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Abstract Sexual dimorphism is challenging to detect among fossils due to a lack of statistical 
representativeness. The Angeac- Charente Lagerstätte (France) represents a remarkable ‘snapshot’ 
from a Berriasian (Early Cretaceous) ecosystem and offers a unique opportunity to study intra-
specific variation among a herd of at least 61 coeval ornithomimosaurs. Herein, we investigated 
the hindlimb variation across the best- preserved specimens from the herd through 3D Geometric 
Morphometrics and Gaussian Mixture Modeling. Our results based on complete and fragmented 
femora evidenced a dimorphism characterized by variations in the shaft curvature and the distal 
epiphysis width. Since the same features vary between sexes among modern avian dinosaurs, 
crocodilians, and more distant amniotes, we attributed this bimodal variation to sexual dimor-
phism based on the extant phylogenetic bracketing approach. Documenting sexual dimorphism in 
fossil dinosaurs allows a better characterization and accounting of intraspecific variations, which is 
particularly relevant to address ongoing taxonomical and ecological questions relative to dinosaur 
evolution.

Editor's evaluation
This important contribution offers a convincing analysis of the challenging topic of sexual 
dimorphism in dinosaurs. Unlike previously published contributions, which are ambiguous, this 
paper, based on 61 ornithomimosaur fossils, makes a compelling case for measurable differ-
ences between male and female individuals. Of particular note, the use of rigorous statistical 
approaches, a major strength of this manuscript, sets this study apart from previous attempts to 
tackle this question. Morphological changes are carefully analysed and put into a broader compar-
ative context: the conclusions of this paper allow for interesting comparisons between non- avian 
dinosaurs and extant groups (e.g., crocodilians, birds, mammals). As such, this manuscript will 
be of interest to a diverse audience, including palaeontologists, zoologists, and evolutionary 
biologists.
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Introduction
Dimorphism has been reported in every major dinosaur clade and has often been attributed to sex- 
specific variation (Dodson, 1975; Chapman et al., 1997; Bunce et al., 2003; Padian and Horner, 
2011; Knell and Sampson, 2011; Knell et al., 2013; Mallon, 2017; Saitta et al., 2020). However, 
recent studies have demonstrated that most of the documented cases of sexual dimorphism in extinct 
dinosaurs were most likely biased by ontogenetic changes, taphonomic deformations, and small 
sample sizes, which substantially affect the representativeness of the inter- and intraspecific diversity 
and undermine statistical analyses (Griffin and Nesbitt, 2016; Hone et al., 2017; Saitta et al., 2020). 
For example, a discrete and binary variation between gracile and robust morphologies of femoral 
bone scars, mostly at the level of the lesser trochanter, has frequently been inferred, with more or less 
confidence, as sexual dimorphism in various ceratosaurian theropods and non- dinosaurian dinosauri-
forms (Colbert, 1990; Raath, 1990; Benton et al., 2000; Britt and Chure, 2000; Piechowski et al., 
2014). More recently, Griffin and Nesbitt, 2016 demonstrated that this feature no longer appeared 
dimorphic when accounting for ontogenetic series in the silesaurid Asilisaurus. In addition, it has been 
demonstrated on modern populations that sexual dimorphism could be represented only by very 
subtle morphological variations, making it even harder to detect in fossils with smaller sample sizes 
(Hone et al., 2020; Saitta et al., 2020). At a larger scale, Mallon, 2017 performed a statistical inves-
tigation on a large set of studies that hypothesized sexual dimorphism based on a wide diversity of 
anatomical proxies across the major clades of non- avian dinosaurs. However, among the 48 described 
occurrences, only 9 datasets were suitable for statistical test, among which only 1 was considered 
to rigorously demonstrate dimorphism. Indeed, the combination of a principal component analysis 
(PCA) and a mixture modeling analysis highlighted that the shift in posterior inclination between the 
eighth and ninth dermal plates of Stegosaurus mjosi was best explained by a bimodal distribution. Yet, 
there is not robust evidence to postulate that the dimorphism shown in dermal plates would be sex 
specific (Saitta, 2015). As a consequence, it appears that no dataset has yet rigorously demonstrated 
the presence of sexual dimorphism in non- avian dinosaurs (Hone et al., 2020). According to Mallon, 
2017, one should review three issues when demonstrating sexual dimorphism on extinct organisms: 
(1) sample size in order to ensure population representativeness; (2) methodology in order to use only 
suitable analyses to study sexual dimorphism, such as mixture modeling; (3) any other intraspecific 
morphological variation such as ontogeny and pathology, as well as taphonomy.

Here, we studied the intraspecific femoral variation among a remarkably dense and well preserved 
population of ornithomimosaurs (Allain et al., 2014, Allain et al., 2022) from the Angeac- Charente 
Lagerstätte (Lower Cretaceous of France). Rozada et  al., 2014 and Rozada et  al., 2021 demon-
strated that at least 61 ornithomimosaur individuals belonged to the same herd and were deposited in 
a mass mortality event relying on several evidences (e.g. very limited transport; quality of bone pres-
ervation; abundance of individuals with a high skeletal representation preserved in a restricted spatial 
distribution; catastrophic age profile of the group; deposition of sediment and bones under coeval, 
poorly oxygenated burial and diagenesis conditions given by their rare earth elements and Yttrium 
profiles). Thus, the ornithomimosaur herd of Angeac- Charente represents a unique occasion to study 

Table 1. Number of femora and tibiae from the Angeac- Charente ornithomimosaur discovered 
between 2010 and 2020.
Minimum Number of Elements (MNEs) and Minimum Number of Individuals (MNIs) are given for 
each fragmented and complete femora.

Femora Tibiae

Left proximal (MNE) 31 31

Right proximal (MNE) 35 35

Left distal (MNE) 18 48

Right distal (MNE) 22 46

Left complete (MNE) 8 13

Right complete (MNE) 11 12

MNI 46 61

https://doi.org/10.7554/eLife.83413
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subtle parameters such as intraspecific variation in extinct dinosaurs. Moreover, the exceptionally high 
minimal number of individuals among the herd, represented by tibiae and femora (Table 1), offers a 
singular opportunity to test for the presence of dimorphism and characterize its variation. Indeed, 
and in addition of being the most abundant bones discovered from the Angeac- Charente ornithomi-
mosaur, many hypotheses of sexual dimorphism were formulated based on the hindlimb morphology 
of non- avian dinosaurs (Colbert, 1990; Raath, 1990; Larson, 1994; Benton et al., 2000; Britt and 
Chure, 2000; Carrano et al., 2002; Bunce et al., 2003; Piechowski et al., 2014) but also observed 
in extant archosaurs (Schnell et al., 1985; Farlow et al., 2005; Charuta et al., 2007; Bonnan et al., 
2008; Elzanowski and Louchart, 2022).

We used a 3D geometric morphometric (3D GM) approach that combines anatomical landmarks 
and sliding semilandmarks along curves and surfaces on both complete and fragmented femora and 
tibiae (Figure 1—figure supplement 1A–B; Gunz et al., 2005; Gunz and Mitteroecker, 2013). This 
method is well suited to study biological objects, including limb bones, and to detect subtle intraspe-
cific shape variations (Zelditch et al., 2012; Botton- Divet et al., 2016) such as dimorphism (Fabre 
et al., 2014). We then investigated the resulting dataset using PCAs and Gaussian mixture modeling 
(GMM) as clustering analyses. This clustering analysis calculates the number of Gaussian distributions 
present in a dataset by maximum likelihood estimations and has been demonstrated as a well- suited 
method for the identification of dimorphism (Godfrey et al., 1993; Dong, 1997; Fabre et al., 2014; 
Manin et al., 2016; Mallon, 2017; Saitta et al., 2020).

Results
We highlight a dimorphic variation in femora from the ornithomimosaur herd of Angeac- Charente 
(Figure 1A–B). This dimorphic variation is localized along the diaphysis (i.e. lateromedial curvature) 
and toward the distal epiphysis (i.e. lateromedial width) of the femur (Figure 1C–D). Distributions 
along the PC1 of complete femora (28.8%) and distal epiphyses (27.9%) are best described by two 
clusters with a ratio close to 1:1 according to GMM analyses (see Supplementary file 1 for details). 
PC1 scores from both analyses are not significantly correlated to the log centroid size, indicating that 
size- related effects have no impact on the observed dimorphism (p- value>0.1 for complete femora 
and distal epiphyses, Supplementary file 1).

The most important morphological variation of complete femora is a medial to lateral curvature 
of the femur (Figure 1C). The proximal third of the femur appears deviated toward the lateral side in 
specimens on the negative part of the PC1 axis, whereas specimens located on the positive part have 
straight to medially curved femora (Figure 1C). Coincidentally, the femoral head is directed medially 
in the negative cluster while it is inclined ventromedially in the positive one (Figure 1C). Regarding 
distal epiphyses, we selected 6 (out of 10) epiphyses from complete femora because the other 4 were 
taphonomically altered or pyrite encrusted only in the distal area, which would appear relatively more 
important in analyses restricted only to this area rather than on the complete morphology (Supple-
mentary file 2). Nevertheless, for distal epiphyses, the most important morphological variation along 
PC1 is the expansion of the lateromedial width relative to the anteroposterior length, which is greater 
in specimens on the positive part of the PC1 axis than on the negative one (Figure 1D). In addition, 
we highlight that the 6 distal epiphyses from complete femora are consistently attributed to the same 
clusters between the two analyses (Figure 1A, B; Supplementary file 2). Hence, our study shows 
that the straighter the shaft is, the more robust the epiphysis is and that this relationship is dimorphic.

However, there is no robust bimodal distribution on proximal epiphyses, as shown by the GMM 
analyses (Figure  1—figure supplement 2; no consistency in the specimen attribution between 
complete femora and proximal epiphyses). Similarly, there is no dimorphism in the morphological 
variation of complete tibiae (Figure 1—figure supplement 3) along PC1 (24.1%) and PC2 (20.0%).

Discussion
The closest extant relatives of non- avian dinosaurs are known to display sexual dimorphism with more 
or less visibility: birds display variation in their plumage and skeleton (Schnell et al., 1985; Owens and 
Hartley, 1998; Dunn et al., 2001; Székely et al., 2007; Clarke, 2013; Duggan et al., 2015; Manin 
et al., 2016; Hone et al., 2017; Elzanowski and Louchart, 2022), whereas the variation is restricted 
to the skeleton in crocodilians (Fitch, 1981; Farlow et al., 2005; Cox et al., 2007; Prieto- Marquez 
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Figure 1. The two first axes of the principal component analysis (PCA) for (A) complete femora and (B) distal epiphyses. Minimal (left) and maximal 
(right) mean shapes per group for (C) complete femora in posterior view and (D) distal epiphyses in posterior (top) and distal (bottom) views. 
Abbreviations: L, lateral; P, posterior; Pr, proximal.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Template of (A) right complete femur of ANG10 90 and (B) mirrored left distal epiphysis of ANG14 3188 with anatomical 
landmarks (orange), sliding semilandmarks along curves (dark gray) and surfaces (light gray).

Figure supplement 2. The two first axes of the principal component analysis (PCA) for proximal epiphyses of femora.

Figure supplement 3. The two first axes of the principal component analysis (PCA) for complete tibiae.

Figure supplement 4. Landmark configuration on the templates (A) femur; (B) tibia, with numerotation following the scheme shown in Supplementary 
files 4 and 5.

Figure supplement 5. The two first axes of the principal component analysis (PCA) showing the quantification of the repeatability for the landmark 
configuration on femora.

Figure supplement 6. The two first axes of the principal component analysis (PCA) showing the quantification of the repeatability for the landmark 
configuration on tibiae.

Figure supplement 7. The two first axes of the principal component analysis (PCA) for the original dataset including taphonomically distorted complete 
femora ANG10 171 (left femur on the plot) and ANG13 2953 (right femur on the plot).

https://doi.org/10.7554/eLife.83413
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et al., 2007; Bonnan et al., 2008; Hone et al., 2017; Hone et al., 2020). The extant phylogenetic 
bracket (EPB) of non- avian dinosaurs (Witmer, 1995) thus implies they were sexually dimorphic too 
(Hone et al., 2017; Hone et al., 2020).

A femoral dimorphism of the same nature was demonstrated to be sex- specific among popula-
tions of extant tetrapods such as carnivorans and primates. Dimorphism in the femoral obliquity (also 
termed ‘bicondylar angle’) was observed in humans, for which females had higher angles than males 
(Parsons, 1914; Tardieu et  al., 2006; Hunt et  al., 2021). Moreover, a higher lateromedial width 
of the distal epiphysis (also termed ‘epicondylar width’ or ‘bicondylar breadth’) was demonstrated 
to vary between sexes in gray wolves and other carnivorans, as well as in primates (Alunni- Perret 
et al., 2008; Gaikwad and Nikam, 2014; Morris and Brandt, 2014; Cavaignac et al., 2016; Morris 
and Carrier, 2016). Whereas no similar sexual dimorphism had been shown – or studied – in non- 
archosaurian sauropsids to our knowledge, many relevant examples are available in extant and sub- 
fossil archosaurs. A higher distal width in males than females was demonstrated in wild and captive 
Alligator mississippiensis using linear and geometric morphometrics (Farlow et al., 2005; Bonnan 
et  al., 2008). Handley et  al., 2016 demonstrated that femoral distal width of the more recently 
extinct flightless bird Dromornis stirtoni was also higher in males than females. To do so, they coupled 
morphometrics and multivariate statistics with the observation of medullary bone, a sex- specific tissue 
present in bones of egg- laying female in archosaurians (Dacke et al., 1993; Schweitzer et al., 2005; 
Schweitzer et al., 2007; Canoville et al., 2019). The same kind of sexual dimorphism was observed 
in modern birds like California gulls (Larus californicus; Schnell et al., 1985) and in the two extant 
species of ostriches (Struthio c. camelus and S. c. molybdophanes) but with reversed proportions 
between males and females (Elzanowski and Louchart, 2022). Furthermore, Duggan et al., 2015 
demonstrated that young male domestic ducks (Anas platyrhynchos) had more laterally curved femora 
than females and that this sexually dimorphic feature disappeared along ontogeny. However, to our 
knowledge and aside from Duggan et al., 2015, data about femoral obliquity is generally unavailable 
in most studies including sex determination in birds and other sauropsids. Therefore, because the 
femoral dimorphic features we highlighted in the Angeac- Charente ornithomimosaur herd were also 
demonstrated to vary between sexes in more or less closely related extant vertebrate clades, we infer 
it to be sexual.

Ontogenetic allometry was often misinterpreted as sexual dimorphism in archosaurs, as demon-
strated in the early dinosauriform Asilisaurus kongwe, the crocodylian A. mississippiensis and the bird 
Rhea americana (Griffin and Nesbitt, 2016; Hone et al., 2017; Hedrick et al., 2022). However, we 
found no allometry along the first PC axis (Supplementary file 1), which, in addition of rejecting onto-
genetic allometry, indicates that the dimorphism is not related to size, as suspected by the homoge-
neity of femoral lengths highlighted in Supplementary file 3 among complete femora. Therefore, this 
indicates no sexual size dimorphism (SSD) in the femur of the Angeac- Charente ornithomimosaurs. 
SSD is one of the most documented sexual dimorphism across all living organisms, whether it is biased 
toward females or males (Darwin, 1874; Fairbairn et al., 2007). There are many examples of obser-
vations and/or inferences of SSD and allometric relationships in extant and extinct dinosaurs (Larson, 
1994; Bunce et al., 2003; Clarke, 2004; Székely et al., 2007; Remeš and Székely, 2010; Olson and 
Turvey, 2013; Handley et al., 2016; Manin et al., 2016; Fajemilehin, 2017). However, Elzanowski 
and Louchart, 2022 demonstrated that female ostriches had more robust limb bones but smaller 
average body size than males. This decoupling between size and shape dimorphism is concordant 
with our results and emphasizes that sexual dimorphism is not necessarily reflected by body size or 
allometry between limb segments. Thus, size- independent sexual dimorphism should be investigated 
further extant archosaurs in order to improve inferences about sexual dimorphism in fossils, which are 
most often represented only by isolated bones.

We did not identify any other dimorphism in either the proximal part of the femur or in complete 
tibia of the Angeac- Charente ornithomimosaurs (Figure 1—figure supplements 2 and 3). However, 
sexual dimorphism was observed in the proximal ends of femora in extant ostriches (Charuta et al., 
2007; Elzanowski and Louchart, 2022) and California gulls (Schnell et al., 1985). In addition, the 
anteroposterior width of the femoral shaft was demonstrated to vary between sexes among savannah 
sparrows (Passerculus sandwichensis; Rising, 1987) and three species of steamer- ducks (Tachyeres 
pteneres, Tachyeres leucocephalus, and Tachyeres patachonicus; Livezey and Humphrey, 1984). Yet, 
and accordingly with our results, size- independent dimorphism in the avian tibiotarsus seems less 

https://doi.org/10.7554/eLife.83413
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common across the EPB. Indeed, to our knowledge, occurrences of shape dimorphism in the tibia was 
demonstrated only in California gulls (e.g. width of the shaft; Schnell et al., 1985) and in ostriches 
(e.g. anteroposterior width of the distal epiphysis; only in Elzanowski and Louchart, 2022 but not 
in Charuta et al., 2007). Furthermore, our observation that sexual dimorphism could be restricted 
to the femur in the Angeac- Charente ornithomimosaurs and modern archosaurs raises the question 
of the potential co- variation between the femur and the pelvis. Sexual dimorphism was observed 
in the ilium of several birds mentioned previously, such as ostriches, steamer- ducks, savannah spar-
rows, and California gulls (in the antitrochanter width, acetabular width, and synsacrum width and 
length; Livezey and Humphrey, 1984; Schnell et al., 1985; Rising, 1987; Charuta et al., 2007). All 
measurements were higher in male birds than in female birds except for the width of the ilium, which 
was higher in female ostriches when measured by Charuta et al., 2007 but not significantly different 
between sexes in Elzanowski and Louchart, 2022. Additionally, female alligators had a deeper pelvic 
canal (i.e. distance between the ventral side of the first sacral vertebra and the ventral margin of the 
ischial symphysis; Prieto- Marquez et al., 2007). The dimorphism was located preferably on the femur 
rather than on the tibia in the Angeac- Charente ornithomimosaur, which suggests that the pelvic area 
might as well be dimorphic and that seems to be generally the case in some modern avian dinosaurs 
too (Livezey and Humphrey, 1984; Schnell et al., 1985; Rising, 1987; Farlow et al., 2005; Charuta 
et al., 2007; Prieto- Marquez et al., 2007; Bonnan et al., 2008; Duggan et al., 2015; Elzanowski 
and Louchart, 2022). Could the ability to carry eggs restrict the location of sexual dimorphism closer 
to the hip region? Sexual dimorphism in the pelvic girdle, the proximal hindlimb and the morpho-
logical integration between the two in female extant archosaurs should be investigated further to 
answer this question. However, one would expect that dimorphism in the pelvic morphology would 
correlate with dimorphism in the proximal instead of the distal femoral portions. Perhaps the shaft 
curvature toward the lateral side of the femur could have enabled ornithomimosaurs with a wider 
pelvis (presumably female individuals) to retain their hindlimbs close to the sagittal midline. Never-
theless, the current dataset does not allow to further speculate without the possibility to sex each 
morphotype and without the integration of femoral with pelvic data.

Our results did not permit to confidently sex each morphotype. Most modern occurrences of 
femoral sexual dimorphism indicate a wider distal epiphysis among males than females, but Elzanowski 
and Louchart, 2022 showed that the opposite was also true for modern and subfossils ostriches. 
Furthermore, our results indicated that femora with the narrowest distal epiphyses (females in most of 
modern occurrences) had a laterally deviated shaft. However, Duggan et al., 2015 demonstrated that 
only juvenile male Pekin ducks had a laterally deviated shaft, which is not congruent with our results 
that the widest epiphyses were associated with a straighter morphotype. Paleohistological analyses 
could enable to verify sex assignment by assessing the presence of medullary bone, as some gravid 
females may have died during their egg- laying cycle at the time of the mass- mortality event recorded 
at Angeac- Charente. Indeed, medullary bone was recently demonstrated as probably the most reli-
able indicator of sex with an extensive distribution across the skeleton (Canoville et al., 2019). A 
paleohistological investigation could also confirm the ontogenetic homogeneity among our femoral 
sample, as recommended by Griffin and Nesbitt, 2016, Hone et al., 2017 and Mallon, 2017.

Conclusion
Our results demonstrate that the femoral morphology among a large herd of coeval ornithomimosaurs 
is dimorphic. We identify bimodal distributions along size- independent features that were already 
reported to vary between sexes in modern archosaurs and other tetrapods (e.g. the width of the 
distal epiphyses and the lateral deviation of the shaft). Therefore, we infer these features to indicate 
sexual dimorphism in the Angeac- Charente ornithomimosaurs according to the EPB approach. Our 
findings inform about the intraspecific variation in non- avian theropods and emphasize the need for 
description of size- independent dimorphism in modern and closely related taxa with a priori knowl-
edge of the sex. In the future, our results should be completed by paleohistological studies to (1) sex 
each morphotype and (2) identify the extent of ontogenetic variations within our sample. Additionally, 
we show that the sex- ratio of the Angeac- Charente ornithomimosaur is close to 1:1 and thus, likely 
Fisherian (Fisher, 1930). It was demonstrated that in extant archosaurs, Fisherian populations are 
only observed among clutches and hatchlings (Mayr, 1939; Clutton- brock, 1986; Liker et al., 2013) 
and become generally biased toward females in sub- adult and adult populations, as demonstrated 
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on crocodilians (Woodward and Murray, 1993; González et al., 2019) and ratites (Magige, 2012; 
Prokopenko et  al., 2021). Therefore, paleohistological investigations could help characterize the 
variation of sex ratio along ontogeny in an extinct dinosaur population and inform if it was truly 
Fisherian, unlike their extant relatives, or if it also experienced skewness along aging. More broadly, 
understanding how sex impacted the morphology of an extinct species could shed light on complex 
evolutionary mechanism such as trade- off between sexually dimorphic features, ecological adapta-
tions, and life- history traits.

Materials and methods
Sample and data acquisition
Several complete and fragmented femora and complete tibiae from the Angeac- Charente ornith-
omimosaur were discovered between 2010 and 2020 (Table  1). We removed 158 specimens that 
were too fragmented and altered by too much oxidized pyrite and trampling (femora: 6 complete, 
37 proximal, and 19 distal epiphyses; tibiae: 4 complete, 36 proximal, and 56 distal epiphyses). We 
selected only fragmented femora that preserved: (1) the most proximal point of the fourth trochanter 
for proximal epiphyses; (2) the most proximal point of the anteromedial flange for distal epiphyses 
(Figure 1—figure supplement 4A). In total, we digitized 152 specimens (femora: 13 complete, 29 
proximal, and 21 distal epiphyses; tibiae: 21 complete, 30 proximal, and 38 distal epiphyses) using 
the Artec EVA with Artec Studio Professional v. 12.1.1.12 (Artec 3D, Luxembourg, Luxembourg) and 
the NextEngine with Scan Studio Pro v. 2.0.2 (Next Engine Inc, Santa Monica, United States) for a 
few specimens (Supplementary file 3). After re- examination of digitized specimens, we removed 
3 complete femora, 14 proximal and 8 distal epiphyses, and 4 complete tibiae that were distorted 
(Figure 1—figure supplement 7). We thus integrated 10 complete femora, 13 distal and 15 proximal 
femoral epiphyses, and 17 complete tibiae.

3D geometric morphometrics
3D GM is a well- established method for quantifying biological shape variations and has already enabled 
to identify sexual dimorphism in past studies (Kaliontzopoulou et al., 2007; Cavaignac et al., 2016). 
We followed a high- density morphometrics approach using a combination of single anatomical land-
marks and sliding semilandmarks along curves and surfaces (Bookstein, 1997; Gunz et al., 2005). 
Indeed, most anatomical landmarks are usually concentrated on both ends of limb bones, hence why 
the use of sliding semilandmarks on the surface was justified on the shaft (Gunz and Mitteroecker, 
2013; Botton- Divet et al., 2016). We digitized 619 landmarks on complete femora (25 anatomical 
landmarks, 99 sliding semilandmarks on curves, and 495 on surfaces), 479 on proximal (11 anatomical 
landmarks, 26 sliding semilandmarks on curves, and 442 on surfaces) and distal epiphyses (10 anatom-
ical landmarks, 45 sliding semilandmarks on curves, and 424 on surfaces), and 725 on complete tibiae 
(23 anatomical landmarks, 219 sliding semilandmarks on curves, and 483 on surfaces; see details in 
Figure 1—figure supplement 4; Supplementary files 4 and 5) using the IDAV Landmark software 
v. 3.0.0.6 (Wiley et al., 2005). We digitized anatomical landmarks and sliding semilandmarks along 
curves on each specimen and sliding semilandmarks along surfaces on one specimen (ANG 10 90), 
referred to as ‘the template’ hereafter (Cornette et al., 2013). We then automatically projected the 
sliding semilandmarks along surfaces of the template onto every other specimen following the spline 
relaxation of semilandmarks along curves using the function ‘placePatch’ of the Morpho package v. 
2.8 (Schlager, 2017). Then, we performed 5 iterations of another spline relaxation between landmark 
configurations of the template and the ones from every other specimen using the function ‘relaxLM’ of 
Morpho. Finally, we performed a partial Procrustes fitting in order to compute a Procrustes consensus 
of every configuration and used it as a target for the 2 last iterations of spline relaxation using the 
function ‘slideLM’ of Morpho. These 3 steps of spline relaxations (Source code 2) ensured that every 
semilandmark position was geometrically homogeneous in all specimens (Gunz et al., 2005). Finally, 
we performed a generalized Procrustes analysis (GPA) using the function ‘gpagen’ of the R package 
geomorph v. 3.3.1 (Adams et al., 2013) in order to align each femur in the Cartesian coordinate 
system by superimposing them based on their landmark configuration and to rule out the effect of 
size, location, and orientation of the different landmark configurations (Gower, 1975; Rohlf and Slice, 
1990; Zelditch et al., 2012).

https://doi.org/10.7554/eLife.83413
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Statistical analyses and clustering
We performed a PCA in order to reduce dimensionalities of the variation and isolate different compo-
nents of shape variation (Gunz and Mitteroecker, 2013). The quantification of repeatability was 
performed by digitizing landmarks iteratively (n=10) on three morphologically close specimens for 
complete femora and tibiae, which resulted in 30 configurations for each bone. We then computed a 
PCA for the two bones (30 configurations each), which showed that all 10 repetitions for each spec-
imen were grouped together and isolated from those of the other specimens along the first two PC 
axes (Figure 1—figure supplements 5 and 6 ). This ensured that biological variation was greater than 
the operator effect, which refers to the ability to reproduce accurately the same landmark configura-
tion multiple times on the same specimen. As recommended by Mallon, 2017, we performed mixture 
modeling analyses without a priori knowledge about the number of groups in order to estimate how 
many morphological clusters would stand out in our dataset, if any, along each PC axis. Gaussians 
functions are well suited to describe a biological population, especially when applied to a morpho-
metric dataset (Baylac et al., 2003). We used the R package Mclust v. 5.4.7, which calculates the most 
probable number of clusters in a dataset based on the detection of Gaussian distributions by maximum 
likelihood estimations (Scrucca et al., 2016). Bayesian Information Criteria (BIC; e.g. an approxima-
tion of Bayes factors for comparing likelihood) were used to choose which model, among the several 
ones available, fitted best with our dataset (i.e. the model with the highest BIC), while simultaneously 
estimating the number of Gaussian distributions (Fraley and Raftery, 2007). We computed 3D visu-
alizations that highlighted which feature varied the most along each axis, and between clusters when 
dimorphism was identified. To do so, we first computed a 3D consensual mesh of all specimens of 
the sample by using the function ‘tps3d’ from the R package Morpho v. 2.8 (Schlager, 2017) which 
performed a spline relaxation that minimized the bending energy of a thin plate spline (TPS) between 
the template landmark configuration and a mean landmark configuration (obtained during the GPA). 
Then, the function used the resulting TPS deformation to warp the 3D mesh of the template onto the 
mean shape in order to compute a 3D consensual mesh (Bardua et al., 2019). Next, we calculated the 
mean coordinates of every specimen in each cluster along the PC axis identified as dimorphic by the 
mixture modeling analysis. Finally, we warped the mean shape, and its associated 3D mesh, onto the 
mean landmark configurations of each cluster by using the ‘shape.predictor’ function of geomorph v. 
3.3.1 (Adams et al., 2013) in order to visualize the 3D shape variation associated with the dimorphic 
PC axis. We studied the allometry within our sample (i.e. the size- related morphological variation 
[Klingenberg, 2016]), using Pearson’s correlation between each PC scores and the log- transformed 
centroid sizes using the R function ‘ cor. test.’ The code for the totality of these steps is provided in 
Source code 1.
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