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Abstract: Desmin is a class III intermediate filament protein highly expressed in cardiac, smooth
and striated muscle. Autosomal dominant or recessive mutations in the desmin gene (DES) result
in a variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively called
desminopathies. Here we describe the clinical, histological and radiological features of a Greek
patient with a myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly)
heterozygous variant in the DES gene. Moreover, through ribonucleic acid sequencing analysis in
skeletal muscle we show that this variant provokes a defect in exon 3 splicing and thus should be
considered clearly pathogenic.

Keywords: desmin; myofibrillar myopathy; cardiomyopathy; ribonucleic acid sequencing

1. Introduction

Desmin is a class III intermediate filament highly expressed in cardiac, smooth and
striated muscle. This 53 kDa protein has a central a-helical coiled-coil rod domain, consist-
ing of two seriatim a-helical segments, coil 1 and coil 2, that are connected by a “linker”,
and is flanked by a non-a-helical amino-terminal domain (so-called “head”) and a carboxy-
terminal domain (so-called “tail”). The non-a-helical amino-terminal domain is essential
for protein formation and the carboxy-terminal is important for protein-protein interplay.
In striated muscle, desmin is located at the Z-disks, at the myotendinous and neuromus-
cular junctions and at the subsarcolemmal space, while in the heart muscle it is located at
intercalated disks of the cardiomyocytes and Purkinje fibers. Desmin links the contractile
apparatus to the sarcolemma and various cytoplasmic organelles, such as the nucleus,
mitochondria, and lysosomes and promotes communication among the extracellular matrix
and cellular organelles. Moreover, it maintains structural integrity and provides muscle
cell resistance to externally applied mechanical forces [1–3].

Autosomal dominant or recessive mutations in the desmin gene (DES) result in a
variety of diseases, including cardiomyopathies and myofibrillar myopathy, collectively
called desminopathies [4,5]. Desminopathies are the best-studied disease entity within
the clinically and genetically heterogeneous group of myofibrillar myopathies (MFM) [6].
The incidence and prevalence of desminopathies are currently not available. However,
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desminopathies are considered rare diseases, thus affecting no more than five individuals
in 10,000 [1]. Within a group of 53 patients from 35 Spanish MFM families, desmin muta-
tions were the second most frequently encountered gene defect [7]. Skeletal myopathy in
desminopathies usually presents by the age of 30 years, but cases with early-or later onset
have been reported. Usually, there is distal lower limb weakness and atrophy, involving
the anterior compartment that later spreads to involve proximal and axial musculature
(paraspinal or neck flexor muscles), but limb-girdle and scapuloperoneal presentations
can also occur [4,8,9]. Cardiac involvement in desminopathies is predominant and vari-
able as it may include arrythmias, hypertrophic, dilated, restrictive and non-compaction
cardiomyopathy that may precede, occur at the same time or follow the appearance of
clinical evident skeletal myopathy [10–16]. Desmin mutations account for up to 2% of pure
dilated cardiomyopathies [17]. There is no clear correlation between the skeletal muscle
and heart involvement in desminopathies. But the latter is associated with high morbid-
ity and mortality and warrants close monitoring, even in asymptomatic individuals [18].
Respiratory insufficiency is not unusual, leading sometimes to the use of non-invasive ven-
tilatory support, while some mutations have been correlated with severe and predominant
respiratory muscle weakness [19,20]. Muscle imaging in desminopathies reveals early fatty
infiltration of lower leg muscles, initially the peroneus lateralis and subsequently the tibialis
anterior and the posterior compartment muscles. In the thighs, there is involvement of the
sartorius, gracilis and semitendinosus muscles and relative sparing of the semimembranosus,
even at advanced stages of the disease [19,21]. Characteristic light microscopy findings
in skeletal muscle biopsies from patients with desminopathies encompass the presence of
protein aggregates of rimmed and non-rimmed vacuoles, and areas of irregular internal
architecture in muscle fibers (rubbed-out fibers and core-like areas), in conjunction with
mild to severe myopathic features. Electron microscopy has a central diagnostic role in
documenting signs of myofibrillar degeneration, as well as protein aggregation [1,16]. The
typical ultrastructural findings include the presence of granulofilamentous accumulations,
Z-disk streaming and sandwich-like formations of granulofilamentous material facing the
Z-disks and mitochondria alongside it [22].

Pathogenic mutations are spread all over the entire DES gene and tend to cluster in
exon 6, encoding the C-terminal of the coil 2 domain. Regarding the genotype-phenotype
correlations, it seems that variants affecting the coil domain are usually associated with a
predominant muscle phenotype, while if they affect the tail and head domains there is a
predominant heart involvement. Most frequent DES mutations are missense mutations,
causing single amino-acid substitutions, while small in-frame deletions and frame-shift
mutations have only been reported in case reports [1,8,23]. Dalakas et al. first reported a
splice site mutation (c.735+3A>G) responsible for the deletion of exon 3 in a patient with
myopathy and cardiomyopathy [24]. Subsequently, a number of splice site mutations in
the DES gene have been reported, most of them residing in the highly conserved among
species, acceptor and donor splice site of exon 3 [18,25–27].

Here we describe the clinical, histological and radiological features of a Greek patient
with myofibrillar myopathy and cardiomyopathy linked to the c.734A>G,p.(Glu245Gly)
heterozygous variant in the DES gene. Moreover, we provide evidence for the pathogenicity
of this variant through ribonucleic acid sequencing (RNAseq) analysis in skeletal muscle,
and we show that this mutation is pathogenic by causing a defect in exon 3 splicing.

2. Case Report

The index case is a 36-year-old man born at term, following an uneventful pregnancy
and a normal delivery, to non-consanguineous healthy parents. His psychomotor develop-
ment was normal and he reported being athletic as a child. At the age of 18 years, during his
military service, the patient was diagnosed with restrictive hypertrophic cardiomyopathy
and a year later a pacemaker was implanted due to syncopal episodes. At the age of
23 years, he was diagnosed with atrial fibrillation complicated by an ischemic stroke with
no residual neurologic deficit. Since the age of 28 years, he has reported difficulties climbing
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stairs and getting up from a squat. He was firstly seen at the neuromuscular clinic at the
age of 33 years, and he presented bilateral scapula alata, and a waddling and stepping gait.
There was mild weakness in the upper limbs (biceps and finger extensor muscles graded
4/5 on the MRC scale) and more severe in the lower limbs (hip extensors and psoas muscles
1/5 on the MRC scale, hip abductors, biceps femoris 3/5 on the MRC scale). Distally, there
was involvement of tibialis anterior and peronei muscles (3/5 on the MRC scale). His serum
creatine kinase levels were mildly elevated at 400 UI/L (normal values < 180 U/L). Needle
electromyography demonstrated small amplitude, short duration, polyphasic motor unit
action potentials, with early recruitment and small amounts of fibrillation potentials and
positive sharp waves, as well as myotonic discharges in all examined muscles. A lower
limb muscle computed tomography revealed fatty degeneration of semitendinosus, gracilis,
sartorius and adductor longus muscles in the thigh and diffuse fatty degeneration of leg
muscles (Figure 1).
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Figure 1. Muscle computed tomography of the thighs showing predominant involvement of semitendi-
nosus, gracilis, sartorius and adductor longus muscles in the thighs (a) and diffuse fatty degeneration of
leg muscles (b).

A left vastus lateralis muscle biopsy revealed increased muscle fiber size/diameter
variation, with the presence of grouped atrophic fibers giving a pseudo-neurogenic aspect.
There were prominent and multiple nuclear internalizations, and with both H&E and mod-
ified Gömöri trichrome staining we observed the presence of multiple rimmed vacuoles
in about 1–2% of muscle fibers and rare cytoplasmic bodies (not shown). Histoenzymatic
oxidative reactions were remarkable for the presence of irregular intermyofibrillar network
irregularities giving a moth-eaten aspect to the fibers, and the presence of variably located
areas, sometimes central, devoid of oxidative activity, in 10% of muscle fibers, as well as
rubbed-out areas with less delimited borders. Immunohistochemistry for a battery of anti-
bodies against protein involved in myofibrillar myopathies revealed the presence of desmin
and myotilin (not shown) sarcoplasmic immunoreactive aggregates. An ultrastructural
study showed the presence of subsarcolemmal, sarcoplasmic, granulofilamentous material
(Figure 2) and Z-line streaming (not shown).
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desmin monoclonal mouse antibodies (sc-23879, Santa Cruz) showing a muscle fiber with des-
min-positive sarcoplasmic aggregates (star) (×40) (d): Electron microscopy: Subsarcolemmal gran-
ulofilamentous material (arrows) (×18,000). Scale bar 50 µm in panels (a–c). 
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RNA sample from a quadriceps muscle biopsy. A defect in exon 3 splicing was observed 
in the heterozygous state with 3489 reads of the exon 2 to exon 4 junction, compared to 
3829 reads for junction 2–3 and 3964 for junction 3–4. In comparison, we did not observe 
the 2–4 junction among controls consisting of RNAs from another muscle biopsy used in 
the same run (Figure 3).  

Figure 2. Skeletal muscle section from left quadriceps muscle biopsy. (a): H&E stain showing variable
muscle fiber size with increased internal nuclei, rimmed vacuoles (arrow) and grouped atrophic
fibers giving a pseudo-neurogenic aspect (arrowhead) (×20). (b): NADH-TR stain showing a rubbed-
out area in the muscle fiber (star) (×40). (c): Immunohistochemistry with the anti-human desmin
monoclonal mouse antibodies (sc-23879, Santa Cruz) showing a muscle fiber with desmin-positive
sarcoplasmic aggregates (star) (×40) (d): Electron microscopy: Subsarcolemmal granulofilamentous
material (arrows) (×18,000). Scale bar 50 µm in panels (a–c).

Targeted sequencing of a multigene panel for myofibrillar myopathies revealed the
missense mutation c.734A>G,p.(Glu245Gly) in the DES gene (NM_001927.4) in the het-
erozygous state. This missense variant localized before the last nucleotide of exon 3 in the
coiled 1B domain of the protein has already been detected in an Indian family with a domi-
nant inheritance but with an unknown effect [28]. Its allelic frequency is not reported in
GnomAD (v1.3). The LOVD database reports it as of uncertain significance. Bioinformatics
prediction tools predicted a splice effect. We performed RNAseq on an RNA sample from a
quadriceps muscle biopsy. A defect in exon 3 splicing was observed in the heterozygous
state with 3489 reads of the exon 2 to exon 4 junction, compared to 3829 reads for junction
2–3 and 3964 for junction 3–4. In comparison, we did not observe the 2–4 junction among
controls consisting of RNAs from another muscle biopsy used in the same run (Figure 3).

The precise deletion breakpoints determined by BAM data from RNAseq showed
the deletion of exon 3 in the reading phase (r.640_735, hg38) in IGV software (Integrative
Genomic Browser, version 2.11.1).
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Figure 3. Exon 3 splicing defect of DES transcript (NM_001927.4) analyzed by RNAseq. (A). Sashimi-
plot of mRNA sequencing showing exon 3 splicing in control muscle and (B). in the proband muscle.
The IGV histograms represent read coverage of the exons and arcs indicate the number of junction-
spanning reads supporting the exons junction. The aberrant junction resulting from the c.734A>G
variant is indicated by a blue line indicating the heterozygous deletion of exon 3. (C). Exon-intron
zoom of DES gene (blue solid rectangle for numerated exons 2 to 5 (among 9 exons) and line
for intron).

3. Discussion

Here, we describe a patient with restrictive hypertrophic cardiomyopathy, car-
diac conduction defects and predominately limb-girdle muscle weakness carrying the
c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene. Moreover, we provide
evidence on the consequences of this variant at the protein level through mRNA sequencing
on the skeletal muscle.

The propositus presented with restrictive hypertrophic cardiomyopathy and cardiac
conduction defects, leading to a pacemaker implantation followed a few years later by
the development of skeletal myopathy. Desminopathies are among muscle disease with
prominent cardiac involvement [29] and should always be suspected in patients presenting
in the third or fourth decade of life with myopathy and evidence of heart pathology [16].
Heart disease in desminopathies may precede muscle weakness by years, has variable
presentations, comprising conduction system defects, arrhythmias and all forms of car-
diomyopathy and can be severe enough to lead to heart transplantation, or, as in our case,
to the implantation of a pacemaker. Cardiac involvement is not, clearly, correlated to the
type of DES mutation nor with the severity of muscle disease and is the major determinant
of the disease prognosis. All patients, as well as at-risk asymptomatic carriers of DES muta-
tions, should be offered in-depth and regular cardiac investigations that should include a
12-lead surface ECG, a 24-h Holter ECG and a transthoracic echocardiography [1,4,18,30]
and probably a heart MRI that has been shown to be more sensitive in detecting cardiac
muscle involvement in early, asymptomatic stages [31].

In the framework for his muscle disease, the patient underwent lower limb computed
tomography showing predominant involvement of semitendinosus, gracilis, sartorius and
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adductor longus muscles in the thigh and diffuse fatty degeneration of leg muscles. Muscle
imaging has become an integrated part of the diagnostic workup of myopathies, and the
recognized pattern of muscle involvement often points to the underlying gene defect [32].
The involvement of sartorius and gracilis, as opposed to most muscular dystrophies and the
pronounced selective fatty infiltration in semitendinosus, sartorius and gracilis in the thighs
and peroneal muscles at the calf level, are highly suggestive of a desminopathy, irrespective
of the underlying mutation, disease stage or clinical muscle involvement [33].

The classical myopathologic findings of myofibrillar myopathies comprise myofibrillar
disorganization beginning at the Z-discs, areas with reduction of oxidative enzyme activity
(rubbed-out fibers and core-like lesions), abnormal accumulation of sarcoplasmic pro-
teins that are stained with antibodies against desmin, aB-crystallin and myotilin, rimmed
and non-rimmed vacuoles, and neurogenic-like abnormalities (small groups of atrophic
fibers). At the ultrastructural level, there is myofibrillar disorganization and pathological
protein aggregation [16]. In our patient’s muscle biopsy, we identified the typical signs
of myofibrillar myopathy, herewith with prominent rubbed-out muscle fibers and dense
granulofilamentous accumulations that are considered consistent with a desminopathy by
electron microscopy [22,34].

The c.734A>G,p.(Glu245Gly) mutation in the DES gene found in our patient has al-
ready been reported in a large Indian kindred with 12 affected family members presenting
with skeletal myopathy, severe heart disease and myofibrillar alterations in muscle biopsy.
Nevertheless, in the absence of mRNA analysis, the authors could only speculate about
the effect of the mutation at the protein level and they suggested that it either introduces
the p.Glu245Gly missense mutation, or it results in a putative in-frame skipping of exon
3 corresponding to the deletion of residues p.Asp214-Glu245 [28]. By performing RNAseq
on an RNA sample from the quadriceps muscle biopsy, we showed that this variant pro-
vokes a defect in exon 3 splicing and thus should be considered clearly pathogenic. Of note,
the end of exon 3/beginning of intron 3 harbors pathogenic variants associated with myopa-
thy and cardiomyopathy and all splice-site mutations of the DES gene that result in exon 3
skipping are located in this site (i.e., c.735G>T,p.(Glu245Asp), c.735G>C,p.(Glu245Asp),
c.735+1G>A, c.735+1G>T, c.735+3A>G, c.735G>C). These mutations cause an in-frame skip-
ping of exon 3, leading to the fusion of exons 2 and 4. [18,24–27,35–37]. Expression studies
in SW13 (vim-) cells have showed that this mutant desmin product, lacking 32 amino-acids
(from Asp214 through Glu245), is not functional and aggregates in desmin positive material
in patients’ muscle [36]. It should be also noted that in this portion of the desmin protein
resides the binding site for nebulin and, most probably, it is important for the linkage of
the myofibrillar Z-discs to the intermediate filaments [38]. The clinical phenotypes in the
reported patients consisted of cardiomyopathy (restrictive, dilative or rarely a phenotype
transitioning from a hypertrophic to a restrictive and finally to a dilated type) preceding, as
in the present case, the occurrence of skeletal myopathy [24,26,27,36].

In conclusion, the c.734A>G,p.(Glu245Gly) heterozygous variant in the DES gene is
associated with myofibrillar myopathy and cardiomyopathy by exon 3 skipping.

4. Materials and Methods
4.1. Muscle Biopsy

Muscle specimen was obtained from the left quadriceps muscle by open biopsy, under
local anesthesia. A portion of the muscle sample was snapped frozen in liquid-nitrogen
cooled isopentane. Six-µm thickness cryostat sections were cut and used for histological,
histochemical and immunohistochemical studies, using conventional techniques. Histo-
logical and histochemical reactions included hematoxylin–eosin (HE), Gomori’s modified
trichrome, NADH-TR, SDH, cytochrome oxidase (COX), SDH-COX, ATPase (pH 9.4),
phosphorylase, NSE, periodic acid Schiff (PAS), diastase-PAS, and Oil red O stains. Im-
munohistochemical study included the following primary mouse monoclonal antibodies:
anti-desmin (clone D33, 1:70, Richard-Allan Scientific, Kalamazoo, MI, USA), anti-myotilin
(clone RSO34, 1:20, LEICA Biosystems Newcastle Ltd., Newcastle upon Tyne, UK). Sections
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were incubated for 1 h at room temperature with the primary antibody and immunos-
tained with biotin-extravidin (Extra-2, Sigma, St. Louis, MO, USA). Color was developed
with amino-ethyl-carbazole (AEC). For conventional electron microscopy, fresh muscle
samples were fixed in buffered 2.5% glutaraldehyde—2% paraformaldehyde, post-fixed in
1% osmium tetroxide and embedded in fresh epoxy resin mixture. Ultrathin sections at a
thickness of 80 nm were stained with uranyl acetate and lead citrate and examined with a
Philips 420 transmission electron microscope, and images were acquired with a Megaview
G2 CCD camera (Olympus SIS, Münster, Germany).

4.2. Targeted Gene Enrichment, Next Generation Sequencing NGS (High-Throughput Sequencing)

Patients’ DNAs were extracted from peripheral blood with QIAsymphony (Qiagen,
Hilden, Germany) and qualitatively checked using Tape Station DNA genomic array
(Agilent, Santa Clara, CA, USA). Custom-targeted gene enrichment and DNA library prepa-
ration were performed using the NimbleGen EZ Choice probes and Kappa HTP Library
preparation kit according to the manufacturer’s instructions (NimbleGen, Roche Diagnos-
tics, Madison, WI, USA). A specific custom panel of 17 genes was designed including genes
associated with myofibrillar myopathies. The RefSeq coding sequences were determined
as consensual for genetic diagnosis within a French nationwide working group [39]. The
targeted regions include all coding exons and ±50 base pairs of flanking intronic regions of
17 genes known to be involved in myofibrillar myopathies (Table 1). Paired-end sequencing
was performed on a 250-cycle Flow Cell (Illumina, Santa Cruz, CA, USA) using the Illumina
MiSeq platform. Eight libraries were multiplexed per run.

Table 1. NGS panel of genes associated with myofibrillar myopathies.

ACTA1 (NM_001100.3)

BAG3 (NM_004281.3)

CRYAB (NM_001885.2)

DES (NM_001927.3)

DNAJB6 (NM_058246.3)

FHL1 (NM_001159702.2)

FLNC (NM_001458.4)

GNE (NM_001128227.3)

HSPB1 (NM_001540.3)

HSPB8 (NM_014365.2)

MYH2 (NM_017534.5)

MYOT (NM_006790.2)

RYR1 (NM_000540.2, with partially covered exon 91)

SQSTM1 (NM_003900.4)

TTN (NM_001267550.1)

VCP (NM_007126.3)

ZASP/LDB3 (NM_001080114.1, NM_007078.2, NM_001171610.1)

4.3. Bioinformatics Analysis

MiSeq Software (MiSeq Control Software v. 2.6.2.1) generates FASTQ format files
after demultiplexing patients’ sequences. Sequence alignment against the human reference
genome (Hg19) was performed using BWA-MEM. Variant calling was performed using the
GATK Haplotype Caller program. Detected variants were then annotated using ANNOVAR
and CADD tools. Detected variants with sequencing depth greater than 30× and with at
least 20% of reads supporting the alternative allele were kept for analysis. Detection of
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copy number variation (CNV) was performed after coverage normalization, by computing
the ratio of a target’s coverage of a given individual over the mean coverage of this target
across all patients of the same sequencing run.

4.4. Variants Interpretations

Pathogenicity of variants was determined according to current ACMG guidelines [40].
Variants were filtered out according to their allele frequency (≤1%) as reported in the
GnomAD database (http://gnomad.broadinstitute.org/, accessed on 1 April 2020) We then
evaluated each variant considering a review of the literature, the location of the variant in
the gene and the resulting corresponding protein, the in silico prediction tools (Polyphen2,
SIFT, GVGD and CADD for missense variants and SpliceSiteFinder like, MaxEntScan,
NNSPLICE, GeneSplicer and Human Splicing Finder for splicing variants) and functional
studies when available. The SuSPect method (http://www.sbg.bio.ic.ac.uk/suspect, ac-
cessed on 1 April 2020) was also used for prediction. In addition, we looked at a local
database of pathogenic variants related to our experience on the molecular diagnosis of my-
opathies. All variants considered as pathogenic and likely pathogenic have been confirmed
by a second independent method (Sanger sequencing).

4.5. RNA Sequencing

Muscular quadriceps biopsy of the patient was realized. RNA extraction was done
(Maxwell RSC simply RNA Blood Kit, Promega, WI, USA) and RNA integrity (RIN) was
evaluated with the TapeStation 4200 device. If RNA achieved an RIN score >6, it was
considered utilizable for RNAseq. RNA was diluted to obtain 25 µL to 12 ng/µL. Then, the
Illumina Stranded mRNA Prep protocol (Illumina, San Diego, CA, USA), which converts
mRNA in dual-indexed libraries, was followed. Briefly, Oligo(dT) magnetic beads purified
and captured RNA with poly-A tails. Then, the purified mRNA was fragmented and a
first-strand complementary DNA (cDNA) was synthetized. During second-strand cDNA
synthesis dUTP replaced dTTP. The final step ligated adapters to fragment ends. The
resulting products were purified and selectively amplified for the sequencing realized
with a NextSeq 500 using 75 bp paired-end reads. Raw data from the Illumina NextSeq
500 sequencer (Illumina) was converted to FASTQ and demultiplexed with bcl2fastq. Reads
from each sample were aligned to the human hg38 reference genome using the STAR
tool. The quality metrics of the two previous software were supplemented by those of
FastQC, Picard RnaSeqMetrics and RNA-SeQC and brought together in an HTML file
thanks to MultiQC. The analysis of aberrant transcripts was carried out with visualization
of Sashimi plots in IGV (Integrative Genomic Browser, version 2.11.1) on the regions of
interest previously identified after DNA sequencing.
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