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Abstract. Evaluation in Information Retrieval (IR) relies on post-hoc
empirical procedures, which are time-consuming and expensive opera-
tions. To alleviate this, Query Performance Prediction (QPP) models
have been developed to estimate the performance of a system without
the need for human-made relevance judgements. Such models, usually
relying on lexical features from queries and corpora, have been applied
to traditional sparse IR methods – with various degrees of success. With
the advent of neural IR and large Pre-trained Language Models, the
retrieval paradigm has significantly shifted towards more semantic sig-
nals. In this work, we study and analyze to what extent current QPP
models can predict the performance of such systems. Our experiments
consider seven traditional bag-of-words and seven BERT-based IR ap-
proaches, as well as nineteen state-of-the-art QPPs evaluated on two
collections, Deep Learning ’19 and Robust ’04. Our findings show that
QPPs perform statistically significantly worse on neural IR systems. In
settings where semantic signals are prominent (e.g., passage retrieval),
their performance on neural models drops by as much as 10% compared
to bag-of-words approaches. On top of that, in lexical-oriented scenarios,
QPPs fail to predict performance for neural IR systems on those queries
where they differ from traditional approaches the most.

1 Introduction

The advent of Neural IR (NIR) and Pre-trained Language Models (PLM) in-
duced considerable changes in several central IR research and application areas,
with implications that are yet to be fully tamed by the research community.
Query Performance Prediction (QPP) is defined as the prediction of the perfor-
mance of an IR system without human-crafted relevance judgements and is one
of the areas the most interested by advancements in NIR and PLM domains.
In fact, i) PLM can help developing better QPP models, and ii) it is not fully
clear yet whether current QPP techniques can be successfully applied to NIR.
With this paper, we aim to explore the connection between PLM-based first-
stage retrieval techniques and the available QPP models. We are interested in
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investigating to what extent QPP techniques can be applied to such IR systems,
given i) their fundamentally different underpinnings compared to traditional
lexical IR approaches, ii) that they hold the promise to replace – or at least
complement – them in multi-stage ranking pipelines. In return, QPP advantages
are multi-fold: it can be used to select the best-performing system for a given
query, help users in reformulating their needs, or identify pathological queries
that require manual intervention from the system administrators. Said otherwise,
the need for QPP still holds for NIR methods. Among the plethora of available
QPP methods, most of them rely on lexical aspects of the query and the col-
lection. Such approaches have been devised, tested, and evaluated in predicting
the performance of lexical bag-of-words IR systems – from now on referred to
as Traditional IR (TIR) – with various degrees of success. Recent advances in
Natural Language Processing (NLP) led to the advent of PLM-based IR sys-
tems, which shifted the retrieval paradigm from traditional approaches based on
lexical matching to exploiting contextualized semantic signals – thus alleviating
the semantic gap problem. To ease the readability throughout the rest of the
manuscript, with an abuse of notation, we use the more general term NIR to
explicitly refer to first-stage IR systems based on BERT [13].

At the current time, no large-scale work has been devoted to assessing whether
traditional QPP models can be used for NIR systems – which is the goal of this
study. We compare the performance of nineteen QPP methods applied to seven
traditional TIR systems, with those achieved on seven state-of-the-art first-stage
NIR approaches based on PLM. We consider both pre- and post-retrieval QPPs,
and include in our analyses post-retrieval QPP models that exploit lexical or
semantic signals to compute their predictions. To instantiate our analyses on
different scenarios we consider two widely adopted experimental collections: Ro-
bust ‘04 and Deep Learning ‘19. Our contributions are as follows:

– we apply and evaluate several state-of-the-art QPP approaches to multiple
NIR retrievers based on BERT, on Robust ‘04 and Deep Learning ‘19;

– we observe a correlation between QPPs performance and how different NIR
architectures perform lexical match;

– we show that currently available QPPs perform reasonably well when applied
to TIR systems, while they fail to properly predict the performance for NIR
systems, even on NIR oriented collections;

– we highlight how such decrease in QPP performance is particularly promi-
nent on queries where TIR and NIR performances differ the most – which
are those queries where QPPs would be most beneficial.

The remainder of this paper is organized as follows: Section 2 outlines the
main related endeavours. Section 3 details our methodology, while Section 4
contains the experimental setting. Empirical results are reported in Section 5.
Section 6 summarizes the main conclusions and future research directions.
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2 Related Work

The rise of large PLM like BERT [13] has given birth to a new generation of NIR
systems. Initially employed as re-rankers in a standard learning-to-rank frame-
work [35], a real paradigm shift occurred when the first PLM-based retrievers
outperformed standard TIR models as candidate generators in a multi-stage
ranking setting. For such a task, dense representations, based on a simple pool-
ing of contextualized embeddings, combined with approximate nearest neighbors
algorithms, have proven to be both highly effective and efficient [37, 30, 49, 28,
22, 29]. ColBERT [31, 41] avoids this pooling mechanism, and directly models
semantic matching at the token level – allowing it to capture finer-grained rele-
vance signals. In the meantime, another research branch brought lexical models
up to date, by taking advantage of BERT and the proven efficiency of inverted
indices in various manners. Such sparse approaches for instance learn contextu-
alized term weights [10, 34, 55, 33], query or document expansion [36], or both
mechanisms jointly [21, 20]. This new wave of NIR systems, which substantially
differ from lexical ones – and from each other – demonstrate state-of-the-art
results on several datasets, from MS MARCO [3] on which models are usually
trained, to zero-shot settings such as the BEIR [46] or LoTTE [41] benchmarks.

A well-known problem linked to IR evaluation is the variation in performance
achieved by different IR systems, even on a single query [4, 9]. To partially ac-
count for it, a large body of work has focused on predicting the performance
that a system would achieve for a given query, using QPP models. Such mod-
els are typically divided into pre- and post-retrieval predictors. Traditional pre-
retrieval QPPs leverage statistics on the query terms occurrences [26]. For exam-
ple, SCQ [53], VAR [53] and IDF [8, 42] combine query tokens’ occurrence indica-
tors, such as Collection Frequency (CF) and Inverse Document Frequency (IDF),
to compute their performance prediction score. Post-retrieval QPPs exploit the
results of IR models for the given query [4]. Among them, Clarity [7] compares
the language model of the first k retrieved documents with the one of the entire
corpus. NQC [43], WIG [54] and SMV [45] exploit the retrieval scores distribution
for the top-ranked documents to compute their predictive score. Finally, Utility
Estimation Framework (UEF) [44] serves as a general framework that can be
instantiated with many of the mentioned predictors, pre-retrieval ones included.
Post-retrieval predictors are based on lexical signals – SMV, NQC and WIG rely
on the Language Model scores estimated from top-retrieved documents, while
Clarity and UEF exploit the language models of the top-k documents.

We further divide QPP models into traditional and neural approaches. Among
neural predictors, one of the first approaches is NeuralQPP [50] which computes
its predictions by combining semantic and lexical signals using a feed-forward
neural network. Notice that NeuralQPP is explicitly designed for TIR and is
hence not expected to work better with NIR [50]. A similar approach for Ques-
tion Answering is NQA-QPP [24], which also relies on three neural components
but, unlike NeuralQPP, exploits BERT [13] to embed tokens semantics. Simi-
larly, BERT-QPP [2] encodes semantics via BERT, but directly fine-tunes it to
predict query performance based on the first retrieved document. Subsequent
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approaches extend BERT-QPP by employing a groupwise predictor to jointly
learn from multiple queries and documents [5] or by transforming its pointwise
regression into a classification task [12]. Since we did not consider multiple formu-
lations, we did not experiment with such approach in our empirical evaluation.

Although traditional QPP methods have been widely used over the years,
only few works have been done to apply them on NIR models. Similarly, neu-
ral QPP methods – which model the semantic interactions between query and
document terms – have been mostly designed for and evaluated on TIR models.
Two noteworthy exceptions concerning the tested IR models are [24] who eval-
uate the devised QPP on pre-BERT approaches for Question Answering (QA),
while [11] assess the performance of their approach on DRMM [23] (pre-BERT)
and ColBERT [31] (BERT-based) as NIR models. Hence, there is an urgent need
to deepen the evaluation of QPP on state-of-the-art NIR models to understand
where we are, what are the challenges, and which directions are more promising.

A third category that can be considered a hybrid between the groups of
predictors mentioned above is passage retrieval QPP [38]. In [38], authors exploit
lexical signals obtained from passages’ language models to devise a predictor
meant to better deal with passage retrieval prediction.

3 Methodology

Evaluating Query Performance Predictors. QPP models compute a score
for each query, that is expected to correlate with the quality of the retrieval
for such query. Traditional evaluation of QPP models relies on measuring the
correlation between the predicted QPP scores and the observed performance
measured with a traditional IR measure. Typical correlation coefficients include
Kendall’s τ , Spearman’s ρ and the Pearson’s r. This evaluation procedure has
the drawback of summarizing, through the correlation score, the performance of
a QPP model into a single observation for each system and collection [15, 16].
Therefore, Faggioli et al. [15] propose a novel evaluation approach based on the
scaled Absolute Rank Error (sARE) measure that, given a query q, is defined
as sARE(q) =

|Re
q−Rp

q |
|Q| , where Re

q and Rp
q are the ranks of the query q induced

by the IR measure and the QPP score respectively, over the entire set of queries
of size |Q|. With “rank” we refer to the ordinal position of the query if we sort
all the queries of the collection either by IR performance or prediction score. By
switching from a single-point estimation to a distribution of performance, sARE
has the advantage of allowing conducting more powerful statistical analyses and
carrying out failure analyses on queries where the predictors are particularly bad.
To be comparable with previous literature, we report in Sec. 5.1 the performance
of the analyzed predictors using the traditional Pearson’s r correlation-based
evaluation. On the other hand, we use sARE as the evaluation measure for the
statistical analyses, to exploit its additional advantages. Such analyses, whose
results are reported in Sec. 5.2, are described in the remainder of this section.
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ANOVA. To assess the effect induced by NIR systems on QPP performance, we
employ the following ANalysis Of VAriance (ANOVA) models. The first model,
dubbed MD1, aims at explaining the sARE performance given the predictor, the
type of IR model and the collection. Therefore, we define it as follows:

sAREijpqr = µ+ πp + ηi + χj + (ηχ)ij + ϵijpqr, (MD1)

where µ is the grand mean, πp is the effect of the p-th predictor, ηi represents
the type of IR model (either TIR or NIR), χj stands for the effect of the j-th
collection on QPP’s performance, and (ηχ)ij describes how much the type of
run and the collection interact and ϵ is the associated error.

Secondly, since we are interested in determining the effect of different pre-
dictors in interaction with each query, we define a second model, dubbed MD2,
that also includes the interaction factor and is formulated as follows:

sAREipqr = µ+ πp + τq + ηi + (πτ)qp + (πη)pi + (τη)iq + ϵipqr, (MD2)

Differently from MD1, we apply MD2 to each collection separately. Therefore,
having a single collection, we replace the effect of the collection with τq, the
effect for the q-th topic. Furthermore, the model includes also all the first-order
interactions.

The Strength of Association (SOA) [39] is assessed using ω2 measure com-
puted as:

ω2
<fact> =

df<fact> ∗F<fact>

df<fact> ∗(F<fact> − 1) ∗N
,

where N is the number of experimental data-points, df<fact> is the factor’s
number of Degrees of Freedom (DF), and F<fact> it the F statistics computed by
ANOVA. As a rule-of-thumb, ω2 < 6% indicates a small SOA, 6% ≤ ω2 < 14%
is a medium-sized effect, while ω2 ≥ 14% represent a large-sized effect.

ANOVA Models have been fitted using anovan function from the stats MAT-
LAB package. In terms of sample size, depending on the model and collection
at hand, we considered 19 predictors, 249 topics in the case of Robust ‘04 and
43 for Deep Learning ‘19 and 14 different IR systems for a total of 66234 and
11438 observations for Robust ‘04 and Deep Learning ‘19 respectively.

4 Experimental Setup

Our analyses focus on two distinct collections: Robust ‘04 [47], and TREC Deep
Learning 2019 Track (Deep Learning ‘19) [6]. The collections have respectively
249 and 43 topics each and are based on TIPSTER and MS MARCO passages
corpora. Robust ‘04 is one of the most used collections to test lexical approaches,
while providing a reliable benchmark for NIR models [48] – even though they
struggle to perform well on this collection, especially when evaluated in a zero-
shot setting [46]. Deep Learning ‘19 concerns passage retrieval from natural
questions – the formulation of queries and the nature of the documents (passages)
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make the retrieval harder for TIR approaches, while NIR systems tend to have
an edge in retrieving relevant documents.

Our main objective is to assess whether existing QPPs are effective in predict-
ing the performance of different state-of-the-art NIR models. As reference points,
we consider seven TIR methods: Language Model with Dirichlet (LMD) and Je-
linek–Mercer (LMJM) smoothing [52], BM25, vector space model [40] (TFIDF),
InExpB2 [1] (InEB2), Axiomatic F1-EXP [17] (AxF1e), and Divergence From
Independence (DFI) [32]. TIR runs have been computed using Lucene. For the
NIR methods, we focus on BERT-based first-stage models. We consider state-
of-the-art models from the three main families of NIR models, which exhibit dif-
ferent behavior, and thus might respond to QPPs differently. We consider dense
models, i) a “standard” bi-encoder (bi) trained with negative log-likelihood,
ii) TAS-B [28] (bi-tasb) whose training relies on topic-sampling and knowledge
distillation iii) and finally CoCondenser [22] (bi-cc) and Contriever [29] (bi-ct)
which are based on contrastive pre-training. We also consider two models from
the sparse family: SPLADE [21] (sp) with default training strategy, and its im-
proved version SPLADE++ [19, 20] (sp++) based on distillation, hard-negative
mining and pre-training. We finally consider the late-interaction ColBERTv2 [41]
(colb2). Models are fine-tuned on the MS MARCO passage dataset; given the
absence of training queries in Robust ‘04, they are evaluated in a zero-shot man-
ner, similarly to previous settings [46, 41]. Besides the bi-encoder we trained on
our own, we rely on open-source weights available for every model. The advantage
of considering multiple TIR and NIR models is that i) we achieve more general-
izable results: different models, either TIR or NIR perform the best in different
scenarios and therefore our conclusions should be as generalizable as possible;
ii) it allows to achieve more statistical power in the experimental evaluation. We
focus our analyses on Normalized Discounted Cumulated Gain (nDCG) with
cutoff 10, as it is employed across NIR benchmarks consistently. This is not the
typical setting for evaluating traditional QPP – which usually considers Average
Precision (AP)@1000. Nevertheless, given our objective – determining how QPP
performs on settings where NIR models can be used successfully – we are also
interested in selecting the most appropriate measure.

Concerning QPP models, we select the most popular state-of-the-art ap-
proaches. In details, we consider 9 pre-retrieval models: Simplified query Clarity
Score (SCS) [27], Similarity Collection-Query (SCQ) [53], VAR [53], IDF and
Inverse Collection Term Frequency (ICTF) [8, 42]. For SCS, we use the sum ag-
gregation, while for others we use max and mean, which empirically produce
the best results. In terms of post-retrieval QPP models, our experiments are
based on Clarity [7], Normalized Query Commitment (NQC) [43], Score Magni-
tude and Variance (SMV) [45], Weighted Information Gain (WIG) [54] and their
UEF [44] counterparts. Among post-retrieval predictors, we also include a su-
pervised approach, BERT-QPP [2], using both bi-encoder (bi) and cross-encoder
(ce) formulations. We train BERT-QPP5 for each IR system on the MS MARCO

5 We use the implementation provided at https://github.com/Narabzad/BERTQPP
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Table 1: nDCG@10 for the selected TIR and NIR systems. NIR outperform traditional
approaches on Deep Learning ‘19, and have comparable performance on Robust ‘04.

axF1e BM25 LMD LMJM TFIDF DFI InEB2 bi bi-tasb bi-cc bi-ct sp sp++ colbv2

Deep Learning ‘19 0.45 0.48 0.45 0.48 0.37 0.47 0.49 0.64 0.72 0.72 0.67 0.71 0.73 0.75
Robust ‘04 0.39 0.44 0.43 0.40 0.31 0.44 0.44 0.23 0.45 0.30 0.46 0.39 0.45 0.47

training set, as proposed in [2]. Similarly to what is done for NIR models, we
apply BERT-QPP models on Robust ‘04 queries in a zero-shot manner.

5 Experimental Results

5.1 QPP models performance

Figures 1a and 1b refer, respectively, to Robust ‘04 and Deep Learning ‘19 collec-
tions and report the Pearson’s r correlation between the scores predicted by the
chosen predictors and the nDCG@10, for both TIR and NIR runs6. The pres-
ence of negative values indicates that some predictors fail in specific contexts and
has been observed before in the QPP setting [25]. For Robust ‘04, we notice
that – following previous literature – pre-retrieval (top) predictors (mean corre-
lation: 15.9%) tend to perform 52.3% worse than post-retrieval ones (bottom)
(mean correlation: 30.2%). Pre-retrieval results are in line with previous litera-
ture [51]. The phenomenon is more evident (darker colors) for NIR runs (right)
than TIR ones (left). Pre-retrieval predictors fail in predicting the performance
of NIR systems (mean correlation 6.2% vs 25.6% for TIR), while in general, to
our surprise, we notice that post-retrieval predictors tend to perform similarly
on TIR and NIR (34.5% vs 32.3%) – with some exceptions. For instance, for bi,
post-retrieval predictors either perform extremely well or completely fail. This
happens particularly on Clarity, NQC, and their UEF counterparts. Note that
bi is the worst performing approach on Robust ‘04, with 23% of nDCG@10 –
the second worst is bi-cc which achieves 30% nDCG@10.

The patterns observed for Robust ‘04 hold only partially on Deep Learning
‘19. For example, we notice again that pre-retrieval predictors (mean correlation:
14.7%) perform 58.3% worse than post-retrieval ones (mean correlation: 35.3%).
On the contrary, the difference in performance is far more evident between NIR
and TIR. On TIR runs, almost all predictors perform particularly well (mean
correlation: 38.1%) – even better than on Robust ‘04 collection. The only three
exceptions are SCQ (both in avg and max formulations) and VAR using max
formulation. Conversely, on NIR the performance is overall lower (13.1%) and
relatively more uniform between pre- (5.4%) and post-retrieval (19.9%) models.
In absolute value, maximum correlation achieved by pre-retrieval predictors for
NIR on Deep Learning ‘19 is much higher than the one achieved on Robust ‘04,

6 Additional IR measures and correlations, as well as full ANOVA tables are available
at: https://github.com/guglielmof/ECIR2023-QPP
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axF1e BM25 LMD bi bi-cc bi-ct bi-tasb sp sp++ colbv2
run

SCSsum

SCQavg

SCQmax

ICTFavg

ICTFmax

IDFavg

IDFmax

VARavg

VARmax

Clarity

NQC

SMV

WIG

UEFClarity

UEFNQC

UEFSMV

UEFWIG

BERTQPPce

BERTQPPbi

0.27 0.27 0.34 -0.1 0.01 0.02 0.03 0.06 0.08 0.02

0.17 0.19 0.25 -0.00 0.08 0.08 0.13 0.12 0.10 0.09

0.2 0.21 0.29 0.1 0.13 0.10 0.14 0.12 0.10 0.1

0.28 0.27 0.34 -0.06 0.02 0.02 0.02 0.06 0.08 0.03

0.27 0.26 0.34 0.02 0.03 0.04 0.03 0.06 0.09 0.03

0.29 0.28 0.35 -0.04 0.02 0.04 0.03 0.08 0.09 0.04

0.28 0.27 0.36 0.04 0.04 0.05 0.05 0.07 0.10 0.04

0.15 0.13 0.18 0.04 0.05 0.07 0.06 0.11 0.11 0.06

0.2 0.21 0.29 0.1 0.13 0.10 0.14 0.12 0.10 0.1

0.24 0.29 0.43 -0.32 0.22 0.1 0.24 0.3 0.25 0.41

0.29 0.43 0.46 -0.25 0.27 0.28 0.32 0.41 0.37 0.31

0.24 0.45 0.46 0.6 0.32 0.33 0.36 0.47 0.44 0.41

0.35 0.34 0.44 0.63 0.39 0.26 0.34 0.42 0.33 0.51

0.32 0.41 0.48 0.02 0.43 0.24 0.39 0.44 0.4 0.51

0.23 0.42 0.48 -0.23 0.38 0.3 0.4 0.5 0.39 0.44

0.19 0.4 0.49 0.61 0.4 0.32 0.41 0.5 0.44 0.5

0.37 0.43 0.5 0.63 0.48 0.28 0.42 0.48 0.42 0.52

0.22 0.24 0.25 0.51 0.28 0.22 0.15 0.36 0.08 0.34

0.19 0.13 0.13 0.43 0.02 0.03 0.08 0.16 0.01 0.23

0.2

0.0

0.2

0.4

0.6

(a) Robust ‘04

axF1e BM25 LMD bi bi-cc bi-ct bi-tasb sp sp++ colb2
run

SCSsum

SCQavg

SCQmax

ICTFavg

ICTFmax

IDFavg

IDFmax

VARavg

VARmax

Clarity

NQC

SMV

WIG

UEFClarity

UEFNQC

UEFSMV

UEFWIG

BERTQPPce

BERTQPPbi

q
p
p

0.44 0.42 0.46 -0.07 0.09 0.16 0.08 0.2 -0.08 -0.04

-0.03 -0.11 -0.05 0.07 -0.18 -0.07 -0.17 0.02 -0.15 -0.18

-0.18 -0.29 -0.24 0.12 -0.23 -0.13 -0.15 -0.01 -0.10 -0.12

0.49 0.45 0.49 -0.00 0.1 0.22 0.13 0.24 -0.03 0.03

0.47 0.45 0.46 0.02 0.17 0.32 0.26 0.26 0.1 0.18

0.5 0.45 0.48 0.02 0.11 0.23 0.14 0.25 -0.02 0.04

0.49 0.46 0.46 0.03 0.18 0.32 0.26 0.26 0.1 0.18

0.58 0.51 0.49 0.09 0.16 0.17 0.16 0.22 -0.00 0.05

-0.18 -0.29 -0.24 0.12 -0.23 -0.13 -0.15 -0.01 -0.10 -0.12

0.45 0.31 0.23 0.31 0.04 0.05 0.2 0.03 -0.00 0.06

0.54 0.62 0.58 0.18 0.21 0.32 0.12 0.24 0.11 0.03

0.51 0.56 0.56 0.28 0.34 0.31 0.18 0.26 0.12 0.04

0.49 0.48 0.53 0.52 0.12 0.32 0.25 0.31 0.11 0.3

0.52 0.48 0.58 0.55 0.36 0.24 0.3 0.01 0.31 0.25

0.5 0.61 0.57 0.3 0.32 0.27 0.16 0.18 0.23 0.14

0.47 0.53 0.55 0.4 0.4 0.33 0.22 0.22 0.23 0.12

0.56 0.55 0.64 0.6 0.34 0.31 0.32 0.24 0.27 0.37

0.47 0.38 0.58 0.31 0.23 0.15 0.05 -0.05 -0.04 -0.08

0.36 0.35 0.53 0.12 0.19 0.052 -0.04 -0.18 -0.09 0.01

0.2

0.0

0.2

0.4

0.6

(b) Deep Learning ‘19

Fig. 1: Pearson’s r correlation observed for different pre (top) and post (bottom) re-
trieval predictors on lexical (left) and neural (right) runs. To avoid cluttering, we report
the results for the 3 main TIR models, other models achieve highly similar results.

especially for bi-ct, sp, and bi-tasb runs. On the other hand, post-retrieval
predictors, perform worse than on the Robust ‘04. The only exception to this pat-
tern is again represented by bi, on which some post-retrieval predictors, namely
WIG, UEFWIG, and UEFClarity work surprisingly well. The supervised BERT-
QPP shows a trend similar to other post-retrieval predictors on Deep Learning
‘19 (42.3% mean correlation against 52.9% respectively) for what concerns TIR,
with performance in line with the one reported in [2]. This is exactly the setting
where BERT-QPP has been devised and tested. If we focus on Deep Learning
‘19 and NIR systems, its performance (mean correlation: 4.5%) is far lower than
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Table 2: Pearson’s r QPP performance for three versions of sp++ applied on Robust ‘04,
with varying degree of sparsity (sp++2 ≻ sp++1 ≻ sp++0 in terms of sparsity). The more
“lexical” are the models, the better QPP performs. dl and ql represent respectively the
average document/query sizes (i.e. non-zero dimensions in SPLADE) on Robust ‘04.

dl/ql Clarity NQC SMV WIG UEFClarity UEFNQC UEFSMV UEFWIG

sp++2 55/22 0.26 0.31 0.46 0.42 0.44 0.4 0.48 0.5
sp++1 79/29 0.2 0.34 0.47 0.35 0.38 0.4 0.46 0.43
sp++0 204/45 0.25 0.37 0.44 0.33 0.4 0.39 0.44 0.42

those of other post-retrieval predictors (mean correlation without BERT-QPP:
23.8%). Finally, its performance on Robust ‘04 – applied in zero-shot – is con-
siderably lower compared to other post-retrieval approaches.

Interestingly, on Robust ‘04, post-retrieval QPPs achieve, on average, top per-
formance on the late interaction model (colb2), followed by sparse approaches
(sp and sp++). Finally, excluding bi, where predictors achieve extremely incon-
sistent performance, dense approaches are those where QPP perform the worst.
In this sense, the performance that QPP methods achieve on NIR systems seems
to correlate with the importance these systems give to lexical signals. In this re-
gard, Formal et al. [20] observed how late-interaction and sparse architectures
tend to rely more on lexical signals, compared to dense ones. To further corrob-
orate this observation, we apply the predictors to three versions of SPLADE++
with various levels of sparsit as controlled by the regularization hyperparame-
ter. Increasing the sparsity of representations leads to models that cannot rely
as much on expansion – emphasizing the importance given to lexical signals in
defining the document ranking. Therefore, as a first approximation, we can deem
sparser methods to be also more lexical. Given the low performance achieved by
pre-retrieval QPPs, we focus this analysis on post-retrieval methods only. Table 2
shows the Pearson’s r for the considered predictors and different SPLADE++
versions. Interestingly, in the majority of the cases, QPPs perform the best for
the sparser version (sp++2), followed by sp++1 and sp++0 – which is the one used
in Fig. 1. There are a few switches, often associated with very close correlation
values (SMV and UEFClarity). Only one predictor, NQC, completely reverses
the order. This goes in favour of our hypothesis that indeed QPP performance
tends to correlate with the degree of lexicality of the NIR approaches. Although
not directly comparable, following this line of thought, sp, being handled better
by QPPs (cfr. Fig. 1a), is more lexical than all the sp++ versions considered: this
is reasonable, given the different training methodology. Finally, colb2, being the
method where QPPs achieve the best performance, might be the one that, at
least for what concerns the Robust ‘04 collection, gives the highest importance
to lexical signals – in line with what was observed in [21].

5.2 ANOVA Analysis

To further statistically quantify the phenomena observed in the previous sub-
section, we apply MD1 to our data, considering both collections at once. From a
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Fig. 2: Comparison between the mean sARE (sMARE) achieved over TIR or NIR when
changing the corpus. Observe the large distance between results on NIR – especially
for Deep Learning ‘19 – compared to the one on TIR runs.

quantitative standpoint, we notice that all the factors included in the model are
statistically significant (p-value < 10−4). In terms of SOA, the collection factor
has a small effect (0.02%). The run type, on the other hand, impacts for ω2 =
0.48%. Finally, the interaction between the collection and run type, although
statistically significant, has a small impact on the performance (ω2 = 0.05%):
in both collections QPPs perform better on TIR models. All factors are signifi-
cant but have small-size effects. This is in contrast with what was observed for
the performance of IR systems [18, 9], where most of the SOA range between
medium to large. Nevertheless, it is in line with what was observed by Faggioli
et al. [15] for the performance QPP methods, who showed that all the factors
besides the topic are small to medium. A second observation is that it is likely
that the small SOAs are due to a model unable to accrue for all the aspects of
the problem – more factors should be considered. Model MD2, introducing also
the topic effect, allows for further investigation of this hypothesis.

We are now interested in breaking down the performance of the predictors
according to the collection and type of run. Figure 2 reports the average per-
formance (measured with sMARE, the lower the better) for QPPs applied on
NIR or TIR runs over different collections, with their confidence intervals as
computed using ANOVA. Interestingly, regardless of the type of collection, the
performance achieved by predictors on NIR models will on average be worse than
those achieved on TIR runs. QPP models perform better on TIR than NIR on
both collections: this explains the small interaction effect between collections and
run types. Secondly, there is no statistical difference between the performance
achieved by QPPs applied to TIR models when considering Deep Learning ‘19
and Robust ‘04– the confidence intervals are overlapping. This goes in contrast
with what happens on Robust ‘04 and Deep Learning ‘19 when considering NIR
models: QPPs approaches applied on the latter dataset perform by far worse
than on the former.

While on average we will be less satisfied by QPP predictors applied to NIR
regardless of the type of collection, there might be some noticeable exceptions
of good performing predictors also for NIR systems. To verify this hypothesis,
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Table 3: p-values and ω2 SOA using MD2 on each collection

Deep Learning ‘19 Robust ‘04
p-value ω2 p-value ω2

topic < 10−4 22.5% < 10−4 24.0%
qpp < 10−4 1.65% < 10−4 2.21%

run type < 10−4 4.35% < 10−4 0.11%
topic*qpp < 10−4 22.7% < 10−4 17.2%

topic*run type < 10−4 15.2% < 10−4 10.0%
qpp*run type 0.0012 0.23% < 10−4 0.30%
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Fig. 3: sMARE observed for different predictors on Deep Learning ‘19 (left) and Robust
‘04 (right). On Deep Learning ‘19, predictors behave differently on TIR and NIR runs,
while they are more uniform on Robust ‘04.

we apply MD2 to each collection separately, and measure what happens to each
predictor individually7. Table 3 reports the p-values and ω2 SOA for the factors
included in MD2, while Figure 3 depicts the phenomena visually. We observe
that, concerning Deep Learning ‘19, the run type (TIR or NIR) is significant,
while the interaction between the predictor and the run type is small: indeed
predictors always perform better on TIR runs than on NIR ones. The only
model that behaves slightly differently is Clarity, with far closer performance for
both classes of runs – this can be explained by the fact that Clarity is overall
the worst-performing predictor. Notice that, the best predictor on TIR runs –
NQC – performs almost 10% worse on NIR ones. Finally, we notice a large-
size interaction between topics and QPP models – even bigger than the topic
or QPP themselves. This indicates that whether a model will be better than
another strongly depends on the topic considered. An almost identical pattern
was observed also in [15]. Therefore, to improve QPP’s generalizability, it is
important not only to address challenges caused by differences in NIR and TIR
but also to take into consideration the large variance introduced by topics. We
analyze more in detail this variance later, where we consider only “semantically
defined” queries.

7 To avoid cluttering, we report the subsequent analyses only for post-retrieval pre-
dictors – similar observations hold for pre-retrieval ones.
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Fig. 4: left: topics selected to maximize the difference between lexical and neural models;
right: results of MD2 applied on Robust ‘04 considering only the selected topics.

If we consider Robust ‘04, the behaviour changes deeply: Figure 3 shows that
predictors performances are much more similar for TIR and NIR runs compared
to Deep Learning ‘19. This is further highlighted by the far smaller ω2 for run
type on Robust ‘04 in Table 3 – 4.35% against 0.11%. The widely different
pattern between Deep Learning ‘19 and Robust ‘04 suggests that current QPPs
are doomed to fail when used to predict the performance of IR approaches that
learned the semantics of a collection – which is the case for Deep Learning
‘19 that was used to fine-tune the models. Current QPPs evaluate better IR
approaches that rely on lexical clues. Such approaches include both TIR models
and NIR models applied in a zero-shot fashion, as it is the case for Robust ‘04.
Thus, QPP models are expected to fail where NIR models behave differently from
the TIR ones. This poses at stake one of the major opportunities provided by
QPP: if we fail in predicting the performance of NIR models where they behave
differently from TIR ones, then a QPP cannot be safely used to carry out model
selection. To further investigate this aspect, we carry out the following analysis:
we select from Robust ‘04 25% of the queries that are mostly “semantically
defined” and rerun MD2 on the new set of topics. We call “semantically defined”
those queries where NIR behave, on average, oppositely w.r.t. the TIR, either
failing or succeeding at retrieving documents. In other terms, we select queries
in the top quartile for the absolute difference in performance (nDCG), averaged
over all TIR or NIR models.

Figure 4a shows the performance of topics that maximize the difference be-
tween TIR and NIR and can be considered as more “semantically defined” [14].
There are 62 topics selected (25% of the 249 topics available on Robust ‘04). Of
these, 35 topics are better handled by TIR models, while 27 obtain better nDCG
if dealt with NIR rankers. If we consider the results of applying MD2 on this set
of topics, we notice that compared to Robust ‘04 (Table 3, last column) the effect
of the different QPPs increases to 2.29%: on these topics, there is more difference
between different predictors. The interaction between predictors and run types
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grows from 0.30% to 0.91%. Furthermore, the effect of the run type grows from
0.11% to 0.67% – 6 times bigger. On the selected topics, arguably those where
a QPP is the most useful to help select the right model, using NIR systems
has a negative impact (6 times bigger) on the performance of QPPs. Figure 4b,
compared to Figure 3b, is more similar to Figure 3a – using only topics that
are highly semantically defined, we get similar patterns as those observed for
Deep Learning ‘19 on Figure 3a. The only methods that behave differently are
BERT-QPP approaches, whose performance is better on NIR runs than on TIR
ones, but are the worst approaches in terms of predictive capabilities for both
run types. In this sense, even though the contribution of the semantic signals
appears to highly important to define new models with improved performance in
the NIR setting, it does not suffice to compensate for current QPPs limitations.

6 Conclusion and Future Work

With this work, we assessed to what extent current QPPs are applicable to
the recent family of first-stage NIR models based on PLM. To verify that, we
evaluated 19 diverse QPP models, used on seven traditional bag-of-words lexical
models (TIR) and seven first-stage NIR methods based on BERT, applied to the
Robust ‘04 and Deep Learning ‘19 collections. We observed that if we consider a
collection where NIR systems had the chance to learn the semantics – i.e., Deep
Learning ‘19 – QPPs are effective in predicting TIR systems performance, but fail
in dealing with NIR ones. Secondly, we considered Robust ‘04. In this collection,
NIR models were applied in a zero-shot fashion, and thus behave similarly to
TIR models. In this case, we observed that QPPs tend to work better on NIR
models than in the previous scenario, but they fail on those topics where NIR and
TIR models differ the most. This, in turn, impairs the possibility of using QPP
models to choose between NIR and TIR approaches where it is most needed. On
the other hand, semantic QPP approaches such as BERT-QPP do not solve the
problem: being devised and tested on lexical IR systems, they work properly on
such category of approaches but fail on neural systems. These results highlight
the need for QPPs specifically tailored to Neural IR.

As future work, we plan to extend our analysis by considering other factors,
such as the query variations to understand the impact that changing how a topic
is formulated has on QPP. Furthermore, we plan to devise QPP methods explic-
itly designed to synergise with NIR models, but that also take into consideration
the large variance introduced by topics.
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