
HAL Id: hal-04293399
https://hal.sorbonne-universite.fr/hal-04293399

Submitted on 18 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Biscuit: New MPCitH Signature Scheme from
Structured Multivariate Polynomials

Luk Bettale, Delaram Kahrobaei, Ludovic Perret, Javier Verbel

To cite this version:
Luk Bettale, Delaram Kahrobaei, Ludovic Perret, Javier Verbel. Biscuit: New MPCitH Signature
Scheme from Structured Multivariate Polynomials. Applied Cryptography and Network Security
(ACNS), Mar 2024, Abu Dhabi, United Arab Emirates. pp.457-486, �10.1007/978-3-031-54770-6_18�.
�hal-04293399�

https://hal.sorbonne-universite.fr/hal-04293399
https://hal.archives-ouvertes.fr


Biscuit: New MPCitH Signature Scheme from Structured
Multivariate Polynomials

Luk Bettale1, Delaram Kahrobaei2,3,4,5, Ludovic Perret6, and Javier Verbel7

1 IDEMIA, France
2 Departments of Computer Science and Mathematics, Queens College, City University of New York,

USA
3 Initiative for the Theoretical Sciences, Graduate Center, City University of New York, USA

4 Department of Computer Science, University of York, UK
5 Department of Computer Science and Engineering, Tandon School of Engineering, New York

University, USA
6 Sorbonne University, CNRS, LIP6, PolSys, Paris, France

7 Technology Innovation Institute, UAE

Abstract. This paper describes Biscuit, a new multivariate-based signature scheme derived
using the MPCitH approach. The security of Biscuit is related to the problem of solving a set
of quadratic structured systems of algebraic equations. These equations are highly compact
and can be evaluated using very few multiplications. The core of Biscuit is a rather simple
MPC protocol which consists of the parallel execution of a few secure multiplications using
standard optimized multiplicative triples. This paper also includes several improvements
with respect to Biscuit submission to the last NIST PQC standardization process for additional
signature schemes. Notably, we introduce a new hypercube variant of Biscuit, refine the
security analysis with recent third-party attacks, and present a new avx2 implementation
of Biscuit.

Keywords: Post-Quantum · Digital Signature · MPC-in-the-Head · Multivariate Polynomials

1 Introduction

Biscuit is a new multivariate-based digital signature scheme submitted to the recent NIST stan-
dardization process for additional post-quantum signature schemes [1]. The security of Biscuit is
proven assuming the hardness of the so-called PowAff2 problem (Definition 1), which is a struc-
tured version of the well-known Multivariate Quadratic (MQ) problem [16].
Biscuit is in the lineage of the Picnic signature scheme [20,35], which was selected as an alternate
candidate in the first NIST post-quantum cryptography standardization process [6]. The security
of Picnic relays in the hardness of finding that secret key sk used to produce plaintext-ciphertext
pair using a particular block-cipher. The design of Picnic builds over a Multi-Party Computation
(MPC) protocol to check that shared a triple of elements in a finite field (z, x, y) is multiplicative,
i.e., the MPC protocol checks whether or not z = xy. Then it follows the MPC-in-the-Head (MPCitH)
paradigm (introduced by Ishai, Kushilevitz, Ostrovsky, and Sahai in 2007 [28]) to obtain Zero-
Knowledge Proof-of-Knowledge (ZKPoK) of the key sk. Finally, the signature scheme is obtained
by applying the Fiat-Shamir transformation [26] to the ZKPoK protocol.

As in Picnic, the design of Biscuit follows the MPCitH paradigm, and it uses the same MPC protocol
to check multiplicative triples. Contrary to Picnic, in Biscuit the main goal is to build a ZKPoK

of a pre-image s of a quadratic system of multivariate polynomial equations f over a finite field.
The private and public keys in Biscuit are respectively s and (f , t), where t = f(s).

The performance of Picnic is proportional to the number of multiplications required to evaluate
the circuit defining the underlying encryption function with the secret key sk. This fact motivates
the use of a set f of polynomial equations that require a small of multiplication to be evaluated.
Biscuit considers polynomials of the form fi = A0 + A1 · A2, where each Ai is linear polynomial.
These polynomials can be evaluated computing only one multiplication, while a random quadratic
polynomial would require as many multiplications as the number of variables.



1.1 Other Submitted MPCitH Signature Schemes

Since Picnic, the use of MPCitH for designing post-quantum signature schemes has become ex-
tremely popular. These is evidenced in the new NIST standardization process for post-quantum
signature schemes8, where eight among forty of the submitted schemes are MPCitH-based. These
schemes follow the same design methodology but differ on the hard problems considered.

AIMer is based on the hardness of key-recovery of a MPC-friendly block-cipher [31], MIRA and
MiRitH are based on the MinRank problem [9,4], MQOM is based on the problem of solving random
quadratic equations [23], PERK is based on the Permuted Kernel Problem [3], RYDE is based on the
rank syndrome decoding problem [8], and SDith relies on the syndrome decoding problem [32]. All
these schemes proposed several parameter sets parameter in order to optimize either the signature
size (short variant) or the signing and verification times (fast variant).

Name
Performance (cycles) Size (bytes)

keygen sign verify sk pk σ

AIMer-L1PARAM4 54 435 78 022 625 73 813 256 16 32 3 840
MIRA-128s 112 000 46 800 000 43 900 000 16 84 5 640
MiRitH-Ias 108 903 41 220 707 40 976 634 16 129 5 673

MQOM-L1-gf31-short 67 000 44 360 000 41 720 000 78 47 6 352
PERK-I-short5 91 000 36 000 000 25 000 000 16 24 6 006

RYDE128s 33 100 23 400 000 20 100 000 32 86 5 956
SDith-L1-hyp 7 083 000 13 400 000 12 500 000 404 120 8 260

Biscuit-128s (this work) 62 484 27 922 077 28 484 726 16 68 5 748

FAEST-128s 200 000 25 580 000 25 830 000 32 32 5 006

Table 1: Performance of level I short variants of MPCitH-based candidates in the first round of the
NIST new call for post-quantum signature schemes.

In Table 1, we overview a performance of the MPCitH NIST candidates with version of Biscuit
described in this paper. In the table we also includes FAEST whose security is based on AES, and
uses a new zero-knowledge technique, named VOLE-in-the head, that improves the MPCitH approach
[13]. For each scheme, we report one short variant of achieving level I of security (i.e. equivalent to
the security of AES128). The key-generation (keygen), signature generation (sign) and verification
(verify) times are shown in number of clock-cycles (cycles). Table 1 also includes secret-key (sk),
public-key (pk) and signature (σ) sizes in bytes.

Remark 1. Few days before finalizing this manuscript a new preprint appeared [24] that seems to
significantly improve MQOM as well as many MPCitH-based signature schemes (including Biscuit).

1.2 Organization of the Paper and Main Results

After this introduction, the paper is organized as follows. Section 2 introduces basic notations,
the new hard problem considered in Biscuit (PowAff2 problem, Section 2.2), as well as the basic
cryptography building blocks underlying its design: Multi-Party Computation (MPC), MPC-in-the-
Head approach (MPCitH), Zero-Knowledge Proof of Knowledge (ZKPoK), BN-like proof systems and
the hypercube technique for MPCitH-based signature schemes.

Section 3 describes the core sub-protocols underlying Biscuit. Due to the structure of the algebraic
systems considered in Biscuit, the evaluation of a PowAff2 solution requires only one multiplication
per equation. This leads to a rather simple MPC protocol (Section 3.1) for PowAff2 that is based on
the parallel execution of secure multiplication using Beaver multiplicative triples [15] with some

8 https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

2

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures


optimizations from [14,30]. Then, we derive a new ZKPoK for PowAff2 (Section 3.2) using the
MPCitH approach. Note that the protocol presented here (Figure 3) differs from the one described
in the initial Biscuit submission [19]. In particular, we use the hypercube technique [33] and also
include a security proof (Theorem 1) of the new ZKPoK.

Section 4 presents the Biscuit signature scheme and details the key generation (Figure 7), signa-
ture generation (Figure 8) and verification (Figure 9) algorithms. Biscuit is constructed using the
traditional Fiat-Shamir transform from the ZKPoK described in Figure 3. We conclude this part
with Table 2 that summarizes the secret-key, public-key, and signature sizes for the three security
levels of NIST. In particular, Biscuit achieves a signature of 5.7KB for the first security level. This
is comparable to other recent MPCitH-based signature schemes (Section 1.1).

Section 5 analyzes the security of the parameters proposed in Table 2. This section revisits the
security analysis performed in the initial submission of Biscuit by taking into account new third-
party analysis. In Section 5.1, we first explain the connection between the hardness of PowAff2 and
the difficulty of solving the Learning With (bounded) Errors (LWE) problem [34]. In Section 5.2, we
consider the key-recovery problem where the best attack against is a dedicated hybrid approach
(i.e. that combines exhaustive search and Gröbner bases [18,17,12]) for solving PowAff2 equa-
tions described by Charles Bouillaguet on the NIST PQC9 mailing-list. In Section 5.3, we consider
forgery attacks. In particular, we refine the analysis of Kales and Zaverucha [29] for forgery attacks
against 5-pass Fiat-Shamir based signature schemes. This leads us to introduce a variant of the
PowAff2 problem where the attacker has to solve a sub-system with fewer equations; leading to
the introduction of the PowAff2u problem (Definition 1).

Finally, Section 6 presents an optimized implementation of Biscuit which outperforms the previous
implementation. First, we use a new canonical representation of the PowAff2 equations (Lemma 1)
which allows us to further simplify their evaluation. Then, we integrate the hypercube framework
for even further improvement.

2 Preliminaries

This section presents the preliminary concepts and notations used throughout the paper.

2.1 Notations

All over this paper, we use λ for the security parameter, [n] refers to the set {1, . . . , n} for an
integer n ∈ N, Fq is the finite field of q elements (where q is prime or a prime power), Fm

q denotes
the vector space of dimension m over Fq and Fq[x1, . . . , xn] the ring of polynomials in the variables
x1, . . . , xn over the field Fq.

Bold lower-case letters denote vectors, x + y denotes the element-wise addition, x ⊙ y denotes
the element-wise product and ∥ the concatenation of two vectors or two-byte strings. a ← A(x)
indicates that a is the output of an algorithm A on input x, a

$← S means that a is sampled
uniformly at random from a set S.
Let R be a ring and a ∈ R. additive sharing of a, denotes JaK is a tuple JaK := (JaK1 , . . . , JaKN ) ∈
RN such that a =

∑N
i=1 JaKi. Each component JaKi of JaK is called a share of a. Throughout this

paper, we only consider additive sharing and use the word sharing to refer to additive sharing.

AMulti-Party Computation (MPC) protocol is an interactive protocol executed by a set of N parties
knowing a public function f . Its goal is to compute the image z = f(x1, . . . , xN ), where the value
xi is only known by the i-th party. An MPC protocol is considered secure and correct if, at the
end of the protocol, every party i knows z, and no information about its secret input value xi is
revealed to the other parties.

9 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ

3

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ


2.2 The PowAff2u Problem

The core problem considered in Biscuit is the one of solving a system of multivariate equations
defined as the product of two affine forms. This problem, denoted as PowAff2u, is parameterized
by a tuple of positive integers (n,m, u, q), where n is the number of variables, m the number of
equations, u is a parameter related to forgery (Section 5.3), and q is the finite field size.

Definition 1 (The PowAff2u problem). Let A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈
Fq[x1, . . . , xn] be affine forms, i.e.:

Ak,j(x1, . . . , xn) = a
(k,j)
0 +

n∑
i=1

a
(k,j)
i xi, with a

(k,j)
0 , . . . , a(k,j)n ∈ Fq. (1)

Input. A vector t = (t1, . . . , tm) ∈ Fm
q and multivariate polynomials f = (f1, . . . , fm) ∈

Fq[x1, . . . , xn]
m defined as:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +

2∏
j=1

Ak,j(x1, . . . , xn),∀k ∈ [m]. (2)

Question. Find – if any – a vector (s1, . . . , sn) ∈ Fn
q and set J ⊆ [m] of size m− u such that:

fj(s1, . . . , sn) = tj , ∀j ∈ J.

Definition 2 (The PowAff2 problem). We use PowAff2 to denote the PowAff20 problem. Also,
we shall call PowAff2 algebraic system the set of non-linear equations f1, . . . , fm ∈ Fq[x1, . . . , xn]
defined as in (2).

PowAff2 is the problem corresponding to key-recovery whilst PowAff2u, with u > 0, is a relaxation
that corresponds to signature forgery.

A detailed hardness analysis of PowAff2u is provided in Section 5. The current best attack against
Biscuit has been sketched by Charles Bouillaguet on the NIST PQC mailing-list10. In particular,
it was mentioned that the multivariate equations defined as in Definition 1 can be reduced to a
simple, but equivalent, structure.

Lemma 1. Let f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m be a PowAff2 algebraic system. Then, with

high probability, there exists an invertible matrix L ∈ GLn (Fq) such that :

f
(
x · L

)
=

(
u1(x) · (x1 + c1) + w1(x), . . . , un(x) · (xn + cn) + wn(x),

A′
n+1,0(x) +

2∏
j=1

A′
n+1,j(x), . . . , A

′
m,0(x1, . . . , xn) +

2∏
j=1

A′
m,j(x)

)
where x = (x1, . . . , xn), An+1,0, An+1,1, An+1,2, . . . , Am,0, Am,1, Am,2, u1, . . . , un, v1, . . . , vn ∈
Fq[x1, . . . , xn] are affine polynomials and c1, . . . , cn ∈ Fq.

Proof. By construction, we have :

fk(x1, . . . , xn) = Ak,0 +

2∏
j=1

Ak,j ,∀k ∈ [m],

with A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] affine forms as defined in (1).

Thus, we can write Ak,2(x1, . . . , xn) = (x1, . . . , xn) · bk + ck, where bk = (a
(k,2)
1 , . . . , a

(k,2)
n ) ∈ Fn

q

and ck = a
(k,2)
0 ∈ Fq. Let C ∈ Fn×n

q be the matrix whose rows are b1, . . . ,bn. We want to find a
non-singular matrix L ∈ GLn (Fq) such that In = C · L, where In is the identity matrix of size n.
This reduces to compute, if any, the inverse of C.
10 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ

4

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ


2.3 Digital Signature Scheme

Definition 3. A Digital Signature Scheme (DSS) is a tuple of three probabilistic polynomial-time
algorithms (KeyGen,Sign,Verify) verifying:

1. (pk, sk)← KeyGen(1λ). The key-generation algorithm KeyGen takes as input a security param-
eter 1λ and outputs a pair of public/private keys (pk, sk).

2. σ ← Sign(sk,msg). The signing algorithm Sign takes a private key sk and a message msg ∈
{0, 1}∗ and outputs a signature σ.

3. b ← Sign(pk, σ,msg). The verification algorithm Verify is deterministic. It takes as input a
message msg ∈ {0, 1}∗, a signature σ, and a public key pk. It outputs a bit b ∈ {0, 1} : 1 means
that it acceptsσ as a valid signature for msg, otherwise it rejects outputting 0.

A signature scheme is correct if for every security parameter λ ∈ N, every (pk, sk)← KeyGen(1λ),
and every message msg ∈ {0, 1}∗, it holds that

1← Verify
(
pk,msg,Sign(sk,msg)

)
.

The standard security notion for a DSS is Existential Unforgeability under Adaptive Chosen-
Message Attacks (EU-CMA). We say that a signature scheme is EU-CMA-secure if for all proba-
bilistic polynomial-time adversaries A, the probability

Pr

[
1← Verify(pk,msg∗, σ∗)

∣∣∣∣ (pk, sk)← KeyGen(1λ)
(msg∗, σ∗)← AOSign(sk,·)(pk)

]
is a negligible function in λ, where A is given access to a signing oracle OSign(sk,·), and msg∗ has
not been queried to OSign(sk,·).

Auxiliary Functions. Biscuit also relies on further basic cryptographic building blocks that
we do not explicitly introduce such as commitments, collision-resistant hash functions, key-
derivation functions, and pseudo-random number generators. As explained in [19], we can use
the SHAKE256 [21] extendable-output function (XOF) to instantiate these functions.

During signature, the signer must generate a set of N seeds and reveal N−1 of them to the verifier
for each iteration (TreePRG). The verifier then uses these seeds to check that the MPC protocol was
correctly simulated. A binary tree structure allows generating the seeds using one root seed from
a binary tree. Instead of sending N − 1 seeds in the signature, this allows sending only ⌈log2 N⌉
seeds that will be used to reconstruct all N − 1 seeds required. We refer to [19] for the description
of TreePRG.

2.4 5-Pass Identification Schemes

An IDentification Scheme (IDS) is an interactive protocol between a prover P and a verifier V,
where P wants to prove its knowledge of a secret value sk to V, with (pk, sk) satisfying a given
relation, for a public value pk.

Definition 4 (5-pass identification scheme). A 5-pass IDS is a tuple of three probabilistic
polynomial-time algorithms (KeyGen,P,V) such that

1. (pk, sk)← KeyGen(1λ). The key-generation algorithm KeyGen takes as input a security param-
eter 1λ and outputs a pair of public/private keys (pk, sk).

2. P and V follow the protocol in Figure 1, and at the end of this, V outputs 1, if it accepts that
P knows sk, otherwise it rejects outputting 0.

A transcript of a 5-pass IDS is a tuple (com, ch1, rsp1, ch2, rsp2), as in Figure 1, referring to all the
messages exchanged between P and V in one execution of the IDS. We require an IDS to fulfill the
following security properties.

5



Correctness: if for any security parameter λ ∈ N and (pk, sk) ← KeyGen(1λ) it holds,
Pr [1← V(pk, com, ch1, rsp1, ch2, rsp2)] = 1, where (com, ch1, rsp1, ch2, rsp2) is the transcript of an
execution of the protocol between P(pk, sk) and V(pk).

Soundness (with soundness error ε): if, given a key pair (pk, sk), for every polynomial-time
adversary A such that

Honest-verifier zero-knowledge: if there exists a probabilistic polynomial-time simulator S(pk) that
outputs a transcript (com, ch1, rsp1, ch2, rsp2) from a distribution that is computationally indistinguishable
from the distribution of transcripts of an honest execution of the protocol between P(pk, sk) and V(pk).

P(pk, sk) V(pk)

com← P0(pk, sk)
com

ch1
$← ChallengeSet1

ch1

rsp1 ← P1(pk, sk, com, ch1)
rsp1

ch2
$← ChallengeSet2

ch2

rsp2 ← P2(pk, sk, com, ch1, rsp1, ch2)
rsp2

V (pk, com, ch1, rsp1, ch2, , rsp2)

Fig. 1: Canonical 5-pass IDS.

2.5 MPC-in-the-Head : From MPC to Zero-Knowledge

MPC-in-the-Head (MPCitH) is a generic technique, introduced as “IKOS” [28]), that allows to build a Zero-
Knowledge Proof of Knowledge (ZKPoK) from a secure MPC protocol.

Consider a MPC protocol where N parties P1 . . . , PN collaborate to securely evaluate a public function f
on a secret input x. Assuming that the protocol is perfectly correct and that the views of t < N parties
leak no information on x, then one can construct a ZKPoK from the MPC protocol as follows:

1. Simulation.

– Prover P generates a random sharing JxK := (JxK1 , . . . , JxKN ) of x such that x =
∑N

i=1 JxKi and
assign a share JxKi to each party Pi.

– P emulates “in his/her mind” execution of the MPC protocol with N parties P1 . . . , PN .
– P commits on the views of each Pi, meaning the messages they send/receive during the protocol

execution and their internal states. These commitments are sent to the verifier V.

2. Challenges.

– P possibly receives random challenges from V on the MPC, executes local computations accordingly
and send the results to V. This step can be repeated several times.

– V challenges P to open a random subset of t parties.
– P returns the requested views.

3. Verification.

– P then checks that the views11 are consistent, and the output of the circuit corresponds to the
result expected.

11 If only one party is opened then there are no pairs to check consistency. In this case, the prover does
not commit to the views, but actually to the point-to-point channels between the parties.

6



Since its introduction, the initial approach for MPCitH from [28] has been improved in different ways. In
particular, Katz, Kolesnikov and Wang (KKW) extended the MPCitH paradigm to support what is known
in MPC as the preprocessing model, where MPC protocols are split into an offline phase that is independent
of the sensitive inputs, and an online phase, with the former being typically the bottleneck in terms of
efficiency. The benefit is that the prover does not need to include the preprocessing as part of the views of
the parties, and instead, the preprocessing can be checked. As an application, KKW allowed to significantly
decrease the signature size of the Picnic initial version.

Also, [33] described a so-called hypercube variant of MPCitH that allows improving efficiency for a large
number of parties in the MPC protocol. Indeed, a large number of parties leads to shorter signatures but
increases signature generation and verification times. We detail the approach in the case of Biscuit in
Section 3.1.

2.6 Proof Systems for Arbitrary Circuits

In [27], Giacomelli, Madsen and Orlandi demonstrated the efficiency of the MPCitH approach for generating
ZKPoK. Doing so, the authors also introduced a new generic proof system, called ZKBoo, which ultimately
resulted in the first version of the Picnic signature scheme. In such work, the virtual/emulated parties
actually execute some MPC protocols, and the verifier checks this execution. In [14], Baum and Nof proposed
an improved proof system, called BN, for arithmetic circuits. [14] observed that the prover knows all the
wire values in the circuit, and instead of computing a protocol, the prover can distribute sharings for each
intermediate wire value, and the virtual parties only need to execute a protocol that checks the correctness
of the multiplication gates. This allows batching the checks by taking random linear combinations. In [30],
Kales and Zaverucha built on top of BN and introduced BN++ that includes several optimizations, leading
to a roughly 2.5× communication improvement. The authors apply their techniques to AES as well as
LowMC (Picnic signature).

The BN and BN++ proof systems rely on the concept of multiplicative triple (or Beaver triple [15]).
Given x, y, z ∈ Fq, we say that the triple (JxK , JyK , JzK) ∈ FN

q × FN
q × FN

q is a multiplicative triple if
it holds that z = x · y. The Biscuit MPC protocol will rely on a somewhat standard protocol introduced
in [14] (along with the optimization given in [30, Section 2.5]) to check multiplicative triples of sharing
(Section 2.6). A multiplication triple (JxK , JyK , JzK) ∈ FN

q × FN
q × FN

q can be checked using a correlated
triple (JaK , JyK , JcK) ∈ FN

q × FN
q × FN

q with a ∈ Fq and c = a · y ∈ Fq as follows:

1. The parties get a random element ε
$← Fq.

2. The parties locally set JαK← JxK · ε+ JaK.
3. The parties open JαK so that they all obtain α.
4. The party locally compute JvK = JyK · α− JzK · ε− JcK.
5. The parties open JvK to obtain v.
6. The parties output accept if v = 0 and reject otherwise.

The security of this simple protocol has been proven in [30]. In particular, the false success probability is
given by:

Lemma 2. Let x, y, z, a, c ∈ Fq. If the shared multiplicative triple (JxK , JyK , JzK) ∈ FN
q × FN

q × FN
q is

incorrect, i.e. z ̸= x · y, or the helping multiplicative triple (JaK , JyK , JcK) ∈ FN
q ×FN

q ×FN
q is incorrect, i.e.

c ̸= a · y, then the parties outputs accept with probability at most 1/q.

3 Interactive Protocols for PowAff2

This section describes the MPC protocol underlying Biscuit (Section 3.1) and the corresponding ZKPoK

(Section 3.2) obtained using the MPCitH paradigm (Section 2.5) together with the hypercube technique
[5].

3.1 Multi-Party Computation Protocol for PowAff2

In Figure 2, we detail the MPC protocol used in Biscuit to check a solution of a PowAff2 algebraic system.
The protocol is executed by N parties sharing a secret vector s ∈ Fn

q . Every party knows the target vector

7



t = (t1, . . . , tm) ∈ Fn
q , affine forms A1,0, A1,1, A1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] as in (1) and the

corresponding PowAff2 algebraic equations f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m defined as:

fk = Ak,0 +Ak,1 ·Ak,2, ∀k ∈ [m]. (3)

The MPC protocol (Figure 2) consists of m iterations of the multiplicative checking protocol described in
Section 2.6). At the end of the protocol, the parties output accept indicating they are convinced that the
shared vector s satisfies t = f(s). Otherwise, they output reject.

Public data: t = (t1, . . . , tm) ∈ Fm
q , affine polynomials A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn]

and f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
n as defined in (3) .

Inputs : The i-th party knows JsKi ∈ Fn
q , JaKi ∈ Fm

q where a = (a1, . . . , am)
$← Fm

q , and

JcKi ∈ Fm
q where c = (c1, . . . , cm) ∈ Fm

q such that ck = Ak,2(s) · ak, ∀k ∈ [m].

MPC protocol:

for k ∈ [m] do

1 : The parties locally compute JzkK← tk −Ak,0(JsK), JxkK← Ak,1(JsK), and JykK← Ak,2(JsK) .

2 : The parties get a random element εk
$← Fq.

3 : The parties locally set JαkK← JxkK · εk + JakK.
4 : The parties open JαkK so that they all obtain αk.

5 : The party locally compute JvkK = JykK · αk − JzkK · εk − JckK.
6 : The parties open JvkK to obtain vk.

The parties output accept if vk = 0, ∀k ∈ [n] and reject otherwise.

Fig. 2: MPC protocol Π to check that t = f(s).

The following proposition follows easily from Lemma 2.

Proposition 1. Suppose that a set of N parties genuinely follow the MPC protocol given in Figure 2 with

inputs t ∈ Fm
q , f = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]

m, and JsK ∈
(
Fn
q

)N
. Suppose s ∈ Fn

q is a solution to
PowAff2u(f , t) but not a solution to the PowAff2u−1(f , t). If u = 0, i.e., t = f(s), then the parties accept.
Otherwise, the parties accept with probability at most 1/qu.

3.2 ZKPoK for PowAff2

In Figure 3, we derive a ZKPoK for the PowAff2 problem using the MPC protocol Π of Figure 2. To do so,
we use the traditional MPCitH approach combined with the recent hypercube technique.

In Phase 1, for each ℓ ∈ [D] the prover generates an input set Sℓ =
(
JsK(ℓ,j) , JcK(ℓ,j) , JaK

)
j∈[2])

for a

two parties instance the MPC protocol Π (Figure 2). The set Sℓ is called the ℓ-th set of main shares.
The sets of main shares are computed in two steps. First, there prover generates and commits to inputs
(JsKi , JcKi , JaKi) of one N = 2D parties instance of Π. Then, for each (ℓ, j) ∈ [D] × [2], the main share
JsK(ℓ,j) is computed as the sum of the shares JsKi for which j equals the ℓ-th bit of i plus 1. Similarly,

the main shares JcK(ℓ,j) and JaK(ℓ,j)
)
. In Phase 3, the prover executes the protocol Π for every set of

main shares using ε1, . . . , εm ∈ Fq as the random elements for all D executions. This particular execution
of the protocol Π on the set of main shares Sℓ is shown in Figure 4. The output of each execution the
shares

(
JαkK(ℓ,j) , JvkK(ℓ,j)

)
(k,j)∈[m]×[2]

of the opened values αk and vk, and its corresponding hash Hℓ =

H
((

JαkK(ℓ,j) , JvkK(ℓ,j)
)
(k,j)∈[m]×[2]

)
12. In Phase 5, the prover sends

(
(seed(i), ρi)i ̸=i , com

(i),∆s,∆c, JαKi
)

sends to the verifier, where JαKi = (Jα1Ki , . . . , JαmKi), JαkKi = JxkKi ·εk+JakKi and JxkKi = Ak,0(JsKi). We

12 As noted in [10], the security of proof knowledge protocols using the hypercube technique with additive
shares is the same with or without these intermediate hash values Hℓ, but it might help to reduce the
memory demand of the protocol when the implementation of the hash H is not incremental.

8



highlight that the prover does not send explicitly instead of sending N − 1 strings of the form (seed(i), ρi)
but it sends instead the log2(N) nodes of the tree TreePRG(root) so that the verifier can recompute the
values (seed(i), ρi)i̸=i. Finally, in the verification phase, the verifier recomputes (seed(i), ρi)i ̸=i, and uses
them to recompute the sets main shares partially. We say partially recompute and not just recompute
because for each set Sℓ one of the main shares triples (either the one corresponding to j = 1 or j = 2) is
missing the addition of the shares corresponding to the i-th party. After, the verifier, for every set of main
parties, follows the algorithm in Figure 5 to check the execution of the MPC protocol Π. Finally, the verifier
recomputes h0 and h2 and outputs accept if these two values match the ones the prover sent. Otherwise,
the verifier rejects.

Security proofs of the zero-knowledge protocol. The following theorem establishes the security
properties of the proof of knowledge protocol described in Figure 3.

Theorem 1. The PowAff2 affine zero-knowledge protocol described in Figure 3 has the following proper-
ties:

– Completeness: A Prover with the knowledge of a solution to an instance (f , t) of the PowAff2 is
always accepted by the Verifier.

– Soundness: Let ϵ = 1
N
+ 1

qu
·
(
1− 1

N

)
, where p = 1/qu. Suppose there exists a prover P̃ who convinces

the verifier to accept with probability ϵ̃ > ϵ. Then there is an efficient probabilistic extraction algorithm
E, which has rewindable black-box access to P̃, that, in expectation, with at most

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 2 ln(2)

ϵ̃− ϵ

)
.

calls to P̃ outputs either a solution to an instance (f , t) of the PowAff2u−1 problem or a collision to
the commitment scheme Com or the hash H.

– Honest-verifier zero-knowledge: If the pseudo-random generator PRG and the commitment scheme
com are indistinguishable from the uniform random distribution, then the algorithm in Figure 3 honest-
verifier zero-knowledge.

Proof. (sketch) Here follow the same reasoning as the one in [10, Theorem 1]. We highlight the main parts
of the proof. The details follow along the lines with [10, Theorem 1]

– Completeness: By following, step by step, the protocol in Figure 3 it is not hard to see that a Prover
that follows the protocol with inputs (f , t, s) such that t = f(s) will always be accepted.

– Soundness: The structure of the proof will be the following:
1. We proof that a prover P̃ who has not a solution for the PowAff2u−1 problem can cheat with

probability at most ϵ = 1
N

+ 1
qu
·
(
1− 1

N

)
.

2. Assuming that
(a) No collisions to Com nor H can be found.
(b) There exists a cheater P̃ who has cheating probability ϵ̃ > ϵ.
We show how to extract a solution to the PowAff2u−1 problem whenever rewindable black-box
access to P̃ is given.

For part 1, suppose that at step 7 the vector s = JsK1 + · · ·+ JsKN is not a solution of the PowAff2u−1

problem defined by (f , t). With such a vector s the prover can be accepted by the verifier in only two
situations:
• The prover honestly follows the protocol, and for each k ∈ [m], the value vk = ykαk − zkεk − ck,

which is the value that would be obtained from a genuine executing of the MPC protocol with
challenges εk (see Figure 2), equals zero, or

• The prover dishonestly deviates from the protocol, yet the verifier believes that all the honest vk
are zero, but in reality, at least one of them is not.

In the first situation, we would have a false positive case of the MPC protocol in Figure 2. By Proposi-
tion 1, this happens with probability at most 1/qu. In the second situation, the prover cheats during
the simulation of at least one party. Since the verifier checks the correct execution of all the parties
but one, the prover has to cheat on exactly one party. Otherwise, the verifier rejects. Cheating in one
party i′ means that the prover uses a set of different shares than an honest party, holding the same
input seed seed(i

′), would use. Since every party aggregates to exactly one of the main shares for all
of the D bi-party protocols. For each one of these bi-party protocols, there is one share that has been
dishonestly computed, i.e., not following the MPC protocol. Thus, the prover won’t be detected with

9



PoK(Prover(f , t, s), Verifier(f , t))

Phase 1: Prover commits to the inputs of the MPC protocol in Figure 4

1 : root
$← {0, 1}λ,

(
seed(i), ρ(i)

)
i∈[N ]

← TreePRG(root)

for i ∈ [N ] do

2 : JsKi , JcKi , JaKi ,← PRG(seed(i))

3 : com(i) ← Com
(
seed(i), ρi

)
4 : h0 ← H(com(1), . . . , com(N)), and send h0 to Verifier

5 : a←
∑

i∈[N ]
JaKi , c←

(
Ak,2(s) · ak

)
k∈[m]

6 : ∆s← s−
∑

i∈[N ]
JsKi , ∆c← c−

∑
i∈[N ]

JcKi

7 : JsK1 ← JsK1 +∆s and JcK1 ← JcK1 +∆c

8 : Initialize JsKp , JcKp and JaKp to zero objects for each p ∈ [D]× [2]

for i ∈ [N ] do

9 : (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do

10 : JsK(ℓ,iℓ+1) ← JsK(ℓ,iℓ+1) + JsKi , JcK(ℓ,iℓ+1) ← JcK(ℓ,iℓ+1) + JcKi and

11 : JaK(ℓ,iℓ+1) ← JaK(ℓ,iℓ+1) + JaKi
Phase 2: First challenge

12 : Verifier samples ε1, . . . , εm
$← Fq and sends them to Prover

Phase 3: Prover’s first response // Prover executes MPC protocol for every set of main shares.

for ℓ ∈ [D] do

13 : Prover gets Hℓ and
(
JαkK(ℓ,j) , JvkK(ℓ,j)

)
(k,j)∈[m]×[2]

from the algorithm in Figure 4

14 : h1 ← H
(
H1, . . . , HD

)
and send h1 to Verifier

Phase 4: Second challenge

15 : Verifier samples i
$← [N ] and sends it to Prover

Phase 5: Prover’s second response

16 : JαKi ← (Jα1Ki , . . . , JαmKi),where JαkKi = JxkKi · εk + JakKi and JxkKi = Ak,0(JsKi)

17 : rsp←
(
(seed(i), ρi)i ̸=i , com

(i),∆s,∆c, JαKi
)
and send rsp to Verifier

Verification:

18 : Verifier partially recomputes
(
JsKp , JcKp , JaKp

)
p∈[D]×[2]

from (seed(i), ρi)i ̸=i by

following Phase 1 but skipping the steps involving a i-th share or the seed seed(i)

for ℓ ∈ [D] do

19 : Verifier gets Hℓ and
(
JαkK(ℓ,j) , JvkK(ℓ,j)

)
(k,j)∈[m]×[2]

from the algorithm in Figure 5

20 : Verifier accepts if and only if h0 = H(com(1), . . . , com(N)) and h1 = H
(
H1, . . . , HD

)
, where

com(i) = Com(seed(i), ρi) for each i ̸= i.

Fig. 3: Proof of Knowledge protocol for PowAff2.

probability 1
N
. Consequently, a prover without a correct solution of the PowAff2u−1 problem will be

accepted with probability at most ϵ = 1
N

+ 1
qu
·
(
1− 1

N

)
.

Now, for the second part, we assume that no collisions to Com nor H can be found and there exists
a cheater P̃ who has cheating probability ϵ̃ > ϵ. First, we prove that a solution s of the PowAff2u−1

10



Inputs : A set of main shares
((

JsK(ℓ,j) , JcK(ℓ,j) , JaK(ℓ,j)
))

j∈[2]
and the challenges ε1, . . . , εm

Outputs : Hℓ and
(
JαkK(ℓ,j) , JvkK(ℓ,j)

)
(k,j)∈[m]×[2]

for k ∈ [m] do

for j ∈ [2] do

1 : JxkK(ℓ,j) ← Ak,1(JsK(ℓ,j))

2 : JαkK(ℓ,j) ← JxkK(ℓ,j) · εk + JakK(ℓ,j)
3 : αk ← JαkK(ℓ,1) + JαkK(ℓ,2) // The parties open JαkK(ℓ,j) to obtain αk.

4 : JzkK(ℓ,1) ← tk −Ak,0(JsK(ℓ,1))

5 : JykK(ℓ,1) ← Ak,2(JsK(ℓ,1))

6 : JvkK(ℓ,1) ← JykK(ℓ,1) · αk − JzkK(ℓ,1) · εk − JckK(ℓ,1)
7 : JvkK(ℓ,2) ← − JvkK(ℓ,1)

8 : Hℓ ← H
((

JαkK(ℓ,j) , JvkK(ℓ,j)
)
(k,j)∈[m]×[2]

)

Fig. 4: Simulation of the MPC protocol Π for the ℓ-th set of main shares.

Inputs: Partially computed main shares
((

JsK(ℓ,j) , JcK(ℓ,j) , JaK(ℓ,j)
))

j∈[2]
,

the first challenges ε1, . . . , εm, the second challenge i, and the JαKi
Outputs : Hℓ and

(
JαkK(ℓ,j) , JvkK(ℓ,j)

)
(k,j)∈[m]×[2]

1 : (i1, . . . , iD)← i // Binary representation of i.

2 : Jα1Ki , . . . , JαmKi ← JαKi
for k ∈ [m] do

for j ∈ [2] do

3 : JxkK(ℓ,j) ← Ak,1(JsK(ℓ,j))

4 : JαkK(ℓ,j) ← JxkK(ℓ,j) · εk + JakK(ℓ,j)
5 : JαkK(ℓ,iℓ+1) ← JαkK(ℓ,iℓ+1) + JαkKi // Adding missing share of JαkK(ℓ,iℓ+1).

6 : αk ← JαkK(ℓ,1) + JαkK(ℓ,2) // The parties open JαkK(ℓ,j) to obtain αk.

7 : Set i∗ = 2 if iℓ = 0, otherwise set i∗ = 1.

8 : JykK(ℓ,i∗) ← Ak,2(JsK(ℓ,i∗))

9 : JzkK(ℓ,i∗) ← tk −Ak,0(JsK(ℓ,i∗))

10 : JvkK(ℓ,i∗) ← JykK(ℓ,i∗) · αk − JzkK(ℓ,i∗) · εk − JckK(ℓ,i∗)
11 : JvkK(ℓ,iℓ+1) ← − JvkK(ℓ,i∗)

12 : Hℓ ← H
((

JαkK(ℓ,j) , JvkK(ℓ,j)
)
(k,j)∈[m]×[2]

)

Fig. 5: Check the simulation of the MPC protocol Π in the ℓ-th set of main shares.

11



problem can be extracted from two valid transcripts of the form T1 and T2 produced by P̃ that have
the same initial commitment h0 and different second challenges ī1 (for T1) and ī1. Finally, we prove
that such transcripts T1 and T2 can be extracted from P̃ (assuming rewindable black-box access to
P̃ ) with an expected number of calls upper bounded by

4

ϵ̃− ϵ
·
(
1 + ϵ̃ · 2 ln(2)

ϵ̃− ϵ

)
.

Details of how this second part is proven follow in a similar as shown in [10, Theorem 1].

– Honest-verifier zero-knowledge: Now we sketch the proof of the honest-verifier zero-knowledge
property of the protocol in Figure 3. The goal here is to show that the distribution of the transcripts
output by the simulator described in Figure 6 on input (f , t) are indistinguishable from those coming
from a genuine interaction between a prover and an honest verifier, where the prover input is (f , t, s)
and t = f(s).

Simulator(f , t)

1 : Sample first challenge: ε = (ε1, . . . , εm)
$← Fm

q

2 : Sample second challenge: i
$← [N ]

3 : root
$← {0, 1}λ

4 :
(
seed(i), ρ(i)

)
i∈[N ]

← TreePRG(root)

for i ∈ [N ] do

5 : JsKi , JcKi , JaKi ,← PRG(seed(i))

6 : com(i) ← Com
(
seed(i), ρi

)
7 : h0 ← H(com(1), . . . , com(N))

8 : ∆s
$← Fn

q , ∆c
$← Fm

q

9 : JsK1 ← JsK1 +∆s and JcK1 ← JcK1 +∆c

10 : Initialize JsKp , JcKp and JaKp to zero objects for each p ∈ [D]× [2]

for i ∈ [N ] \ {̄i} do
11 : Simulate the i party to obtain JαkKi and JvkKi for each k ∈ [m]

12 : JαkKi
$← Fq and JvkKi

$← Fq for each k ∈ [m]

13 : com(i) $← {0, 1}λ

14 : For each (k, ℓ, j) ∈ [m]× [D]× [2] compute JαkK(ℓ,j) and JvkK(ℓ,j)

15 : Set Hℓ ← H
((

JαkK(ℓ,j) , JvkK(ℓ,j)
)
(k,j)∈[m]×[2]

)
for each ℓ ∈ [D]

16 : h1 ← H
(
H1, . . . , HD

)
17 : rsp←

(
(seed(i), ρi)i̸=i , com

(i),∆s,∆c, JαKi
)
, where JαKi = (Jα1Ki , . . . , JαmKi)

Output (h0, ε, h1, i, rsp)

Fig. 6: Honest-verifier zero-knowledge simulator.

The idea is to create a sequence of simulators that ends with the simulator described in Figure 6. The
first simulator of the sequence consists of a legitimate prover, which holds a solution s and simulates
the verifier by randomly sampling the challenges, as an honest verifier would do. These transcripts are
indistinguishable from those coming from a legitimate execution of the protocol in proof of knowledge
protocol.

Finally, the proof is completed by showing that the transcripts output by any simulator in the sequence
are indistinguishable from those in the previous simulator. This implies that the transcripts of the

12



simulator in Figure 6 are indistinguishable from those in for deduced by the actual protocol. Details
of this part follow similarly as shown in [10, Theorem 1].

⊓⊔

4 Biscuit Signature Scheme

In this part, we describe the Biscuit signature scheme. It is obtained by applying the Fiat-Shamir transfor-
mation [25] to the zero-knowledge protocol given in Figure 3. The corresponding key-generation, signing,
and verification algorithms are described in figures 7, 8 and 9, respectively.

The secret-key is a random vector s ∈ Fn
q and the public-key is a pair

(
f = (f1, . . . , fm), t = f(s)

)
∈

Fq[x1, . . . , xn]
m × Fm

q such that for all k ∈ [m]:

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +Ak,1(x1, . . . , xn) ·Ak,2(x1, . . . , xn), (4)

where A1,0, . . . , Am,2 ∈ Fq[x1, . . . , xn] are random affine forms as in (1).

We use two seeds seedf , seeds ∈ {0, 1}λ that are extended by a pseudo-random generator (PRG) to obtain
the public polynomials f ∈ Fq[x1, . . . , xn]

m and the secret vector s ∈ Fq[x1, . . . , xn]
m. Finally, the vector

t ∈ Fm
q is computed as t = f(s).

Biscuit.KeyGen

1 : seedf
$← {0, 1}λ, seedsk

$← {0, 1}λ

2 : f ← PRG(seedf ), s← PRG(seedsk)

3 : t← f(s)

4 : sk← seedsk, pk← (seedf , t)

5 : Output sk, pk

Fig. 7: Key-generation algorithm for Biscuit.

Remark 2. The notation f ← PRG(seedf ) is a shortcut for extending the seed from a PRG and casting the
bit string into a set of algebraic equations as in (4). Similarly, s ← PRG(seedsk) stands for extending the
seed and interpreting the bit string as a vector in Fn

q .

The signing procedure Biscuit.Sign is given in Figure 8. It takes as input a key-pair (sk, pk) and the
message msg ∈ {0, 1}∗ to sign. It is obtained by applying the Fiat-Shamir transform to the ZKPoK for
PowAff2 described in Section 3.2.

The verification process (Figure 9) is very similar to the signature process (Figure 8) as the verifier has to
replay the MPC protocol for each of the τ participants except one. The algorithm takes as input a message
msg ∈ {0, 1}∗, a signature sig and a public-key pk. It returns a bit b ∈ {0, 1}.

Theorem 2 (EU-CMA). Let PRG be a (t, ϵPRG)-secure pseudo-random generator function, and that any
adversary running in time t has advantage at most ϵPowAff2 against the underlying PowAff2u−1 problem.
Suppose that H0, H1, H2 H4 behave as random oracles that output binary strings of size 2λ. Let A be an
adversary, who has access to a signing oracle, making qi queries to Hi and qs queries to the signing oracle.
Then, the probability that A outputs a forgery of for the Biscuit signature scheme is:

Pr[Forge] ≤ 3(q + τN · qs)2
2 · 22λ +

qs(qs + 5q)

22λ
+ ϵPRG + ϵPowAff2 + Pr[X + Y = τ ],

where τ is the number of rounds of the signature, X = max[0,q2]{Xi} with Xi ∼ B(τ, 1
qu

), and Y =

maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1
N
).

13



Sign(pk, sk,msg)

1 :
(
seedf , t

)
← pk, seedsk ← sk

2 : f ← PRG(seedf ), s← PRG(seedsk)

Step 1: Commit to the inputs of the MPC protocol in Figure 4

3 : salt
$← {0, 1}2λ

for e ∈ [τ ]

4 : seed(e)
$← {0, 1}λ,

(
seed(e,i)

)
i∈[N ]

← TreePRG(salt, root(e))

for i ∈ [N ] do

5 : JsK(e)i , JcK(e)i , JaK(e)i ← PRG(seed(e,i))

6 : com(e,i) ← H0
(
salt, e, i, seed(e,i)

)
7 : h

(e)
0 ← H1(salt, e, com

(e,1), . . . , com(e,N))

8 : h1 ← H2
(
salt,msg, h

(1)
0 , . . . , h

(τ)
0

)
9 : a(e) ←

∑
i∈[N ]

JaK(e)i , c(e) ←
(
Ak,2(s) · a(e)

k

)
k∈[m]

10 : ∆s(e) ← s−
∑

i∈[N ]
JsK(e)i , ∆c(e) ← c(e) −

∑
i∈[N ]

JcK(e)i

11 : JsK(e)1 ← JsK(e)1 +∆s(e) and JcK(e)1 ← JcK(e)1 +∆c(e)

12 : Initialize JsK(e)p , JcK(e)p and JaK(e)p to zero objects for each p ∈ [D]× [2]

for i ∈ [N ] do

13 : (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do

14 : JsK(e)(ℓ,iℓ+1) ← JsK(e)(ℓ,iℓ+1) + JsK(e)i , JcK(e)(ℓ,iℓ+1) ← JcK(e)(ℓ,iℓ+1) + JcK(e)i and

15 : JaK(e)(ℓ,iℓ+1) ← JaK(e)(ℓ,iℓ+1) + JaK(e)i

Step 2: First challenge

16 :
(
(ε

(e)
1 , . . . , ε(e)m )

)
e∈[τ ]

$← PRG(h1)

Step 3: First response

for e ∈ [τ ] do

for ℓ ∈ [D] do

17 : Follow the algorithm in Figure 4 to get H
(e)
ℓ , which is defined instead as

18 : H
(e)
ℓ = H3

(
salt, ℓ, JαkK(e)(ℓ,j) , JvkK(e)(ℓ,j)

)
(k,j)∈[m]×[2]

)
19 : h2 ← H4

(
salt,msg, pk, h1, H

(e)
1 , . . . , H

(e)
D

)
Step 4: Second challenge

20 : i1, . . . , iτ
$← PRG(h2)

Step 5: Second response

for e ∈ [τ ] do

21 : JαK(e)
i
← (Jα1K(e)i

, . . . , JαmK(e)
i

),where JαkK(e)
i

= JxkK(e)
i
· ε(e)k + JakK(e)

i
, and

JxkK(e) = Ak,1(JsK
(e)

i

22 : σ ←
(
salt, h1, h2,

(
(seed(e,i))i ̸=ie

, com(e,ie)
)
e∈[τ ]

,
(
∆s(e),∆c(e), JαK(e)

ie

)
e∈[τ ]

)
23 : Output σ

Fig. 8: Biscuit signing algorithm.

14



Verify(pk, σ,msg)

1 :
(
f , t

)
← ExpandPK(pk) // Expanding the public key pk.

Step 1: Parse signature

2 :
(
salt, h1, h2,

(
(seed(e,i))i ̸=ie

, com(e,ie)
)
e∈[τ ]

,
(
∆s(e),∆c(e), JαK(e)

ie

)
e∈[τ ]

)
← σ

3 : i1, . . . , iτ
$← PRG(h2)

Step 2: Recompute h1 and the inputs of the MPC protocol

for e ∈ [τ ]

for i ∈ [N ] \ {ie} do
4 : JsK(e)i , JcK(e)i , JaK(e)i ← PRG(seed(e,i))

5 : com(e,i) ← H0
(
salt, e, i, seed(e,i)

)
6 : h

(e)
0 ← H1(salt, e, com

(e,1), . . . , com(e,N))

7 : h1 ← H2
(
salt,msg, h

(1)
0 , . . . , h

(τ)
0

)
8 : a(e) ←

∑
i∈[N ]\{ie}

JaK(e)i , c(e) ←
(
Ak,2(s) · a(e)

k

)
k∈[m]

9 : ∆s(e) ← s−
∑

i∈[N ]\{ie}
JsK(e)i , ∆c(e) ← c(e) −

∑
i∈[N ]\{ie}

JcK(e)i

if ie ̸= 1 then

10 : JsK(e)1 ← JsK(e)1 +∆s(e) and JcK(e)1 ← JcK(e)1 +∆c(e)

11 : Initialize JsK(e)p , JcK(e)p and JaK(e)p to zero objects for each p ∈ [D]× [2]

for i ∈ [N ] \ {ie} do
12 : (i1, . . . , iD)← i // Binary representation of i.

for ℓ ∈ [D] do

13 : JsK(e)(ℓ,iℓ+1) ← JsK(e)(ℓ,iℓ+1) + JsK(e)i , JcK(e)(ℓ,iℓ+1) ← JcK(e)(ℓ,iℓ+1) + JcK(e)i and

14 : JaK(e)(ℓ,iℓ+1) ← JaK(e)(ℓ,iℓ+1) + JaK(e)i

Step 3: Recompute h2

for e ∈ [τ ] do

for ℓ ∈ [D] do

15 : Use (ε
(e)
1 , . . . , ε(e)m ), JαK(e)

ie
and the ℓ-th set of main shares as inputs in

16 : the algorithm in Figure 5 to get H
(e)
ℓ , which is defined instead as

17 : H
(e)
ℓ = H3

(
salt, ℓ, JαkK(e)(ℓ,j) , JvkK(e)(ℓ,j)

)
(k,j)∈[m]×[2]

)
18 : h2 ← H4

(
salt,msg, pk, h1,

(
H

(e)
1 , . . . , H

(e)
D

)
e∈[τ ]

)
Step 4: Verify signature

19 : Output (h1 = h1) ∧ (h2 = h2)

Fig. 9: Biscuit verification algorithm.

15



4.1 Parameters

Table 2 provides the parameter sets Biscuit, along with the corresponding size of the keys and signatures.
Each parameter set aims to provide a security level either I, III or V according to the NIST guidelines. A
more detailed description of the claimed security level of each parameter set is given in Section 5.

Level Version λ q n m N τ Bit-Security sk pk σ

I
short

128 256 50 52
256 18 143

16 68
5748

fast 32 28 143 7544

III
short

192 256 89 92
256 25 207

24 116
12969

fast 32 40 210 17784

V
short

256 256 127 130
256 33 272

32 162
23523

fast 32 53 275 32575

Table 2: Parameters of Biscuit, bit security, public-key (pk), secret-key (sk) and signature (σ) sizes
in bytes.

The size of the public-key is λ+ log2(q) ·m bits, the size of the secret-key is λ bits and the bit-size of the
signature is:

6λ︸︷︷︸
salt,h1,h2

+τ

 (n+ 2m) log2 q︸ ︷︷ ︸
∆s(e),∆c(e),JαK(e)

ie

+ λ ·D︸ ︷︷ ︸
(seed(e,i))i̸=ie

+ 2λ︸︷︷︸
com(e,ie)

 .

5 Security Analysis

This part is dedicated to the security analysis of Biscuit against key-recovery (Section 5.2) and forgery
(Section 5.3) attacks. Before that, Section 5.1 discusses the motivations for using structured systems as
PowAff and the connection with the Learning With Errors (LWE, [34]) problem.

From now on, let
(
f = (f1, . . . , fm), t = f(s)

)
∈ Fq[x1, . . . , xn]

m × Fm
q be a Biscuit public-key and s ∈ Fn

q

be the corresponding secret-key.

5.1 About the Hardness of PowAff2

A fundamental assumption in the design of Biscuit is that solving algebraic systems generated essentially
from power of affine forms are not much easier to solve than a random system of quadratic equations.
Whilst the complexity of solving structured equations can be difficult to assess in general, the hardness
of solving random quadratic equations has been deeply investigated and only exponential algorithms are
known, e.g. [18,17,12,16].

We emphasize PowAff2 algebraic equations already appeared previously in the literature. In particular,
the authors of [7,11] demonstrated that attacking the Learning With Errors (LWE) problem [34] reduces
to solve a structured algebraic system similar to PowAff2. An instance of LWE is given by a pair (A =
{ai,j}, c = sA + e) ∈ Fn×m

q × Fm
q where s ∈ Fn

q is a secret and e ∈ Fm
q is an error vector. LWE (search)

asks to recover the secret s. Arora and Ge exhibits in [7,11] a rather natural algebraic modeling of LWE.
More precisely, Arora and Ge show that LWE secrets can be recovered by solving:

f1(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,1xk) = 0, . . . , fm(x1, . . . , xn) = P (c1 −
n∑

k=1

ak,mxk) = 0, (5)

where P depends on the error distribution. In particular, P (X) = X(X−1) ∈ Fq[X] for binary errors and
[7] introduced the assumption that a system such as (5) behaves such as a semi-regular sequence. As a
consequence, a new fast algorithm for PowAff2 will lead to a new fast algebraic algorithm for binary LWE.

16



5.2 Key recovery attacks

A key-recovery attack against Biscuit consists of solving the PowAff2 problem, i.e. recovering s ∈ Fm
q from

the system defined as :
t = f(x), with x = (x1, . . . , xn). (6)

Currently, the best attack against Biscuit is a dedicated hybrid approach for solving PowAff2 equations
described by Charles Bouillaguet 13. The hybrid approach is a classical technique for solving algebraic
systems that combines exhaustive search and a Gröbner basis-like computations [18,17,12]. The efficiency
of such approaches is related to the choice of a trade-off, denoted k ≤ n, between these two methods.

We sketch below the approach described on the NIST PQC mailing list. Let g =
(
g1(x) =

u1(x) · (x1 + c1) + w1(x), . . . , gn(x) = un(x) · (xn + cn) + wn(x)
)
∈ Fq[x1, . . . , xn]

m, with x =
(x1, . . . , xn), u1, . . . , un, v1, . . . , vn ∈ Fq[x1, . . . , xn] affine polynomials and c1, . . . , cn ∈ Fq. According to
Lemma 1, with high probability, there exists L ∈ GLn (Fq) such that:

f
(
x · L

)
=

(
g, A′

n+1,0(x) +

2∏
j=1

A′
n+1,j(x), . . . , A

′
m,0(x) +

2∏
j=1

A′
m,j(x)

)
where An+1,0, An+1,1, An+1,2, . . . , Am,0, Am,1, Am,2 ∈ Fq[x1, . . . , xn] affine forms.

Then, for every guess (a1, . . . , ak) ∈ Fk
q of the vector of variables (x1, . . . , xk), we obtain k linear polyno-

mials, namely g1(a1, . . . , ak, xk+1, . . . , xn), . . . , gk(a1, . . . , ak, xk+1, . . . , xn). These k linear polynomials are
expected to be linearly independent with a probability close to 1− 1/q. Hence we can use them to substi-
tute k additional variables in the remaining polynomials. The attack is finalized by solving the resulting
quadratic system of m− k equations in n− 2k variables.

Complexity. The cost of the attack is dominated by

min
0≤k<n

2

qk ·MQ(n− 2k,m− k, q), (7)

where MQ(n,m, q) denotes the complexity of solving a random system of m quadratic equations over in n
variables over Fq. To compute the exact complexity, we can rely on the MQEstimator software tool which
is part of the more general CryptographicEstimators14 library [22].

5.3 Forgery attacks

In the context of forgery, the attacker has to solve the PowAff2u problem (Definition 1) which is a variant
of the problem considered before for key-recovery (Section 5.2). In the PowAff2u problem, the goal is to
find a vector s′ ∈ Fn

q that vanishes a subset of size m− u of the system (6). Without loss of generality, we
assume s′ vanishes the first m− u polynomials and not the remaining equations. That is, fk(s

′) = tk, for
k ∈ [m− u], and fk(s

′) ̸= tk for k = m− u+ 1, . . . ,m.

By Proposition 1, a set of N parties that follows the MPC protocol in Figure 2 on inputs Js′K and (f , t)
will output accept with probability p1 = 1/qu. In the context of MPCitH, the value p1 is referred in the
literature as the false positive rate of the MPC protocol.

Thanks to the ’, it is known that MPCitH-based signature scheme that consist of τ repetitions of a MPC

protocol with false positive rate p1 can be forged by computing of average

KZτ (p1, p2) = min
{τ1,τ2|τ1+τ2=τ}

{
1∑τ

i=τ1

(
τ
i

)
pi1(1− p1)τ−i

+
1

pτ22

}
,

calls to some hash functions, where p2 is the probability of guessing some of the views of parties that
remain unopened, e.g., p2 = 1/N for Biscuit.

Let Cu(q, n,m) denote the complexity of finding a preimage to a chosen subset S of the system t = f(x)
of size m− u and s′ ∈ Fn

q be a solution than vanishes the equations of S. Then, s′ might, by chance, be a
solution of any equation in Sc, i.e., any equation that is not in S. If there remain k ∈ [u] equations in Sc

for which s′ is not a solution, then an attacker can mount a forgery attack with complexity KZτ (q
−k, N−1).

13 https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ
14 https://github.com/Crypto-TII/CryptographicEstimators

17

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/sw8NueiNek0/m/2sa_emjABQAJ
https://github.com/Crypto-TII/CryptographicEstimators


Let (f , t) a Biscuit public-key selected uniformly at random, and let S be a subset of the equations t = f(x)
of size m−u selected uniformly at random. Then, a random solution s′ ∈ Fn

q of the equations in S follows
a uniform distribution. Hence, fℓ(s

′) is a uniform element in Fq. Therefore, the probability that s′ is a
solution of exactly j equations in Sc is

(
u
j

)
· (q−1)u−j/qu. Consequently, if pk denotes the probability that

s′ is not the solution of at most k equations in Sc, then,

pk =

∑u
j=u−k+1

(
u
j

)
· (q − 1)u−j

qu
.

In order to secure Biscuit against forgery attacks, we must have for every pair (k, u), where 0 ≤ k ≤ u ≤ m:

1. KZτ (q
−k, N−1) > 2λ, or

2. 1
pk
· Cu(q, n,m) > 2λ+Cλ ,

where Cλ = 15 if λ = 128 or 192 and Cλ = 16 otherwise.

Following these analyses, we propose in Table 2 a set of 3 parameters for 128, 192 and 256 bits of classical
security.

6 Implementation

6.1 Canonical Representation Optimization

As seen in Lemma 1, an equivalent system where, for the first n equations, one of the affine form is only
composed of one variable. Without loss of generality, we can choose to have this variable in Ak,0. In other
word, we can chose for the algorithm a system f1, . . . , fm as

fk(x1, . . . , xn) = (xk + ak) +Ak,1(x1, . . . , xn) ·Ak,2(x1, . . . , xn),

for k ⩽ n, and

fk(x1, . . . , xn) = Ak,0(x1, . . . , xn) +Ak,1(x1, . . . , xn) ·Ak,2(x1, . . . , xn),

for n < k ⩽ m, where Ak,j are affine forms.
The effect is that the evaluation of the polynomial will be much faster as only 2 affine form evaluations
have to be performed instead of 3 for most of the equations. In the implementation, we chose to simplify
Ak,0 to save some code, as Ak,1 and Ak,2 can be computed in the same way in a loop.

6.2 Hypercube Optimization

The algorithms described in Figure 8 and Figure 9 use the hypercube variant. The simulation of the MPC
protocol does not need to compute all the values as in Figure 4. We first compute αk using directly the
opened values s and a. Then, need to compute JαkK(ℓ,j) only for j = 1. The value for j = 2 can be derived
from α. Similarly, we can do the same for JvkK(ℓ,j). This can also be applied to the verification. All in all,
we usually require to keep only log2(N) shares.

6.3 Vectorization

The main data structure in the algorithm is a vector of value in Fq. We have

– the secret value which is a vector of n elements in Fq

– the public key which is a vector of m elements in Fq

– intermediate values which are vectors of m elements in Fq.

For each of this vector, we need to compute operations component-wise. We can then pack all elements in
the largest possible integer handled by the CPU. Typically this could be a 64-bit word that can contain
8 elements in F28 for instance.
When vectorized instructions are available (SSE, AVX, . . . ), even lagrer integer types can be used. For
instance, with AVX2 a 256-bit integer can be used to pack vector of Fq elements. In characteristic 2, the
component-wise addition of a vector of elements can be done in one instruction using the VPXOR instruction.

18



6.4 Performances and Memory Consumption

In this section, we show the performance and memory consumption of our instances. Our implementation
is optimized to use avx2 vectorized instructions on a little-endian 64-bit CPU.

The code is compiled with GCC version 12.2.0 on Debian GNU/Linux. Number of cycles was measured by
counting PERF HW COUNT CPU CYCLES events on an 11th Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz

CPU. Even if frequency modification should not affect this metric, we deactivated Intel’s TurboBoost
feature anyway. The number of cycles is averaged over 100 executions.

In Table 3, we give the figures for the implementation strictly following the description in the NIST
submission but with the new parameters proposed in Table 2.

In Table 4, we include the canonical representation optimization as described in Section 6.1. This improves
the performances by 18 to 28 percent.

Finally, in Table 5, in addition to the previous optimization, we integrated the hypercube variant. With
this variant, the memory consumption is greatly improved especially for large values of N . This is because
we have to keep track of only log2(N) shares instead of N . The performances are improved by 50 to 83
percent for the small variant, and by 41 to 69 percent for the fast variant.

The code is available in [2].

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 654 288 122 480 88 870 69 849 933 69 009 007

biscuit128f 512 329 904 25 712 88 614 13 762 950 13 150 570

biscuit192s 608 3 438 832 194 544 252 374 191 148 678 191 044 372

biscuit192f 608 708 944 49 392 252 420 38 750 065 37 226 999

biscuit256s 800 7 414 000 335 312 504 271 635 041 660 631 093 761

biscuit256f 800 1 537 904 98 768 506 853 128 301 281 123 744 104

Table 3: Time performance and memory consumption of Biscuit on avx2 impl.

Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 512 1 651 088 122 480 62 413 57 621 312 56 705 942

biscuit128f 512 326 704 25 712 61 947 11 367 980 10 739 162

biscuit192s 608 3 430 288 194 544 173 744 150 259 434 148 692 324

biscuit192f 608 700 400 49 392 175 783 30 356 710 29 144 437

biscuit256s 800 7 393 680 335 312 341 657 456 813 570 453 782 090

biscuit256f 800 1 517 584 98 768 344 467 92 359 826 88 932 332

Table 4: Time performance and memory consumption of Biscuit on avx2 impl. using canonical
optimization.

6.5 Security Against Side-Channel Attacks

In this section, we briefly discuss the possible side-channel vulnerabilities of our proposition, and how to
address them.

19



Name
Memory (bytes) Performance (cycles)

keygen sign verify keygen sign verify

biscuit128s 576 814 256 40 144 62 484 27 922 077 28 484 726

biscuit128f 576 201 744 14 096 62 043 6 577 335 6 260 131

biscuit192s 704 1 686 416 67 376 173 536 49 655 357 49 852 658

biscuit192f 704 433 008 28 272 173 460 13 612 332 13 084 840

biscuit256s 960 3 556 624 117 424 342 041 77 132 303 77 300 577

biscuit256f 960 928 368 57 648 344 956 28 316 992 27 347 243

Table 5: Time performance and memory consumption of Biscuit on avx2 impl. using canonical and
hypercube optimization.

Timing Attacks. First of all, it is worth noticing that the signature procedure of Biscuit is independent
of the secret value as long as the field arithmetic and the hash functions do not leak information on the
manipulated data. Indeed, there is no branching that depends on the value of any secret in the algorithm.
This allows to make an isochronous implementation by focusing on the field arithmetic.

Side-Channel Attacks. The most popular technique to prevent these attacks is to use masking : we
compute a sharing of the secret using fresh random value at each execution.

In our scheme, it happens that most of the time, the secret value s is already shared into N shares due
to the MPC protocol. Nevertheless, this does not guarantee security at order N − 1 because all the shares
(except one) will finally become public during the verification process. This sharing is not secure from a
side-channel attacker point of view. However, as our construction uses fields of characteristic 2, classical
Boolean masking techniques can be applied throughout the scheme.

7 Acknowledgements

The authors would like to thank Charles Bouillaguet and Julia Sauvage for discussions on the hardness of
PowAff2 and choice of parameters.

The third author would like to thank Google which partially supported this work thanks to a gift for
supporting post-quantum research.

References

1. NIST. Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography Stan-
dardization Process . https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

call-for-proposals-dig-sig-sept-2022.pdf.
2. Biscuit github repository, 2023. https://github.com/BiscuitTeam/Biscuit.
3. Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor Dyseryn, Andre Esser, Philippe

Gaborit, Mukul Kulkarni, Victor Mateu, Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich. PERK
specification. 2023. available at https://pqc-perk.org/assets/downloads/PERK_specifications.
pdf.

4. Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-Zamarripa, Carlo Sanna,
Javier Verbel, and Floyd Zweydinger. MiRitH specification. 2023. available at https://pqc-mirith.
org/assets/downloads/mirith_specifications_v1.0.0.pdf.

5. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze
Yue. The return of the SDitH. pages 564–596, 2023.

6. Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh Dang, John Kelsey, Yi-Kai
Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, and Angela Robinson abd Daniel Smith-
Tone. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization
Process. Technical Report NISTIR 8309, NIST, 2022. https://nvlpubs.nist.gov/nistpubs/ir/

2020/NIST.IR.8309.pdf.

20

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://github.com/BiscuitTeam/Biscuit
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-perk.org/assets/downloads/PERK_specifications.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf


7. Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, and Ludovic Perret. Algebraic algorithms for
lwe. Cryptology ePrint Archive, Paper 2014/1018, 2014. https://eprint.iacr.org/2014/1018.

8. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn, Thibauld
Feneuil, Philippe Gaborit, Antoine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien
Vinçotte. RYDE specification. 2023. available at https://pqc-ryde.org/assets/downloads/RYDE_
Specifications.pdf.

9. Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Victor Dyseryn, Thibauld
Feneuil, Philippe Gaborit, Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich. MIRA specifi-
cation. 2023. available at https://pqc-mira.org/assets/downloads/mira_spec.pdf.

10. Nicolas Aragon, Löıc Bidoux, Jesús-Javier Chi-Domı́nguez, Thibauld Feneuil, Philippe Gaborit, Ro-
maric Neveu, and Matthieu Rivain. Mira: a digital signature scheme based on the minrank problem
and the mpc-in-the-head paradigm, 2023.

11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In Luca Aceto,
Monika Henzinger, and Jiŕı Sgall, editors, Automata, Languages and Programming - 38th International
Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I, volume 6755 of
Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

12. Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer. On the Complexity
of Solving Quadratic Boolean Systems. J. Complex., 29(1):53–75, 2013.

13. Carsten Baum, Lennart Braun, Michael Klooß, Christian Majenz, Shibam Mukherjee, Emmanuela
Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl. FAEST specifi-
cation. 2023. available at https://faest.info/faest-spec-v1.1.pdf.

14. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits
and their application to lattice-based cryptography. In Aggelos Kiayias, Markulf Kohlweiss, Petros
Wallden, and Vassilis Zikas, editors, Public-Key Cryptography – PKC 2020, pages 495–526, Cham,
2020. Springer International Publishing.

15. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of Lecture Notes in
Computer Science, pages 420–432. Springer, 1991.

16. Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier A. Verbel. An estimator for the
hardness of the MQ problem. pages 323–347, 2022.

17. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol., 3(3):177–197, 2009.

18. Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems over finite fields:
improved analysis of the hybrid approach. In Joris van der Hoeven and Mark van Hoeij, editors,
International Symposium on Symbolic and Algebraic Computation, ISSAC’12, Grenoble, France - July
22 - 25, 2012, pages 67–74. ACM, 2012.

19. Luk Bettale, Ludovic Perret, Delaram Kahrobaei, and Javier Verbel. Biscuit: Shorter MPC-based
Signature from PoSSo, June 2023. Specification of NIST post-quantum signature.

20. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rech-
berger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. pages 1825–1842, 2017.

21. NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. FIPS Publication 202, National Institute of Standards and Technology, U.S.
Department of Commerce, May 2014.

22. Andre Esser, Javier Verbel, Floyd Zweydinger, and Emanuele Bellini. CryptographicEstimators: a
software library for cryptographic hardness estimation. Cryptology ePrint Archive, Paper 2023/589,
2023. https://eprint.iacr.org/2023/589.

23. Thibauld Feneuil and Matthieu Rivain. MQOM specification. 2023. available at https://mqom.org/
docs/mqom-v1.0.pdf.

24. Thibauld Feneuil and Matthieu Rivain. Threshold computation in the head: Improved framework
for post-quantum signatures and zero-knowledge arguments. Cryptology ePrint Archive, Paper
2023/1573, 2023. https://eprint.iacr.org/2023/1573.

25. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In A. M. Odlyzko, editor, CRYPTO 1986, pages 186–194, Berlin, Heidelberg, 1987. Springer
Berlin Heidelberg.

26. Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature
Problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Barbara,
California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer, 1986.

21

https://eprint.iacr.org/2014/1018
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-ryde.org/assets/downloads/RYDE_Specifications.pdf
https://pqc-mira.org/assets/downloads/mira_spec.pdf
https://faest.info/faest-spec-v1.1.pdf
https://eprint.iacr.org/2023/589
https://mqom.org/docs/mqom-v1.0.pdf
https://mqom.org/docs/mqom-v1.0.pdf
https://eprint.iacr.org/2023/1573


27. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster Zero-Knowledge for Boolean
Circuits. In 25th USENIX Security Symposium (USENIX Security 16), pages 1069–1083, 2016.

28. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multi-
party computation. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 21–30, 2007.

29. Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass
identification schemes. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors, Cryptology
and Network Security, pages 3–22, Cham, 2020. Springer International Publishing.

30. Daniel Kales and Greg Zaverucha. Efficient lifting for shorter zero-knowledge proofs and post-quantum
signatures. Cryptology ePrint Archive, Paper 2022/588, 2022. https://eprint.iacr.org/2022/588.

31. Seongkwang Kim, Jihoon Cho, Mingyu Cho, Jincheol Ha, Jihoon Kwon, Byeonghak Lee, Joohee Lee,
Jooyoung Lee, Sangyub Lee, Dukjae Moon, Mincheol Son, and Hyojin Yoon. AIMER specification.
2023. available at https://aimer-signature.org/docs/AIMer-NIST-Document.pdf.

32. Carlos Aguilar Melchor, Thibauld Feneuil, Nicolas Gama, Shay Gueron, James Howe, David Joseph,
Antoine Joux, Edoardo Persichetti, Tovohery H., Randrianarisoa, Matthieu Rivain, and Dongze Yue.
SDITH specification. 2023. available at https://sdith.org/docs/sdith-v1.0.pdf.

33. Carlos Aguilar Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, and Dongze
Yue. The return of the sdith. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
- EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V, volume 14008 of
Lecture Notes in Computer Science, pages 564–596. Springer, 2023.

34. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

35. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ra-
macher, Christian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao Wang, Vladmir Kolesnikov,
and Daniel Kales. Picnic : Algorithm specification and design document.

22

https://eprint.iacr.org/2022/588
https://aimer-signature.org/docs/AIMer-NIST-Document.pdf
https://sdith.org/docs/sdith-v1.0.pdf

	Biscuit: New MPCitH Signature Scheme from Structured Multivariate Polynomials

