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Abstract 

Probing the formation of sol-gel mesoporous films and characterizing them under 

environmental/in-operando conditions represents an important challenge to optimize their 

performances. Obtaining a complete picture of the system usually requires a combination of 

multiple techniques. In this work, we introduce in situ infrared (IR) ellipsometry equipped with 

an environmental chamber as a tool to follow simultaneously the evolution of structural, 

optical and chemical properties during the formation of sol-gel derived mesoporous films. As 

a case study, we investigate the formation of mesoporous TiO2 by comparing a conventional 

thermal treatment and a low-temperature annealing by UV irradiation. In both cases, the 

structural optical and chemical evolution could be monitored during the IR ellipsometric 

experiment. Interestingly, UV-annealing allows the fabrication of mesoporous TiO2 films at 

low temperatures enabling the formation of plasmonic mesoporous composites. At last, we 

critically discuss the advantages and drawbacks of IR ellipsometry for in situ investigations 

compared to conventional UV-visible ellipsometry by providing additional insights for future 

developments.  
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Graphical Abstract 

Using Infrared ellipsometry to probe the structural, optical and chemical evolution during the 

formation of sol-gel derived mesoporous films 

 

 

Highlights 

 IR ellipsometry is used to characterize the formation of TiO2 based mesoporous films 

 Structural, optical and chemical evolutions can be investigated during thermal or UV 

treatments  

 UV-annealing is well suited to fabricate composite plasmonic mesoporous films 

 

  



1) Introduction 

 

Sol-gel based porous films find applications in many technological relevant domains[1] 

including optics and photonics,[2-4] photocatalysis for air depollution,[5,6] electronics and 

data storage,[7-12] energy (catalytic layers, solar cells),[13-16] sensing (selective 

adsorption)[17,18] or separation (membrane).[19] Probing the formation of porous films and 

characterizing them under environmental/in-operando conditions represents an important 

challenge from both fundamental and applicative points of view.[20]  

In an ideal case, the measurement itself needs to be non-destructive, time-resolved and 

compatible with environmental chambers (at ambient/high pressure, controlled temperature, 

liquid medium, under flux, etc). Often obtaining a complete picture of the evolution of 

systems in the presence of external stimuli[21] requires a combination of multiple 

techniques[22,23] and different experiments that often can't be performed in comparable 

conditions. In addition, the choice of the technique strongly depends on the characteristic 

scale of the porous system (micro-meso-macro). While a universal technique doesn't exist, 

some methods exhibit good potential in terms of versatility under environmental conditions; 

for instance, UV-visible spectroscopic ellipsometry is probably the most powerful 

characterization method to probe the formation and the properties of optical films.[24-26] 

Briefly, the technique consists of (i) measuring the change in polarization of light reflected by 

a surface and (ii) applying optical models to determine the refractive index dispersion n() 

and the thickness h of the films.  Since the measurement is fast and non-destructive, it allows 

the determination of n() and thickness vs time under controlled atmosphere,[17,27] 

temperature,[28] irradiation,[29] liquid biological media[30] (and combinations of these). 

Notably, the so-called “Environmental Ellipsometric Porosimetry” (EEP) was developed to 

fully characterize the porosity, the mechanical properties and the sorption properties of micro 

and mesoporous films (sol-gel based and MOFs).[31-34] Despite the versatility of the 

technique, one main limitation can be mentioned. While the spectral range of the typical UV-

visible-NIR ellipsometry (200-1700 nm) enables probing structural evolution (thickness and 

optical constants), nothing can be said about the chemical evolution of the materials. Recent 

progress in infrared ellipsometric technology allow now combining the optical sensitivity and 

versatility of UV-visible spectroscopic ellipsometry with the chemical sensitivity of FTIR 

spectroscopy. Covering a very wide spectral range in the IR, through a single measurement, 

multiple parameters can be investigated. In addition to structural and optical parameters, the 

chemical composition can be determined by IR absorption at high resolution. For instance, 

standard IR ellipsometry was used to quantify the residual water in silica films. [35] 

Moreover, more recent IR ellipsometric set-up can be interfaced with environmental 

chambers with controlled temperature and atmosphere. By taking advantage of such 



advances, herein we introduce Infrared Ellipsometry equipped with an environmental 

chamber (with controlled atmosphere and temperature) as an emerging "multifunctional" tool 

to probe the formation of sol-gel mesoporous films. We study the formation of highly porous 

mesoporous TiO2 as a case study.  More specifically, we compare the formation of 

mesoporous TiO2 films obtained by conventional thermal treatment [36] and by UV 

irradiation; this latter photo-annealing is conducted at room temperature to meet the 

important requirement to integrate TiO2 on thermally sensitive materials (such as plastics or 

plasmonic nanostructures) or to develop new inorganic resists for photolithography. In 

addition, this study is complemented by additional characterization including environmental 

UV-Visible-Near-Infrared ellipsometry, SEM, and GI-SAXS. At last, as proof of concept of 

application, the thermal and photo-annealed mesoporous TiO2 were applied onto gold 

bipyramid nanoparticles to obtain plasmonic mesoporous composite layers. Hyperspectral 

microscopy in dark-field mode was used to probe the effect of the different annealing method 

of the TiO2 films on the plasmonic response of single objects, opening interesting 

perspectives for sensing applications.  

 

2) Materials and methods 

2.1 Chemical solution. The precursor solution of the mesoporous TiO2 film was fabricated 

through a typical sol-gel chemical method using amphiphilic block copolymers as template 

agents. Pluronic F127 purchased from Sigma-Aldrich was first dissolved in an ethanolic 

solution under continuous stirring. Then TiCl4 diluted with EtOH with a molar ratio of 1:5 

(used as the inorganic source) was added into the solution dropwise, followed by further 

stirring for a few hours to ensure homogeneity before using the solution.[5] The molar ratios 

used for this study are 1:0.018:47:11 for TiCl4:F127:EtOH:H2O. 

2.2 Film fabrication.  

The films were deposited on silicon substrates by spin coating with 3500 rpm/min for 20s at 

room temperature and ambient relative humidity of 21°C and 45%. For the in-situ IR 

ellipsometric measurements we used platinum-coated silicon wafer that are more reflective in 

the IR region. For the photo-annealing process, the film was treated using Dymax 

ECE 5000 flood UV-lamp curing systems at different exposure times. The lamp irradiates the 

samples in the range in the UV range between 280 and 315nm.  

 

2.3 Characterization After coating, films were directly placed and characterized with a UV-

visible-NIR Woollam spectroscopic Ellipsometer (SE) (from 240 to 1700nm) and IR-Vase 

Ellipsometer covering a range from 1.7 to 30 microns (333 to 5900 cm-1). Both ellipsometers 

are equipped with a programmable heating stage (-80°C to 600°C) and an environmentally 

controlled chamber in which the local environment of the films can be controlled in terms of 



relative humidity. Data measurement and analyses were performed with CompleteEASE and 

WVASE software for the UV-vis and IR ellipsometry, respectively. The porosity and the 

sorption response of the mesoporous titania films were evaluated using ellipsometric thermo 

porosimetry. Adsorption-desorption isobars were obtained by following the evolution  of 

optical constants and thickness when varying the temperature of the heating stage and 

keeping a constant relative humidity on the chamber (P/P0). A mass flow controller is used to 

manage the water P/P0 by combining two gas flows: (i) dry air flow with solvent P/P0 (H2O)=0, 

and (ii) air flow that has gone through a bubbler containing liquid water to obtain a saturated 

vapor P/P0(H2O)=1. The structural properties of the films were determined and compared 

with GISAXS measurements using a synchrotron radiation source and SEM. The GISAXS 

analysis were performed at the Austrian SAXS beamline at the ELETTRA synchrotron in 

Trieste (Italy) at a photon energy of 8 keV.[37] The beam size was set to 1x0.2 mm2 (HxV). 

SAXS images were collected in grazing incidence (0.236°) using a Pilatus3 1M detector 

(Dectris AG, Switzerland) at a distance of 1942.3 mm from the sample. SEM imaging was 

performed on a SU-70 Hitachi FESEM. The extinction spectra of plasmonic nanoparticles 

and spectral mapping were acquired by a CytoViva hyperspectral scanning system with a 

spectrometer (30 mm slit width, spectral range: 400– 1000 nm) using reflection dark-field 10x 

or 100x objectives. Hyperspectral images were acquired with an acquisition time of 0.50 s in 

air.  

 

3) Results  

 

3.1 IR ellipsometry to probe formation of TiO2 mesoporous films  

The fabrication scheme of the mesoporous TiO2 based films is illustrated in Figure 1. The 

films are obtained from solutions containing the Ti precursors (chlorides) and, a block-

copolymer Pluronic F127. A typical protocol to obtain highly ordered mesoporous films 

requires an F127/Ti molar ratio of 0.005 [38,39].  Instead, we employs here a larger 

organic/inorganic ratio of 0.018 to obtain TiO2 films with higher porous volume (typically 

>30%) and lower refractive index.[6] The films are applied on silicon substrates coated with a 

platinum layer (to enhanced the reflectivity in the IR range) by spin-coating.[14] After 

deposition, the films are processed by two methods: a thermal annealing and a photo-curing 

by UV-lamp The goal is to decompose the organic template and condensate the TiO2 

network. IR ellipsometry is thus ideally suited to investigate the phenomena occurring during 

these annealing processes (decomposition, shrinkage, etc). The study is complemented by 

analyses carried out by UV-visible-NIR ellipsometry to confirm the results. The structure and 

porosity of the final films are then investigated by scanning electron microscopy, GI-SAXS 

and ellipsometric (thermo) porosimetry.  



 

Fig. 1 Fabrication scheme of the block-copolymer-templated TiO2 mesoporous films: starting 

from a solution, a hybrid film is obtained by spin-coating on silicon substrates. The final 

mesoporous films are obtained though two annealing methods that are investigated by IR 

ellipsometry: thermal treatment or UV treatment 

 

 

 The core technique of this study is spectroscopic ellipsometry. During an ellipsometric 

experiment, a polarized light beam interacts with the film. Changes in polarization of the 

reflected beam are parametrized by the interference amplitude component Ψ and the phase 

difference Δ. The Ψ and Δ curves are then fitted with optical models to determine the 

thickness and the optical constants: refractive index (n) and the extinction coefficient (k) as a 

function of the wavelength. Both UV-visible and IR ellipsometries provide evolution of n, k as 

a function of the wavelength and thickness. However, by IR ellipsometry, Ψ and Δ curves 

present absorptions due to vibrational modes, providing a way to follow the evolution of the 

chemical composition of the films. Ellipsometric analysis is not destructive and can be used 

for environmental analysis. In the present study, the ellipsometric study was performed in an 

environmental chamber which enables control the atmosphere and temperature, as shown in 

the photograph in Figure 2.  



 

Fig. 2 Photograph of the IR ellipsometric set-up 

 

We first investigated the optical constant of the hybrid film after spin-coating (and before 

annealing). The measurement was taken in the closed chamber in dry air (RH<10%) to avoid 

uncontrolled water uptake from the ambient humidity. From an ellipsometric measurement 

we obtain Ψ and Δ curves that need to be fitted to determine the optical constants and the 

thickness. Due to the presence of multiple absorption peaks in the IR range, our fitting 

procedure is done in two steps.  Figure 3(a) shows the Ψ and Δ curves in the range 3500-

5500cm-1 a "transparent", non-absorbing region. The curves are thus fitted by Cauchy 

dispersion to obtain an accurate value of thickness (1310 nm in this case). This is an 

important step to obtain the value of n and k in the absorbing regions. Once the thickness is 

obtained, one can determine the optical constants (n and k) for the entire IR range by using 

B-spline parametrization,[40] a convenient mathematical fitting of the dielectric function as 

show in Figure 3(b). The n curve shown in Figure 3(c) presents a background value around 

1.5, not surprising considering the high loading of polymer. The values of thickness and the 

refractive index were also confirmed by UV-vis-NIR ellipsometry. As shown in Figure 3(d) the 

k curves show several peaks that are associated with vibrational bands of the chemical 

species in the hybrid film. The curve shows many different features. The strong band at ca. 

1100 cm-1 can be mainly attributed to the C-O-C stretching in both PEO and PPO [41] [42] 

overlapping other contributions such as C–C stretching (1150 cm−1) and CH2 rocking 

(1060 cm−1). The large O-H stretching band at 3200-3400 cm-1 partially overlaps in the range 

2850-2920 cm-1 with the CH2 symmetric and antisymmetric stretching bands of Pluronic 

F127.[43] The attribution of the two peaks below 950 cm-1 is not straightforward. These 

contributions at lower wavenumber can be likely attributed to Ti oxoclusters present in the 

films after evaporation.  



 

Fig. 3 Ψ and Δ experimental and fitted curves obtained by IR ellipsometry on the hybrid film 

before annealing in (a) the non-absorbing region (to determine the thickness) and in (b) the 

full range. Evolution of (c) the refractive index and (d) extinction coefficient of the film before 

annealing. 

 

3.2 IR ellipsometric study of thermal annealing 

We first investigated the effect of thermal annealing by using the in-situ IR ellipsometry set-

up shown in Figure 2. The in situ ellipsometric measurements were performed by increasing 

the temperature in the chamber from 25°C up to 500°C in air. Calcination at this temperature 

results in crystalline mesoporous materials composed of TiO2 anatase. [36] Figure 4 (a and 

b) present the evolution of Ψ and Δ curves of the film for increasing temperatures. The 

curves present oscillations due to constructive interferences generated at the substrate-film-

air interfaces. In addition, typical signatures of vibrational absorption are also visible. By 

employing the methodology described above we fitted the curves to obtain the thickness and 

then n and k. The evolution of the normalized thickness as a function of the temperature is 

shown in Figure 4(c). As expected, the film contracts during thermal treatment due to the loss 

of volatile species and of the polymer decomposition. Figure S1 shows the evolution of n as 

a function of the temperature. The variation in the background values (in the non-absorbing 

ranges) are attributed to variation in optical density of the film during decomposition of the 
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organic template (or inorganic condensation) that can be better studied by analyzing the 

evolution of k. In order to compare the n and k values, it is important to remember that n and 

k are dimensionless numbers characterizing the optical constants and the interaction of light 

in a given unit of volume. Since the volume of the films decreases during the experiment, the 

k curves must be multiplied by the thickness for each temperature. Figures 4(d and e) show 

the evolution of k multiplied by the thickness for increasing temperature by focusing in the 

ranges 950-1250 and 2700-3100 cm-1 to follow the evolution of the C-O and C-H bands, 

respectively. Starting above 100°C, the peaks attributed to the block-copolymer progressively 

decrease in intensity with increasing temperature at relatively low temperature. This trend is 

unusual since the decomposition of the Pluronic F127 block-copolymer usually takes place at 

higher temperature (above 200°C).[5] However, it is also well established that PEO (and 

PPO) degradation proceeds by random chain scission of the C-O bond by thermally 

activated radical process already at temperature below 100°C.[44] Similar results were 

obtained in previous ex-situ FTIR studies[45] on block-copolymer templated TiO2 films in 

which significant degradation occurs from 100 °C, as a consequence of the thermal 

fragmentation of the block copolymer.  In addition, it has been reported that in the case of 

mesoporous TiO2 films, the block-copolymer decomposition temperature can be lowered by 

decreasing the heating rate.[36] This is likely our case; since the acquisition time of each 

measurement is 30 minutes, we performed a step-by-step treatment with long calcination 

times (more than 7 hours) leading to a block-copolymer decomposition at lower 

temperatures. To verify that, we performed the same in situ experiment by UV-vis-NIR 

ellipsometry equipped with a thermal chamber that enable faster acquisition and heating rate 

(5°C min-1 in this case). The evolution of thickness as a function of the temperature is 

reported in Figure S2. The thickness contraction curve in Figure S2 is similar to the curve 

obtained by IR ellipsometry (Figure 4c) in terms of general trend and absolute values. 

However, by applying a faster heat treatment (by UV-vis-NIR ellipsometry), the thickness 

contraction appears at higher temperature in agreement with previous findings.[36] 



 

Fig. 4 IR ellipsometric study of the thermal annealing. (a) Δ and (b) Ψ experimental curves 

as a function of the calcination temperature obtained by IR ellipsometry. (c) Thickness 

contraction as function of the temperature; k * thickness evolution for (d) C-O band and (d) 

C-H band. (f) Evolution of k * thickness as function of the temperature for C-O and C-H band. 

 

3.3 IR ellipsometric study of UV annealing 

We then focused on the photo-annealing by using UV light. In this case, the UV treatment 

was performed in a separate chamber used for photopolymerization. The IR ellipsometric 

measurements was carried out by placing into the chamber with dried air (RH<10%) the 

samples annealed at increasing exposure time with a UV lamp. Figure 5 (a and b) present 

the evolution of Ψ and Δ curves of the film for increasing exposure times. As described 

above we fitted the curves to obtain thickness, n and k. The evolution of the normalized 

thickness as a function of the exposure time is shown in Figure 5(c). As expected, the film 

contracts with increasing time of exposure to UV confirming that the photo-annealing 

treatment has an effect on the film. The residual thickness after 20 minutes is 20% of the 

original thickness, a value similar to the one obtained after thermal annealing (Figure 4c). 

The volume loss is mainly due to block-copolymer decomposition. Figures 5(d and e) display 

the evolution of k multiplied by the thickness for increasing exposure time to UV light by 

focusing in the ranges 950-1250 and 2700-3100 cm-1 to follow the evolution of the C-O and 

C-H bands respectively. Both contributions attributed to the block-copolymer progressively 

decrease in intensity with the exposure times, disappearing after 20 minutes. High-energy 

UV photons are absorbed by the absorbing species in the as-prepared coating (organic + Ti-

based precursor). According to the literature[46] and similarly to X-rays[47,48], high energy 

UV radiation promotes the formation of free radicals, such as H° and OH°, from the residual 
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water molecules present in the sol–gel film. Such radicals promote the decomposition of the 

organic template and enhance the polycondensation kinetics of the inorganic network.[6,49-

51] 

 

 

Fig. 5 IR ellipsometric study of the UV annealing. (a) Δ and (b) Ψ experimental curves as a 

function of the exposure time obtained by IR ellipsometry. (c) Thickness contraction as 

function of the exposure time; k * thickness evolution for (d) C-O band and (d) C-H band. (f) 

Evolution of k * thickness as function of the exposure time for C-O and C-H bands. 

 

3.4 Complementary characterizations 

The effect of the thermal- and photo- annealing on the final porosity of the films was 

investigated by several complementary characterization methods. The porous sorption 

behavior was characterized by thermo-porosimetry by in situ UV-Vis-NIR ellipsometry. The 

method consists of determining the evolution of the refractive index and thickness of the films 

as a function of the temperature in the presence of water vapor. In this configuration, the 

vapor atmosphere was kept at fixed relative vapor pressure P/P0 = 0.5 at 20°C.  Instead, the 

temperature of the film/substrate was varied by using a heating/cooling stage between 10 

and 45°C. Since the saturated vapor pressure P0 depends on the temperature, in this 

configuration, the local P/P0 into the film can be increased and decreased by cooling or 

heating, respectively.[52] Water condensation and evaporation can be monitored by 

observing the evolution of the refractive index (at 700nm in this case). The measurements 

result in adsorption/desorption isobars as shows in Figure 6(b) and (d) for the heat-treated 

and photo-annealed films, respectively. We start the experiment at 45°C; at higher 

temperature the porosity is empty and the refractive index is equal to 1.59-1.60 in both 

cases.  
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Decreasing progressively the temperature to 10°C, the refractive index increases due to 

water capillary condensation into the mesoporous TiO2. In both cases, the capillary 

condensation of water in the pores induces the transversal deformation that can be deduced 

from the thickness evolution as shown in Figure 6 (c) and (e).[34] The process is reversible; 

while heating, desorption occurs as testified by a decrease of the refractive index. At 10°C, 

the porosity is presumed to be completely filled with water. However, the refractive index of 

the thermally annealed films is 1.80 while that of the photo-annealed film is 1.73. This can be 

explained by differences in porous volume and in the nature of the inorganic wall. To gain 

better insights, starting from these values  we evaluate the porous volume by using the 

Bruggeman effective medium approximation (BEMA) model (eq 1). Starting from the 

dielectric constant ε of the mesoporous film in the empty and full state, this model allows the 

determination of the dielectric constant of TiO2 (εT) for both samples. In the empty and full 

states, the BEMA model can be written as follows: 

 

𝑓𝑇
�̃�𝑇−�̃�

�̃�𝑇+2�̃�
+ 𝑓𝐴

�̃�𝐴−�̃�

�̃�𝐴+2�̃�
= 0 empty  (1) 

 

𝑓𝑇
�̃�𝑇−�̃�

�̃�𝑇+2�̃�
+ 𝑓𝑊

�̃�𝑊−�̃�

�̃�𝑊+2�̃�
= 0 full  (2) 

 
where fT , fw and fA  and εT, εW, εA are the relative volumetric fractions and dielectric constants 

of three compounds T (TiO2), W (Water) and A (Air). Since air, water and TiO2 do not absorb 

light in the considered range of wavelengths (typically 400-1000nm), the dielectric constants 

are taken to be the square of the refractive index values (real part of the dielectric constants). 

According to the scheme in Figure 6(a), all the air is replaced with water after capillary 

condensation. We can thus assume that: 

fw = fA     (3) 

which also corresponds to the porous volume. Considering the refractive indices of water and 

air to be equal to 1.34 and 1, respectively, the pore volume and the εT (and refractive index) 

can be calculated by combining equations (1), (2) and (3). For the thermally treated TiO2 film 

the porous volume is around 52 % while the refractive index of the TiO2 wall is 2.35, a value 

that is consistent with well crystallized anatase.[28] For the UV-treated sample the porous 

volume is 38% while the refractive index of the TiO2 wall is 1.99, a value that is typical for an 

amorphous TiO2.[36] 



 

 

Fig. 6 Ellipsometric thermo-porosimetry. Evolution of the refractive index/thickness as a 

function of the temperature in a closed chamber with 0.5 P/P0 of water vapor for the film after 

(a) and (b) thermal treatment at 500°C and (c) and (d) after UV-annealing for 25 minutes. 

 

To gain a better understanding, the mesostructure of the films after spin-coating and after 

thermal or photo annealing was characterized by GISAXS (Figure 6) and SEM. After spin-

coating (Figure 7a), the pattern presents diffraction features characteristic of a hybrid 

mesostructured film with worm-like morphology; by integrating the signal intensity, a 

maximum is obtained at qy= 0.43 nm-1 corresponding to a d-spacing around 14 nm which is 

in agreement with mesostructures containing F127 micelles. Figure 7(c) and (d) display the 

GISAXS patterns of the film after 10 and 40 minutes of UV exposure, respectively. Even after 

10 minutes, the initial ordered mesostructure is lost. Instead, the diffused signal at lower qy 

suggests the presence of a larger and less ordered structure.  This is confirmed by SEM as 

shown in Figure 6d; we choose on purpose a zone with a crack from which we can observe 

that the film presents a disordered porous network with polydisperse pore size.  After 40 

minutes (Figure 7d), more elongated patterns in the z direction of the reciprocal space are 

observed, indicating a higher out-of-plain contraction of the films in agreement with the 

ellipsometric analysis in Figure 5c. As expected, UV-treated films remain amorphous as 

confirmed by X-ray diffraction (XRD) in Figure S4. The effect of thermal treatment on the 

mesostructure is shown in Figure 7(e). After thermal treatment at 350°C, the GISAXS pattern 

exhibits the characteristic morphology of an open and highly accessible pseudo "grid-like" 

porosity, confirmed by the two parallel intense diffraction peaks of the GISAXS pattern at qy = 
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0.05 nm-1 coming from the domains composed of periodical planes oriented perpendicular to 

the substrate. The grid-like structure results from the thermally induced transformation of the 

amorphous titania into a crystalline phase.[53] After thermal treatment at 500°C, sintering 

results in a loss of the ordering in the mesostructure as shown in Figure 7 (f) and SEM in 

Figure 7(g): the mesoporosity the TiO2 film results from the interparticulate voids between the 

anatase crystals. The presence of anatase nanocrystals is confirmed by XRD in Figure S4. 

 

 

Fig. 7 GISAXS study to evaluate the mesostructure of the films: (a) before annealing, by UV-

annealing after (b) 10 min and (c) 40 minutes of exposure and by thermal annealing at (e) 

350°C and (f) 500°C.  SEM micrograph of film after (d) 25 minutes of UV annealing and (g) 

after thermal treatment at 500°C.    

 

3.5 Hybrid plasmonic mesoporous films 

To illustrate the benefit of using a UV-annealing to obtain mesoporous TiO2 films at room 

temperature, we have fabricated hybrid plasmonic/mesoporous films. They are made of gold 

bipyramids applied on a silicon substrate and covered by the thermal- or photo-annealed 

TiO2 films. Among the various plasmonic nanoparticles, Au bipyramids have been chosen 

because of their superior refractive index sensitivity and figures of merit.[54] The 

nanoparticles have been synthetized by following protocols proposed in the literature.[55] To 

unveil the effect of the coating, we carried out an optical investigation of the gold 

nanoparticles. The scattering spectra were imaged and characterized by hyperspectral 

microscopy by using objectives allowing acquisition in reflection dark-field mode as shown in 

Figure 8a and b. The microscope is equipped with a spectrometer and a piezoelectric 

scanner, which moves the sample stage along the one axis to scan the surface and collect a 

spectrum for each pixel of a hyperspectral image.[52] The scattering spectra of two 

plasmonic objects in Figure 8 (c) indicate a characteristic plasmonic peak at around 660nm 

for both of them. This value is consistent with the fact that the plasmonic materials are 
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covered by a low refractive index medium (nair=1). A large optical change occurs by covering 

the particles with a film heat treated at 500°C. As shown in Figure 8 (d) and (g), the 

scattering spectra present peaks at 545 nm indicating that the Au bipyramids have been 

reshaped into spheres. Indeed, it is well established that heat treatment induces reshaping of 

plasmonic anisotropic nanoparticle at relatively low temperature.[56,57] The particles 

covered by UV-annealed films are displayed in Figure 8 (d) and (g): the scattering spectra 

show plasmonic peaks that are centered at 725 nm. The red-shift is consistent with the fact 

that the mesoporous layer has a refractive index higher than air (around 1.6 according to 

Figure 6c). More importantly, this behavior confirms that the room-temperature UV-annealing 

does not provoke a significant deformation of the Au bipyramids as in the case of thermal 

annealing that is of interest for sensing application for instance. 

 

Fig. 8 Hyperspectral microscopy analysis of plasmonic particles covered with TiO2 based 

films. (a) Dark field micrograph of Au bipyramids on silicon. (b) Illustration of the 

hyperspectral microscope set-up. Hyperspectral images and corresponding scattering curves 

of the plasmonic particles (c) in air, (d) covered with a TiO2 layer heat treated at 500°C and 

(f) covered with a UV-annealed TiO2 layer. The dotted line is a guide for the eye.  (f), (g) and 

(h) are illustrations of the corresponding  proposed systems. 

 

4) Discussion 

At the current stage, this technique presents advantages and drawbacks with respect to the 

most commonly employed UV-vis-NIR ellipsometry.[26] We summarize these features in 

Table 1. Both spectroscopic ellipsometries are well suited to follow structural changes on the 
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films (contraction, volume loss) and the evolution of the optical properties in the respective 

spectral ranges. In addition to these features, the main advantage of IR ellipsometry is that it 

provides direct information about the chemical evolution of the films. Depending on the 

objective of the investigation, the Ψ and Δ curves obtained from IR ellipsometry can be 

further analyzed and fitted by employing approaches with different levels of complexity. The 

presence or absence of a certain chemical species can be determined qualitatively directly 

from the raw Ψ and Δ curves. For in situ studies, this is particularly appropriate for identifying 

reaction intermediates. [58] 

 

 
UV-vis-NIR ellipsometry IR ellipsometry 

Structural evolution +++ +++ 

Optical properties +++ +++ 

Chemical evolution - +++ 

Time resolved experiments +++ + 

Table 1 Advantages and drawbacks of UV-vis-NIR ellipsometry and IR ellipsometry  

 

Quantitative characterization of the vibrational bands requires development of rigorous fitting 

procedures, especially in the case of time-resolved experiments. In certain cases, if the 

absorption bands are well resolved, they can be fitted by Lorentz oscillators to deconvolute 

each vibrational mode.[59] This possibility strongly depends on the quality of the 

measurement and thus on the acquisition time. Indeed, as summarized in Table 1, the 

acquisition time remains the main limitation of IR ellipsometry for in situ experiments. In the 

conventional UV-vis-NIR ellipsometry, the measurement is fast (below one second) making it 

perfectly suited to investigating phenomena with characteristic times above tens of seconds. 

In the case of IR ellipsometry, while a basic measurement can be made in only a few 

minutes, obtaining high quality spectra can require up to several tens of minutes (depending 

on the systems). This can represent a limitation for in situ experiments aiming at studying 

fast phenomena. Summarizing, with the current technology, the two instruments provide 

complementary advantages. Designing combined studies coupling UV-vis-NIR ellipsometry 

and IR ellipsometry represents an ideal strategy to characterize sol-gel films by taking 

advantage of both techniques.  

 

5) Conclusions 



In conclusion, in this article, we expand the available toolbox[23] to probe the formation of 

sol-gel derived mesoporous films by introducing IR ellipsometry as a multiparameter method. 

We investigated two annealing methods to obtain mesoporous TiO2 films. Interestingly, UV-

annealing allows fabrication of mesoporous TiO2 films at low temperature that make it a 

valuable method to couple sol-gel films with temperature sensitive materials such as 

plasmonic nanoparticles. More broadly, this work represents one of first attempts to apply in 

situ IR ellipsometry to characterize the evolution of sol-gel materials. This in situ 

methodology can be extended to other functional materials and devices beyond sol-gel 

oxides, such as perovskite solar cell, organic electronics or metallic metasurfaces. 
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