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Introduction

The diversity of the components of the Internet of Things (IoT) implies several levels of knowledge and technologies on sensors, communications, cloud and user services, which require different programming skills. In this article we focus on embedded systems, in particular on low-resources microcontrollers, their interactions and communications.

Microcontrollers (MCU), and more specifically microcontrollers without operating systems, are devices that can be quite difficult to program. Developers for this kind of hardware traditionally use low-level programming languages (such as C or assembly languages) in order to fine-tune the power and memory consumption of a program, as well as its hardware-specific interactions with its environment. This leaves programmers who are less well-versed in embedded programming with a steep learning curve for developing basic applications, as a lot of hardware documentation needs to be assimilated to design even simple programs. Moreover, debugging such applications is a tedious task, with many programmers (even professionals) relying on executing their application directly on the intended hardware to test its behavior. This can be time-consuming, may not guarantee the correct execution of the application, especially if concurrency is involved, and may cause electrical damage to the hardware.

In order to free developers from needing to program microcontrollers using low-level languages and consequently limited abstractions, multiple projects using a high-level programming language for developing microcontroller applications have been undertaken. These projects provide more expressive programming constructs for the design of embedded software which allow developers from various backgrounds to more easily write applications. Many of these projects involve running a subset of a general purpose programming language on specific microcontrollers, such as Java [START_REF] Brouwers | Darjeeling, a Java Compatible Virtual Machine for Microcontrollers[END_REF] for object languages or Python [START_REF] Bell | MicroPython for the Internet of Things: A Beginner's Guide to Programming with Python on Microcontrollers[END_REF] and Scheme [START_REF] St-Amour | PICOBIT: A Compact Scheme System for Microcontrollers[END_REF] for dynamic languages. Different criteria are privileged according to the projects and the targeted microcontrollers. It may be the size of code and the runtime memory used, the efficiency on specific architectures, the ease of use of dynamic languages, the expressiveness, the portability to different targets and the safety by using static typing and concurrency models. Of course, these different criteria can be mixed, in particular by following a virtual machine (VM) approach which allows to stay small (as the Scheme VM described in [START_REF] Yvon | A Small Scheme VM, Compiler, and REPL in 4k[END_REF]) with a runtime library (for automatic memory management), to accept expressive languages and to be portable while keeping good efficiency.

A key motivation of our work is to provide embedded system developers with a way of leveraging the full set of features of a modern high-level language in order to ease the programming process as well as provide increased guarantees for the safety of programs. To this end, we elected to use the OCaml programming language, a statically typed multi-paradigm language featuring functional, imperative, modular, as well as object-oriented traits. The core of the language is functional, with the combination of ADT (algebraic data type) and pattern matching allowing case-based definition of functions, with static analysis of pattern completeness detection. A short introduction to the language, called OCaml for the masses [START_REF] Minsky | OCaml for the Masses[END_REF], explained ten years ago "Why the next language you learn should be functional" by following a company's switch to OCaml. The increased expressivity provided by these diverse programming paradigms is strengthened by another important feature of the OCaml language, which is its strong static type system. The OCaml type system helps programmers develop high-level applications by detecting typing errors at compile-time rather than runtime. This detection of errors ahead of the program execution represents a notable benefit when developing embedded programs, where a malfunction can cause harm. Furthermore, the OCaml type system relies on type inference, which gives programmers the option remove type annotations from their programs and focus on its logic and algorithmic aspects, while keeping the same level of type safety. The OCaml language offers two compilation paths: a native version for efficiency targeting the specific architectures of current processors, and a version for portability producing bytecode for its virtual machine (VM). The quality of its compiler has just been recognized with the prestigious 2023 ACM SIGPLAN programming languages software award.

OCaml developers benefit from a rich ecosystem of tools and libraries, most often distributed by the opam package manager. OCaml's preferred domain is software dependability, with tools for verifying program properties (proof assistant, static analyzer, abstract interpretation, model-checking), certified compilers, or industrial synchronous programming, but other sectors have emerged over time, such as finance, systems and distributed programming (file synchronizer, social networking . . . ), as well as entertainment applications.

Although the OCaml language is used for the production or verification of embedded code, OCaml programs themselves are seldom embedded, but we believe that the high-level features of the language are welcome in the context of developing programs for embedded systems. In this context, a first experiment, called OCaPIC [START_REF] Vaugon | Programming Microcontrollers in Ocaml: the OCaPIC Project[END_REF], was carried out targeting a very low resource architecture for the OCaml language. To achieve this, OCaPIC is based on a 16-bit OCaml VM (sometimes called ZAM [START_REF] Leroy | The ZINC experiment: an economical implementation of the ML language[END_REF]) that was implemented in the PIC18 assembly language. It comes with a specific runtime library, also implemented in assembler, and a modified standard library. The design has been experimentally validated by several hand crafted implementations. This work is described in [START_REF] Vaugon | Programming Microcontrollers in Ocaml: the OCaPIC Project[END_REF] which details the different space saving techniques used. This experiment was successful, but the fact that OCaPIC was built in a fine-tuned PIC18 assembler makes it compatible with just microcontrollers of this family, limiting its portability. We thus endeavoured to keep the ideas of several memory optimizations while offering a solution that can be used for a greater variety of microcontrollers.

In this paper, we present an approach more portable than previous experiments, capable of running programs using any feature of the OCaml language on devices with very little resources. This approach is based on a new implementation of an OCaml virtual machine (VM) that is easily portable across many architectures, and at the same time compatible with microcontrollers with as little as 2.5 kB of RAM. By doing so, we aim to offer to embedded systems developers every benefit of using the OCaml language, including its rich multi-paradigm programming model, and its static type system, to increase the expressiveness and safety or programs, all the while keeping memory footprint low. This portable approach also offers new hardware abstractions that are welcome in a context where hardware architectures are very diverse, making use of the extensibility of the OCaml language allows us to further abstract many aspects of embedded programs. To do this, we take advantage of parameterized modules (functors) and high level typing paradigms like polymorphic variants and Generalized Algebraic Data Types (GADT).

One of the main difficulties comes from the concurrency of programs. Since typical microcontroller programs simultaneously manage multiple hardware entities that share data, they are concurrent by nature. There already exist extensions for reactive programming, in particular in the style of functional reactive programming such as [START_REF] Sawada | Emfrp: A Functional Reactive Programming Language for Small-Scale Embedded Systems[END_REF] and [START_REF] Helbling | Juniper: a functional reactive programming language for the Arduino[END_REF]. These programming features are widely used for critical embedded systems, as shown by the Scade software suite [START_REF] Colaço | SCADE 6: A formal language for embedded critical software development[END_REF]. Many models exist but for embedded applications, synchronous programming [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF] brings advantages of simplicity and safety. We thus define a synchronous dataflow extension to OCaml, à la Lustre [START_REF] Caspi | Lustre: A Declarative Language for Programming synchronous systems[END_REF], called OCaLustre.

This paper presents a succession of abstraction layers that increasingly provide new paradigms and heightened guarantees to the programming of microcontrollers. Following the plan of [START_REF] Varoumas | Programming Microcontrollers through High-Level Abstractions[END_REF] to go up in abstraction, it gives a mature point of view on the OMicroB project by detailing precisely its principles and its implementation, and by enriching it with the latest evolutions. In Section 2 we thus describe our OCaml VM called OMicroB, and in particular the different steps taken to convert an OCaml source code into an executable program for a microcontroller. In Section 3 the powerful mechanism of OCaml's functors is used in order to propose a declarative way of describing the electronic circuit of a given application. This solution can be seen as a further hardware abstraction that increases portability and expressivity of our approach. In Section 4, we make use of the extensibility of the OCaml language to implement a synchronous programming extension to OCaml. This synchronous dataflow language offers an implicit model of concurrency that enjoys a new layer of abstraction for the concurrent aspects of a microcontroller's application. Every solution presented in this paper is accompanied by a practical example. Finally, we discuss in Section 5 our positioning relative to other projects dedicated to using high-level languages for programming microcontrollers. We conclude this article with an overview of current and future works dedicated to providing even more layers of abstraction and guarantees for programming microcontrollers.

The main advantages and contributions of our work are:

• Portability and safety of microcontroller programming thanks to the use of an OCaml virtual machine that can be easily adapted to various architectures.

• Compositionality of programs thanks to the abstraction of the electronic components of a circuit interacting with the microcontroller.

• A lightweight and safe model of concurrency provided by a synchronous extension to OCaml.

Each of these contributions constitute a high-level abstraction layer for programming microcontrollers (see Fig. 1).

Abstracting Hardware: The OMicroB Virtual Machine

In order to enhance the portability, as well as the expressivity and the safety of microcontroller programming, we developed OMicroB2 , a specialized implementation of the OCaml virtual machine (the ZAM -Zinc Abstract Machine [START_REF] Leroy | The ZINC experiment: an economical implementation of the ML language[END_REF]) that is designed to run on microcontrollers with limited resources. This implementation can indeed run non-trivial OCaml programs on small microcontrollers, and provides the embedded software developer with all the high-level programming paradigms of the OCaml language (functional, imperative, modular, object-oriented) and an increased safety through static typing and automatic memory management. Being written in standard C, this virtual machine (and its standard library) is highly portable, as we consider that the C language can be seen as a portable assembly language since most microcontroller architectures come with powerful enough C compilers. While our virtual machine approach has previously been described for AVR microcontrollers [START_REF] Varoumas | A Generic Virtual Machine Approach for Programming Microcontrollers: the OMicroB Project[END_REF], this work consists in a maturation of the OMicroB virtual machine with an extension of its runtime with more powerful and fine-tuned features (such as a new garbage collection algorithm and the handling of interrupts and callbacks). This has allowed porting OMicroB to new families of devices (ARM, PIC32) and microcontrollers (Micro:bit 2), and supporting evolutions of the OCaml virtual machine itself.
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Bytecode Interpreter and General Application Mechanism

One central component of OMicroB is a bytecode interpreter that is able to handle the entire bytecode instruction set produced by the standard OCaml bytecode compiler (ocamlc). ZAM is a functional virtual machine with eager evaluation and has a relatively small footprint with its 149 instructions, including imperative features, exceptions and method call. Its main memory areas (code, heap, stack, global values) are described in Figure 2. This stack-based interpreter, which uses multiple registers (an accumulator acc, a stack pointer sp, a program counter pc, a pointer to the highest exception handler in the stack (trap sp), etc). As described in Fig. 2, it notably performs the same optimized general application mechanism as the ZAM for n-ary function application, by using a specified extra args register that counts the number of additional arguments given to a function.

This mechanism prevents the VM from currying every function and systematically creating a new closure (represented by a classical environment-code pair) everytime a function with an arity of more than 1 is applied, which is costly. For this, a GRAB bytecode instruction is positioned before the instructions corresponding to the body of a function. This instruction deals with the three cases of application by checking extra args: total application, where the function is given as many arguments as it has parameters; partial application, where the function is given less arguments than its number of parameters (in that case, a new closure is created); and the case where there are more arguments than parameters, when the body of the function returns a closure that is immediately re-applied to the remaining arguments.

We illustrate this application mechanism using the code shown in Table 1. In this figure, the top-left code snippet defines an OCaml function called f that adds together its three parameters x, y, and z. The bottom left part of Table 1 shows the bytecode generated for this function. When f is applied, the GRAB 2 instruction checks if 2 (two) parameters are given in addition to the The code on the right corresponds to an application of the f function to three arguments. It first creates a closure corresponding to the function with CLOSURE, provided with a pointer to the code of the closure (L1) and a 0 to represent the absence of captured variable in the closure, and then pushes the arguments on the stack. Finally, it calls the function with the three arguments present in the stack via the APPLY 3 instruction, saving its current state in the stack and jumping to the bytecode located at label L1.

Table 2 shows the evolution of the content of the registers of the virtual machine during the execution of this example program. 

Optimizations and Data Representation

To offer a better control over the RAM footprint of their program, we allow the programmer to set up the size of words manipulated by the OMicroB virtual machine independently of the size of words of the hardware architecture. Some architectures we target handle 8-bit words (like PIC18 for example) but we consider not feasible to use an OCaml virtual machine with words shorter than 16-bits, in particular to implement code addresses, block addresses or floats. The size of the "virtual words" is configurable at compile time and the OMicroB virtual machine supports three dedicated representation of data for 16-bit, 32-bit and 64-bit words. The representation of values in OMicroB is uniform as in OCaml. Each value uses a word: either as an immediate value whose size fits in a word, or as an allocated value whose address also fits in a word. An allocated value uses a header (a word) followed by an array of values (words). Values that are allocated in the heap are said to be boxed, while immediate values are unboxed.

In order to be compatible with the very limited resources of microcontrollers, OMicroB implements various optimizations dedicated to reducing the memory footprint of programs. Notably, we use a particular representation of floating-point values, which differs from the standard implementation of the OCaml VM. In this standard implementation, integers and pointers to the heap are unboxed3 , while floating-point values (and other objects) are boxed. As this indirection can be costly for applications dealing with many floating-point values (for example when reading from analog sensors), we tweak this representation by using NaN-boxing of pointers: in OMicroB integer values have their least significant bit set to one, floats are unboxed immediate values 4 and pointers to the heap are encoded inside unused NaN values [START_REF]IEEE Standard for Floating-Point Arithmetic, IEEE Std[END_REF]. This representation does limit the address space to 2 22 different addresses for the 32 bits configuration of OMicroB, but we consider that this is sufficient for the majority of microcontrollers which seldom have more than 4MB of RAM. A single value is kept to represent all NaN values. This representation of OCaml values is described in Fig. 3 and is used by the garbage collector and the standard polymorphic compare function to differentiate immediate values (floats5 and integers) from pointers to heap-allocated values. Configured in 64-bit mode, the virtual machine provides a similar representation. In 16-bit mode, it provides 15-bit floats as 15-bit integers allowing addressing up to 64 kB memory. 
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pointer value (ends with 00) Another approach for reducing the memory footprint of a program consists in "compressing" it by encoding the bytecode in a C array of bytes (since there are only 149 different OCaml opcodes) where each instruction can be, if needed, followed either by a 1, 2, or 4-bytes constant depending on what is needed to hold the value of the instruction argument. In order to deal with these different sizes of arguments, the bytecode instruction set has been extended with new specialized versions of the bytecode instruction (for example, the BRANCH instruction is split in three versions: BRANCH_1B, BRANCH_2B, and BRANCH_4B).

Finally, we run partial evaluation at compile time up to the first input/output (I/O) of the program. The resulting state of the stack and the mutable part of the heap just before the first I/O are then dumped in the microcontroller Flash memory and copied into RAM at starting time. The non-mutable part of the heap (typically made of closures, constant strings and some other constant blocks) is dumped into a "Flash heap segment" never copied into the RAM memory. This almost removes the memory impact of the use of a functional programming language that usually takes up the microcontroller RAM memory with closures. It also speeds up starting time removing the need to compute initialization code on the microcontroller that often need a significant stack size. At last, by expanding toplevel functors at compile time, it improves our algorithm for dead code elimination.

Garbage Collection

As introduced in the previous section, we allocate parts of the values in Flash memory (drawn in blue in Fig. 4). Flash allocated values are physically immutable but can point to mutable blocks stored in RAM. However, our GC algorithms may move blocks. The RAM heap has then to be divided into dynamic and static heaps. Static blocks (ie. blocks stored in the static heap), should not be moved but their internal pointers can. They are never cleaned by the GC but it does not matter since they are pointed by Flash blocks that are immortal. Pointers from Flash blocks to dynamic blocks (like the red one in Fig. 4) are forbidden but never happen since Flash blocks are immutable.

Figure 4: Representation of OMicroB memories

To distinguish these different pointers and not to try to move the pointers of the Flash memory or the static area, we use two extra bits. As a complement to Fig. 3, here is the representation for 32 bits architectures:

Heap (D) (RAM): 0 19 20 31 0 1 1 1 1 1 1 1 1 1 0 0 x x x x x x x x x x x x x x x x x x 0 0 Heap (S) (RAM): 0 19 20 31 0 1 1 1 1 1 1 1 1 1 0 1 x x x x x x x x x x x x x x x x x x 0 0 Heap (F) (Flash): 0 19 20 31 0 1 1 1 1 1 1 1 1 1 1 0 x x x x x x x x x x x x x x x x x x 0 0
Hardware abstraction is also provided by the use of automatic memory management algorithms, with two different garbage collector algorithms from which the developer can choose, one focusing on speed and the other on memory.

The first one is a classical "stop-and-copy" algorithm as described and compared in [START_REF] Wilson | Uniprocessor Garbage Collection Techniques[END_REF]. Although simple and time efficient, this algorithm needs to use half of the available RAM to perform copies. This is not ideal for microcontrollers, where RAM is often scarce, but its speed is useful for some applications.

OMicroB therefore also features a new "mark-and-compact" algorithm that allows using the whole heap memory to store living blocks. Like "stop-and-copy", this GC algorithm always keeps blocks contiguous, allowing fast allocation. When full, the heap is compacted by moving all living blocks to the beginning of the heap. To avoid using extra memory space (except one word by block header as usual), as is the case in the OCaml distribution, this algorithm uses the "pointerinversion" technique. It performs three passes over the heap:

1. reverse pointers to each living block by chaining memory cells that point to it and put the head of this chain in its header, saving its header in the tail of the chain; 2. plan the destination address of each living block after compaction, then go through the chain of cells that should point to it to update pointers with its upcoming address and restore its header; 3. compact heap by moving living blocks to their planned addresses.

Since the second and third passes jump from block to block over the whole heap, not only over living blocks, this "mark-and-compact" algorithm is slower than "stop-and-copy" on most programs. However, "mark-and-compact" makes better usage of the memory and therefore runs less frequently. Since its execution time depends on the topology of the memory graph, it is in general impossible to advise the optimal choice to the programmer.

Interrupts and Callbacks

MCU programming makes significant use of hardware interrupts. It is possible to trigger a given task periodically (through timer interrupts), or when the state of an IO changes. We want to be able to give access to this mechanism at the user-level, in the OCaml programming language.

We first need to be able to treat interrupts at the C level. This treatment differs depending on the MCU architecture. For instance, on the AVR architecture, this can easily be done by defining an interrupt handler function through a macro named ISR.

We also need to allow users to define OCaml callbacks which are OCaml functions that can be called from C code. In the standard OCaml virtual machine, callbacks are run by launching a new instance of the virtual machine, solely to run the callback function. This means initializing a new stack and more registers for this new VM instance. We choose a more parsimonious approach by saving the current registers of the VM, and making a function call (using the APPLY instruction). Using this mechanism on interrupts can be problematic. As the interrupt can be fired at any time, including during a GC run or in the middle of the execution of an instruction, saving and changing the VM registers may lead to unpredictable behavior. Our solution is to wait for the end of the current VM instruction to execute the callback. When triggered, the interrup raises a flag which is checked by the VM. Thanks to these mechanisms, the user can define arbitrary callbacks to be called on interrupt. For instance, the code below flashes a LED for 0.5s, every 3s. pin_mode PIN13 OUTPUT; Timer0.set_period 3000; Timer1.set_period 500; Timer0.set_callback (fun () -> digital_write PIN13 HIGH); Timer1.set_callback (fun () -> digital_write PIN13 LOW);

Compilation Chain

The compilation chain of an OCaml program using OMicroB is shown in Fig. 5. The source code of OCaml programs (with a specific standard library for microcontrollers) is firstly given to the standard ocamlc bytecode compiler. Note that since OMicroB uses this standard compiler, regular OCaml debugging tools such as ocamldebug are also entirely compatible with OMicroB. The resulting OCaml bytecode file is then given to the pre-existing ocamlclean tool that performs dead-code elimination. Then, a tool specific to this project, called bc2c, embeds this bytecode into a C file as multiple arrays of bytes representing the program instructions and global variables for pre-initialized heaps, stack and global variables. This C file is then linked with the interpreter and the runtime library (written in C), and used with a suitable C compiler (such as avr-gcc for AVR devices, xc8 for PIC devices, gcc to run the program on a PC for simulation, or some other specific compilation tools for other microcontrollers).

Thanks to the high level of abstraction of the OCaml virtual machine, the structure of OCaml bytecode files is quite stable, only some instructions have been added during the last decade. The main recent changes concern the memory representation of exceptions and closures. To maintain compatibility with OCaml versions, we separate parsing of bytecode files in a generic library called OByteLib that exports them into normalized data structures. This library is used by the bc2c converter.

Simulation and Debugging

It should be noted that the execution environment is constrained: no operating system, no memory access check, no simple standard communication interface (keyboard/screen). We therefore make it possible to test the program before transferring it to the microcontroller. Since the VM and its runtime is written in standard C, OMicroB can even be compiled and run on a standard PC for simulation and debugging purposes. This allows for low level debugging such as bytecode execution tracing, checking the memory accesses (using tools such as valgrind and gdb) and examining the memory dumps.

We also provide a simulator for AVR microcontrollers that can display on a Graphical User Interface (GUI) the state of the General Purpose Input/Output (GPIO) pins of the microcontroller during the execution, as well as its interactions with various analog and digital external devices (LEDs, buttons, displays, . . . ).

The following listing presents the language used to describe circuits for use in the simulator. Here, we describe a simple timer, with buttons to increase and decrease the desired time, and a button to start and stop the timer. The graphical interface for this circuit is presented in Fig. 6 on the left. The user can interact with the buttons, as he would on a real circuit. The simulator also displays the current state of the microcontroller, showing on and off pins. window width=500 height=260 title="Timer" lcd16x2 x=30 y=100 e=PIN12 rs=PIN11 d4=PIN2 d5=PIN3 d6=PIN4 d7=PIN5 button x=85 y=40 width=60 color=black label="START" pin=PIN6 button x=405 y=55 width=20 height=20 label="+" pin=PIN7 button x=405 y=25 width=20 height=20 label="-" pin=PIN8 led x=145 y=40 pin=PIN9 color=green This gives developers an easier way to debug their programs, without having to test it directly on an actual microcontroller, which is time consuming and can sometimes cause hardware destruction. The simulator is generic, and supports every AVR-based board supported by OMicroB (Arduino Uno, Arduino Mega, Arduboy). We are currently working on extending it to other architectures supported by OMicroB (the ARM based micro:bit, and PIC32).

Performance

In this section, we measure the performance of OMicroB on both PC and the BBC micro:bit microcontroller. We run OMicroB with the default command line options, which means using the Mark&Compact GC and activating all optimizations. The test programs are chosen to test different features of the VM and are meant to get an intuition of its performance. They execute function application using lambdas (church), recursive functions (fibonacci), functions with memory allocation (takeuchi), floating-point number calculations (integr), object-oriented programming (object), and more complex algorithms like sorting using binary search trees (treesort) or solving the n-queens problem using linked lists (nqueens).

We first compare, in Fig. 7 the running time of the test programs using OMicroB and the stock OCaml virtual machine ocamlrun. OMicroB is around three times slower than ocamlrun; this means that the choices we had to make to port the OMicroB VM to low-resource architectures do incur performance loss, but not severely so.

We also compare our examples with equivalent C programs compiled with gcc -O2. We omit the church test (which applies functions to represent Church encoding of integers) from these tests, since this program requires creation of closures, which makes it impractical to implement in C. We also omit the object test in C, since it is about handling objects, which are not available in the language. Unsurprisingly, the OCaml programs are generally slower. The cases where OCaml can approach or even outspeed C are the programs with heavy dynamic allocation (takeuchi and treesort). We now compare OMicroB performance to C and MicroPython on the micro:bit device (16MHz, 16 kB RAM, 256 kB Flash memory). We use the subset of OCaml test programs which could be ported to Python without changing too much the structure of the code (the tests that made too much use of recursivity weren't ported to Python as MicroPython's maximal recursion depth is very limited on this device -less than 10). As shown in Figure 8, OMicroB tends to be faster than (Micro)Python, and unsurprisingly slower than C.

We also compare the size in flash memory for OCaml and C programs. There is a small overhead in the flash size of OCaml programs due to the inclusion of the virtual machine. However, this overhead would be compensated for larger source programs. 

Application: A Snake Game

OMicroB is lightweight enough to use OCaml for programming microcontrollers with very scarce resources. For example, we have been successful in running an OCaml implementation of the "Snake" game on a little device called Arduboy. This credit card-sized handheld device, used by hobbyists for designing small gaming applications (typically in C), notably features an ATmega32u4 microcontroller with only 2.5 kB of RAM and 32 kB of Flash memory.

The behavior of the game has been described in OCaml using high-level constructs provided by the language, such as exceptions. For example, the following function which defines the main loop of the game uses exceptions to detect (using the try/with construct) when the game is won or lost: Besides the game logic itself, all hardware interactions (especially with an OLED display using a Serial Peripheral Interface (SPI)) have also been implemented in OCaml. This provides the flexibility and safety of a high-level language for programming low-level interfaces. For example, the booting sequence of the SPI connection is done using the Array.iter function to iterate on an array representing the boot program and apply the function Spi.transfer on each element of this array: This program is built using the 16bits version of the OMicroB VM, and just setting a stack size of 64 values and a heap-size of 300 values is sufficient to run it. A picture of the device running the Snake game, together with information about its memory use, is given on Fig. 9. The game logic takes 182 lines of OCaml code, while 90 lines of OCaml code are responsible for the interactions with the display (including the booting sequence displayed above) and just 42 lines are used to represent the rest of the device (buttons, LEDs).

Size on flash Size on RAM 15,174 bytes 1,060 bytes 

Abstracting Architectures and Electronic Components

As our virtual machine was designed in a generic way, it is fitting to provide the end user with a generic, architecture-agnostic way to interact with the microcontroller. We take advantage of OCaml module system, and rely on various features of the language which leverage its strong static typing (such as Algebraic Data Types, polymorphic variants, and Generalized Algebraic Data Type), to do so.

Hardware and Foreign Function Interface

To define low-level functions that manipulate the hardware, we can use the Foreign Function Interface (FFI) of OCaml, which allows the user to call functions written in C. We use this functionality to give access to MCU primitives, such as the one that manipulate hardware directly. Among these may be the functions to read and write digital or analog signals to the GPIO, or to control the timers of the MCU. Of course, we want to use the high-level features of OCaml to somewhat abstract and protect these low-level calls.

Algebraic Data Types and pattern-matching

As we want to provide a generic description of the hardware, we may start with the GPIO interface of the microcontroller. It is constituted of a finite set of pins, on which the program may read or write digital or sometimes analog signals. In a typical OCaml program, we may implement these pins with an Algebraic Data Type (ADT). The listing below shows such an ADT for an hypothetical microcontroller with three pins. Note that the last constructor, PINAn carries its pin number as a value of type int: ADTs may be simple enumerated types, or more general sum types with data specific to each constructor.

If we wanted to write a function that returns the pin number, we could leverage the patternmatching feature of the OCaml language, by defining a different behavior for each constructor. 

Generalized Algebraic Data Types

A powerful extension of these types are Generalized Algebraic Data Type (GADT)s. They allow to specify more constraints on type parameters of value constructors, and to use existentially quantified type variables. In a GADT, the type declaration is parameterized by zero, one or several type variables. Each constructor may use a different instantiation of these type variables. In the example below, we use this feature to differentiate between pins that do or do not support reading analog signals. Among other features, this construction allows us to define functions and patterns matching on a subset of the constructors of the type. Take for instance the analog_write function above. Its primary role is to protect calls to unsafe_analog_write, an external C function defined using the FFI. It takes as input the number of an analog pin, and an integer to write to this pin. With the definition below, the pattern-matching of analog_write is total, because, by typing, we know that parameter p,which has type analog pin, can only be PINA0 , since this is the only constructor of this type. Conversely, the type checker would reject calls to analog_write PIN0 or analog_write PIN1.

GADTs and polymorphic variants

The definition above is a good step in the direction of a precise pin type, but we wish to refine it once more. Indeed, on a microcontroller, there may be some pins that support both Pulse-Width-Modulation (PWM) writing and analog reading, some that support one but not the other, some that support neither, and some that support other features. To make our specification generic, we need a way to specify some kind of "list" of the features of a given pin. This may be achieved using OCaml's polymorphic variants [START_REF] Garrigue | Programming with polymorphic variants[END_REF]. These constructs allows one to use variant "tags" that are not tied to a specific declared type. Such a tag is noted with a backtick ('DREAD), and a variant type can be given with a pipe-separated list of tags, enclosed with square brackets. For instance, the type ['DREAD | 'DWRITE] has two tags. Polymorphic variants allow for a limited form of subtyping. The polymorphic variant type [< 'DREAD | 'DWRITE ] (note the <) denotes a sub-type of any type that contains at most the 'DREAD and 'DWRITE constructors. In particular, it is a subtype of both [ 'DREAD ] and [ 'DWRITE ]. We can use this mechanism to specify pins that have different capabilities. Suppose for example that all pins support digital reading and writing, that only PIN1 supports PWM writing, and that only PINA0 supports analog reading, we would write the following type declaration. From here, we can give a type to functions that is specific to pins with a given feature. For instance, the call digital_read on [ 'DREAD ] pin type-checks, while the call to analog_read function type-checks only for a [ 'AREAD ] pin. Therefore, we can pass PINA0 to the analog_read function, but not PIN0 or PIN1; this is enforced entirely by the type-checker, at compile time.

A Common Module Interface

Now that we have defined the type of pins using a GADT, and that we know how to manipulate the hardware, we can outline a minimal list of core features we wanted to support for all devices. Most of the architectures require a pin to be set either as an input or an output. This configuration can also be changed at runtime. We therefore provide a type mode as well as a function pin_mode, which accepts any pin. Once the mode is set, the user can either read or write a digital value (represented as a binary type level) on the pin with functions digital_read and digital_write. Moreover, most devices also allow some of the GPIO pins to process analog signals; we provide two functions analog_read and analog_write to treat these signals. We represent analog values by integers in the range [0; 1024[. Finally, we provide two primitives to handle time: delay pauses the execution for a given number of milliseconds, while millis returns the number of milliseconds elapsed since the start of the program. These names are inspired from the Arduino library. Our goal was indeed to provide an easy transition from the Arduino environment to OMicroB.

We package these definitions in a single module type. In OCaml, modules allows the programmer to define a reusable set of types and functions. The implementation of modules may be abstracted under an interface (or signature), using the module type syntax. This is what we do below. These functions are defined as calls through the FFI to device-specific C primitives. The OCaml library is organized in modules for each of the supported architecture, each with an implementation of the MCUConnection signature. In the case of architecture's having several controllers (e.g. Avr), a root module contains architecture-specific definitions while the device-specific ones (mostly the pin type) are defined in sub-modules.

Having introduced a consistent naming scheme for our types and functions means that the end user's code can target interchangeably any architecture, simply by changing the opened module (and possibly sub-module). This is done automatically by OMicroB when choosing a target device, using the -open option of ocamlc. This means that a program such as the one below (which blinks a LED connected on PIN2) can be compiled for any microcontroller (with at least two pins) by simply changing a command line option. pin_mode PIN2 OUTPUT; while true do digital_write PIN2 HIGH; delay 500; digital_write PIN2 LOW; delay 500 done

Describing High-Level Components with Functors

Having defined a sufficient set of primitives, we can move onto a higher level of abstraction, by representing not only connections, but electronic components, such as LEDs, push buttons, or more complex devices like LCDs. We rely again on OCaml's module system. We make use of the module interface MCUConnection described in 3.5. This interface is implemented once per device. It provides the basic features to interact with the microcontroller.

To program external devices, we must write code that in some way interacts with this interface. In OCaml, this can be done using functors, that is, functions that take modules as input and build new modules. For instance, the functor MakeLCD below expects a module that respects the LCDConnection interface. This interface can be instantiated by extending the MCUConnection interface with a number of pins through which the display communicates with the MCU. The instantiated functor returns a module of type Display, that exposes high-level functions that manipulate the component. The definition of MakeLCD, not shown here, uses the lower-level functions from MCUConnection to implement these. Using this approach, we can also provide two interfaces for communication protocols I 2 C and SPI. [START_REF] Leens | An introduction to I2C and SPI protocols[END_REF]. These interfaces are implemented for every model of microcontroller which supports them, and can be used to instantiate higher level functors (for instance, for the SSD1306 display, which uses the I 2 C standard).

A Generic Application: The MicroPong Game

We now illustrate the usage of this module system, from the user point of view. We built a multiplayer version of the well-known game "Pong". This is an opportunity to demonstrate how the communication between several microcontrollers can be set up using only OCaml code. Two of these microcontrollers are designated as players, using buttons to move their respective paddles. The last microcontroller acts as the server, receiving the players input and displaying the game on a connected screen. The players also display their current score on their respective screens. In this application, we will use the BBC micro:bit, an ARM-based education-focused microcontroller, supported by OMicroB. The standout components of the micro:bit are a 5x5 LED-matrix display, two mounted-on buttons, an accelerometer and a Bluetooth/radio antenna. The ARM Cortex-M0 MCU on the micro:bit provides 16 kB of RAM, which is more than most AVR-based platforms, and useful for more memory-intensive applications.

Devices Used

We have chosen to use two BBC micro:bit for both the server and one of the player, so that they can communicate using the radio module. To experiment with our approach, we make the second player communicate with the server not via radio but via SPI; this means both players are running slightly different progams. SPI is a wired, synchronous communication protocol implemented by most microcontrollers, including the BBC micro:bit. Thanks to the genericity of our approach, we may use any microcontroller that supports SPI as the second player without changing its program; in our experiment, we chose the Arduino Uno. We show in Fig. 10 how the three microcontrollers are interfaced. In this figure, the plain arrows denote a physical connection between two elements, while a dashed arrow denotes a wireless (radio) connection.

Program

We show below how the server's modules are instantiated. Notably, the instantiation of the I2C module requires an address parameter. The I2C module can then be used to instantiate a MakeSSD1306 functor, which is used to control a SSD1306 OLED display. As seen in this example, we have defined a syntactic extension for instantiating modules, using the OCaml PPX rewriter system. Indeed, in our implementation instantiating a module can be verbose, as it requires the user to include the MCUConnection module along with the actually useful declarations. We hide this behind the module%comp which indicates the start of an extension point. For instance, the third line of the listing expands to the module declaration below. The rest of the server's code (80 lines of OCaml) uses these modules generic interfaces, but does not rely on any other device-specific code. We give below a (simplified) snippet of the communication code for the server. The server communicates the player's scores over radio. It then receives the input of the Left player over SPI, and the one of the Right player over radio. Note that this piece of code does not depend on any architecture-specific functions, but only on the instantiated modules. This is also the case for the rest of the server code, which is mainly concerned with calculating the trajectory of the ball and displaying it, using the SSD1306 display module. There is no dependency between the logic of the program and the chosen device.

Radio.send ("sr" ˆstring_of_int !scoreR); Radio.send ("sl" ˆstring_of_int !scoreL); let lpos = int_of_char (SPIM.transmit !scoreL) and rpos = Radio.recv () in if lpos <> 0 then lY := lpos; if String.length rpos = 1 then rY := rpos.[0];

Abstracting Concurrency: The OCaLustre Extension

As we have seen in the previous section, the PPX language extension system available in the standard OCaml compiler can give developers powerful means of providing tailor-suited programming constructs for specific uses. Since programs for microcontrollers are inherenlty concurrent because of their fast and often unordered reactions to external stimuli, we thus propose another use of PPX to define a specialized concurrent programming extension to the OCaml language that suits the programming of embedded software.

This extension, called OCaLustre (based on the prototype presented in [START_REF] Varoumas | Concurrent Programming of Microcontrollers, a Virtual Machine Approach[END_REF] and extended with a multi-clock system and a new sequential code generation), is based on the synchronous dataflow language Lustre [START_REF] Caspi | Lustre: A Declarative Language for Programming synchronous systems[END_REF]. The OCaLustre extension follows the main principle of Lustre, where the time taken for computing the outputs values of a program based on its inputs values is considered as being nil. This principle, known as the synchronous hypothesis [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF], results in a powerful abstraction that provides a deterministic model of concurrency. Indeed, scheduling of all the (possibly interdependent) concurrent logical aspects of a program is computed by the compiler, thus producing sequential code of an imperative language that is semantically equivalent to the given synchronous program. Note that phenomena of causality loops, where two concurrent elements of a program depend instantaneously on each other, are detected by the compiler, which rejects such semantically undefined programs. OCaLustre produces imperative OCaml code, entirely compatible with OMicroB.

Synchronous Nodes and Operators

As in Lustre, the main construct of an OCaLustre program is called a node, which is akin to an instantaneous function computing values for output flows from values of input flows. The following code defines a node (with the let%node notation), called plus_minus, which receives two a and b flows as inputs, and produces two p and m flows which values are respectively the sum and the difference of the inputs:

let%node plus_minus (a, b) ∼return:(p, m) = p = a + b; m = a -b
The body of a node is a system of equations that defines the values of its outputs (and possible local flows). It is solved at each program's "tick" (called a synchronous instant), in a logical zero time. The p and m flows are thus considered as two concurrently computed outputs.

Besides classical arithmetic/boolean operators, OCaLustre provides various synchronous operators. The ->> operator (akin to the Lustre followed-by -or fby -operator) permits the definition of a flow as a constant value for the first instant of the program, followed by the previous value of an expression for the subsequent instants. For example, the following node defines a cpt flow that is 0 at the beginning of the program, and then is the previous value of cpt + 1 for every subsequent instant, representing an incrementing counter. This flow is reset (by a modulo operation) each time the counter is greater than the value of the reset input flow:

let%node count (reset) ∼return:(cpt) = cpt = (0 ->> (cpt + 1)) mod reset
The PPX rewriter system transforms a valid (possibly annotated) OCaml AST into another valid OCaml AST. OCaml's system of annotations is thus used in OCaLustre to define positive and negative sampling operators, that provide a way to condition the presence of flows using other boolean flows. We use the [@when b] (resp. [@whennot b]) annotation to convey the fact that a flow has a value only when the b flow evaluates to true (resp. false), and in other cases is considered as having no value (and thus should not be evaluated): we say that this flow is positively (resp. negatively) sampled by b. For example, the following node counts the number of times its inputs are true together (modulo 100) because count cannot be called with an absent input:

let%node call_count (x, y) ∼return:(clk, z) = clk = (x && y); z = count (100 [@when clk])
The clk flow is called the clock of z, which is the flow which determines the presence of z. Flows that are not explicitly sampled are said to be on the base clock of their node: they are computed each time the node in which they are defined is applied.

Figure 11 shows the possible evolution of the values of the different flows of the call_count node over time. A blank cell indicates that a flow is absent (i.e. it does not have a value) for the corresponding instant.

A merge operator is used to combine oppositely sampled flows: its first parameter is a clock (a boolean flow), its second parameter is a flow positively sampled by this clock ([@when clk]) and its third parameter is a flow negatively sampled by the same clock ([@whennot clk]). For example, the following code combines the value of two flows oppositely sampled. Since the clock that samples Clocking rules can be seen as a type system [START_REF] Colaço | Clocks as First Class Abstract Types[END_REF], and OCaLustre uses an inference algorithm to determine the clock of each flow.

Sequential Code Generation

The OCaLustre compiler generates sequential OCaml code from each node definition that is present in an OCaLustre program, as well as code for the main loop of the program, that each instant reads its inputs, runs the synchronous program, and writes its outputs. The generated code has a low memory footprint, on RAM as well as on Flash memory: for example, the following is the sequential OCaml code produced by compilation of the count node: This code only uses the functional and imperative kernel of the OCaml language, and thus induces a limited sequence of bytecode instructions. The produced bytecode is 20 instructions long, compatible with OMicroB, and can run on microcontrollers with limited resources.

OCaLustre can also be set to produce non-allocating OCaml code, creating functions that take a mutable record value as input, representing the internal state of a node, and update it at each instant of the program. Thus, the generated code never triggers the garbage-collection algorithm, since every update is done in place, and no memory is allocated. Morever, it is possible to analyse the execution time of the program [START_REF] Varoumas | WCET of OCaml Bytecode on Microcontrollers: An Automated Method and Its Formalisation[END_REF]. However, this code tends to result in a longer bytecode for the same OCaml application, and we thus give the choice to the user to decide between timing guarantees and a smaller memory footprint. Moreover, calls to standard OCaml code may themselves still trigger the GC, and this "non-allocating" version is thus only compatible with synchronous programs which do not make use of all the features of OCaml.

Example: Chocolate Tempering Machine

We now present a concrete application using OCaLustre: a chocolate tempering machine. This machine is useful for melting chocolate while keeping it at a controlled temperature. We prototype such a machine using an arduino uno, a heating component and a temperator sensor.

Circuit

The circuit is presented on Fig. 14. It contains two buttons, controlling the desired temperature, a screen displaying the desired and actual temperature, a heating element, and a temperature sensor. We assume that the heating element simply takes a digital signal as input, indicating if it should be on or off. We also assume that the temperature sensor produces an analog signal between 0 and 5V, that can be read using analog_read. 

Program

We now specify the behavior of the system as an OCaLustre program. The first two nodes, thermo_on and set_wanted_temp specify the behavior of the buttons. Pressing both buttons at the same time toggles the system on and off. Otherwise, pressing only one of the buttons increases or decreases the desired temperature, expressed in tenth of Celsius degrees. The following node calculates the "heating proportion" (expressed in percent). It depends on the difference between wanted and current temperature, and should not exceed 100. It should also not vary too quickly in time, and is therefore calculated using the proportion at the previous time step. The timer node implements software Pulse-Width-Modulation. The signal produced is true for prop percents of the time. By averaging this boolean signal overtime, the physical system will behave as if it was fed an analog signal with the corresponding intensity. The heat node feeds the calculated property to the timer node to determine if the resistor should be on or off. As calculating a new proportion is somewhat costly, it is only done once every 10 steps. Finally, all these nodes are put together by thermo. The outputs are a signal indicating if the system is on, the wanted and real temperatures, and if the resistor should turn on. let%node thermo(p,m,realtemp) ∼return:(on,wanted,real,resistor) = on = thermo_on (p,m); wanted = set_wanted_temp (p[@when on], m[@when on]); real = realtemp [@when on]; heat = real < wanted; resistor = merge on heat (false [@whennot on])

The inputs and outputs of the main node (thermo) are passed from and to the environment through OCaml functions that are easily written thanks to the high-level interface provided with OMicroB. When the compiler is given the name of the main node, the generated code automatically calls these interfacing functions at the beginning and end of every instant: 

Simulation

In Fig. 15, we show the interactive simulation of the program described above. The behavior of the chocolate is not simulated, so the user has to input manually the "actual" temperature of the simulated chocolate using the analog slider. The LED on the left indicates if the heating is on or off. 

Discussion and Conclusion

In this article, we have shown how it is possible to use a feature-rich programming language like OCaml in embedded systems, offering to developers safety thanks to its type system and its synchronous extension OCaLustre on the one hand, and on the other hand expressiveness thanks to its multi-paradigm approach (functional, imperative, object, modular). We have been able to run relatively complex applications, even considering the scarcity of memory (only a few kilobytes of RAM) on some microcontrollers. This thanks to numerous optimizations both in terms of code size reduction (dead code detection, specialized instructions on argument size, elimination of useless instructions) and memory usage reduction (partial evaluation, use of Flash memory for non-moveable data, choice of GC algorithms).

Several similar efforts and experiments have been made in the past to port high-level languages for programming microcontrollers. We compare these experiments on the following criteria: ease of implementation, smallness, expressivity, safety, efficiency, and on the language families: scripting languages, dynamic languages, statically typed languages, imperative, object and functional languages, and then for the concurrency with synchronous languages. The ease of implementation of the language is a criterion that has allowed certain ports to be made, such as for imperative languages like Forth with tinyForth6 which implements the interpreter in AVR assembler, or the more generic PIcForth7 for PIC16Fxxx family. It is the same for functional programming with Scheme kernels like microScheme [START_REF] Suchocki | Microscheme: Functional programming for the Arduino[END_REF] which simplifies memory management. Still in Scheme, the PicoBit experiment [START_REF] St-Amour | PICOBIT: A Compact Scheme System for Microcontrollers[END_REF] follows the virtual machine approach. One of the interests of Lisp machines is to be able to integrate also the Read-Eval-Print Loop (REPL) and the compiler to the bytecode, the whole compiler and bytecode interpreter with the REPL remaining small as for example the Ribbit machine [START_REF] Yvon | A Small Scheme VM, Compiler, and REPL in 4k[END_REF].

The Lua scripting language, whose implementation is small, has a version for microcontroller 8which allows to use the different programming features targeting a virtual machine with memory management. In this category of dynamic languages, easy to program, we also find the Python and JavaScript familiesusing code source interpreter or virtual machine approaches. We can note many experiments in JavaScript as for the most widespread the Espruino 9 interpreter or 10 using a virtual machine. Similarly for Python, microPython [START_REF] Bell | MicroPython for the Internet of Things: A Beginner's Guide to Programming with Python on Microcontrollers[END_REF] uses a virtual machine to run the produced bytecode by its compiler. It is even distributed directly loaded on the Pyboard hardware, a Cortex M4 with 512 kB Flash ROM and 128 kB RAM.

The efficiency of these languages is still low, hence experiments such as Warduino [START_REF] Singh | WARDuino : a dynamic WebAssembly virtual machine for programming microcontrollers[END_REF] (Web Assembly for Arduino) or WAMR 11 (Web Assembly Micro Runtime), which target Web Assembly to improve the speed of execution. For a greater efficiency of imperative languages in a statically typed framework, there are implementations of Ada [START_REF] Andersen | Programming Arduinos in Ada, Free and Open Source Software Developers[END_REF] and Rust on microcontroler 12 . Memory management is manual, although for Rust it is safer thanks to its type system. On the other hand tinyGo 13 for Goland has an automatic memory management. In the same way, in object oriented languages, experiments in Java and C# have followed the virtual machine approach as Darjelling [START_REF] Brouwers | Darjeeling, a Java Compatible Virtual Machine for Microcontrollers[END_REF] or microEJ 14 for Java, and .NET Nanoframework 15 even if it means not implementing all the features of these very rich languages.

While these languages offer nice high-level abstractions, and sometimes even some functional programming features, we are more interested in a fully functional model. Closer to our work are PICOBIT [START_REF] St-Amour | PICOBIT: A Compact Scheme System for Microcontrollers[END_REF] and AtomVM 16 which aims to port the Scheme (resp. Erlang) programming language to microcontrollers, using a virtual-machine based approach. Haskell, a statically-typed, purely functional programming language was also used to program microcontrollers through Haskino [START_REF] Grebe | Haskino: A Remote Monad for Programming the Arduino[END_REF], using a monadic method restricting the programmer to a subset of the language. Juniper [START_REF] Helbling | Juniper: a functional reactive programming language for the Arduino[END_REF], an ML-style Functional Reactive language was also designed specifically to be run on Arduino cards. In contrast to these two latter works, we preferred to port the entire existing OCaml language, in order to take advantage of existing OCaml programs and libraries.

For concurrency models, the same criteria of smallness, expressiveness and safety are necessary. For this purpose, the classical models of preemptive threads are not desirable. Lua brings a model of co-routines, quite simple to implement but low level to program. In the languages of the ML family several systems are experienced. RTMLton [START_REF] Shivkumar | RTMLton: An SML Runtime for Real-Time Systems[END_REF] proposes an SML runtime for real time systems where the modified GC facilitates the predictability of execution times, and the concurrent model is thread based. Closer to our concerns, the SynchronVM virtual machine (previously senseVM [START_REF] Sarkar | Higher-order concurrency for microcontrollers[END_REF]) provides a higher-order concurrency model based on message passing, based on synchronous channels (à la Concurrent ML [START_REF] Reppy | Concurrent programming in ML[END_REF]) by integrating hardware interrupts into this mechanism. Handling a mini-Caml, the size of the programs and the execution times are quite large compared to OMi-croB, nevertheless the synchronous channels approach is an interesting abstraction for software components.

We leveraged the low-level abstractions given by OMicroB to provide a way to write portable code for multiple microcontroller architectures, with minimal hurdle for the user. Static typing and automatic memory management increase reliability, but it is also necessary to abstract the circuit composition and the concurrency model to provide guarantees at these levels. OCaml-like typing based on polymorphic variants and GADT, as well as the use of functors, allows to compose more easily the different components of a circuit while guaranteeing the correctness of the communications between them. Of course, it would have been possible to build this kind of abstraction through inheritance and structural sub-typing of OCaml objects, with greater memory consumption. Similar behavior can be achieved with Python's object layer for code reuse via inheritance, but to guarantee static typing, it would be necessary to have a static analysis on the object code in the presence of late binding, which isn't always easy, even though static analyses using abstract interpretation are now focusing on dynamic languages, as for example with Python's MOPSA tool [START_REF] Monat | A multilanguage static analysis of python programs with native C extensions[END_REF]. The OCaml module system allowed us to build a compositional and generic component system. This allows us to represent circuits, and could eventually be abstracted through a Domain Specific Language, or a graphical editor. Finally, the extensibility of the OCaml language allowed us to define a synchronous extension which also uses the OCaml type system to provide strong guarantees about its execution.

Our future works include porting OMicroB to new architectures, which should require minimum efforts given the genericity of our approach. For example Raspberry Pi or ESP microcontrollers, which offer interesting applications for the Internet of Things, but we would also like to broaden the targets towards FPGA reconfigurable circuits as shown by the work on O2B which uses the OMicroB machinery on a softcore processor to then call specialized circuits [START_REF] Sylvestre | Accelerating OCaml Programs on FPGA[END_REF]. Moreover, we would like to try an innovative way to interface the synchronous part (OCaLustre nodes) and the sequential part (the code of the host language -OCaml, in this case) of a program. In the current implementation, external calls from OCaLustre nodes to OCaml functions block synchronous flows, breaking the concept of the synchronous clocks. We are currently designing a new Foreign Function Interface (FFI) for OCaLustre using concurrency thanks to Virtual Machine threads. This new interface would allow to run external calls to sequential functions during multiple synchronous ticks and to smoothly manage them through synchronous flows.

Other synchronous programming languages, inspired by Esterel [START_REF] Berry | The Esterel Synchronous Programming Language: Design, Semantics, Implementation[END_REF], that do not rely on flows but on events may also be well adapted to the programming of embedded systems, as such systems can be seen as interactive systems for which timely reaction to events is paramount. For example, the ReactiveML language [START_REF] Mandel | ReactiveML: a reactive extension to ML[END_REF], based on a synchronous reactive model, seems to be an ideal candidate to develop reactive embedded OCaml-like programs. Some early attempts of adapting ReactiveML for OCaPIC/OMicroB have been conducted, but the large size of the generated OCaml bytecode is a current drawback. Nonetheless, we maintain interest in this approach and are planning on pursuing our work on this subject, as having a model that blends OCaLustre and "microReactiveML" could be very valuable.

OCaml version 5.0 was recently released with several important modifications, including new virtual machine instructions, parallel programming including GC and a relaxed memory model. Some points of GC parallelization could be used to build a real-time GC, or at least one that progresses at each step in a bounded time. However, the need for progression and synchronization increases the size of the runtime library, making it impossible to run OCaml programs in small microcontrollers. For the time being, we recommend keeping the size of OMicroB executables small, to target low-resource microcontrollers with a pre-allocated synchronous part and a computation part that can freeze computation. Nevertheless, the possibility of guaranteeing that the computations launched do not disturb the synchronous part should be studied to extend the programming model.

For more communicating applications requiring system libraries, we are interested in the unikernel approach of MirageOS [START_REF] Madhavapeddy | Unikernels: Library Operating Systems for the Cloud[END_REF] which includes only the components necessary for the application. The idea is to be able to use them directly, because the program and MirageOS components are written in OCaml and easily interoperable, thus allowing to dimension correctly the cloud parts for IoT applications.

Finally, we would like to build a more user-friendly IDE (Integrated Development Environment), reminiscent of the Arduino environment, in order to use OMicroB as an educational tool. For this to gain a wider adoption, it would be useful to be able to run, as MicroPython, Ribbit or WARDuino do, an interactive OCaml REPL on the microcontroller.
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 1 Figure 1: High-level abstractions provided by this work
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 5 Figure 5: The OMicroB compilation chain
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 6 Figure 6: Simulation of a simple timer

  let init_len = 10 in let init_dir = South in let snake = create max_len init_x init_y init_len init_dir in let apple = ref (create_apple snake) in draw_first_apple !apple; try while true do move apple snake; update_direction snake; ( * pause for a duration that depends on the current length * ) delay (max_len -snake_length snake); done with | Win -> (digital_write Arduboy.g LOW) ( * light up the green LED * ) | Lose -> (digital_write Arduboy.r LOW) ( * light up the red LED * )

  ; ( * Set display clock divisor = 0xF0 * ) 0x8D ; 0x14; ( * Enable charge Pump * ) 0xA1 ; ( * Set segment re-map * ) 0xC8 ; ( * Set COM Output scan direction * ) 0x81; 0xCF; ( * Set contrast = 0xCF * ) 0xD9; 0xF1; ( * Set precharge = 0xF1 * ) 0xAF; ( * Display ON * ) 0x20; 0x00 ( * Set display mode = horizontal addressing mode * ) |] let transfer_program prog = Array.iter Spi.transfer prog let boot = ( * ... omitted for brevity ... * ) transfer_program boot_program;

Figure 9 :

 9 Figure 9: An OCaml game of Snake running on an Arduboy

  let analog_write (p : analog pin) (lvl : int) = match p with | PINA0 -> unsafe_analog_write 0 lvl

  type 'a pin = | PIN0 : [< 'DREAD | 'DWRITE ] pin | PIN1 : [< 'DWRITE | 'DREAD | 'PWM ] pin | PINA0 : [< 'DWRITE | 'DREAD | 'AREAD ] pin

  module type MCUConnection = sig type 'a pin = ... type mode = INPUT | OUTPUT type level = LOW | HIGH val pin_mode : 'a pin -> mode -> unit val digital_read : [ 'DWRITE ] pin -> level val digital_write : [ 'DREAD ] pin -> level -> unit val analog_read : [ 'AREAD ] pin -> int val analog_write : [ 'PWM ] pin -> int -> unit val delay : int -> unit val millis : unit -> int end

  module type Display = sig val init: unit -> unit val print_string: string -> unit val set_pixel: int -> int -> bool -> unit val clear_screen: unit -> unit end module type LCDConnection = sig type 'a pin type level include Circuits.MCUConnection with type 'a pin := 'a pin with type level := level val rsPin: [ 'DWRITE ] pin val enablePin: [ 'DWRITE ] pin val d4Pin: [ 'DWRITE ] pin val d5Pin: [ 'DWRITE ] pin val d6Pin: [ 'DWRITE ] pin val d7Pin: [ 'DWRITE ] pin end module MakeLCD(L: LCDConnection): Display
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 10 Figure 10: MicroPong app structure

module

  I2C = I2C(struct let address = 0x3C end) module Scr = Ssd1306.MakeSSD1306(I2C) module%comp LeftLed = MakeLed(struct let cPin = PIN1 end) module%comp RightLed = MakeLed(struct let cPin = PIN2 end) module%comp SPIM = MakeSPIMaster(struct let sPin = PIN0 end)

module

  LeftLed = MakeLed(struct include MCUConnection let cPin = PIN1 end)

  false true true false . . . y true false true true true true true . . . clk true false true false true true false . . .

Figure 11 :

 11 Figure 11: Clock sampling
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 13 Figure 13: Multiple clock sampling

  let count () = let _cpt_aux1_fby = ref 0 in fun reset -> let _cpt_aux1 = !_cpt_aux1_fby in let cpt = _cpt_aux1 mod reset in _cpt_aux1_fby := (cpt + 1); cpt
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 14 Figure 14: Temperature controlled chocolate heater

  let%node thermo_on(p,m) ∼return:(b) = b = (true ->> if p && m then not b else b) let%node set_wanted_temp (p,m) ∼return:(w) = w = (325 ->> if p then w+5 else if m then w-5 else w)

  let%node update_prop (wtemp,ctemp) ∼return:(prop) = delta = min (10,max (-10,wtemp-ctemp)); delta2 = if delta < 0 then (-delta * delta) else (delta * delta); offset = min (10,delta2); pre_prop = (0 ->> prop); prop = min (100,max (0, (pre_prop+offset)))

  let%node timer (prop) ∼return:(alarm) = time = (0 ->> (time + 10)) mod 100; alarm = time < prop; let%node heat (w,c) ∼return:(h) = count = (0 ->> count + 1) mod 10; update = (count = 0); prop = merge update (update_prop (w [@when update],c [@when update])) ((0 ->> prop) [@whennot update]); h = timer (prop)

Figure 15 :

 15 Figure 15: Simulation of the heater

Table 1 :

 1 Generated bytecode for f and its application

	6

Table 2 :

 2 Evolution of the VM registers over the program execution * pc represents the program counter for the next instruction in the caller.

	instruction	accumulator	stack	environment extra args
	CLOSURE L1, 0	L1	[]	[]	0
	PUSH	L1	[L1]	[]	0
	CONST 6	6	[L1]	[]	0
	PUSH	6	[6, L1]	[]	0
	CONST 5	5	[6, L1]	[]	0
	PUSH	5	[5, 6, L1]	[]	0
	CONST 4	4	[5, 6 , L1]	[]	0
	PUSH	4	[4, 5, 6, L1]	[]	0
	ACC 3	L1	[4, 5, 6, L1]	[]	0
	APPLY3	L1	[4, 5, 6, pc * , [], 0, L1]	[]	2
	GRAB 2	L1	[4, 5, 6, pc, [], 0, L1]	[]	0
	ACC 2	6	[4, 5, 6, pc, [], 0, L1]	[]	0
	PUSH	6	[6, 4, 5, 6, pc, [], 0, L1]	[]	0
	ACC 2	5	[6, 4, 5, 6, pc, [], 0, L1]	[]	0
	PUSH	5	[5, 6, 4, 5, 6, pc, [], 0, L1]	[]	0
	ACC 2	4	[5, 6, 4, 5, 6, pc, [], 0, L1]	[]	0
	ADDINT	9	[6, 4, 5, 6, pc, [], 0, L1]	[]	0
	ADDINT	15	[4, 5, 6, pc, [], 0, L1]	[]	0
	RETURN 3	15	[L1]	[]	0

Open source repository of the project: https://github.com/stevenvar/OMicroB

As an effect of alignment all addresses end with 0, so integers are represented with a least significant bit set to 1.

Note that typing prevents a floating-point value ending with 1 from being confused with an integer value.

Negative floats have their exponent and mantissa inverted in order to be compatible with compare, which at runtime cannot distinguish between two integers or two floats: this way their ordering relation stays the same.

In Japanese: http://middleriver.chagasi.com/electronics/tforth.html

https://rfc1149.net/devel/picforth.html

http://www.eluaproject.net
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The merge operator is the only OCaLustre operator that works on flows that do not share the same clocks. For example, the following code is incorrect (and the OCaLustre compiler reports the error) because it is attempting to add together two flows on two different clocks: Additionally, clocks themselves can be sampled, and various layers of sampling can be achieved, as seen in the following example, where each flow is annotated with a comment identifying its clock: The intricacies of sampling for this example are displayed in Figure 13. The array represents the