

catenoid
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Figure S14: Self-folding Miura-Ori structure: (A), design of the folding pattern with “mountain” and
“valley” creases. (B) geometry of an elementary unit. (C) Pictures of a flat and actuated structure. A
dynamical version is available in the Movie S5.

We start by considering the reference configuration of a material surface, namely, a two-dimensional
surface immersed in R? and its deformations (helicoid or catenoid). The deformed configura-
tion of this material surface will be given by its coordinates y = (z,¥, z) in the 3D space as a
function of two parameters (p, ¢) defined on a given interval.

We are then interested in deformed configurations, where the helicoid can be continuously

deformed into a catenoid by the isometric transformation, given by their parametric equations:

x(p, q) = cos asinh ¢ sin p + sin acosh g cos p (53)
y(p,q) = — cos arsinh g cos p + sin a cosh ¢ sin p (54)
2(p,q) = pcosa + gsina (55)

where o = 0 corresponds to a helicoid and o = 7/2 to a catenoid.

We now consider two neighbouring points x and x +dy on the surface, the distance ds between
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Figure S15: The reference configuration of a material surface and its deformations (isometric transfor-
mation between helicoid and catenoid shapes)

them reads classically ds*> = dy - dy. Expressing dy as a function of p and ¢ leads to dy =
Xpdp + X,dq, where the subscripts correspond to derivation with respect to the variable. We

thus obtain the first fundamental form of a surface:

ds® = x, - Xp dP” + Xp - Xedpdd + X - X, dq (56)

Thus, using Egs. 53-55, we can compute the surface deformation gradient F' and obtain the

metric tensors of the material surface in the deformed configurations as:

2
| E F | | XpXp XpXq | | cosh®q 0
a— — = 9 (57)
F G XpXq XqXgq 0 cosh” q
Importantly, the metric tensor a is a here a function of parameter ¢, independent of transfor-
mation parameter . In other words, the transformation from an helicoid to a catenoid is an
isometry. Moreover, the deformed configuration of this material surface in comparison with a
flat surface will be given by such mapping: at each point, we stretch the reference by the same
amount cosh ¢ along [p, ¢| directions.

In order to derive the second fundamental form which defines the shape tensor, we consider a

curve C passing through a point x on the surface. At this point, the unit tangent t to the curve
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C belongs to the tangent plane and its curvature dt/ds may be projected onto the normal N of

the surface. We call this quantity the normal curvature k,,:

dt dyxy-N

k,=N.— = 58
ds ds? (58)

where the unit normal vector IN reads:

cos p/ cosh g,
_ Xp X Xq _ sin p/ cosh g, (59)
Xp X Xql —sinh ¢/ cosh ¢

By differentiation, we trivially obtain:
dx = xpdp + xq dg (60)
N = N, dp + N, dgq (61)

Inputting these Eq. 57 and Eqs.60,61 in Eq. 58, we get:

_ Xp'dip2+(Xp'Nq+Xp'Nq>dde+Xq'quq2

ky 5 5 (62)
Edp®+2Fdpdg+ Gdg
The second fundamental form is simply the numerator of this expression:
II =edp” +2fdpdg+ gdg’ (63)

where e, f, g are coefficients of the second fundamental form. Combining Egs. 53-55 and

Eq. 59, the coefficients of the second fundamental form can be derived as:

e = XppIN = —sina (64)
f = XpgN = cos (65)
g = Xq¢N = sina (66)

Writing them in a matrix form, we get the shape tensor:

b:[e f]:[—sina cosa] 67)

f g cosa  sina
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The possibility of changing curvature (morphing) of a surface by acting on its metric relies on
a remarkable theorem by Gauss, his celebrated theorema egregium, stating that the Gaussian
curvature K of a surface (the product of its principal curvatures) can be computed in terms of

the coefficients of both fundamental forms:

2
— 1
k-9, ___ 1
EG — F? cosh” ¢q

(68)

Notably, the Gaussian curvature K here is a function of the parameter ¢ and independent from
the transformation parameter . Thus we can say that Gaussian curvature K at a given point of
the surface is invariant during the transformation between helicoid to catenoid, as expected for

1sometries.

Programming zigzag path for metric change

As reference configuration Sy, we consider a flat material sheet of length L( and height H,. We
then focus on its deformed configuration (the axisymmetric surface, i.e. catenoid).This means
that we consider a map (u, v) — x(u,v) € R3, where (u,v) € (Lg, Hy) C R

The deformed configuration with catenoid shape can be written by assigning a generating cate-
nary curve [r(v), z(v)] in the symmetry plane and an azimuthal displacement v (v), leading

to:

x(u,v) = {r(v) cos (Rlo + w(v)> ,7(v) sin (Rio + 1/1(1))) ,z(v)} : (69)
u € (—Lo/2,Lo/2), v € (—Hy/2,Hy/2) (70)

where Ly = 27 Ry.

The catenary curve [r(v), z(v)] here can be described as:

r(v) = acosh? (71)

where a = 7(0).
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A map from reference to deformed configuration Symmetry plane
_______ Pl
E z(v)
L r(v)

Figure S16: Flat material sheet deformed into a catenoid and cross-sectional view.

By computing its deformation gradient, we can obtain its metric tensor as:
(r/Ro)? %'/ Ry

g = F G| 7“277/)'/R0 T’2+z’2+r2¢’2

where a prime ()’ denotes differentiation with respect to v. Clearly, since the left-hand side in

(72)

the last equation depends only on v, only metric tensors ¢ = g(v) that are independent of u
(axisymmetric actuation) are compatible with Eq. 69.
To achieve such deformation, let us consider a contraction with principal directions along the

coordinate lines using zigzag pattern:

A2 0
gz{ 0 Ag] (73)

where Ay = Aj(u,v) € (0,+00) and Ay = Ay(u,v) € (0, +00) are the stretches along the u—
and v—coordinate lines, respectively. The contraction of the pneumatic membrane is a special
case of fixed area ratio by setting A; Ay = \,.

Following theorema egregium, the Gaussian curvature K here can be computed in this particular

case as:

1 1"
Ko ==~ (A7) (74)
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Investigating the unit cell of our periodic zigzag, we have:

A= )\ﬁ cos? Oy + A2 sin?fy, Ay = ™ (75)
1

where )| = 1is active stretch along the director field, and\ | < 1 in the perpendicular direction.
0o is the initial zigzag angle.

Submitting Eq. 73 into Eq. 72, we obtain:

r(v) = A (v) Ry, (76)
Y'(v) =0, (77)
and
/ - 1 2 VYA ()2
) =F VA~ (R ()M ), (78)

Solving Egs. 71, 74, and 76-78, we obtain:
A1 = A1 (U) (79)

K = K(v) (80)

Starting from a given distribution A;(v), the zigzag channels are designed in practice in the

following way: Submitting Eq. 79 to Eq. 75 we deduce that

(81)

and zigzag angle y(v) as a function of v.

The actual zigzag path is obtained as:
Z(v) = U()T () (82)

where T'(v) is a symmetric triangle wave with period P = Hy/N = with extremal values +1.
In practice, tilted Thermoplastic Polyurethane (TPU) walls are 3D-printed on the first layer of

TPU coated fabric following such zigzag path.
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The amplitude U (v) follows:

and is drawn in blue color in Fig. S17C.

A B
T(v) e [T
U(v) e |
Z(v)
| :
I I
5-5 90 0

u (mm) g (°) u (mm) %

E
Figure S17: Generation of the zigzag pattern: (A) A symmetric triangle wave with period P and with
extremal values 1. (B) Actual zigzag angle g as a fuction of v. (C) Amplitude U of actual zigzag path

(blue) and actual zigzag path (red). (D) Half period of actual zigzag path. (E) Complete zigzag pattern
programmed to morph into helicoid or catenoid. Scale bar: 100 mm.

Since the isometric helicoid has the same metric as the described catenoid, the same zigzag

pattern can be used for both of them.

Programming curvature following vectors normal to zigzag path

In the reference configuration, we consider a pair of neighbouring points x and y + dy on the
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finite surface element, where dy is normal to the tangent vector of zigzag path, ¢ is the angle
between dx and du (du, dv are orthogonal unit vectors in the direction u and v, respectively).

Following basic geometry, we obtain:

tan ¢ = Xo (83)

Xu

Inflation induces a contraction in both directions » and v, with respective contraction ratios A;

and A,. As a consequence, the angle 1) between the direction of the pair of selected points and

du reads:
Aaxo
tan ¢ = —2X (84)
AlXu
As catenoid is a minimal surface, its mean curvature H and Gaussian curvature K read:
ki +k
H="1T" (85)
2
K - k’lk'g (86)
where £;,and k- are the principal curvatures.
Inputting Egs. 85 and 86 into Eq. 80, we deduce the principal curvatures as a function of v:
ki(v) = —ko(v) = VK (v) (87)

In the case of the catenoid, principal curvatures k; and k9 are in the direction » and v, respec-
tively (Fig. S18). One important fact about the principal directions and principal curvatures is
that they respectively correspond to eigenvectors and eigenvalues of the shape operator. The
principal curvatures are sufficient to describe locally the shape as any tangent vector can be
expressed as a linear combination of the principal directions. In particular, if k,, is a unit vector

offset from by an angle 6, the associated normal curvature is given by:

ky, = ki cos?(0) + ko sin?(6) (88)
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As one can verify using the relationships above.
Combining Eqgs. 79, 80, 82, 83, 87 and 88, we can compute normal curvature K., following

dx normal to the tangent vector of the zigzag path:

fea(0) = VRGO (59)

where a prime (-)" denotes differentiation with respect to v.

7777777777777777777777

dx
>
<
2
¢
Xudu
| g
| / 3
| Yol <
3 AlXudu EA‘]

,,,,,,,,,,,,,,,,,,,

Figure S18: Computing locally the curvature k., normal to the zigzag path (red color, the same one as
shown in Fig. S17) in a catenoid shape.

In the case of the helicoid shape, the principal curvatures k; and k-, are in the directions offset
from u and v by an angle of 45°, respectively (Fig. S19). As the helicoid have the same Gaussian
curvature /' and mean curvature H as a catenoid, combining Eqs. 79, 80, 82, 83, 87 and 88, we
can compute normal curvature K, following dx normal to the tangent vector of zigzag path.

C T 4 (o) sin? (i — Ty = 22V K@U WAIW) g

4 4 A (v) + N2U2(v)

Eni (v) = ki(v) cos? (¥ 1

This curvature is then used as a target for the corresponding cell, setting its internal design.
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Figure S19: Computing locally the curvature kp_; normal to the zigzag path (red color, the same one as
shown in Fig. S17) in a helicoid shape.
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5 Scalability and performances

In this section we provide some design rules and discuss scalablility and performances of our

system using scaling law arguments.

Maximum internal pressure

Increasing the internal pressure P provides a larger stiffness to the pressurized structure. We
discuss here the maximum admissible value. A first point is that our analysis is restricted to
cases where the fabric can be considered as inextensible. The strains in the fabric are on the
order of PH/Y, where Y is the membrane stiffness of the fabric (product of Young modulus
with thickness). Our description is only valid if P < Y/H. A second limit for pressure, more
relevant in our study, is the condition for detachment of the fabric from the TPU-printed struc-
ture. We note that the tension in the fabric is on the order of PI¥. Assuming that detachment
occurs for a critical value of this tension (which strongly depends on material and manufactur-
ing techniques), we find that the maximal pressure is inversely proportional to the size of the

cells, a feature that constrains the attainable stiffness of cells.

Stiffness : Imposed pressure versus constant fluid mass

In this study we focus on a system subject to a constant internal pressure P. It is also possible
to inflate the system up to the same desired pressure, and seal it, so that the mass of the internal
fluid is constant (but not its pressure). We argue here that the linear response of the system

(stiffness of the equilibrium) is the same in both cases, independently of the fluid compressibil-

ity.
We consider an approach based on energy balance, for a system such as in Figure S7 (5 = 0).
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In the case of an imposed pressure P, the energy of the system is
U(S) = —PV(9),

where the volume V/(.9) is a function of the inter-wall distance S (in the limit of inextensible
fabric). The equilibrium obeys dU/dS = —PdV/dS = 0, which maximizes the volume of the

cell. The stiffness £ of the system can simply be computed as:

U &V

k=—=_-_P—
ds? ds?

We now turn to the case where the fluid is injected up to the same pressure P and then the inlet

is sealed, maintaining the mass of fluid constant inside the structure. The energy Uy of this mass

of fluid at a constant temperature is a function of its available volume V' (S). At equilibrium,

AUy (V(S)) _ UV _
dS oV dS

where we note that by definition 88% = —P. Again we find that equilibrium occurs when the

volume is maximized. The stiffness here obeys:

dsz — ovz \ dS oV dS2

PU; 09Uy (dVN? | 0U; PV
ds

d?v

We note that the first term vanishes at equilibrium, so that the stiffness is again k = — Pz,

depending only on the equilibrium pressure and on the geometrical function V'(.S).

We deduce that within the assumption of inextensibility, the stiffness of the system, that is the
linearized mechanical response of the system close to equilibrium, does not depend on the con-
dition of inflation (imposed pressure, constant mass), but only on the intitial internal pressure

and on the geometry of the cell.

Structural stiffness vs smoothness

A given target surface shape, can be approximated by different distributions of Gaussian cells.
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A natural question is how to select the separation between cells, which plays the role of a
discretization distance. Geometrical accuracy favours the finest possible steps and therefore
the largest number of cells. However, we show here that there is a trade-off when it comes to
structural stiffness, which is larger when using fewer larger Gaussian cells.

We consider the simple shape of a cylinder with radius of curvature Ry (curvature ko = Ry*),
and define ¢ the discretization distance (spatial distance between the center of the cells) as-
sumed as uniform. We also consider for simplicity triangular cells W = 0 which are sufficient
to provide a deflection compatible with a developable target shape. For a good geometrical
approximation of the cylinder, each cell has to provide a folding angle v = ¢/ Ry, which thus
determines the internal geometry of the cell, i.e the internal angle 3(¢), from equation (1) in the
main text).

The effective bending stiffness B.,(¢) of this equivalent plate can be inferred from the following.
When a pure torque M is applied, it will modify the folding angle of each cell by Ay = M/K,.,
where [, is the angular stiffness of the cells (set by equation (4) in main text). The curvature
becomes k = (y + A7)/, so that the change in curvature is Ax = M /(K,(). Finally, we find

that this hybrid plate has an equivalent bending stiffness
By (£) = (I, (0)

Note that K,.(¢) depends in a non-trivial way on the step length ¢ because the internal geometry
of the cell 5(¢) must be adjusted differently depending on the discretization length. As a matter
of fact, the stiffness of cells increases for smaller deflection angle v < 1, (see lower left
corner in figure 3G of the main text), and therefore K,.(¢) increases for small /. In Fig. S20,
the nondimensional equivalent bending stiffness B, (¢)/PLH? is plotted as a function of the
discretization length ¢ for different choices of the target radius of curvature Ry. It is seen that

the smoother the plate (i.e. the smaller /), the lower is its equivalent stiffness.
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Figure S 20: Effective bending stiffness of a plate programmed to take the shape of a cylinder with
radius Ry as a function of discretization parameter ¢/ H. Smoother shapes involve more hinges and are
therefore softer (for a fixed pressure) than coarser shapes with larger spacing ¢ between centers of the
cells.

This trend is also true when it comes to stretching stiffness, which is most simply estimated

for an assembly of rectangular cells (5 = 0) separated by rigid segments. The effective Young

modulus of such a plate is simply given by:

E., = EC%
(assuming that the building material has a much larger Young modulus than the internal pres-
sure). Again, the effective stiffness vanishes when the discretization is made more accurate (as
¢ goes to zero).

As a conclusion, we find that smoothness is obtained at the cost of a lower stiffness (for a fixed
pressure). There is no optimal cell number, and depending on the application, one should decide

for a smoother or a stiffer plate. This conclusion is somewhat mitigated by the fact that, for a

given distribution of cells, a larger internal pressure provides a larger stiffness of the structure.

Deployment time

The deployment dynamics of such a structure depends primarily on the inflation rate of the
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pressure source (how fast can the fluid be filled into the structure) and on the geometry of the
network of connected airways (which dictates the pressure losses). In addition, the time required
to reach the deployed equilibrium is also bounded by the inertia of the structure. A typical
vibration period for an elastic structure with length span £, width L, thickness H, material
density p and bending stiffness B is 7 ~ £* \/m In our case, the bending stiffness B
depends both o on pressure and geometrical parameter, but a simplified estimate provides B ~

PLH?3. Finally, the deployment time scales as

p L2
T~y ==
PH

We see that structures with large span £, bearing more inertia, take more time to reach their
deployed equilibrium. This effect can be in principle counterbalanced by using larger pressure
P which tends to shorten the deployment time. In practice, the P~'/2 and £? dependence shows

that a very large increase of pressure is needed to balance a change in size.
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6 Captions for Videos

Movie S1:

Fabrication and pneumatic deployment of a structure based on Gaussian cells.
Thermo-Plastic Urethane (TPU) building blocks are 3D printed on a first layer of TPU-coated
fabric (extrusion temperature 210°C, displacement of printing head at 12 mm/s). A vacuum
pump is used to maintain the fabric sheet flat on the printing board, and to avoid sliding (fab-
rication process played fast forward at 8x speed). An additional layer of the same fabric is
heat-sealed on the top of the printed structure with a heating press (at a temperature of 184°C
for 10s). Finally, Pneumatic Gaussian cells embedded in the thin sandwich are connected to a
pressure source. Upon pressure, the initially flat structure morphs into a complex shape such as

a “starshade” model (actuation played at 2x speed).

Movie S2:

Programming developable surfaces.

Developable shapes based on triangular cells: (i) “S” shape with opposite constant curvatures;
(ii) Spiral with linearly increasing curvature; (iii) Curling shape with variable curvature direc-
tion; (iv) Developable helicoid obtained when generating lines are tangent to the initial central

circle (movie played at 2x speed).

Movie S3:

Morphing a disk into a cone.

A sectioned annulus with a radial cells morph into (i) a truncated cone with angular surplus
when pure bending is programmed with triangular cells ; (i1) a flat annulus sector with angular

deficit when pure metric change is programmed with rectangular cells; (iii) a perfect truncated

39



cone when bending and metric changes are programmed simultaneously (movie played at 2x

speed).

Movie S4:

Selection between isometric shapes (helicoid and catenoid).

The same metric change provided by a programmed zigzag pattern leads to degenerated iso-
metric shapes from helicoid to catenoid. Controlling the local bending breaks the degeneracy

(helicoid actuation played at 1.5x speed, catenoid actuation played at 2x speed).

Movie S5:
Self-actuated Miura-ori panel.
Gaussian cells here function as stiff “mountain” or “valley” creases. The resulting structure is

stiff enough to sustain a total load of 1kg (movie played at 2x speed).

Movie S6:

Towards shape morphing robotics: Manipulating solids

Upon inflation, a flat stripe bends into a curved gutter track, allowing for the manipulation and
transport of objects such as a rubber ball of diameter 40 mm and weight 25 g.

Volcano shaped actuator: the initially flat disk is actuated in a fraction of second as a cylinder
rolls over it at 10 cm/s. The cylinder (weight 40 g) remains trapped inside the deployed crater

(movie played at 1.5x speed).

Movie S7:
Towards shape morphing robotics: Manipulating liquids

Upon inflation, a flat stripe bends into a curved gutter track allowing to transfer liquid from a
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container to a different one. Liquids spill out when releasing internal pressure, which demon-
strates the significance of surface morphing robotics. In this case, both principal curvatures
are programmed to bend in the same direction, leading to positive Gaussian curvature (movie

played at 1.5x speed).
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