
HAL Id: hal-04279767
https://hal.sorbonne-universite.fr/hal-04279767

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming microcontrollers through high-level
abstractions: The OMicroB project

Steven Varoumas, Basile Pesin, Benoît Vaugon, Emmanuel Chailloux

To cite this version:
Steven Varoumas, Basile Pesin, Benoît Vaugon, Emmanuel Chailloux. Programming microcontrollers
through high-level abstractions: The OMicroB project. Journal of Computer Languages, 2023, 77,
pp.101228. �10.1016/j.cola.2023.101228�. �hal-04279767�

https://hal.sorbonne-universite.fr/hal-04279767
https://hal.archives-ouvertes.fr

Highlights

Programming Microcontrollers through High-Level Abstractions:
the OMicroB Project

Steven Varoumas, Basile Pesin, Benôıt Vaugon, Emmanuel Chailloux

• High-level programming for low resources hardwares

• Virtual machines and runtime environments

• Embedded and cyber-physical systems

• Multiparadigm languages

Programming Microcontrollers through High-Level Abstractions:
the OMicroB Project

Steven Varoumas1

Huawei Technologies Research & Development UK, Cambridge, United Kingdom.

Basile Pesin

INRIA Paris, Parkas, France.

Benôıt Vaugon

Armadillo, 92170 Vanves, France.

Emmanuel Chailloux

Sorbonne Université, CNRS, LIP6, F-75005 Paris, France.

Abstract

In this paper, we present an approach for programming microcontrollers that provides more
expressivity and safety than the low-level language approach traditionally used to program such
devices. To this end, we provide various abstraction layers (abstraction of the microcontroller,
of the electronic components of the circuit, and of concurrency) which, while being adapted to
the scarce resources of the hardware, offer high-level programming traits for the development of
embedded applications. The various presented abstractions make use of an OCaml virtual machine,
called OMicroB, which is able to run on devices with limited resources. These take advantage of the
expressivity and safety of the OCaml language (parameterized modules, advanced type system).
Its extensibility allows to define a synchronous extension to manage concurrency while keeping a
good level of efficiency at execution. We illustrate the value of our work on both entertainment
applications and embedded software examples.

Keywords: Microcontrollers, Virtual machine, High-level programming, OCaml, Functors,
Synchronous programming

1. Introduction

The diversity of the components of the Internet of Things (IoT) implies several levels of knowl-
edge and technologies on sensors, communications, cloud and user services, which require different

Email addresses: steven.varoumas@proton.me (Steven Varoumas), basile.pesin@inria.fr (Basile
Pesin), benoit.vaugon@gmail.com (Benôıt Vaugon), emmanuel.chailloux@lip6.fr (Emmanuel Chailloux)

1This work was carried out when the author was member of LIP6, Sorbonne Université, Paris, France.

Preprint submitted to Journal of Computer Languages August 08, 2023

programming skills. In this article we focus on embedded systems, in particular on low-resources
microcontrollers, their interactions and communications.

Microcontrollers (MCU), and more specifically microcontrollers without operating systems, are
devices that can be quite difficult to program. Developers for this kind of hardware traditionally
use low-level programming languages (such as C or assembly languages) in order to fine-tune the
power and memory consumption of a program, as well as its hardware-specific interactions with its
environment. This leaves programmers who are less well-versed in embedded programming with a
steep learning curve for developing basic applications, as a lot of hardware documentation needs to
be assimilated to design even simple programs. Moreover, debugging such applications is a tedious
task, with many programmers (even professionals) relying on executing their application directly
on the intended hardware to test its behavior. This can be time-consuming, may not guarantee the
correct execution of the application, especially if concurrency is involved, and may cause electrical
damage to the hardware.

In order to free developers from needing to program microcontrollers using low-level languages
and consequently limited abstractions, multiple projects using a high-level programming language
for developing microcontroller applications have been undertaken. These projects provide more ex-
pressive programming constructs for the design of embedded software which allow developers from
various backgrounds to more easily write applications. Many of these projects involve running a
subset of a general purpose programming language on specific microcontrollers, such as Java [1]
for object languages or Python [2] and Scheme [3] for dynamic languages. Different criteria are
privileged according to the projects and the targeted microcontrollers. It may be the size of code
and the runtime memory used, the efficiency on specific architectures, the ease of use of dynamic
languages, the expressiveness, the portability to different targets and the safety by using static
typing and concurrency models. Of course, these different criteria can be mixed, in particular by
following a virtual machine (VM) approach which allows to stay small (as the Scheme VM described
in [4]) with a runtime library (for automatic memory management), to accept expressive languages
and to be portable while keeping good efficiency.

A key motivation of our work is to provide embedded system developers with a way of leveraging
the full set of features of a modern high-level language in order to ease the programming process as
well as provide increased guarantees for the safety of programs. To this end, we elected to use the
OCaml programming language, a statically typed multi-paradigm language featuring functional,
imperative, modular, as well as object-oriented traits. The core of the language is functional, with
the combination of ADT (algebraic data type) and pattern matching allowing case-based definition
of functions, with static analysis of pattern completeness detection. A short introduction to the
language, called OCaml for the masses [5], explained ten years ago “Why the next language you
learn should be functional” by following a company’s switch to OCaml. The increased expressivity
provided by these diverse programming paradigms is strengthened by another important feature
of the OCaml language, which is its strong static type system. The OCaml type system helps
programmers develop high-level applications by detecting typing errors at compile-time rather than
runtime. This detection of errors ahead of the program execution represents a notable benefit when
developing embedded programs, where a malfunction can cause harm. Furthermore, the OCaml
type system relies on type inference, which gives programmers the option remove type annotations
from their programs and focus on its logic and algorithmic aspects, while keeping the same level
of type safety. The OCaml language offers two compilation paths: a native version for efficiency
targeting the specific architectures of current processors, and a version for portability producing

2

bytecode for its virtual machine (VM). The quality of its compiler has just been recognized with
the prestigious 2023 ACM SIGPLAN programming languages software award.

OCaml developers benefit from a rich ecosystem of tools and libraries, most often distributed by
the opam package manager. OCaml’s preferred domain is software dependability, with tools for ver-
ifying program properties (proof assistant, static analyzer, abstract interpretation, model-checking),
certified compilers, or industrial synchronous programming, but other sectors have emerged over
time, such as finance, systems and distributed programming (file synchronizer, social networking
. . .), as well as entertainment applications.

Although the OCaml language is used for the production or verification of embedded code,
OCaml programs themselves are seldom embedded, but we believe that the high-level features of
the language are welcome in the context of developing programs for embedded systems. In this
context, a first experiment, called OCaPIC [6], was carried out targeting a very low resource ar-
chitecture for the OCaml language. To achieve this, OCaPIC is based on a 16-bit OCaml VM
(sometimes called ZAM [7]) that was implemented in the PIC18 assembly language. It comes with
a specific runtime library, also implemented in assembler, and a modified standard library. The
design has been experimentally validated by several hand crafted implementations. This work is
described in [6] which details the different space saving techniques used. This experiment was suc-
cessful, but the fact that OCaPIC was built in a fine-tuned PIC18 assembler makes it compatible
with just microcontrollers of this family, limiting its portability. We thus endeavoured to keep the
ideas of several memory optimizations while offering a solution that can be used for a greater variety
of microcontrollers.

In this paper, we present an approach more portable than previous experiments, capable of
running programs using any feature of the OCaml language on devices with very little resources.
This approach is based on a new implementation of an OCaml virtual machine (VM) that is easily
portable across many architectures, and at the same time compatible with microcontrollers with as
little as 2.5 kB of RAM. By doing so, we aim to offer to embedded systems developers every benefit
of using the OCaml language, including its rich multi-paradigm programming model, and its static
type system, to increase the expressiveness and safety or programs, all the while keeping memory
footprint low. This portable approach also offers new hardware abstractions that are welcome in a
context where hardware architectures are very diverse, making use of the extensibility of the OCaml
language allows us to further abstract many aspects of embedded programs. To do this, we take
advantage of parameterized modules (functors) and high level typing paradigms like polymorphic
variants and Generalized Algebraic Data Types (GADT).

One of the main difficulties comes from the concurrency of programs. Since typical micro-
controller programs simultaneously manage multiple hardware entities that share data, they are
concurrent by nature. There already exist extensions for reactive programming, in particular in
the style of functional reactive programming such as [8] and [9]. These programming features are
widely used for critical embedded systems, as shown by the Scade software suite [10]. Many models
exist but for embedded applications, synchronous programming [11] brings advantages of simplicity
and safety. We thus define a synchronous dataflow extension to OCaml, à la Lustre [12], called
OCaLustre.

This paper presents a succession of abstraction layers that increasingly provide new paradigms
and heightened guarantees to the programming of microcontrollers. Following the plan of [13] to
go up in abstraction, it gives a mature point of view on the OMicroB project by detailing precisely

3

its principles and its implementation, and by enriching it with the latest evolutions. In Section 2
we thus describe our OCaml VM called OMicroB, and in particular the different steps taken to
convert an OCaml source code into an executable program for a microcontroller. In Section 3 the
powerful mechanism of OCaml’s functors is used in order to propose a declarative way of describ-
ing the electronic circuit of a given application. This solution can be seen as a further hardware
abstraction that increases portability and expressivity of our approach. In Section 4, we make use
of the extensibility of the OCaml language to implement a synchronous programming extension to
OCaml. This synchronous dataflow language offers an implicit model of concurrency that enjoys a
new layer of abstraction for the concurrent aspects of a microcontroller’s application. Every solu-
tion presented in this paper is accompanied by a practical example. Finally, we discuss in Section 5
our positioning relative to other projects dedicated to using high-level languages for programming
microcontrollers. We conclude this article with an overview of current and future works dedicated
to providing even more layers of abstraction and guarantees for programming microcontrollers.

The main advantages and contributions of our work are:

• Portability and safety of microcontroller programming thanks to the use of an OCaml
virtual machine that can be easily adapted to various architectures.

• Compositionality of programs thanks to the abstraction of the electronic components of a
circuit interacting with the microcontroller.

• A lightweight and safe model of concurrency provided by a synchronous extension to
OCaml.

Each of these contributions constitute a high-level abstraction layer for programming microcon-
trollers (see Fig. 1).

2. Abstracting Hardware: The OMicroB Virtual Machine

In order to enhance the portability, as well as the expressivity and the safety of microcon-
troller programming, we developed OMicroB2, a specialized implementation of the OCaml virtual
machine (the ZAM - Zinc Abstract Machine [7]) that is designed to run on microcontrollers with
limited resources. This implementation can indeed run non-trivial OCaml programs on small mi-
crocontrollers, and provides the embedded software developer with all the high-level programming
paradigms of the OCaml language (functional, imperative, modular, object-oriented) and an in-
creased safety through static typing and automatic memory management. Being written in stan-
dard C, this virtual machine (and its standard library) is highly portable, as we consider that the
C language can be seen as a portable assembly language since most microcontroller architectures
come with powerful enough C compilers. While our virtual machine approach has previously been
described for AVR microcontrollers [14], this work consists in a maturation of the OMicroB virtual
machine with an extension of its runtime with more powerful and fine-tuned features (such as a
new garbage collection algorithm and the handling of interrupts and callbacks). This has allowed
porting OMicroB to new families of devices (ARM, PIC32) and microcontrollers (Micro:bit 2), and
supporting evolutions of the OCaml virtual machine itself.

2Open source repository of the project: https://github.com/stevenvar/OMicroB

4

https://github.com/stevenvar/OMicroB

OMicroB

Generic OCaml virtual machine
- optimized for microcontrollers
- safer programming
- easy debugging (simulator)

Declarative
description
of the circuit

Description of electronic components
- expressive way of defining the
interactions with the circuit
- increase in compositionality

OCaLustre

Synchronous extension of OCaml
- deterministic model of concurrency
- lightweight
- guarantees over memory use and
execution time

Abstracting electronic components

Abstracting concurrency

Abstracting microcontrollers

ri
se

in
ab

st
ra
ct
io
n

Figure 1: High-level abstractions provided by this work

2.1. Bytecode Interpreter and General Application Mechanism

One central component of OMicroB is a bytecode interpreter that is able to handle the entire
bytecode instruction set produced by the standard OCaml bytecode compiler (ocamlc). ZAM
is a functional virtual machine with eager evaluation and has a relatively small footprint with its
149 instructions, including imperative features, exceptions and method call. Its main memory areas
(code, heap, stack, global values) are described in Figure 2. This stack-based interpreter, which uses
multiple registers (an accumulator acc, a stack pointer sp, a program counter pc, a pointer to the
highest exception handler in the stack (trap sp), etc). As described in Fig. 2, it notably performs
the same optimized general application mechanism as the ZAM for n-ary function application, by
using a specified extra args register that counts the number of additional arguments given to a
function.

This mechanism prevents the VM from currying every function and systematically creating a
new closure (represented by a classical environment-code pair) everytime a function with an arity
of more than 1 is applied, which is costly. For this, a GRAB bytecode instruction is positioned before
the instructions corresponding to the body of a function. This instruction deals with the three cases
of application by checking extra args: total application, where the function is given as many
arguments as it has parameters; partial application, where the function is given less arguments than
its number of parameters (in that case, a new closure is created); and the case where there are more
arguments than parameters, when the body of the function returns a closure that is immediately
re-applied to the remaining arguments.

We illustrate this application mechanism using the code shown in Table 1. In this figure, the
top-left code snippet defines an OCaml function called f that adds together its three parameters x,
y, and z. The bottom left part of Table 1 shows the bytecode generated for this function. When
f is applied, the GRAB 2 instruction checks if 2 (two) parameters are given in addition to the

5

Figure 2: Representation of ZAM memories

let f x y z = x + y + z let res = f 4 5 6

RESTART
L1:GRAB 2

ACC 2
PUSH
ACC 2
PUSH
ACC 2
ADDINT
ADDINT
RETURN 3

CLOSURE L1, 0
PUSH
CONST 6
PUSH
CONST 5
PUSH
CONST 4
PUSH
ACC 3
APPLY 3

Table 1: Generated bytecode for f and its application

first parameter, and if so directly evaluates the function without creating intermediate closures.
Otherwise, a closure is created with an environment containing the arguments in the stack and a
code address pointing to the previous RESTART instruction (which copies the closure environment to
the stack and sets extra args to the number of applied arguments when the function is called).
The body of the function is constituted of multiple ACC 2 and PUSH instructions that each time
copy the third element (indexed by the number 2) of the stack (i.e. a parameter of the application)
into the accumulator register and push it to the top of the stack; and two ADDINT instructions
that add one value popped from the stack with the value inside the accumulator. The RETURN 3
instruction pops three elements from the stack. Then, if the function returns a closure and there
are still arguments to be applied, it goes on with this application; otherwise execution jumps back
to the caller of f and the saved state of the caller (code pointer, environment, extra args) is popped
from the stack.

The code on the right corresponds to an application of the f function to three arguments. It
first creates a closure corresponding to the function with CLOSURE, provided with a pointer to the
code of the closure (L1) and a 0 to represent the absence of captured variable in the closure, and

6

then pushes the arguments on the stack. Finally, it calls the function with the three arguments
present in the stack via the APPLY 3 instruction, saving its current state in the stack and jumping
to the bytecode located at label L1.

Table 2 shows the evolution of the content of the registers of the virtual machine during the
execution of this example program.

instruction accumulator stack environment extra args

CLOSURE L1, 0 L1 [] [] 0

PUSH L1 [L1] [] 0

CONST 6 6 [L1] [] 0

PUSH 6 [6, L1] [] 0

CONST 5 5 [6, L1] [] 0

PUSH 5 [5, 6, L1] [] 0

CONST 4 4 [5, 6 , L1] [] 0

PUSH 4 [4, 5, 6, L1] [] 0

ACC 3 L1 [4, 5, 6, L1] [] 0

APPLY3 L1 [4, 5, 6, pc*, [], 0, L1] [] 2

GRAB 2 L1 [4, 5, 6, pc, [], 0, L1] [] 0

ACC 2 6 [4, 5, 6, pc, [], 0, L1] [] 0

PUSH 6 [6, 4, 5, 6, pc, [], 0, L1] [] 0

ACC 2 5 [6, 4, 5, 6, pc, [], 0, L1] [] 0

PUSH 5 [5, 6, 4, 5, 6, pc, [], 0, L1] [] 0

ACC 2 4 [5, 6, 4, 5, 6, pc, [], 0, L1] [] 0

ADDINT 9 [6, 4, 5, 6, pc, [], 0, L1] [] 0

ADDINT 15 [4, 5, 6, pc, [], 0, L1] [] 0

RETURN 3 15 [L1] [] 0

Table 2: Evolution of the VM registers over the program execution
*pc represents the program counter for the next instruction in the caller.

2.2. Optimizations and Data Representation

To offer a better control over the RAM footprint of their program, we allow the programmer to
set up the size of words manipulated by the OMicroB virtual machine independently of the size of
words of the hardware architecture. Some architectures we target handle 8-bit words (like PIC18
for example) but we consider not feasible to use an OCaml virtual machine with words shorter
than 16-bits, in particular to implement code addresses, block addresses or floats. The size of the
“virtual words” is configurable at compile time and the OMicroB virtual machine supports three
dedicated representation of data for 16-bit, 32-bit and 64-bit words. The representation of values
in OMicroB is uniform as in OCaml. Each value uses a word: either as an immediate value whose
size fits in a word, or as an allocated value whose address also fits in a word. An allocated value
uses a header (a word) followed by an array of values (words). Values that are allocated in the heap
are said to be boxed, while immediate values are unboxed.

In order to be compatible with the very limited resources of microcontrollers, OMicroB imple-
ments various optimizations dedicated to reducing the memory footprint of programs. Notably,
we use a particular representation of floating-point values, which differs from the standard imple-
mentation of the OCaml VM. In this standard implementation, integers and pointers to the heap

7

are unboxed3, while floating-point values (and other objects) are boxed. As this indirection can
be costly for applications dealing with many floating-point values (for example when reading from
analog sensors), we tweak this representation by using NaN-boxing of pointers: in OMicroB integer
values have their least significant bit set to one, floats are unboxed immediate values4 and pointers
to the heap are encoded inside unused NaN values[15]. This representation does limit the address
space to 222 different addresses for the 32 bits configuration of OMicroB, but we consider that this
is sufficient for the majority of microcontrollers which seldom have more than 4MB of RAM. A
single value is kept to represent all NaN values. This representation of OCaml values is described
in Fig. 3 and is used by the garbage collector and the standard polymorphic compare function to
differentiate immediate values (floats5 and integers) from pointers to heap-allocated values. Con-
figured in 64-bit mode, the virtual machine provides a similar representation. In 16-bit mode, it
provides 15-bit floats as 15-bit integers allowing addressing up to 64 kB memory.

Integer:
0131

integer value 1

Positive float:
022233031

0 exponent mantissa

Negative float:
022233031

1 exponent mantissa

Heap pointer:
0212231

0 1 1 1 1 1 1 1 1 1 pointer value (ends with 00)

Figure 3: Representation of OMicroB values (32 bits version)

Another approach for reducing the memory footprint of a program consists in “compressing” it
by encoding the bytecode in a C array of bytes (since there are only 149 different OCaml opcodes)
where each instruction can be, if needed, followed either by a 1, 2, or 4-bytes constant depending on
what is needed to hold the value of the instruction argument. In order to deal with these different
sizes of arguments, the bytecode instruction set has been extended with new specialized versions of
the bytecode instruction (for example, the BRANCH instruction is split in three versions: BRANCH_1B,
BRANCH_2B, and BRANCH_4B).

Finally, we run partial evaluation at compile time up to the first input/output (I/O) of the
program. The resulting state of the stack and the mutable part of the heap just before the first I/O
are then dumped in the microcontroller Flash memory and copied into RAM at starting time. The
non-mutable part of the heap (typically made of closures, constant strings and some other constant
blocks) is dumped into a “Flash heap segment” never copied into the RAM memory. This almost
removes the memory impact of the use of a functional programming language that usually takes
up the microcontroller RAM memory with closures. It also speeds up starting time removing the
need to compute initialization code on the microcontroller that often need a significant stack size.
At last, by expanding toplevel functors at compile time, it improves our algorithm for dead code
elimination.

3As an effect of alignment all addresses end with 0, so integers are represented with a least significant bit set to 1.
4Note that typing prevents a floating-point value ending with 1 from being confused with an integer value.
5Negative floats have their exponent and mantissa inverted in order to be compatible with compare, which at

runtime cannot distinguish between two integers or two floats: this way their ordering relation stays the same.

8

2.3. Garbage Collection

As introduced in the previous section, we allocate parts of the values in Flash memory (drawn
in blue in Fig. 4). Flash allocated values are physically immutable but can point to mutable blocks
stored in RAM. However, our GC algorithms may move blocks. The RAM heap has then to be
divided into dynamic and static heaps. Static blocks (ie. blocks stored in the static heap), should
not be moved but their internal pointers can. They are never cleaned by the GC but it does not
matter since they are pointed by Flash blocks that are immortal. Pointers from Flash blocks to
dynamic blocks (like the red one in Fig. 4) are forbidden but never happen since Flash blocks are
immutable.

Figure 4: Representation of OMicroB memories

To distinguish these different pointers and not to try to move the pointers of the Flash memory
or the static area, we use two extra bits. As a complement to Fig. 3, here is the representation for
32 bits architectures:

Heap (D) (RAM):
0192031

0 1 1 1 1 1 1 1 1 1 0 0 x x x x x x x x x x x x x x x x x x 0 0

Heap (S) (RAM):
0192031

0 1 1 1 1 1 1 1 1 1 0 1 x x x x x x x x x x x x x x x x x x 0 0

Heap (F) (Flash):
0192031

0 1 1 1 1 1 1 1 1 1 1 0 x x x x x x x x x x x x x x x x x x 0 0

Hardware abstraction is also provided by the use of automatic memory management algorithms,
with two different garbage collector algorithms from which the developer can choose, one focusing
on speed and the other on memory.

The first one is a classical “stop-and-copy” algorithm as described and compared in [16]. Al-
though simple and time efficient, this algorithm needs to use half of the available RAM to perform
copies. This is not ideal for microcontrollers, where RAM is often scarce, but its speed is useful for
some applications.

9

OMicroB therefore also features a new “mark-and-compact” algorithm that allows using the
whole heap memory to store living blocks. Like “stop-and-copy”, this GC algorithm always keeps
blocks contiguous, allowing fast allocation. When full, the heap is compacted by moving all living
blocks to the beginning of the heap. To avoid using extra memory space (except one word by
block header as usual), as is the case in the OCaml distribution, this algorithm uses the “pointer-
inversion” technique. It performs three passes over the heap:

1. reverse pointers to each living block by chaining memory cells that point to it and put the
head of this chain in its header, saving its header in the tail of the chain;

2. plan the destination address of each living block after compaction, then go through the chain
of cells that should point to it to update pointers with its upcoming address and restore its
header;

3. compact heap by moving living blocks to their planned addresses.

Since the second and third passes jump from block to block over the whole heap, not only over
living blocks, this “mark-and-compact” algorithm is slower than “stop-and-copy” on most programs.
However, “mark-and-compact” makes better usage of the memory and therefore runs less frequently.
Since its execution time depends on the topology of the memory graph, it is in general impossible
to advise the optimal choice to the programmer.

2.4. Interrupts and Callbacks

MCU programming makes significant use of hardware interrupts. It is possible to trigger a given
task periodically (through timer interrupts), or when the state of an IO changes. We want to be
able to give access to this mechanism at the user-level, in the OCaml programming language.

We first need to be able to treat interrupts at the C level. This treatment differs depending on
the MCU architecture. For instance, on the AVR architecture, this can easily be done by defining
an interrupt handler function through a macro named ISR.

We also need to allow users to define OCaml callbacks which are OCaml functions that can be
called from C code. In the standard OCaml virtual machine, callbacks are run by launching a new
instance of the virtual machine, solely to run the callback function. This means initializing a new
stack and more registers for this new VM instance. We choose a more parsimonious approach by
saving the current registers of the VM, and making a function call (using the APPLY instruction).
Using this mechanism on interrupts can be problematic. As the interrupt can be fired at any time,
including during a GC run or in the middle of the execution of an instruction, saving and changing
the VM registers may lead to unpredictable behavior. Our solution is to wait for the end of the
current VM instruction to execute the callback. When triggered, the interrup raises a flag which
is checked by the VM. Thanks to these mechanisms, the user can define arbitrary callbacks to be
called on interrupt. For instance, the code below flashes a LED for 0.5s, every 3s.

pin_mode PIN13 OUTPUT;
Timer0.set_period 3000;
Timer1.set_period 500;
Timer0.set_callback (fun () -> digital_write PIN13 HIGH);
Timer1.set_callback (fun () -> digital_write PIN13 LOW);

2.5. Compilation Chain

The compilation chain of an OCaml program using OMicroB is shown in Fig. 5. The source
code of OCaml programs (with a specific standard library for microcontrollers) is firstly given to

10

the standard ocamlc bytecode compiler. Note that since OMicroB uses this standard compiler,
regular OCaml debugging tools such as ocamldebug are also entirely compatible with OMicroB.

OCaml
file

ocamlc

OCaml
bytecode

ocamlclean

OCaml
bytecode

C file

bc2c gcc

avr-gcc

xc32-gcc

gcc-arm

interpreter
+ runtime

Figure 5: The OMicroB compilation chain

The resulting OCaml bytecode file is then given to the pre-existing ocamlclean tool that
performs dead-code elimination. Then, a tool specific to this project, called bc2c, embeds this
bytecode into a C file as multiple arrays of bytes representing the program instructions and global
variables for pre-initialized heaps, stack and global variables. This C file is then linked with the
interpreter and the runtime library (written in C), and used with a suitable C compiler (such as
avr-gcc for AVR devices, xc8 for PIC devices, gcc to run the program on a PC for simulation,
or some other specific compilation tools for other microcontrollers).

Thanks to the high level of abstraction of the OCaml virtual machine, the structure of OCaml
bytecode files is quite stable, only some instructions have been added during the last decade. The
main recent changes concern the memory representation of exceptions and closures. To maintain
compatibility with OCaml versions, we separate parsing of bytecode files in a generic library called
OByteLib that exports them into normalized data structures. This library is used by the bc2c
converter.

2.6. Simulation and Debugging

It should be noted that the execution environment is constrained: no operating system, no
memory access check, no simple standard communication interface (keyboard/screen). We therefore
make it possible to test the program before transferring it to the microcontroller. Since the VM
and its runtime is written in standard C, OMicroB can even be compiled and run on a standard
PC for simulation and debugging purposes. This allows for low level debugging such as bytecode
execution tracing, checking the memory accesses (using tools such as valgrind and gdb) and
examining the memory dumps.

We also provide a simulator for AVR microcontrollers that can display on a Graphical User
Interface (GUI) the state of the General Purpose Input/Output (GPIO) pins of the microcontroller
during the execution, as well as its interactions with various analog and digital external devices
(LEDs, buttons, displays, . . .).

The following listing presents the language used to describe circuits for use in the simulator.
Here, we describe a simple timer, with buttons to increase and decrease the desired time, and a
button to start and stop the timer. The graphical interface for this circuit is presented in Fig. 6 on
the left. The user can interact with the buttons, as he would on a real circuit. The simulator also
displays the current state of the microcontroller, showing on and off pins.

11

window width=500 height=260 title="Timer"
lcd16x2 x=30 y=100 e=PIN12 rs=PIN11 d4=PIN2 d5=PIN3 d6=PIN4 d7=PIN5
button x=85 y=40 width=60 color=black label="START" pin=PIN6
button x=405 y=55 width=20 height=20 label="+" pin=PIN7
button x=405 y=25 width=20 height=20 label="-" pin=PIN8
led x=145 y=40 pin=PIN9 color=green

Figure 6: Simulation of a simple timer

This gives developers an easier way to debug their programs, without having to test it directly on
an actual microcontroller, which is time consuming and can sometimes cause hardware destruction.
The simulator is generic, and supports every AVR-based board supported by OMicroB (Arduino
Uno, Arduino Mega, Arduboy). We are currently working on extending it to other architectures
supported by OMicroB (the ARM based micro:bit, and PIC32).

2.7. Performance

In this section, we measure the performance of OMicroB on both PC and the BBC micro:bit
microcontroller. We run OMicroB with the default command line options, which means using the
Mark&Compact GC and activating all optimizations. The test programs are chosen to test different
features of the VM and are meant to get an intuition of its performance. They execute function
application using lambdas (church), recursive functions (fibonacci), functions with memory al-
location (takeuchi), floating-point number calculations (integr), object-oriented programming
(object), and more complex algorithms like sorting using binary search trees (treesort) or
solving the n-queens problem using linked lists (nqueens).

We first compare, in Fig.7 the running time of the test programs using OMicroB and the stock
OCaml virtual machine ocamlrun. OMicroB is around three times slower than ocamlrun; this means
that the choices we had to make to port the OMicroB VM to low-resource architectures do incur
performance loss, but not severely so.

We also compare our examples with equivalent C programs compiled with gcc -O2. We omit
the church test (which applies functions to represent Church encoding of integers) from these tests,
since this program requires creation of closures, which makes it impractical to implement in C. We
also omit the object test in C, since it is about handling objects, which are not available in the
language. Unsurprisingly, the OCaml programs are generally slower. The cases where OCaml can
approach or even outspeed C are the programs with heavy dynamic allocation (takeuchi and
treesort).

12

Name OMicroB ocamlrun gcc -O2 Python3

church 0.37 s 0.13 s N/A 1.3 s

fibonacci 0.49 s 0.13 s 0.01 s 0.71 s

takeuchi 0.06 s 0.01 s 0.14 s 0.11 s

integr 5.01 s 2.33 s 0.4 s 6.48 s

treesort 1.47 s 0.48 s 0.15 s 0.36 s

nqueens 4.27 s 1.25 s 0.68 s 11.54 s

object 0.29 s 0.11 s N/A 0.34s

Figure 7: Performance of OMicroB (32 bits) on PC with Intel® i7-10610U, 16Go RAM

We now compare OMicroB performance to C and MicroPython on the micro:bit device (16MHz,
16 kB RAM, 256 kB Flash memory). We use the subset of OCaml test programs which could be
ported to Python without changing too much the structure of the code (the tests that made too
much use of recursivity weren’t ported to Python as MicroPython’s maximal recursion depth is
very limited on this device - less than 10). As shown in Figure 8, OMicroB tends to be faster than
(Micro)Python, and unsurprisingly slower than C.

We also compare the size in flash memory for OCaml and C programs. There is a small overhead
in the flash size of OCaml programs due to the inclusion of the virtual machine. However, this
overhead would be compensated for larger source programs.

Name Run Time Program Size

OMicroB µPython arm-gcc -O2 OMicroB arm-gcc -O2

church 1 302 s 5 900 s N/A 13 kB N/A

fibonacci 1 482 s 8 250 s 21 s 12 kB 10 kB

takeuchi 2 241 s 12 120 s 564 s 13 kB 11 kB

integr 22 282 s 37 845 s 6 332 s 16 kB 9 kB

object 1 282s 2 633 s N/A 25 kB N/A

Figure 8: Performance of OMicroB (32 bits) on micro:bit

2.8. Application: A Snake Game

OMicroB is lightweight enough to use OCaml for programming microcontrollers with very scarce
resources. For example, we have been successful in running an OCaml implementation of the
“Snake” game on a little device called Arduboy. This credit card-sized handheld device, used by
hobbyists for designing small gaming applications (typically in C), notably features an ATmega32u4
microcontroller with only 2.5 kB of RAM and 32 kB of Flash memory.

The behavior of the game has been described in OCaml using high-level constructs provided by
the language, such as exceptions. For example, the following function which defines the main loop
of the game uses exceptions to detect (using the try/with construct) when the game is won or lost:

13

let play () =
let max_len = 40 in
let init_x = 0 in
let init_y = 0 in
let init_len = 10 in
let init_dir = South in
let snake = create max_len init_x init_y init_len init_dir in
let apple = ref (create_apple snake) in
draw_first_apple !apple;
try

while true do
move apple snake;
update_direction snake;
(* pause for a duration that depends on the current length *)
delay (max_len - snake_length snake);

done
with
| Win -> (digital_write Arduboy.g LOW) (* light up the green LED *)
| Lose -> (digital_write Arduboy.r LOW) (* light up the red LED *)

Besides the game logic itself, all hardware interactions (especially with an OLED display using
a Serial Peripheral Interface (SPI)) have also been implemented in OCaml. This provides the flex-
ibility and safety of a high-level language for programming low-level interfaces. For example, the
booting sequence of the SPI connection is done using the Array.iter function to iterate on an array
representing the boot program and apply the function Spi.transfer on each element of this array:

let boot_program =
[|

0xD5 ; 0xF0 ; (* Set display clock divisor = 0xF0 *)
0x8D ; 0x14; (* Enable charge Pump *)
0xA1 ; (* Set segment re-map *)
0xC8 ; (* Set COM Output scan direction *)
0x81; 0xCF; (* Set contrast = 0xCF *)
0xD9; 0xF1; (* Set precharge = 0xF1 *)
0xAF; (* Display ON *)
0x20; 0x00 (* Set display mode = horizontal addressing mode *)

|]

let transfer_program prog =
Array.iter Spi.transfer prog

let boot =
(* ... omitted for brevity ... *)
transfer_program boot_program;

This program is built using the 16bits version of the OMicroB VM, and just setting a stack size
of 64 values and a heap-size of 300 values is sufficient to run it. A picture of the device running the
Snake game, together with information about its memory use, is given on Fig. 9. The game logic
takes 182 lines of OCaml code, while 90 lines of OCaml code are responsible for the interactions
with the display (including the booting sequence displayed above) and just 42 lines are used to
represent the rest of the device (buttons, LEDs).

14

Size on flash Size on RAM
15,174 bytes 1,060 bytes

Figure 9: An OCaml game of Snake running on an Arduboy

3. Abstracting Architectures and Electronic Components

As our virtual machine was designed in a generic way, it is fitting to provide the end user
with a generic, architecture-agnostic way to interact with the microcontroller. We take advantage
of OCaml module system, and rely on various features of the language which leverage its strong
static typing (such as Algebraic Data Types, polymorphic variants, and Generalized Algebraic Data
Type), to do so.

3.1. Hardware and Foreign Function Interface

To define low-level functions that manipulate the hardware, we can use the Foreign Function
Interface (FFI) of OCaml, which allows the user to call functions written in C. We use this function-
ality to give access to MCU primitives, such as the one that manipulate hardware directly. Among
these may be the functions to read and write digital or analog signals to the GPIO, or to control
the timers of the MCU. Of course, we want to use the high-level features of OCaml to somewhat
abstract and protect these low-level calls.

3.2. Algebraic Data Types and pattern-matching

As we want to provide a generic description of the hardware, we may start with the GPIO
interface of the microcontroller. It is constituted of a finite set of pins, on which the program may
read or write digital or sometimes analog signals. In a typical OCaml program, we may implement
these pins with an Algebraic Data Type (ADT). The listing below shows such an ADT for an
hypothetical microcontroller with three pins. Note that the last constructor, PINAn carries its pin

number as a value of type int: ADTs may be simple enumerated types, or more general sum types
with data specific to each constructor.

If we wanted to write a function that returns the pin number, we could leverage the pattern-
matching feature of the OCaml language, by defining a different behavior for each constructor.

let pin_number (p : pin) : int =
match pin with
| PIN0 -> 0
| PIN1 -> 1
| PINAn n -> n

15

3.3. Generalized Algebraic Data Types

A powerful extension of these types are Generalized Algebraic Data Type (GADT)s. They al-
low to specify more constraints on type parameters of value constructors, and to use existentially
quantified type variables. In a GADT, the type declaration is parameterized by zero, one or several
type variables. Each constructor may use a different instantiation of these type variables. In the
example below, we use this feature to differentiate between pins that do or do not support reading
analog signals. Among other features, this construction allows us to define functions and patterns
matching on a subset of the constructors of the type.

type noanalog
type analog
type ’a pin =
| PIN0 : noanalog pin
| PIN1 : noanalog pin
| PINA0 : analog pin

let analog_write (p : analog pin) (lvl : int) =
match p with
| PINA0 -> unsafe_analog_write 0 lvl

Take for instance the analog_write function above. Its primary role is to protect calls to
unsafe_analog_write, an external C function defined using the FFI. It takes as input the number of
an analog pin, and an integer to write to this pin. With the definition below, the pattern-matching
of analog_write is total, because, by typing, we know that parameter p,which has type analog pin,
can only be PINA0 , since this is the only constructor of this type. Conversely, the type checker
would reject calls to analog_write PIN0 or analog_write PIN1.

3.4. GADTs and polymorphic variants

The definition above is a good step in the direction of a precise pin type, but we wish to refine it
once more. Indeed, on a microcontroller, there may be some pins that support both Pulse-Width-
Modulation (PWM) writing and analog reading, some that support one but not the other, some
that support neither, and some that support other features. To make our specification generic, we
need a way to specify some kind of “list” of the features of a given pin. This may be achieved using
OCaml’s polymorphic variants [17]. These constructs allows one to use variant “tags” that are not
tied to a specific declared type. Such a tag is noted with a backtick (‘DREAD), and a variant type
can be given with a pipe-separated list of tags, enclosed with square brackets. For instance, the
type [‘DREAD | ‘DWRITE] has two tags. Polymorphic variants allow for a limited form of subtyp-
ing. The polymorphic variant type [< ‘DREAD | ‘DWRITE] (note the <) denotes a sub-type of any
type that contains at most the ‘DREAD and ‘DWRITE constructors. In particular, it is a subtype of
both [‘DREAD] and [‘DWRITE]. We can use this mechanism to specify pins that have different
capabilities. Suppose for example that all pins support digital reading and writing, that only PIN1

supports PWM writing, and that only PINA0 supports analog reading, we would write the following
type declaration.

type ’a pin =
| PIN0 : [< ‘DREAD | ‘DWRITE] pin
| PIN1 : [< ‘DWRITE | ‘DREAD | ‘PWM] pin
| PINA0 : [< ‘DWRITE | ‘DREAD | ‘AREAD] pin

16

From here, we can give a type to functions that is specific to pins with a given feature. For in-
stance, the call digital_read on [‘DREAD] pin type-checks, while the call to analog_read function
type-checks only for a [‘AREAD] pin. Therefore, we can pass PINA0 to the analog_read function,
but not PIN0 or PIN1; this is enforced entirely by the type-checker, at compile time.

3.5. A Common Module Interface

Now that we have defined the type of pins using a GADT, and that we know how to manipulate
the hardware, we can outline a minimal list of core features we wanted to support for all devices.
Most of the architectures require a pin to be set either as an input or an output. This configuration
can also be changed at runtime. We therefore provide a type mode as well as a function pin_mode,
which accepts any pin. Once the mode is set, the user can either read or write a digital value
(represented as a binary type level) on the pin with functions digital_read and digital_write.
Moreover, most devices also allow some of the GPIO pins to process analog signals; we provide
two functions analog_read and analog_write to treat these signals. We represent analog values by
integers in the range [0; 1024[. Finally, we provide two primitives to handle time: delay pauses
the execution for a given number of milliseconds, while millis returns the number of milliseconds
elapsed since the start of the program. These names are inspired from the Arduino library. Our
goal was indeed to provide an easy transition from the Arduino environment to OMicroB.

We package these definitions in a single module type. In OCaml, modules allows the programmer
to define a reusable set of types and functions. The implementation of modules may be abstracted
under an interface (or signature), using the module type syntax. This is what we do below.

module type MCUConnection = sig
type ’a pin = ...
type mode = INPUT | OUTPUT
type level = LOW | HIGH
val pin_mode : ’a pin -> mode -> unit
val digital_read : [‘DWRITE] pin -> level
val digital_write : [‘DREAD] pin -> level -> unit
val analog_read : [‘AREAD] pin -> int
val analog_write : [‘PWM] pin -> int -> unit
val delay : int -> unit
val millis : unit -> int

end

These functions are defined as calls through the FFI to device-specific C primitives. The OCaml
library is organized in modules for each of the supported architecture, each with an implementation
of the MCUConnection signature. In the case of architecture’s having several controllers (e.g. Avr),
a root module contains architecture-specific definitions while the device-specific ones (mostly the
pin type) are defined in sub-modules.

Having introduced a consistent naming scheme for our types and functions means that the end
user’s code can target interchangeably any architecture, simply by changing the opened module
(and possibly sub-module). This is done automatically by OMicroB when choosing a target device,
using the -open option of ocamlc. This means that a program such as the one below (which
blinks a LED connected on PIN2) can be compiled for any microcontroller (with at least two pins)
by simply changing a command line option.

17

pin_mode PIN2 OUTPUT;
while true do
digital_write PIN2 HIGH; delay 500;
digital_write PIN2 LOW; delay 500

done

3.6. Describing High-Level Components with Functors

Having defined a sufficient set of primitives, we can move onto a higher level of abstraction,
by representing not only connections, but electronic components, such as LEDs, push buttons, or
more complex devices like LCDs. We rely again on OCaml’s module system. We make use of the
module interface MCUConnection described in 3.5. This interface is implemented once per device. It
provides the basic features to interact with the microcontroller.

To program external devices, we must write code that in some way interacts with this inter-
face. In OCaml, this can be done using functors, that is, functions that take modules as input
and build new modules. For instance, the functor MakeLCD below expects a module that respects
the LCDConnection interface. This interface can be instantiated by extending the MCUConnection

interface with a number of pins through which the display communicates with the MCU. The
instantiated functor returns a module of type Display, that exposes high-level functions that ma-
nipulate the component. The definition of MakeLCD, not shown here, uses the lower-level functions
from MCUConnection to implement these.

module type Display = sig
val init: unit -> unit
val print_string: string -> unit
val set_pixel: int -> int -> bool -> unit
val clear_screen: unit -> unit

end
module type LCDConnection = sig
type ’a pin
type level
include Circuits.MCUConnection

with type ’a pin := ’a pin with type level := level
val rsPin: [‘DWRITE] pin
val enablePin: [‘DWRITE] pin
val d4Pin: [‘DWRITE] pin
val d5Pin: [‘DWRITE] pin
val d6Pin: [‘DWRITE] pin
val d7Pin: [‘DWRITE] pin

end
module MakeLCD(L: LCDConnection): Display

Using this approach, we can also provide two interfaces for communication protocols I2C and
SPI. [18]. These interfaces are implemented for every model of microcontroller which supports
them, and can be used to instantiate higher level functors (for instance, for the SSD1306 display,
which uses the I2C standard).

3.7. A Generic Application: The MicroPong Game

We now illustrate the usage of this module system, from the user point of view. We built a
multiplayer version of the well-known game “Pong”. This is an opportunity to demonstrate how
the communication between several microcontrollers can be set up using only OCaml code. Two

18

of these microcontrollers are designated as players, using buttons to move their respective paddles.
The last microcontroller acts as the server, receiving the players input and displaying the game on
a connected screen. The players also display their current score on their respective screens.

3.7.1. Devices Used

Player1
(microbit)

ButtonA

ButtonB

Screen

Radio

Player2
(arduino)

Button1

Button2

LCD Screen

SPISlave

PIN6

PIN7

PIN2, PIN3, PIN4, PIN5, PIN8, PIN9

Referee
(microbit)

LedR

LedL

SSD1306 Screen

I2C

Radio

SPIMaster

PIN1

PIN2

Figure 10: MicroPong app structure

In this application, we will use the BBC micro:bit, an ARM-based education-focused microcon-
troller, supported by OMicroB. The standout components of the micro:bit are a 5x5 LED-matrix
display, two mounted-on buttons, an accelerometer and a Bluetooth/radio antenna. The ARM
Cortex-M0 MCU on the micro:bit provides 16 kB of RAM, which is more than most AVR-based
platforms, and useful for more memory-intensive applications.

We have chosen to use two BBC micro:bit for both the server and one of the player, so that they
can communicate using the radio module. To experiment with our approach, we make the second
player communicate with the server not via radio but via SPI; this means both players are running
slightly different progams. SPI is a wired, synchronous communication protocol implemented by
most microcontrollers, including the BBC micro:bit. Thanks to the genericity of our approach, we
may use any microcontroller that supports SPI as the second player without changing its program;
in our experiment, we chose the Arduino Uno. We show in Fig. 10 how the three microcontrollers
are interfaced. In this figure, the plain arrows denote a physical connection between two elements,
while a dashed arrow denotes a wireless (radio) connection.

3.7.2. Program

We show below how the server’s modules are instantiated. Notably, the instantiation of the
I2C module requires an address parameter. The I2C module can then be used to instantiate a
MakeSSD1306 functor, which is used to control a SSD1306 OLED display.

module I2C = I2C(struct let address = 0x3C end)
module Scr = Ssd1306.MakeSSD1306(I2C)
module%comp LeftLed = MakeLed(struct let cPin = PIN1 end)
module%comp RightLed = MakeLed(struct let cPin = PIN2 end)
module%comp SPIM = MakeSPIMaster(struct let sPin = PIN0 end)

19

As seen in this example, we have defined a syntactic extension for instantiating modules, using
the OCaml PPX rewriter system. Indeed, in our implementation instantiating a module can be
verbose, as it requires the user to include the MCUConnection module along with the actually useful
declarations. We hide this behind the module%comp which indicates the start of an extension point.
For instance, the third line of the listing expands to the module declaration below.

module LeftLed = MakeLed(struct
include MCUConnection
let cPin = PIN1

end)

The rest of the server’s code (80 lines of OCaml) uses these modules generic interfaces, but does
not rely on any other device-specific code. We give below a (simplified) snippet of the communica-
tion code for the server. The server communicates the player’s scores over radio. It then receives
the input of the Left player over SPI, and the one of the Right player over radio. Note that this
piece of code does not depend on any architecture-specific functions, but only on the instantiated
modules. This is also the case for the rest of the server code, which is mainly concerned with
calculating the trajectory of the ball and displaying it, using the SSD1306 display module. There is
no dependency between the logic of the program and the chosen device.

Radio.send ("sr" ˆ string_of_int !scoreR);
Radio.send ("sl" ˆ string_of_int !scoreL);
let lpos = int_of_char (SPIM.transmit !scoreL)
and rpos = Radio.recv () in
if lpos <> 0 then lY := lpos;
if String.length rpos = 1 then rY := rpos.[0];

4. Abstracting Concurrency: The OCaLustre Extension

As we have seen in the previous section, the PPX language extension system available in the
standard OCaml compiler can give developers powerful means of providing tailor-suited program-
ming constructs for specific uses. Since programs for microcontrollers are inherenlty concurrent
because of their fast and often unordered reactions to external stimuli, we thus propose another
use of PPX to define a specialized concurrent programming extension to the OCaml language that
suits the programming of embedded software.

This extension, called OCaLustre (based on the prototype presented in [19] and extended with
a multi-clock system and a new sequential code generation), is based on the synchronous dataflow
language Lustre [12]. The OCaLustre extension follows the main principle of Lustre, where the time
taken for computing the outputs values of a program based on its inputs values is considered as be-
ing nil. This principle, known as the synchronous hypothesis [11], results in a powerful abstraction
that provides a deterministic model of concurrency. Indeed, scheduling of all the (possibly inter-
dependent) concurrent logical aspects of a program is computed by the compiler, thus producing
sequential code of an imperative language that is semantically equivalent to the given synchronous
program. Note that phenomena of causality loops, where two concurrent elements of a program
depend instantaneously on each other, are detected by the compiler, which rejects such semanti-
cally undefined programs. OCaLustre produces imperative OCaml code, entirely compatible with
OMicroB.

20

4.1. Synchronous Nodes and Operators

As in Lustre, the main construct of an OCaLustre program is called a node, which is akin to an
instantaneous function computing values for output flows from values of input flows. The following
code defines a node (with the let%node notation), called plus_minus, which receives two a and b

flows as inputs, and produces two p and m flows which values are respectively the sum and the
difference of the inputs:

let%node plus_minus (a, b) ∼return:(p, m) =
p = a + b;
m = a - b

The body of a node is a system of equations that defines the values of its outputs (and possible
local flows). It is solved at each program’s “tick” (called a synchronous instant), in a logical zero
time. The p and m flows are thus considered as two concurrently computed outputs.

Besides classical arithmetic/boolean operators, OCaLustre provides various synchronous opera-
tors. The ->> operator (akin to the Lustre followed-by - or fby - operator) permits the definition of
a flow as a constant value for the first instant of the program, followed by the previous value of an
expression for the subsequent instants. For example, the following node defines a cpt flow that is 0
at the beginning of the program, and then is the previous value of cpt + 1 for every subsequent
instant, representing an incrementing counter. This flow is reset (by a modulo operation) each time
the counter is greater than the value of the reset input flow:

let%node count (reset) ∼return:(cpt) =
cpt = (0 ->> (cpt + 1)) mod reset

The PPX rewriter system transforms a valid (possibly annotated) OCaml AST into another
valid OCaml AST. OCaml’s system of annotations is thus used in OCaLustre to define positive
and negative sampling operators, that provide a way to condition the presence of flows using other
boolean flows. We use the [@when b] (resp. [@whennot b]) annotation to convey the fact that a flow
has a value only when the b flow evaluates to true (resp. false), and in other cases is considered
as having no value (and thus should not be evaluated): we say that this flow is positively (resp.
negatively) sampled by b. For example, the following node counts the number of times its inputs
are true together (modulo 100) because count cannot be called with an absent input:

let%node call_count (x, y) ∼return:(clk, z) =
clk = (x && y);
z = count (100 [@when clk])

The clk flow is called the clock of z, which is the flow which determines the presence of z. Flows
that are not explicitly sampled are said to be on the base clock of their node: they are computed
each time the node in which they are defined is applied.

Figure 11 shows the possible evolution of the values of the different flows of the call_count

node over time. A blank cell indicates that a flow is absent (i.e. it does not have a value) for the
corresponding instant.

A merge operator is used to combine oppositely sampled flows: its first parameter is a clock (a
boolean flow), its second parameter is a flow positively sampled by this clock ([@when clk]) and its
third parameter is a flow negatively sampled by the same clock ([@whennot clk]). For example, the
following code combines the value of two flows oppositely sampled. Since the clock that samples

21

instant 0 1 2 3 4 5 6 ...

x true true true false true true false . . .

y true false true true true true true . . .

clk true false true false true true false . . .

z 0 1 2 3 . . .

Figure 11: Clock sampling

them switches between being true and false at each instant, then the output flow itself flip-flops
between the value 23 and value 42.

let%node flip_flop () ∼return:(res) =
clk = false ->> (true ->> clk);
x = 23 [@when clk];
y = 42 [@whennot clk];
res = merge clk x y;

Figure 12 shows the evolution of the values of the differents flows of the flip_flop node over
time.

instant 0 1 2 3 4 5 6 . . .

clk false true false true false true false . . .

x 23 23 23 . . .

y 42 42 42 42 . . .

res 42 23 42 23 42 23 42 . . .

Figure 12: Clock sampling and merge operator

The merge operator is the only OCaLustre operator that works on flows that do not share the
same clocks. For example, the following code is incorrect (and the OCaLustre compiler reports the
error) because it is attempting to add together two flows on two different clocks:

let%node add_wrong (a,b) ∼return:(wrong) =
clk1 = false ->> (true ->> clk1);
clk2 = true ->> (false ->> clk2);
x = a [@when clk1];
y = b [@when clk2];
wrong = x + y (* error *)

Additionally, clocks themselves can be sampled, and various layers of sampling can be achieved,
as seen in the following example, where each flow is annotated with a comment identifying its clock:

let%node clocks_of_clocks (b, c) ∼return:(res) =
d = b [@when c]; (* c *)
e = 4 [@whennot c]; (* not(c) *)
x = 5 [@when d]; (* d *)
y = 6 [@whennot d]; (* not(d) *)
z = merge d x y; (* c *)
res = merge c z u (* base clock *)

The intricacies of sampling for this example are displayed in Figure 13. The array represents the

22

evolution of the values of each flow over time. Each value is represented in the same colour as the
flow that samples it (the base clock - for which values are present at every instant - is represented
in green).

instant 0 1 2 3 4 5 6 . . .

b true false true false true true false . . .

c true true false false true false true . . .

d true false true false . . .

e 4 4 4 . . .

x 5 5 . . .

y 6 6 . . .

z 5 6 5 6 . . .

res 5 6 4 4 5 4 6 . . .

Figure 13: Multiple clock sampling

Clocking rules can be seen as a type system [20], and OCaLustre uses an inference algorithm to
determine the clock of each flow.

4.2. Sequential Code Generation

The OCaLustre compiler generates sequential OCaml code from each node definition that is
present in an OCaLustre program, as well as code for the main loop of the program, that each
instant reads its inputs, runs the synchronous program, and writes its outputs. The generated code
has a low memory footprint, on RAM as well as on Flash memory: for example, the following is
the sequential OCaml code produced by compilation of the count node:

let count () =
let _cpt_aux1_fby = ref 0 in
fun reset ->

let _cpt_aux1 = !_cpt_aux1_fby in
let cpt = _cpt_aux1 mod reset in

_cpt_aux1_fby := (cpt + 1); cpt

This code only uses the functional and imperative kernel of the OCaml language, and thus
induces a limited sequence of bytecode instructions. The produced bytecode is 20 instructions long,
compatible with OMicroB, and can run on microcontrollers with limited resources.

OCaLustre can also be set to produce non-allocating OCaml code, creating functions that
take a mutable record value as input, representing the internal state of a node, and update it
at each instant of the program. Thus, the generated code never triggers the garbage-collection
algorithm, since every update is done in place, and no memory is allocated. Morever, it is possible
to analyse the execution time of the program [21]. However, this code tends to result in a longer
bytecode for the same OCaml application, and we thus give the choice to the user to decide between
timing guarantees and a smaller memory footprint. Moreover, calls to standard OCaml code may
themselves still trigger the GC, and this “non-allocating” version is thus only compatible with
synchronous programs which do not make use of all the features of OCaml.

23

4.3. Example: Chocolate Tempering Machine

We now present a concrete application using OCaLustre: a chocolate tempering machine. This
machine is useful for melting chocolate while keeping it at a controlled temperature. We prototype
such a machine using an arduino uno, a heating component and a temperator sensor.

4.3.1. Circuit

The circuit is presented on Fig. 14. It contains two buttons, controlling the desired temperature,
a screen displaying the desired and actual temperature, a heating element, and a temperature sensor.
We assume that the heating element simply takes a digital signal as input, indicating if it should
be on or off. We also assume that the temperature sensor produces an analog signal between 0 and
5V, that can be read using analog_read.

R
E
S
E
T

3
V
3

5
V

G
N
D

G
N
D

V
IN

A0 A1 A2 A3 A4 A5

13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
a
n
t
e
d

T
:

3
2
.
5

A
c
t
u
a
l

T
:

3
1
.
2

VSS

VDD

VO

RS

RW

ENA

D0

D1

D2

D3

D4

D5

D6

D7

LED+

LED−

+

-

Temperature
Sensor

Heating Resistor

Figure 14: Temperature controlled chocolate heater

4.3.2. Program

We now specify the behavior of the system as an OCaLustre program. The first two nodes,
thermo_on and set_wanted_temp specify the behavior of the buttons. Pressing both buttons at the
same time toggles the system on and off. Otherwise, pressing only one of the buttons increases or
decreases the desired temperature, expressed in tenth of Celsius degrees.

let%node thermo_on(p,m) ∼return:(b) =
b = (true ->> if p && m then not b else b)

let%node set_wanted_temp (p,m) ∼return:(w) =
w = (325 ->> if p then w+5 else if m then w-5 else w)

The following node calculates the “heating proportion” (expressed in percent). It depends on the
difference between wanted and current temperature, and should not exceed 100. It should also not
vary too quickly in time, and is therefore calculated using the proportion at the previous time step.

let%node update_prop (wtemp,ctemp) ∼return:(prop) =
delta = min (10,max (-10,wtemp-ctemp));
delta2 = if delta < 0 then (-delta * delta) else (delta*delta);
offset = min (10,delta2);
pre_prop = (0 ->> prop);
prop = min (100,max (0, (pre_prop+offset)))

24

The timer node implements software Pulse-Width-Modulation. The signal produced is true
for prop percents of the time. By averaging this boolean signal overtime, the physical system will
behave as if it was fed an analog signal with the corresponding intensity. The heat node feeds the
calculated property to the timer node to determine if the resistor should be on or off. As calculating
a new proportion is somewhat costly, it is only done once every 10 steps.

let%node timer (prop) ∼return:(alarm) =
time = (0 ->> (time + 10)) mod 100;
alarm = time < prop;

let%node heat (w,c) ∼return:(h) =
count = (0 ->> count + 1) mod 10;
update = (count = 0);
prop = merge update

(update_prop (w [@when update],c [@when update]))
((0 ->> prop) [@whennot update]);

h = timer (prop)

Finally, all these nodes are put together by thermo. The outputs are a signal indicating if the
system is on, the wanted and real temperatures, and if the resistor should turn on.

let%node thermo(p,m,realtemp) ∼return:(on,wanted,real,resistor) =
on = thermo_on (p,m);
wanted = set_wanted_temp (p[@when on], m[@when on]);
real = realtemp [@when on];
heat = real < wanted;
resistor = merge on heat (false [@whennot on])

The inputs and outputs of the main node (thermo) are passed from and to the environment
through OCaml functions that are easily written thanks to the high-level interface provided with
OMicroB. When the compiler is given the name of the main node, the generated code automatically
calls these interfacing functions at the beginning and end of every instant:

let input_thermo () =
let plus_lvl = digital_read plus in
let minus_lvl = digital_read minus in
let plus = bool_of_level plus_lvl in
let minus = bool_of_level minus_lvl in
let real_temp = read_temp () in
(plus,minus,real_temp)

let output_thermo (on,wanted,real,res) =
digital_write resistor (if res then HIGH else LOW);
if on then

print_temp wanted real
else

begin
LiquidCrystal.home lcd; (* move cursor back to the beginning *)
LiquidCrystal.clear lcd;
LiquidCrystal.print lcd "..."

end

25

4.3.3. Simulation

In Fig.15, we show the interactive simulation of the program described above. The behavior of
the chocolate is not simulated, so the user has to input manually the “actual” temperature of the
simulated chocolate using the analog slider. The LED on the left indicates if the heating is on or
off.

Figure 15: Simulation of the heater

5. Discussion and Conclusion

In this article, we have shown how it is possible to use a feature-rich programming language
like OCaml in embedded systems, offering to developers safety thanks to its type system and its
synchronous extension OCaLustre on the one hand, and on the other hand expressiveness thanks
to its multi-paradigm approach (functional, imperative, object, modular). We have been able to
run relatively complex applications, even considering the scarcity of memory (only a few kilobytes
of RAM) on some microcontrollers. This thanks to numerous optimizations both in terms of
code size reduction (dead code detection, specialized instructions on argument size, elimination
of useless instructions) and memory usage reduction (partial evaluation, use of Flash memory for
non-moveable data, choice of GC algorithms).

Several similar efforts and experiments have been made in the past to port high-level languages
for programming microcontrollers. We compare these experiments on the following criteria: ease
of implementation, smallness, expressivity, safety, efficiency, and on the language families: script-
ing languages, dynamic languages, statically typed languages, imperative, object and functional
languages, and then for the concurrency with synchronous languages. The ease of implementation
of the language is a criterion that has allowed certain ports to be made, such as for imperative
languages like Forth with tinyForth6 which implements the interpreter in AVR assembler, or the
more generic PIcForth7 for PIC16Fxxx family. It is the same for functional programming with
Scheme kernels like microScheme [22] which simplifies memory management. Still in Scheme, the
PicoBit experiment [3] follows the virtual machine approach. One of the interests of Lisp machines
is to be able to integrate also the Read-Eval-Print Loop (REPL) and the compiler to the bytecode,
the whole compiler and bytecode interpreter with the REPL remaining small as for example the
Ribbit machine [4].

6In Japanese: http://middleriver.chagasi.com/electronics/tforth.html
7https://rfc1149.net/devel/picforth.html

26

http://middleriver.chagasi.com/electronics/tforth.html
https://rfc1149.net/devel/picforth.html

The Lua scripting language, whose implementation is small, has a version for microcontroller 8

which allows to use the different programming features targeting a virtual machine with memory
management. In this category of dynamic languages, easy to program, we also find the Python
and JavaScript familiesusing code source interpreter or virtual machine approaches. We can note
many experiments in JavaScript as for the most widespread the Espruino 9 interpreter or 10 using a
virtual machine. Similarly for Python, microPython [2] uses a virtual machine to run the produced
bytecode by its compiler. It is even distributed directly loaded on the Pyboard hardware, a Cortex
M4 with 512 kB Flash ROM and 128 kB RAM.

The efficiency of these languages is still low, hence experiments such as Warduino [23] (Web
Assembly for Arduino) or WAMR 11 (Web Assembly Micro Runtime), which target Web Assembly
to improve the speed of execution. For a greater efficiency of imperative languages in a statically
typed framework, there are implementations of Ada [24] and Rust on microcontroler 12. Memory
management is manual, although for Rust it is safer thanks to its type system. On the other hand
tinyGo 13 for Goland has an automatic memory management. In the same way, in object oriented
languages, experiments in Java and C# have followed the virtual machine approach as Darjelling [1]
or microEJ 14 for Java, and .NET Nanoframework 15 even if it means not implementing all the
features of these very rich languages.

While these languages offer nice high-level abstractions, and sometimes even some functional
programming features, we are more interested in a fully functional model. Closer to our work are
PICOBIT [3] and AtomVM 16 which aims to port the Scheme (resp. Erlang) programming language
to microcontrollers, using a virtual-machine based approach. Haskell, a statically-typed, purely
functional programming language was also used to program microcontrollers through Haskino [25],
using a monadic method restricting the programmer to a subset of the language. Juniper [9], an
ML-style Functional Reactive language was also designed specifically to be run on Arduino cards.
In contrast to these two latter works, we preferred to port the entire existing OCaml language, in
order to take advantage of existing OCaml programs and libraries.

For concurrency models, the same criteria of smallness, expressiveness and safety are necessary.
For this purpose, the classical models of preemptive threads are not desirable. Lua brings a model of
co-routines, quite simple to implement but low level to program. In the languages of the ML family
several systems are experienced. RTMLton [26] proposes an SML runtime for real time systems
where the modified GC facilitates the predictability of execution times, and the concurrent model is
thread based. Closer to our concerns, the SynchronVM virtual machine (previously senseVM [27])
provides a higher-order concurrency model based on message passing, based on synchronous chan-
nels (à la Concurrent ML [28]) by integrating hardware interrupts into this mechanism. Handling
a mini-Caml, the size of the programs and the execution times are quite large compared to OMi-
croB, nevertheless the synchronous channels approach is an interesting abstraction for software
components.

8http://www.eluaproject.net
9https://github.com/espruino/Espruino

10https://jerryscript.net/
11https://github.com/bytecodealliance/wasm-micro-runtime.
12https://www.rust-lang.org/what/embedded
13https://tinygo.org
14http://www.microej.com
15https://www.nanoframework.net/,
16https://github.com/atomvm/AtomVM

27

http://www.eluaproject.net
https://github.com/espruino/Espruino
https://jerryscript.net/
https://github.com/bytecodealliance/wasm-micro-runtime.
https://www.rust-lang.org/what/embedded
https://tinygo.org
http://www.microej.com
https://www.nanoframework.net/
https://github.com/atomvm/AtomVM

We leveraged the low-level abstractions given by OMicroB to provide a way to write portable
code for multiple microcontroller architectures, with minimal hurdle for the user. Static typing and
automatic memory management increase reliability, but it is also necessary to abstract the circuit
composition and the concurrency model to provide guarantees at these levels. OCaml-like typing
based on polymorphic variants and GADT, as well as the use of functors, allows to compose more
easily the different components of a circuit while guaranteeing the correctness of the communications
between them. Of course, it would have been possible to build this kind of abstraction through
inheritance and structural sub-typing of OCaml objects, with greater memory consumption. Similar
behavior can be achieved with Python’s object layer for code reuse via inheritance, but to guarantee
static typing, it would be necessary to have a static analysis on the object code in the presence of
late binding, which isn’t always easy, even though static analyses using abstract interpretation are
now focusing on dynamic languages, as for example with Python’s MOPSA tool [29]. The OCaml
module system allowed us to build a compositional and generic component system. This allows us
to represent circuits, and could eventually be abstracted through a Domain Specific Language, or a
graphical editor. Finally, the extensibility of the OCaml language allowed us to define a synchronous
extension which also uses the OCaml type system to provide strong guarantees about its execution.

Our future works include porting OMicroB to new architectures, which should require minimum
efforts given the genericity of our approach. For example Raspberry Pi or ESP microcontrollers,
which offer interesting applications for the Internet of Things, but we would also like to broaden
the targets towards FPGA reconfigurable circuits as shown by the work on O2B which uses the
OMicroB machinery on a softcore processor to then call specialized circuits [30]. Moreover, we
would like to try an innovative way to interface the synchronous part (OCaLustre nodes) and the
sequential part (the code of the host language – OCaml, in this case) of a program. In the current
implementation, external calls from OCaLustre nodes to OCaml functions block synchronous flows,
breaking the concept of the synchronous clocks. We are currently designing a new Foreign Function
Interface (FFI) for OCaLustre using concurrency thanks to Virtual Machine threads. This new
interface would allow to run external calls to sequential functions during multiple synchronous ticks
and to smoothly manage them through synchronous flows.

Other synchronous programming languages, inspired by Esterel [31], that do not rely on flows but
on events may also be well adapted to the programming of embedded systems, as such systems can
be seen as interactive systems for which timely reaction to events is paramount. For example, the
ReactiveML language [32], based on a synchronous reactive model, seems to be an ideal candidate to
develop reactive embedded OCaml-like programs. Some early attempts of adapting ReactiveML for
OCaPIC/OMicroB have been conducted, but the large size of the generated OCaml bytecode is a
current drawback. Nonetheless, we maintain interest in this approach and are planning on pursuing
our work on this subject, as having a model that blends OCaLustre and “microReactiveML” could
be very valuable.

OCaml version 5.0 was recently released with several important modifications, including new
virtual machine instructions, parallel programming including GC and a relaxed memory model.
Some points of GC parallelization could be used to build a real-time GC, or at least one that
progresses at each step in a bounded time. However, the need for progression and synchronization
increases the size of the runtime library, making it impossible to run OCaml programs in small mi-
crocontrollers. For the time being, we recommend keeping the size of OMicroB executables small, to
target low-resource microcontrollers with a pre-allocated synchronous part and a computation part
that can freeze computation. Nevertheless, the possibility of guaranteeing that the computations
launched do not disturb the synchronous part should be studied to extend the programming model.

28

For more communicating applications requiring system libraries, we are interested in the uniker-
nel approach of MirageOS [33] which includes only the components necessary for the application.
The idea is to be able to use them directly, because the program and MirageOS components are
written in OCaml and easily interoperable, thus allowing to dimension correctly the cloud parts for
IoT applications.

Finally, we would like to build a more user-friendly IDE (Integrated Development Environment),
reminiscent of the Arduino environment, in order to use OMicroB as an educational tool. For this to
gain a wider adoption, it would be useful to be able to run, as MicroPython, Ribbit or WARDuino
do, an interactive OCaml REPL on the microcontroller.

Acknowledgments

This work has been partially supported by the Systematic Paris-Region Cluster (LCHIP project),
and partly performed at the IRILL center for Free Software Research and Innovation in Paris,
France.

References

[1] N. Brouwers, P. Corke, K. Langendoen, Darjeeling, a Java Compatible Virtual Machine for Mi-
crocontrollers, in: ACM/IFIP/USENIX Middleware ’08 Conference Companion, ACM, 2008,
pp. 18–23. doi:10.1145/1462735.1462740.

[2] C. Bell, MicroPython for the Internet of Things: A Beginner’s Guide to Programming with
Python on Microcontrollers, Apress, 2017. doi:10.1007/978-1-4842-3123-4.

[3] V. St-Amour, M. Feeley, PICOBIT: A Compact Scheme System for Microcontrollers, in: 21st
International Symposium on Implementation and Application of Functional Languages (IFL
2009), Vol. 6041 of Lecture Notes in Computer Science, Springer, 2009, pp. 1–17. doi:
10.1007/978-3-642-16478-1_1.

[4] S. Yvon, M. Feeley, A Small Scheme VM, Compiler, and REPL in 4k, in: Proceedings of
the 13th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Lan-
guages, VMIL 2021, ACM, 2021, pp. 14–24. doi:10.1145/3486606.3486783.

[5] Y. Minsky, OCaml for the Masses, Commun. ACM 54 (11) (2011) 53–58. doi:10.1145/
2018396.2018413.

[6] B. Vaugon, P. Wang, E. Chailloux, Programming Microcontrollers in Ocaml: the OCaPIC
Project, in: International Symposium on Practical Aspects of Declarative Languages (PADL
2015), Vol. 9131 of Lecture Notes in Computer Science, Springer Verlag, 2015, pp. 132–148.
doi:10.1007/978-3-319-19686-2_10.

[7] X. Leroy, The ZINC experiment: an economical implementation of the ML language, Tech.
Rep. 117, INRIA (1990).

[8] K. Sawada, T. Watanabe, Emfrp: A Functional Reactive Programming Language for Small-
Scale Embedded Systems, in: Companion Proceedings of the 15th International Conference
on Modularity, MODULARITY Companion 2016, ACM, 2016, p. 36–44. doi:10.1145/
2892664.2892670.

29

http://dx.doi.org/10.1145/1462735.1462740
http://dx.doi.org/10.1007/978-1-4842-3123-4
http://dx.doi.org/10.1007/978-3-642-16478-1_1
http://dx.doi.org/10.1007/978-3-642-16478-1_1
http://dx.doi.org/10.1145/3486606.3486783
http://dx.doi.org/10.1145/2018396.2018413
http://dx.doi.org/10.1145/2018396.2018413
http://dx.doi.org/10.1007/978-3-319-19686-2_10
http://dx.doi.org/10.1145/2892664.2892670
http://dx.doi.org/10.1145/2892664.2892670

[9] C. Helbling, S. Z. Guyer, Juniper: a functional reactive programming language for the Arduino,
in: 4th International Workshop on Functional Art, Music, Modelling, and Design (FARM
2016), ACM, 2016, pp. 8–16. doi:10.1145/2975980.2975982.

[10] J. Colaço, B. Pagano, M. Pouzet, SCADE 6: A formal language for embedded critical soft-
ware development (invited paper), in: Proceedings of the 11th International Symposium on
Theoretical Aspects of Software Engineering (TASE 2017), IEEE Computer Society, 2017, pp.
1–11. doi:10.1109/TASE.2017.8285623.

[11] N. Halbwachs, Synchronous Programming of Reactive Systems, in: 10th International Con-
ference on Computer Aided Verification (CAV 98), Vol. 1427 of Lecture Notes in Computer
Science, Springer, 1998, pp. 1–16. doi:10.1007/BFb0028726.

[12] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice, Lustre: A Declarative Language for Pro-
gramming synchronous systems, in: 14th annual ACM Symposium on Principles of Pro-
gramming Languages (POPL’87), Association for Computing Machinery, 1987, pp. 178–188.
doi:10.1145/41625.41641.

[13] S. Varoumas, B. Pesin, B. Vaugon, E. Chailloux, Programming Microcontrollers through High-
Level Abstractions, in: Proceedings of the 12th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages, VMIL 2020, ACM, 2020, p. 5–14. doi:10.
1145/3427765.3428495.

[14] S. Varoumas, B. Vaugon, E. Chailloux, A Generic Virtual Machine Approach for Programming
Microcontrollers: the OMicroB Project, in: 9th European Congress on Embedded Real Time
Software and Systems (ERTS’18), 2018, pp. 1–10.

[15] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019 (Revision of IEEE 754-2008)
(2019) 1–84doi:10.1109/IEEESTD.2019.8766229.

[16] P. R. Wilson, Uniprocessor Garbage Collection Techniques, in: Y. Bekkers, J. Cohen (Eds.),
International Workshop on Memory Management, no. 637 in LNCS, ACM SIGPLAN, Springer,
1992, pp. 1–42. doi:10.1007/BFb0017182.

[17] J. Garrigue, Programming with polymorphic variants, in: ML Workshop, 1998, pp. 1–9.

[18] F. Leens, An introduction to I2C and SPI protocols, IEEE Instrumentation Measurement
Magazine 12 (1) (2009) 8–13. doi:10.1109/MIM.2009.4762946.

[19] S. Varoumas, B. Vaugon, E. Chailloux, Concurrent Programming of Microcontrollers, a Virtual
Machine Approach, in: 8th European Congress on Embedded Real Time Software and Systems
(ERTS’16), 2016, pp. 1–10.

[20] J. Colaço, M. Pouzet, Clocks as First Class Abstract Types, in: 3rd International Conference
on Embedded Software (EMSOFT 2003), Vol. 2855 of Lecture Notes in Computer Science,
Springer, 2003, pp. 134–155. doi:10.1007/978-3-540-45212-6_10.

[21] S. Varoumas, T. Crolard, WCET of OCaml Bytecode on Microcontrollers: An Automated
Method and Its Formalisation, in: Proceedings of the 19th International Workshop on Worst-
Case Execution Time Analysis (WCET 2019), Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019, pp. 5:1–5:12. doi:10.4230/OASIcs.WCET.2019.5.

30

http://dx.doi.org/10.1145/2975980.2975982
http://dx.doi.org/10.1109/TASE.2017.8285623
http://dx.doi.org/10.1007/BFb0028726
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/3427765.3428495
http://dx.doi.org/10.1145/3427765.3428495
http://dx.doi.org/10.1109/IEEESTD.2019.8766229
http://dx.doi.org/10.1007/BFb0017182
http://dx.doi.org/10.1109/MIM.2009.4762946
http://dx.doi.org/10.1007/978-3-540-45212-6_10
http://dx.doi.org/10.4230/OASIcs.WCET.2019.5

[22] R. Suchocki, S. Kalvala, Microscheme: Functional programming for the Arduino, in: J. He-
mann, J. Clements (Eds.), Proceedings of the 2014 Scheme and functional programming work-
shop, California Polytechnic State University, 2014, pp. 21–29.

[23] R. Gurdeep Singh, C. Scholliers, WARDuino : a dynamic WebAssembly virtual machine for
programming microcontrollers, in: MPLR 2019 : proceedings of the 16th ACM SIGPLAN
international conference on managed programming languages and runtimes, ACM, 2019, pp.
27–36. doi:10.1145/3357390.3361029.

[24] J. Andersen, Programming Arduinos in Ada, Free and Open Source Software Developers’
European Meeting (FOSDEM’12) (2012).

[25] M. Grebe, A. Gill, Haskino: A Remote Monad for Programming the Arduino, in: 18th In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL 2016), Vol.
9585 of Lecture Notes in Computer Science, Springer, 2016, pp. 153–168. doi:10.1007/
978-3-319-28228-2_10.

[26] B. Shivkumar, J. C. Murphy, L. Ziarek, RTMLton: An SML Runtime for Real-Time Systems,
in: Proceedings of the 22nd International Symposium on Practical Aspects of Declarative
Languages, Springer, 2020, p. 113–130. doi:10.1007/978-3-030-39197-3_8.

[27] A. Sarkar, R. Krook, B. J. Svensson, M. Sheeran, Higher-order concurrency for microcon-
trollers, in: Proceedings of the 18th ACM SIGPLAN International Conference on Man-
aged Programming Languages and Runtimes, 2021, pp. 26–35. doi:10.1145/3475738.
3480716.

[28] J. H. Reppy, Concurrent programming in ML, Cambridge University Press, 2007.

[29] R. Monat, A. Ouadjaout, A. Miné, A multilanguage static analysis of python programs with
native C extensions, in: Proceedings of the 28th International Symposium on Static Analysis
(SAS 2021), Chicago, IL, USA, Vol. 12913 of Lecture Notes in Computer Science, Springer,
2021, pp. 323–345. doi:10.1007/978-3-030-88806-0_16.

[30] L. Sylvestre, E. Chailloux, J. Sérot, Accelerating OCaml Programs on FPGA, Int. J. Parallel
Program. 51 (2–3) (2023) 186–207. doi:10.1007/s10766-022-00748-z.

[31] G. Berry, G. Gonthier, The Esterel Synchronous Programming Language: Design, Semantics,
Implementation, Science of Computer Programming 19 (2) (1992) 87–152. doi:10.1016/
0167-6423(92)90005-V.

[32] L. Mandel, M. Pouzet, ReactiveML: a reactive extension to ML, in: P. Barahona, A. P. Felty
(Eds.), Proceedings of the 7th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, July 11-13 2005, Lisbon, Portugal, ACM, 2005, pp.
82–93. doi:10.1145/1069774.1069782.

[33] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T. Gazagnaire, S. Smith, S. Hand,
J. Crowcroft, Unikernels: Library Operating Systems for the Cloud, SIGPLAN Not. 48 (4)
(2013) 461–472. doi:10.1145/2499368.2451167.

31

http://dx.doi.org/10.1145/3357390.3361029
http://dx.doi.org/10.1007/978-3-319-28228-2_10
http://dx.doi.org/10.1007/978-3-319-28228-2_10
http://dx.doi.org/10.1007/978-3-030-39197-3_8
http://dx.doi.org/10.1145/3475738.3480716
http://dx.doi.org/10.1145/3475738.3480716
http://dx.doi.org/10.1007/978-3-030-88806-0_16
http://dx.doi.org/10.1007/s10766-022-00748-z
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1016/0167-6423(92)90005-V
http://dx.doi.org/10.1145/1069774.1069782
http://dx.doi.org/10.1145/2499368.2451167

	Introduction
	Abstracting Hardware: The OMicroB Virtual Machine
	Bytecode Interpreter and General Application Mechanism
	Optimizations and Data Representation
	Garbage Collection
	Interrupts and Callbacks
	Compilation Chain
	Simulation and Debugging
	Performance
	Application: A Snake Game

	Abstracting Architectures and Electronic Components
	Hardware and Foreign Function Interface
	Algebraic Data Types and pattern-matching
	Generalized Algebraic Data Types
	GADTs and polymorphic variants
	A Common Module Interface
	Describing High-Level Components with Functors
	A Generic Application: The MicroPong Game
	Devices Used
	Program

	Abstracting Concurrency: The OCaLustre Extension
	Synchronous Nodes and Operators
	Sequential Code Generation
	Example: Chocolate Tempering Machine
	Circuit
	Program
	Simulation

	Discussion and Conclusion

