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The core valence separation (CVS) approximation is the most employed strategy to prevent the
variational collapse of standard wave function optimization when attempting to compute electronic
states bearing one or more electronic vacancies in core orbitals. Here, we explore the spurious
consequences of this approximation on the properties of the computed core hole states. We especially
focus on the less studied case of double core hole (DCH) states, whose spectroscopic interest has
recently been rapidly growing. We show that the CVS error leads to a systematic underestimation
of DCH energies, a property in stark contrast with the case of single core hole states. We highlight
that the CVS error can then be interpreted as an over relaxation effect and design a new correction
strategy adapted to these specificities.

I. INTRODUCTION

The variational principle is one of the cornerstones
of many quantum chemistry methods. In prac-
tice, it allows to reframe the solving of eigenvalues
equations as a, computationally much simpler, op-
timization problem. However, variationality can
become a critical pitfall when attempting to reach
high lying eigenstates. Indeed, one has to either,
climb the variational ladder, one state at a time, or,
to bias the optimization in order to avoid the varia-
tional collapse onto lower lying eigenstates. While
the first strategy can be applied when the targeted
states remain close to an edge of the eigenvalue
spectrum, this approach become quickly impracti-
cable and one is left with the second option.
Calculation of electronic states bearing inner shell
vacancies stand among the most important chal-
lenges for the application of quantum chemistry
methods since such states are at the root of many
core electron based spectroscopies such as X-ray
absorption (XAS/NEXAFS) and single core hole
(SCH) X-ray photoelectron spectroscopy (XPS).
Moreover, the recent interest for emerging dou-
ble core hole (DCH) states spectroscopies [1–11]
has been rapidly growing thanks to improved light
sources and detectors [12–19] eventually leading to
even more demanding simulations.
Core hole states calculation is one such case where
the variational principle needs to be circumvented.
Indeed, these are highly excited states of either, the
neutral system (core excited), or of the cationic one
(core ionized). Due to their high energy, molecu-
lar core hole states are embedded in ionization con-
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tinua corresponding to ejection of outer shells elec-
trons. Such couplings will not be considered here,
as they are usually neglected in computational ap-
proaches dedicated to core hole states resulting in
what is sometimes referred to as a diabatized rep-
resentation of the physical problem [20].
Following standard wave function based strategies,
one has to avoid variational pitfalls on two occa-
sions. First, when optimizing the molecular or-
bital (MO) basis for the core hole state of inter-
est, and then, when performing the actual wave
function optimization. The most common strat-
egy employed to optimize MO for core hole states
is the maximum overlap method (MOM) [21, 22]
that consists in a biased self consistent field (SCF)
procedure in which the Slater determinant built at
each iteration do not follows the aufbau principle.
In practice, the occupied/virtual status of each
MO is not defined by their relative eigenvalues but
via an overlap criterion with the set of occupied or-
bitals of the previous iteration. Alternative strate-
gies include, freezing the core orbital bearing the
vacancy and optimizing the remaining MOs under
that constraint [23, 24], optimizing the orbitals in
the field of an increased atomic charge mimicking
the effects of the core shell vacancy (core equiva-
lent model) [25–27] as well as general optimization
schemes for excited states [28–30].
The main focus of the present article is the Core
Valence Separation (CVS) approximation often
used to prevent the variational collapse of core
hole states’ wave functions. Initially introduced by
Cederbaum et al. for SCH [31] and later extended
to DCH [4, 32], it consists in neglecting the weak
coupling between configurations with different oc-
cupation number of the core MOs. This leads to
the isolation of core hole CVS Hamiltonians which
can be diagonalized to yield approximate core hole
states. This strategy have been adapted to a large
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variety of methods [10, 20, 33–47]. Due to its al-
most mandatory character, the CVS approxima-
tion is thus one of the most critical aspect of core
hole state calculations.
In this paper, we present an in-depth exploration
of the spurious consequences of the CVS approxi-
mation especially focusing on the less explored case
of double core hole states. Following this introduc-
tion, the second section of this paper is dedicated
to summarize the general aspect of the CVS ap-
proximation and to illustrate its limits. In particu-
lar, we show that the CVS error can be interpreted
as an over-relaxation effect induced by the partial
breakdown of the variational constraint. We also
highlight that it leads to non negligible error on ex-
cited state properties, a fact generally overlooked.
Then, in the third section, we discuss the charac-
teristics of the few computational strategies that
have been proposed to attenuate the drawbacks of
the CVS approximation and we propose a varia-
tional method taking into account our new insight
on the nature of this error.
All results (unless extracted from the literature)
were computed using Quantum Package 2.0 [48]
and our homemade series of plugins.

II. THE CVS APPROXIMATION

A. Principle of the approximation

1. Variational calculation of excited states

Within the framework of a variational method, one
can exactly compute any given eigenstate |Ψn〉,

being granted that {
<

Ψn}, the set of eigenstate of
lower energy than the targeted state, is perfectly
known. One can then minimize the energy of a trial
wave function under an orthogonality constraint
with respect to this set. Thus,

|Ψn〉 = arg

 min
ϕe⊥{

<
Ψn}

[
〈ϕe|Ĥ|ϕe〉

] , (1)

where ϕe is the trial function, and “arg” represents
the argument i. e. the minimizing function. How-
ever, as exact calculations are almost always out of
reach, restrictions are applied to reduce the vari-
ational flexibility of the calculation, and thus, the
region of the Hilbert space that can be explored.
As a result one only computes approximated eigen-

states, here denoted as |Ψ̃n〉. As a result of their

approximated nature, each |Ψ̃n〉 formally develop
onto the full set of exact eigenstates,

|Ψ̃n〉 =
∑
m

Cn
m × |Ψm〉 . (2)

Under appropriate conditions, one expect for |Ψ̃n〉
to be as good an approximation to |Ψn〉 as possible.
It then comes that,

〈Ψ̃n|Ψn〉 = Cn
n ≈ 1 and Ẽn ≈ En. (3)

When attempting to compute excited states that
lie too high to be reached by a standard climb the
ladder type approach, one may try to find restric-
tion of the variational flexibility of the calculation
such that the approximated states computed can-
not collapse onto lower lying eigenstates. In an-
other word, one may try to enforce that,

|Ψ̃n〉 =
∑

Ψl∈{
<
Ψn}

0× |Ψl〉+
∑

Ψm 6∈{
<
Ψn}

Cn
m × |Ψm〉 . (4)

In the context of core hole state calculation, the
CVS approximation is employed to achieve such
restriction.

2. Block structure of the CVS Hamiltonian

In order to highlight the principle of the CVS ap-
proximation, let us first distinguish between the
different classes of Slater determinant that appear
in the configuration interaction (CI) expansion of
the wave function of a system. First, we consider
the type of configurations that are preponderant in
the CI expansion of SCH states, that is configura-
tions with a single half-filled core orbital, these will
be noted |K−1〉. Similarly, we will note by |K−2〉
configurations characterized by a single empty core
orbital, these are the most important ones in the
CI expansion of single site DCH states. We will
use K′ to signify any other core orbital than the
one described by K, therefore |K−1K′−1〉 will rep-
resent a configurations with two vacancies on dif-
ferent core orbitals. Finally, we will depict by |V〉
the “valence” configurations in which all the core
orbitals are filled. To be as general as possible, the
present definitions do not presuppose the charge of
the system. Therefore, a |K−1〉 configuration may
equally represent a neutral configuration obtained
by a core excitation, or a cationic core hole config-
uration obtained by the removal of a core electron.
We also note that these general notations are only
made to focus on the occupation of core orbitals
and do not imply anything about the occupation
pattern of the valence/virtual MOs. Thus, a |K−1〉
configuration may also include valence to virtual
excitations on top of the core excitation/ionisation
(and similarly for DCH configurations).

One can show that the off-diagonal Hamilto-
nian matrix elements that couple a N-electron
SCH Slater determinant with any other types of
N-electron configuration can be neglected. Indeed,
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due to the highly local character of core orbitals,
it comes that

〈K−1|Ĥ|K′−1〉 ≈ 0, 〈K−1|Ĥ|K′−2〉 ≈ 0 (5)

while configuration energy differences yield the fol-
lowing negligible perturbative weight :

〈K−1|Ĥ|V〉
Ek−1 − Ev

≈ 0,
〈K−1|Ĥ|K−2〉
Ek−1 − Ek−2 ≈ 0, (6)〈

K−1
∣∣Ĥ∣∣K−1K′

−1〉
Ek−1 − Ek−1k′−1 ≈ 0,

〈
K−1

∣∣Ĥ∣∣K−1K′
−2〉

Ek−1 − Ek−1k′−2 ≈ 0.

Similar reasoning can be used for decoupling dou-
ble core hole configurations from the others:

〈K−2|Ĥ|K−1K′
−1〉 ≈ 0, 〈K−2|Ĥ|K′−2〉 ≈ 0,

〈K−2|Ĥ|K−1K′
−2〉 ≈ 0, (7)

and

〈K−2|Ĥ|V〉
Ek−2 − Ev

≈ 0,
〈K−2|Ĥ|K−1〉
Ek−2 − Ek−1 ≈ 0, (8)〈

K−2
∣∣Ĥ∣∣K−2K′

−1〉
Ek−2 − Ek−2k′−1 ≈ 0,

〈
K−2

∣∣Ĥ∣∣K−2K′
−2〉

Ek−2 − Ek−2k′−2 ≈ 0.

Numerical illustration of the approximate block-
diagonal structure of the Hamiltonian is provided
in figure 1 for the small BH2+ molecule. We con-
sider this paradigm system whose small size allows
exact computation of both full configuration inter-
action (FCI) and CVS eigenstates. The magnitude
of the Hamiltonian coupling elements between two
determinants labeled i and j is reported via the
color grading. Said label were ordered according
to the occupation of the Boron 1s orbital, first the
core filed |V〉 type determinants then the |K−1〉
ones and finally the |K−2〉. For ease of represen-
tation, the cc-pVDZ basis [49] was reduced by re-
moving its component of “d” symmetry.

K-2

K-1

V K-1 K-2

FIG. 1: Graphical representation of the Hamiltonian
matrix of the BH2+ molecule computed for the VDZ′

basis (the cc-pVDZ basis without its “d” functions).

Neglecting these inter-block coupling terms yields
the block-diagonal CVS Hamiltonian, Ĥcvs. Each
of these block can thus be treated independently
from the others to compute only states of the tar-
geted SCH or DCH character.
We note that while the implementation of the
CVS approximation within a CI strategy is fairly
straightforward, other approaches such as the
methods of the coupled cluster family leave more
room to adjust the way in which this approxima-
tion is formulated (see e.g. [47]). As a result not all
CVS implementations are strictly identical. How-
ever, as they are all built on the same central con-
cept of separating the core hole states from the core
filled ones, it is expected that they should retain a
fairly similar overall behaviour.

3. CVS approximation, CI expansion and
variational principle

The variational principle can now be restricted
to applies only within a given block of the CVS
Hamiltonian. Let us focus on the lowest single site
DCH states for a given core orbital, |Ψk−2

0 〉, and its
approximate CVS counterpart, |Ψk−2

cvs,0〉. Accord-
ing to section II A 1, one can show that,

∣∣Ψk−2
cvs,0

〉
= arg

 min
ϕe⊥{

<
Ψk−2

cvs,0}

[
〈ϕe|Ĥcvs|ϕe〉

]
= arg

(
min

ϕe∈{ϕk−2}

[
〈ϕe|Ĥ|ϕe〉

])
. (9)

This shows that the determination of |Ψk−2
cvs,0〉 can

be exactly reformulated as a ground state like
calculation within a reduced variational space,
{ϕk−2}, comprised of wave-function whose CI ex-
pansion only contains configurations of the |K−2〉
type. This comes from the prevented mixing be-
tween |K−2〉 type determinants and the other ones
due to the neglected inter-block coupling elements
in the CVS Hamiltonian. This can be extended
to “excited” DCH state by imposing orthogonal-
ity constraint in a standard fashion. Obviously,
the previous development identically apply to SCH
states and any other type of core hole state that
can be isolated via the CVS approximation.
In equation (9), the orthogonality condition is de-
fined with respect to the eigenstates of the CVS
Hamiltonian. However, contrary to Ĥcvs, the
true Hamiltonian still weakly couples the valence
and (multiple) core hole configuration blocks, such
that, all exact eigenstates will have some contri-
bution of |K−2〉 determinants. Therefore, due to
the imperfect nature of the CVS approximation,
the relation in equation (4) is not exactly verified
and any CVS states, |Ψk−2

cvs,n〉, may display non-

zero projection onto the {
<

Ψk−2
n } set.
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B. Limits of the CVS approximation

We now investigate the effects of the CVS approxi-
mation on double core hole states of the paradigm
BH2+ system. We stress that the present calcu-
lations are not meant to accurately describe the
DCH states of BH2+, but to illustrate the spuri-
ous effects of the CVS approximation which are
expected to be especially highlighted within this
system due to the relative proximity between the
different family of states isolated by this approxi-
mation. We used the cc-pVDZ and cc-pCVDZ ba-
sis sets [49, 50] in which we removed the functions
of d symmetry to ease the computational burden.
We label these basis VDZ′ and CVDZ′.

1. CVS error on double core hole states energies

In figure 2, we report the difference between the
energy of the 50 lowest DCH states of BH2+ com-
puted with and without applying the CVS approx-
imation. Pairing between the CVS and FCI states
was done using an overlap based procedure which
consisted in projecting each CVS states on the FCI
basis and associating them to the FCI state dis-
playing the highest overlap value.
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FIG. 2: Energy error due to the CVS approximation
for the 50 lowest DCH states of BH2+ (ECVS −EFCI).
Blue dots: VDZ′. Red triangles: CVDZ′.

One can clearly observe in figure 2 an underesti-
mation of DCH states energies when the CVS ap-
proximation is applied. Indeed, when using the
VDZ′ basis set, the energy of the |Ψk−2

cvs,0〉 state
was found about 0.4 eV below the FCI value, and
about 0.5 eV with the CVDZ′ basis while over the
50 CVS states considered a mean signed deviation
(MSD) of about -0.3 eV and -0.4 eV for the VDZ′

and CVDZ′ bases respectively. Such underestima-
tion of the core hole state energy is expected to
directly affect the determination of core excitation
and binding energies since these are usually com-
puted as difference between the energy of the sys-
tem’s ground state, free of CVS error, and the en-

ergy of the CVS core hole states. Moreover, as il-
lustrated in the present case, the magnitude of the
CVS error increases with the size of the basis set.
This leads to the very unpleasant conclusion that
when this error is dominant the quality of double
core hole state computation strategy that relies on
the CVS approximation is expected to deteriorate
with the basis size.
In order to asses the generality of these observa-
tions, we shift our attention on the O 1s single site
double core ionisation potentials (DCIP) of the CO
and CO2 molecules. We report in table I the values
computed via different strategies based on the CVS
approximation and with different basis sets. When
a theoretical DCIP value was reported in the litera-
ture without taking into account relativistic effects
we corrected it by a shift of 0.84 eV according to
our estimation of this contribution obtained at the

TABLE I: CO and CO2 O 1s DCIP (in eV) computed
with a series of methods and basis sets. Bracketed val-
ues are the difference between the computed result and
the best experimental estimate (respectively 1178.0 and
1174.35 eV; see ref. [51] and references therein). The
(A)VXZ/(A)CVXZ nomenclature is used for Dunning’s
(aug-)cc-p(C)VXZ (X=D,T,Q,5) basis sets.

CO (O K−2) CO2 (O K−2)

∆CIPSI [10, 51]

AVTZ 1177.87 (−0.13) 1174.06 (−0.29)

ACVTZ 1177.53 (−0.47) 1173.75 (−0.60)

∆CIPSI (F. C.)b

AVTZ 1177.51 (−0.49) 1173.67 (−0.68)

ACVTZ 1176.07 (−1.92) 1172.29 (−2.06)

∆SCF [52, 53]

VTZ 1176.22 (−1.78) 1173.66 (−0.69)

ACVTZ 1175.58 (−2.42) 1173.00 (−1.35)

ACVQZ 1175.16 (−2.84) 1172.59 (−1.76)

ACV5Z 1175.09 (−2.91) 1172.52 (−1.83)

∆CASSCFa,b [52]

VTZ 1177.40 (−0.60) 1172.75 (−1.60)

CVTZ 1176.31 (−1.69) -

VQZ 1176.21 (−1.79) -

∆CCSDb [53]

ACVTZ 1176.76 (−1.24) 1173.32 (−1.03)

ACVQZ 1176.07 (−1.93) 1172.65 (−1.70)

ACV5Z 1175.92 (−2.08) 1172.51 (−1.84)

∆CCSD(T)b [53]

ACVTZ 1177.07 (−0.83) 1173.46 (−0.89)

ACVQZ 1176.38 (−1.62) 1172.80 (−1.55)

ACV5Z 1176.23 (−1.77) 1172.65 (−1.70)
(a) Active space comprising all occupied orbitals but

the 1s and all the corresponding σ∗ and π∗ ones.
(b) Used the frozen core energy of the neutral state.
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∆CISD level using the third order Douglas Kroll
transformation method (see refs. [10, 51]).
As one can see, all calculations reported here have
predicted underestimated DCIP values. In most
cases, these discrepancies cannot be directly at-
tributed to the CVS error itself since other sources
of error (typically the imperfect description of elec-
tronic correlation) still notably affect these results.
In particular most results reported here were ob-
tained using the frozen core energy of the neutral
ground state thus participating to the underesti-
mation of the DCIP as clearly illustrated by the
two sets of selected CI (CIPSI) [48, 54–59] results.
However, the CVS error is expected to be domi-
nant in the case of the highly converged all elec-
trons CIPSI calculations (top box of table I) for
which more than 107 determinants were included
in the CI space of both neutral and DCH states and
also include a second order perturbative correction
for the energy [10, 51]. Furthermore, one can also
observe that all methods reported in table I show
a clear increase in DCIP error with the size of the
basis set. Standard correlation and basis set errors
are not expected to explain such trend, especially
in the cases of the usually very robust CCSD(T)
and CIPSI based approaches. Therefore, these re-
sults provide indirect yet conclusive illustrations of
the spurious effects of the CVS approximation on
double core hole state energies, and of the unusual
behaviour of the induced error with respect to the
size of the basis set. Interestingly, for the present
cases, the VTZ and AVTZ basis-sets without core
correlation functions appear to be the best com-
promises between a good description of correlation
effects and the control of the CVS error.

2. Interpretations of the CVS DCH state energy
underestimation

Observing lower total energies for the CVS states
than for their FCI counterpart might, at first,
seems surprising. However, as discussed in sec-
tion II A 3, the restriction imposed by the CVS ap-
proximation does not exactly enforce the orthog-
onality between the approximate CVS states and
exact eigenstates of lower energy than the targeted
core hole. Thus it follows that the energy of the
exact core hole state is not a lower bound of the
energy of the corresponding CVS state.
To asses the magnitude of such contamination, we
report, in figure 3, the square value of the overlap
between |Ψk−2

cvs,0〉 and the 2500 lowest BH2+ FCI

eigenstate computed with the VDZ′ basis.
Unsurprisingly, most of the projection of the Ψk−2

cvs,0

wave function is concentrated on its FCI equivalent
(approximately 99.9 %). However, one can also no-
tice some non negligible projection onto very low
lying SCH states. This observation explains why

0.001

0.01

0.1

1

0 500 1000 1500 2000 2500

|<
Ψ

i
|Ψ

cv
s >

|2

FCI state label i

FIG. 3: Square value of the projection of the lowest en-
ergy DCH state of the BH2+ molecule computed within
the CVS approximation onto the 2500 lowest eigenstate
of the same system computed at the FCI level. The
VDZ′ basis set was used. The two red arrows indicate
the lowest SCH and DCH eigenstates.

the energy of a CVS state falls below its exact FCI
counterpart. Indeed, this shows that within the
framework of the CVS approximation, the lack of
a proper orthogonality constraint leads to the con-
tamination of the CVS states by lower lying eigen-
states with increased occupation number for their
core orbital. Such states having significantly lower
energy than the targeted core hole state, even a
small contamination contributes to notably lower
the energy of the CVS state.

Assuming the perfect validity of the CVS approx-
imation implies that the exact FCI expansion of
the DCH eigenstate would only have contribution
from |K−2〉 type configurations. Interestingly, this
gives us a way to assess the validity of the CVS ap-
proximation for our BH2+ test case. We report, in
figure 4, the mean occupation number of the Boron
1s orbital in the 2500 lowest FCI states of the BH2+

system computed with the same two bases as pre-
viously considered.

As one can see, when the VDZ′ basis is employed,
the system’s behavior remains in line with what is
expected when the CVS approximation is reason-
able. Indeed, there is a clear separation between
core filled states (mean occupation number of the
Boron 1s orbital of 2), SCH states (mean occupa-
tion of 1), and DCH states (mean occupation of 0).
However, increasing the flexibility of the basis by
including orbitals designed to describe the correla-
tion of core electrons leads to the blurring of this
separation. Indeed, one can clearly observe that
a large number of BH2+ eigenstates display mean
occupation number of the Boron 1s orbital signifi-
cantly away from an integer value when computed
with the CVDZ′ basis. This clearly indicates that
the validity of the CVS approximation decreases
with the improvement of the basis set flexibility,
especially in the core region.
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FIG. 4: Mean occupation number of the Boron 1s or-
bital in the 2500 lowest FCI states of BH2+. Basis sets:
VDZ′ (blue dots) and CVDZ′ (red triangles).

The two analysis that we conducted on the BH2+

CVS DCH states shed light on the intrinsic nature
of the CVS approximation induced error and ex-
plain how it manifests in a calculation. First, we
showed that the CVS constraint of only including
in the CI space configuration with a given occupa-
tion number for the targeted core orbital is not
equivalent to the exact orthogonality constraint
appearing when properly applying the variational
principle. As a result, this breach in the varia-
tional principle allows the CVS states to “leak”
onto lower lying eigenstates with increased core oc-
cupation number. This spurious relaxation mech-
anism therefore yields CVS total energy that are
underestimated with respect to the exact FCI val-
ues. We then illustrated that the validity of the
CVS approximation is notably modulated by the
nature of the basis set used. In particular, we high-
lighted that improving the flexibility of the basis in
the core region leads to a decrease in the validity
of the CVS approximation thus explaining the rise
in the CVS error with the size of the basis.

3. Comparison with the case of SCH calculation

We now confront our finding regarding the effects
of the CVS approximation on DCH states with
some of the known properties of the CVS error in
the context of SCH states calculation. The criti-
cal difference that exists between the CVS approx-
imation as applied for computing SCH states in
comparison with DCH ones is the nature of the
discarded configurations.

According to equations (5) and (6), when targeting
SCH states, the CI expansions of the wave func-
tions are striped of (i) all valence type configura-
tions, (ii) all single site double core hole involving
the core orbital bearing the core vacancy in the

targeted states, and (iii) all configuration involv-
ing core vacancies located on other core orbitals.
Generally speaking, neglecting the mixing between
core hole states localised on different atoms should
remain a fairly good approximation in most cases,
which leaves us to asses the effects of the missing
|V 〉 and |K−2〉 configurations. From a perturbative
point of view, |K−2〉 configurations are expected to
lower the SCH state energy while |V 〉 determinants
should lead to its increase. The CVS error in SCH
calculation is thus expected to stem from the bal-
ance between two components of opposite effects.
This reasoning has been previously used by Herbst
et al. to investigate the CVS error in the context
of SCH calculations using the ADC method [37].
This explains why the CVS error have been ob-
served to yield both positive and negative shift of
the energy of SCH states.
This strongly contrasts with the CVS error in sin-
gle site DCH states calculations. Indeed, in the
latter, the CVS error mostly stems from the miss-
ing |V 〉 and |K−1〉 configurations (once again leav-
ing aside the effects of core hole mixing configu-
rations). Contrary to the SCH case, all missing
Slater determinants are expected to increase the
energy of the DCH states. This observation is in
adequacy with our previous observation of a CVS
error leading to a significant underestimation of
the single site DCH states’ energies. Moreover, the
lack of error compensation between the two main
components of the CVS error leads to the conclu-
sion that the spurious effects of the CVS approxi-
mation should be significantly more marked in the
case of DCH states than SCH ones.
As a final remark, we note that by using the
same reasoning, one can conclude that the CVS
error associated with the computation of two
site DCH states should behave more similarly to
the SCH case than to the single site DCH one.
This intuition is confirmed by the observations of
Zheng et al. who reported positive energy shifts of
a series of two site DCH states as a result of the
CVS approximation [43].

III. CORRECTION OF THE CVS ERROR

A. Short overview of existing procedures

The CVS approximation being a critical aspect
of core hole state computation methods, attempts
had already been made to asses and correct its
spurious effects. As, the CVS approximation can
be seen from multiple points of view and summa-
rizing its consequences is not trivial, the correc-
tion strategies that have been proposed so far were
based on very different ideas.
Zheng et al. devised an ad hoc correction strategy
in which they assimilate the CVS error to a global
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energy shift of the CVS states [42, 43]. They eval-
uated this shift as the difference between the core
hole state energy obtained in a CVS-CCSD(T) cal-
culation and a non CVS one. Obviously, this sup-
pose that the core hole states can be properly com-
puted within the non-CVS coupled cluster calcula-
tion. In their study, this was made possible by ap-
plying very drastic restrictions on the excitations
included in the calculation.

As it was explained previously, applying the CVS
approximation leads to leaving a large number
of configurations out of the variational space ex-
plored. Therefore, one may choose to deal with
the CVS error by focusing on that discarded infor-
mation. A natural way of accounting for that is to
use perturbation theory. This idea was explored
by Coriani et al. in the context of coupled clus-
ter calculations, [41] as well as Garner et al. for
excited state mean field calculations [46].

One may instead attempt to directly correct the
CVS core hole wave functions. In that approach,
the focus is put on the CVS internal space rather
than on its external complementary part as for the
perturbative approach. This strategy was adopted
by Herbst et al. who proposed to use a state spe-
cific Rayleigh-quotient iteration procedure to re-
lax a posteriori the CVS state. This strategy is
based on the idea that a CVS state energy is a
good enough guess to allow the convergence of the
non variational procedure. One important distinc-
tion between this approach and the previous ones
is that it allows to correct both the CVS energies
and wave functions. Thus, it could also be used to
correct transition properties.

So far, such correction schemes have mostly been
used in the case of SCH calculations. It is still to
be noted that, as stated before, Zheng et al. ap-
plied their ad hoc strategy to a series of two site
double core hole states. However, when targeting
DCH states rather than lower lying SCH ones, very
strict restrictions need to be applied to the CVS
approximation-free calculation thus significantly
limiting the practicability of such approaches. On
the other hand, owing to its state specific nature,
the Rayleigh-quotient iteration based procedure of
Herbst et al. should not suffer from the extension
to DCH states since its only premise is that the
energies of the CVS states are good enough. How-
ever, as it was shown in figure 2, the CVS error
cannot be reduced to a simple shift on the core
binding energy but instead, affects the different
core hole states with a varying magnitude. Thus,
when using a state specific strategy, each states will
need to be independently corrected which could
then lead to interpretation problem since indepen-
dent Rayleigh-quotient iteration procedure might
not yield properly orthogonal core hole states. Fi-
nally, the perturbative correction strategy can be
straightforwardly extended to CI based calculation

of DCH states. As highlighted before, this per-
turbative correction would indeed yield a positive
shift of the energies of the BH2+ DCH states since
the |V〉 and |K−1〉 determinants are expected to
mostly be of significantly lower energies that the
CVS DCH states.

B. A variational correction of the CVS error

1. An energy maximization strategy

In the following, we design a variational procedure
that allows to correct, in a coherent manner, a se-
ries of CVS core hole states. To do so, we propose
to diagonalize the Hamiltonian operator in a basis
built with (i) the set of contracted CVS core hole
wave function to be corrected, and (ii) a selected
part of the set of external determinants discarded
within the CVS approximation.
This idea will be applied to correct the CVS error
in the DCH state of the BH2+ system that we in-
vestigated before. In practice, the corrected wave
functions will now be expanded as:∣∣Ψ̄n

〉
=
∑
m

Cn
m

∣∣Ψk−2
cvs,m

〉
+
∑
i

Pn
i

∣∣Φext.
i

〉
, (10)

where {Φext.} is the set of external determinants
not included in the CVS CI space. The identifi-
cation of the corrected roots corresponding to the
targeted DCH state, |Ψ̄k−2

n 〉, only involves finding
those whose expansion is dominated by a very large
Cn

m coefficient.
Through this approach, the CVS error is corrected
in two ways. First, taking into account the ex-
ternal determinants {Φext.} corrects a similar as-
pect of the CVS error than the strategies based on
perturbation theory. However, in this approach,
these determinants are explicitly included into the
corrected wave functions. A global correction of
any observable is therefore expected rather than
just an energy shift. On top of that, within our
variational approach, a small mixing between the
contracted CVS wave functions is expected due to
indirect coupling via the determinants of the ex-
ternal space. As a result, this approach also allows
for the partial relaxation of the CVS approxima-
tion within the internal CVS determinant space,
akin to what can be achieved using Herbst et al.’s
Rayleigh-quotient procedure. However, we high-
light that within our method, all CVS states are
corrected simultaneously and the orthogonality of
the !corrected roots is ensured.
For this strategy to be applicable in practice, one
would need to be able to reliably compute the cor-
rected core hole wave functions. Let us first note
that including the full set of CVS wave functions
and the full set of external determinants in equa-
tion (10) would restore the complete FCI flexibility
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FIG. 5: Error on the energy (E −EFCI) of the 50 lowest DCH state of BH2+ computed within the CVS approxi-
mation and with a series of correction (see text). Left: VDZ′ basis-set. Right: CVDZ′ basis-set. The two bottom
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0

10

20
Full correction

0

10

20
Single excitation 1s

0

10

20
Single excitation 1s (99.9%)

-15 -10 -5 0 5 10 15
Energy error (meV)

0

10

20
PT2

N
u
m
b
e
r 
o
f 
s
ta
te
s

MAE = 1.8 meV
σ = 1.6 meV

MAE = 1.8 meV
σ = 2.3 meV

MAE = 1.8 meV
σ = 2.3 meV

MAE = 3.6 meV
σ = 4.6 meV

0

10

20
Full correction

0

10

20
Single excitation 1s

0

10

20
Single excitation 1s (99.99%)

-90 -60 -30 0 30 60
Energy error (meV)

0

10

20
PT2

N
u
m
b
e
r 
o
f 
s
ta
te
s

MAE =   7.1 meV
σ = 10.0 meV

MAE = 3.7 meV
σ = 5.9 meV

MAE = 3.8 meV
σ = 6.2 meV

MAE = 36.1 meV
σ = 24.5 meV

FIG. 6: Histogram of the distribution in residual energy error (E − EFCI) for the 50 lowest DCH state of BH2+

after correction of the CVS error using the same methods as in Fig. 5. Left: VDZ′ basis-set. Right: CVDZ′

basis-set. We also report the mean absolute error (MAE) and standard deviation for each method. We recall
that for the uncorrected CVS calculations, MSD = −302.5 meV and σ = 116.9 meV with the VDZ′ basis set and
MSD = −400.1 meV and σ = 128.2 meV with the CVDZ′ basis set (see Fig. 2). We used the MSD values here
since the uncorrected CVS error is fully negative.



9

and thus yields the exact eigenstates of the elec-
tronic Hamiltonian. Obviously, in practice, both of
these sets have to be truncated. Generally speak-
ing, the set of CVS states to be corrected will be
naturally small since it will only contain the CVS
core hole states initially computed. However, even
with that restriction, one still encounter an issue
similar to the one that leads to the use of the CVS
approximation in the first place. Indeed, the cor-
rected core hole states are, once again, expected to
be found somewhere in the middle of the spectrum
of the electronic Hamiltonian.
To circumvent this problem, we propose to restrict
the external determinant set such that the core
hole roots lie strictly at the top of the eigenvalue
spectrum of the electronic Hamiltonian projected
onto the correction basis. To do so, we only include
in {Φext.}, Slater determinants of energy signifi-
cantly lower than the CVS states. As a result, no
root that favor Pn

i coefficients will be of higher en-
ergy than the roots dominated by the contracted
CVS states i.e. the one mostly weighted by a Cn

m

coefficient. Within this framework, one can easily
compute these roots in an almost standard varia-
tional way. Indeed, to target the higher edge of the
eigenvalue spectrum, one can consider the opposite
electronic Hamiltonian (−1 × Ĥ) and use a stan-
dard Davidson procedure to compute the lowest
energy edge of this modified operator.

2. Results for the 50 lowest DCH states of BH2+

We applied our corrections procedures on the 50
lowest CVS DCH states of the BH2+ molecule for
which the CVS error was characterized in figure 2.
To truncate the external determinant space, we
rely on the observations made in section II B 3 and
using figure 3. We highlighted that, for these DCH
states, a major origin of the CVS error is the con-
tamination of the CVS states by low energy SCH
ones. We thus propose to include in the exter-
nal determinant set, only |K−1〉 type configura-
tions that can be generated as a single valence-to-
core excitation from a |K−2〉 Slater determinant
included in the initial CVS CI space.
We report in figure 5 the error with respect to the
FCI on the energy of the 50 lowest energy DCH
states of BH2+ computed within the CVS approx-
imation (black) and after applying our variational
correction with (i) the full set of external deter-
minants (red), (ii) the restricted set of external
determinants generated as valence-to-core single
excitation from all configurations in the CVS CI
space (orange), and (iii) the restricted set of ex-
ternal configuration generated from the determi-
nants that span at least 99.9% (VDZ′) and 99.99%
(CVDZ′) of the norm of each CVS wave func-
tions (purple). This latter restriction was enforced

by sorting the CVS CI space configurations accord-
ing to their state average weight and picking the
smallest most relevant portion such that the ac-
counted norm is greater than the requested thresh-
old for each CVS state. In the present cases this
lead to a division by 2 of the number of deter-
minants in the correction space. We also report
the results obtained with the perturbative correc-
tion arising from the full set of external determi-
nants (blue). Here we used second order Epstein-
Nesbeth perturbation theory such that

Ept2
n = Ecvs

n +
∑
i

| 〈Ψk−2
cvs,n|Ĥ|Φext.

i 〉 |2

Ecvs
n − 〈Φext.

i |Ĥ|Φext.
i 〉

. (11)

Finally, we report in figure 6 a series of histograms
showing the residual energy error distributions af-
ter applying the CVS corrections previously men-
tioned. The mean absolute error (MAE) and stan-
dard deviation (σ) are also given for each correc-
tion methods.
These figures show a clear improvement in DCH
state energies after correcting the CVS error with
any of the method considered here. Interestingly,
our variational correction yields very similar re-
sults whether the full set of external determinants
is taken into account or if it is restricted to valence-
to-core single excitation only. We stress again that
only the procedure in which the external determi-
nant set is generated by single excitation would be
applicable in a real life scenario since including the
full set of external determinants would not allow
for the variational computation of the double core
hole roots. In the present case, the results for the
complete correction set were obtained by fully di-
agonalizing the electronic Hamiltonian projected
on the correction basis. One can also observe that
almost identical results are obtained whether the
restricted set of external determinants was gener-
ated from all the configurations in the CVS CI
space or only from configurations that span 99.9%
(VDZ′) and 99.99% (CVDZ′) of the norm of the
CVS wave functions. This drastically reduces the
size of the external set thus allowing the general-
ization of this method to larger systems.
One can notice that, for few states, when the
CVDZ′ basis set is used, the variational correc-
tion obtained with the restricted set of external
determinants yields more accurate results than the
correction obtained with the full set of external de-
terminants. In particular, this is the cases for the
fourth, fifth, and sixth DCH states as it can be
clearly seen in the bottom right panel of figure 5.
Interestingly, the initial CVS approximation may
already have been especially less adequate for these
three specific DCH states. Indeed, figure 4 shows
that the expected core occupation for these three
DCH states notably differs from 0. This means
that some configurations with at least one electron
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in the core orbital are expected to be relatively im-
portant in the exact description of these states. In
our variational correction method, the relaxation
of the contracted CVS wave-functions is only par-
tially allowed, therefore it is not surprising to ob-
serve some instability when external determinants
bearing large coefficients are included.
If both perturbative and variational corrections
significantly mitigate the CVS error, clear differ-
ences between these procedures can be observed on
the bottom panels of figure 5. Notably, one can see
that the residual error is significantly larger when
applying the perturbative correction than with our
variational strategy. Similarly, the residual error
spread is largely reduced with the variational ap-
proach in regard to the perturbative one as clearly
illustrated by figure 6.
Interestingly, the reliability of the variational cor-
rection seems to be less dependent on the basis
set than the perturbative one. Indeed, the mean
average error observed after application of the per-
turbative correction increases by an order of mag-
nitude when going from the VDZ′ to the CVDZ′

basis set while the residual mean average error ob-
tained after application of our variational correc-
tion procedure (with the external determinant set
built by single excitation) only increases by a factor
two. Moreover, the standard deviation of the er-
ror after perturbative correction increases by more
than a factor five between the two basis while it
increases by less than a factor three with the vari-
ational correction. Typically, the accuracy of trun-
cated CI approaches with respect to perturbative
ones tends to deteriorate with the size of the sys-
tem due to the increases in size consistence error
which grows with the amount of correlation and re-
laxation energy. However, in the cases of core hole
state, the highly local nature of the relaxation due
to the local hole created should not lead to size
consistence error that scales linearly with the size
of the system. Therefore, it is expected that the
present procedure will not display a constant in-
crease in the error with the system size.

IV. CONCLUSION

We investigated the spurious effects of the CVS
approximation, especially in the context of dou-
ble core hole state calculations. By performing ex-
act FCI calculations on the model system BH2+,
we showed that the CVS approximation induces a
breach in the variational principle due to the loss of
exact orthogonality conditions leading to the sys-
tematic underestimation of the energy of double
core hole states. Indeed, we illustrated that the
CVS approximation results in the contamination
of DCH states by lower lying SCH ones, and thus,
to CVS states of too low energies. We also high-

lighted that this error increases with the size of
the basis set, especially when core correlation func-
tions are added. This interpretation is shown to
be in adequacy with theoretical results displaying
a systematic underestimation of the double core
ionisation potential of the CO and CO2 molecules,
and explains the different behavior of the CVS er-
ror in the case of SCH calculations.

We also developed a variational method for cor-
recting the CVS error which was designed to si-
multaneously correct a series of CVS states while
preserving the orthogonality of the corrected wave
functions. This approach is based on the idea of
projecting the electronic Hamiltonian onto a ba-
sis containing the contracted CVS core hole wave
functions to be corrected as well as relevant Slater
determinants discarded due to the CVS approxi-
mation. In practice, we proposed to build this ba-
sis such that the targeted core hole roots are found
at the higher edge of the Hamiltonian eigenvalue
spectrum. The corrected core hole wave functions
can then be variationally computed via an energy
maximization procedure. We showed that for the
DCH states of BH2+, this method yields results of
higher quality than a perturbative strategy.

Through this paper, we focused on unraveling the
specificities of the CVS error in the context of
double core hole calculations, and on presenting
a proof of principle for our variational correction
strategy. In upcoming works, we plan on be gen-
eralizing this method to be applicable to real life
cases. Since the formalism presented here can be
trivially generalized to any CI / selected CI based
calculations, our short term focus will be on the
correction of the CVS error in the double core hole
states of the CO and CO2 dications previously in-
vestigated by some of the present authors [10, 51].
We also plan on assessing the effects of the CVS er-
ror on non energetic properties such as theoretical
excitation/ionization transition moments.
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