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, we introduce new fractal zeta functions, associated with polyhedral neighborhoods, better suited to fractals when exact expressions for the volume of tubular neighborhoods cannot be computed. Accordingly, in the model -and very significant -case of the Weierstrass Curve Γ W , we give exact expressions for the volume of polyhedral neighborhoods for the sequence of prefractal graphs which converge to Γ W -the so-called Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs). Those IFDs are associated with a suitable (and geometrically meaningful) sequence of small parameters tending to zero, also known as the cohomology infinitesimals, due to their connections with fractal cohomology. We also introduce the associated local and global polyhedral fractal zeta functions. The local fractal zeta functions consist in the sequence of zeta functions associated with the sequence of polyhedral neighborhoods, and satisfy a recurrence relation, which enables us to prove that the poles of the limit fractal zeta function -the global zeta function, associated with the limit fractal object -are exactly the same as the Complex Dimensions of the Weierstrass function itself. This result makes the connection with fractal cohomology, where, for any nonnegative integer m, the m t h cohomology group is comprised of continuous functions which possess a generalized Taylor expansion, with fractional derivatives of orders the underlying -and actual -Complex Dimensions. By using the aforementioned exact expressions of the polyhedral neighborhoods, we also revisit the computation of the box-counting (or Minkowski) dimension of the Weierstrass Curve, in a fully rigorous manner and therefore prove part of Mandelbrot's conjecture concerning the fractal dimension of the Weierstrass Curve.

Introduction

Up to now, tubular neighborhhoods were a compulsory and unavoidable step when it came to computing fractal zeta functions (see [START_REF] Lapidus | Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings[END_REF], [START_REF]Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions[END_REF], [START_REF]Fractal tube formulas for compact sets and relative fractal drums: Oscillations, complex dimensions and fractality[END_REF]). However, one cannot always obtain the exact expression of the associated volumes. For instance, this occurs when the fractals involved are defined by means of nonlinear and noncontractive iterated function systems (i.f.s.). A model -and very significant -object in this case is the (nowhere differentiable) Weierstrass Curve Γ W , where, in addition, nonlinearity makes the geometry extremely complicated.

A careful look at the sequence of prefractal, polygonal graph approximations which converge to Γ W shows that not only polyhedral neighborhoods appear as perfectly suited to this fractal curve, but, even more important, we can obtain the exact expressions of the associated volumes. This comes from the fact that we know the coordinates of the vertex points which constitute the prefractal approximations. More precisely, those coordinates involve values of the Weierstrass function W.

A very interesting -and rather a priori unexpected -feature then arises. Indeed, the Weierstrass function W itself possess a Complex Dimensions series expansion. Recall that the theory of Complex Dimensions, developed for many years now by Michel L. Lapidus and his collaborators in [START_REF] Lapidus | Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture[END_REF], [START_REF]Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl-Berry conjecture[END_REF], [START_REF] Lapidus | The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums[END_REF], [START_REF] Lapidus | The Riemann hypothesis and inverse spectral problems for fractal strings[END_REF], [START_REF] Lapidus | A tube formula for the Koch snowflake curve, with applications to complex dimensions[END_REF], [START_REF] Lapidus | Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes[END_REF], [START_REF] Lapidus | Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings[END_REF], [START_REF] Lapidus | Distance and tube zeta functions of fractals and arbitrary compact sets[END_REF], [START_REF]Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions[END_REF], [START_REF]An overview of complex fractal dimensions: From fractal strings to fractal drums, and back[END_REF], [START_REF] Herichi | Quantized Number Theory, Fractal Strings and the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality[END_REF], [START_REF]From Complex Fractal Dimensions and Quantized Number Theory To Fractal Cohomology: A Tale of Oscillations, Unreality and Fractality[END_REF], makes the connection between the geometry of an object and its differentiability properties, by means of geometric (or fractal) zeta functions, which stand for the trace of a differential operator at a complex order s. The poles of those fractal zeta functions are called the Fractal Complex Dimensions. The existence of nonreal Complex Dimensions is a characteristic of fractality and gives rise (via explicit formulas) to the oscillations that are intrinsic to fractal geometries.

By considering the fractal zeta functions associated with the sequence of polygonal neighborhoods, we came across the recurrence relation between consecutive fractal zeta functions. To our knowledge, this is the first time that such a result is obtained. It is all the more important that it enables us to prove the existence of the limit fractal zeta function -the global zeta function, associated with the limit fractal object, the Weierstrass Curve here, or rather, the Weierstrass iterated fractal drum (IFD). Moreover, this global zeta function has the same (possible) poles as the Complex Dimensions involved in the aforementioned series expansion of the Weierstrass function.

Our main results in the present setting can be found in the following places: i. In Theorem 20, on page 11, where we obtain recurrence relations satisfied by the coefficients of the exact fractal (or Complex Dimensions) expansion for the complexified and the ordinary Weierstrass functions.

ii. In Definition 23, on page 12, where we introduce the sequence of polyhedral neighborhoods.

iii. In Theorem 24, on page 12, where we show that the polyhedral and tubular neighborhoods are nested.

iv. In Theorem 28, on page 16, where we obtain an exact fractal power series expansion for the volume of suitable m t h polyhedral neighborhoods of the Weierstrass Curve.

v. In Theorem 32, on page 20, where we introduce the local and global effective polyhedral zeta function and show that the global zeta function is well defined, meromorphic in all of C, and is given by an explicit fractal power series.

vi. In Theorem 33, on page 24, where we obtain the exact Complex Dimensions of the Weierstrass Curve (or of the Weierstrass IFD), precisely of the same form as the possible Complex Dimensions occurring in the fractal cohomology theory developed in [START_REF]Weierstrass fractal drums -II -Towards a fractal cohomology[END_REF].

vii. In Theorem 37, on page 26, where we introduce a new and completely rigorous proof of the computation of the box-counting dimension (or, equivalently, of the Minkowski dimension) of the Weierstrass Curve Γ W , by simply using the covers of Γ W by polyhedral neighborhoods -therefore fully establishing part of Mandelbrot's conjecture [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF] about the fractal dimensions of Γ W .

Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal frame. The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes are respectively referred to as (x ′ x) and (y ′ y). We also let N = {0, 1, 2, . . .} and 

N ⋆ = {1, 2, . . .}. Given a, b with a, b ∈ R ∪ {-∞,
< λ < 1 , N b ∈ N ⋆ and λ N b > 1 . (♣)
Note that this implies that N b > 1 (i.e., N b ≥ 2).

As explained in [START_REF]On fractal properties of Weierstrass-type functions[END_REF], we deliberately made the choice to introduce the notation N b which replaces the initial number b, in so far as, in Hardy's paper [START_REF] Hardy | Weierstrass's Non-Differentiable Function[END_REF] (in contrast to Weierstrass's original article [START_REF] Weierstrass | Über continuirliche Funktionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differential quotienten besitzen[END_REF]), b is any positive real number satisfying λ b > 1, whereas we deal here with the specific case of a natural integer, which accounts for the natural notation N b . Definition 2 (Weierstrass Function, Weierstrass Curve). We consider the Weierstrass function W (also called, in short, the W-function) defined, for any real number x, by

W(x) = ∞ n=0 λ n cos 2 π N n b x . ( 1 
)
We call the associated graph the Weierstrass Curve, and denote it by Γ W .

Due to the one-periodicity of the W-function, since N b is an integer, from now on, and without loss of generality, we restrict our study to the interval [0, 1[= [0, 1). We also identify the points (0, W(0)) and (1, W(1)) = (1, W(0)).

Definition 3 (Weierstrass Complexified Function).

We introduce the Weierstrass Complexified function W comp , defined, for any real number x, by

W comp (x) = ∞ n=0 λ n e 2 i π N n b x .
Notation 4 (Logarithm). Given y > 0, ln y denotes the natural logarithm of y, while, given a > 1, ln a y = ln y ln a denotes the logarithm of y in base a; so that, in particular, ln = ln e .

Notation 5 (Minkowski Dimension and Hölder Exponent).

For the parameters λ and N b satisfying condition (♣) (see Notation 1, on page 3), we denote by

D W = 2 + ln λ ln N b = 2 -ln N b 1 λ ∈ ]1, 2[
the box-counting dimension (or Minkowski dimension) of the Weierstrass Curve Γ W , which happens to be equal to its Hausdorff dimension [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF], [START_REF] Bara Ńsky | On the dimension of the graph of the classical Weierstrass function[END_REF], [START_REF] Shen | Hausdorff dimension of the graphs of the classical Weierstrass functions[END_REF], [START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF]. We point out that the results in our present paper -and its long version [START_REF]Polyhedral neighborhoods vs tubular neighborhoods: New insights for fractal zeta functions and complex dimensions[END_REF] -also provide a direct geometric proof of the fact that D W , the Minkowski dimension (or box-counting dimension) of Γ W , exists and takes the above values, and that our results in our previous paper [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] show that W is Hölder continuous with optimal Hölder exponent 2

-D W = - ln λ ln N b = ln N b 1 λ .
Note that the latter result was also obtained by G. H. Hardy in [START_REF] Hardy | Weierstrass's Non-Differentiable Function[END_REF], although new key information is obtained in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] where we establish a new discrete analog of the reverse Hölder estimates (of order D W ) which is used in an essential way in the present work; see Proposition 16, on page 8 and Theorem 17, on page 9.

Proposition 6 (Nonlinear and Noncontractive Iterated Function System (IFS)). Following our

previous work [START_REF] David | Bypassing dynamical systems: A simple way to get the box-counting dimension of the graph of the Weierstrass function[END_REF], we approximate the restriction Γ W to [0, 1[×R, of the Weierstrass Curve, by a sequence of graphs, built via an iterative process. For this purpose, we use the nonlinear (and noncontractive) iterated function system (IFS) of the family of C

∞ maps from R 2 to R 2 denoted by

T W = T 0 , ⋯, T N b -1 ,
where, for any integer i belonging to {0, ⋯, N b -1} and any point

(x, y) of R 2 , T i (x, y) = x + i N b , λ y + cos 2 π x + i N b .

Theorem 7 (Attractor of the IFS [2], [3]

). The Weierstrass Curve Γ W is the attractor of the IFS T W , and hence, is the unique nonempty compact subset

K of R 2 satisfying K = N b -1 ⋃ i =0 T i (K);
in particular, we have that

Γ W = N b -1 ⋃ i =0 T i (Γ W ).
Notation 8 (Fixed Points). For any integer i belonging to {0, ⋯, N b -1}, we denote by

P i = (x i , y i ) = i N b -1 , 1 1 -λ cos 2 π i N b -1
the unique fixed point of the map T i ; see [START_REF]On fractal properties of Weierstrass-type functions[END_REF].

Definition 9 (Sets of Vertices, Prefractals). We denote by V 0 the ordered set (according to increasing abscissae) of the points

P 0 , ⋯, P N b -1 .
The set of points V 0 -where, for any integer i in {0, ⋯, N b -2}, the point P i is linked to the point P i +1 -constitutes an oriented finite graph, ordered according to increasing abscissae, which we will denote by Γ W 0 . Then, V 0 is called the set of vertices of the graph Γ W 0 .

For any positive integer m, i.e., for m ∈ N

⋆ , we set V m = N b -1 ⋃ i =0 T i (V m-1 ).
The set of points V m , where two consecutive points are linked by an edge, is an oriented finite graph, ordered according to increasing abscissa, called the m t h order W-prefractal. Then, V m is called the set of vertices of the prefractal Γ W m ; see Figure 2, on page 7. We call Weierstrass Iterated Fractal Drums (IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve. Proposition 12. [START_REF] David | Bypassing dynamical systems: A simple way to get the box-counting dimension of the graph of the Weierstrass function[END_REF] For any m ∈ N, the following statements hold: 

i . V m ⊂ V m+1 . i i . #V m = (N b -1) N m b + 1, where #V m
(N b -1) k (N b -1) N m b , W (N b -1) k (N b -1) N m b , 1 ≤ k ≤ N m b -1 .
Hence, the total number of junction points is N m b -1. For instance, in the case N b = 3, the polygons are all triangles; see Figure 1.

In the sequel, we will denote by P 0 the initial polygon, whose vertices are the fixed points of the maps T i , 0 ≤ i ≤ N b -1, introduced in Notation 8 and Definition 9, on page 5, i.e., P 0 , ⋯, P N b -1 ; see, again, Figure 1, on page 6. ). For any m ∈ N, we introduce the following polygonal sets 

P m = P m,k , 0 ≤ k ≤ N m b -1 and Q m = Q m,k , 0 ≤ k ≤ N m b -2 .
M j ,m = j (N b -1) N m b , W j (N b -1) N m b .
We also introduce, for any integer j in 1, ⋯,

(N b -1) N m b -1 :
i. the elementary horizontal lengths:

L m = j (N b -1) N m b ;
ii. the elementary heights:

h j -1, j ,m = W j (N b -1) N m b -W j -1 (N b -1) N m b ;
iii. the geometric angles:

θ j -1, j ,m = (y ′ y), M j -1,m M j ,m ,

which yield the following value of the geometric angle between consecutive edges,

namely, M j -1,m M j ,m , M j ,m M j +1,m , with arctan = tan -1 : θ j -1, j ,m + θ j , j +1,m = arctan L m |h j -1, j ,m | + arctan L m |h j , j +1,m |
.

Proposition 15 (Scaling Properties of the Weierstrass Function, and Consequences [5]

). Since,

for any real number x, W(x) = ∞ n=0 λ n cos 2 π N n b x , one also has W(N b x) = ∞ n=0 λ n cos 2 π N n+1 b x = 1 λ ∞ n=1 λ n cos 2 π N n b x = 1 λ (W(x) -cos (2 π x)) ,
which yields, for any strictly positive integer m and any j in {0, . . . , #V m },

W j (N b -1) N m b = λ W j (N b -1) N m-1 b + cos 2 π j (N b -1) N m b .
By induction, one then obtains that

W j (N b -1) N m b = λ m W j (N b -1) + m-1 k=0 λ k cos 2 π N k b j (N b -1) N m b .

Proposition 16 (Lower Bound and Upper Bound for the Elementary Heights [5]

). For any strictly positive integer m and any j in 0, ⋯, (N b -1) N m b , we have the following estimates:

C i n f L 2-D W m ≤ |W ((j + 1) L m ) -W ( j L m )| ≤ C sup L 2-D W m , m ∈ N, 0 ≤ j ≤ (N b -1) N m b
where the finite and positive constants C i n f and C sup are given by

C i n f = (N b -1) 2-D W min 0≤ j ≤N b -1, W j +1 N b -1 ≠W j N b -1 W j + 1 N b -1 -W j N b -1 and C sup = (N b -1) 2-D W max 0≤ j ≤N b -1 W j + 1 N b -1 -W j N b -1 + 2 π (N b -1) (λ N b -1)
.

One should note, in addition, that these constants C i n f and C sup depend on the initial polygon P 0 .

Theorem 17 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Function).

For any natural integer m, let us consider a pair of real numbers

(x, x ′ ) such that x = (N b -1) k + j (N b -1) N m b = ((N b -1) k + j ) L m , x ′ = (N b -1) k + j + (N b -1) N m b = ((N b -1) k + j + ) L m , where 0 ≤ k ≤ N b -1 m -1, and i. if the integer N b is odd, 0 ≤ j < N b -1 2 and 0 < j + ≤ N b -1 2 or N b -1 2 ≤ j < N b -1 and N b -1 2 < j + ≤ N b -1 ; ii. if the integer N b is even, 0 ≤ j < N b 2 and 0 < j + ≤ N b 2 or N b 2 + 1 ≤ j < N b -1 and N b 2 + 1 < j + ≤ N b -1 ⋅
This means that the points (x, W(x)) and x ′ , W(x ′ ) are vertices of the polygon P m,k (see Property 12, on page 5 above), both located on the left-side of the polygon, or both located on the right-side; see Figure 3, on page 9.

Then, one has the following (discrete, local) reverse-Hölder inequality, with sharp Hölder exponent - 

ln λ ln N b = 2 -D W , C i n f |x ′ -x| 2-D W ≤ W(x ′ ) -W(x) ⋅ Left -

Sketch of the proof.

We simply use Proposition 16, on page 8. 

Cohomology Infinitesimal -Complex Dimensions Series Expansion of the

m m = (ε m ) m = 1 N b -1 1 N m b .
Observe that, clearly, ε m itself -and not just ε In the sequel, it is also useful to keep in mind that the sequence of positive numbers (ε m )

∞ m=0 itself satisfies ε m ∼ 1 N b , as m → ∞ ; i.e., ε m → 1 N b
, as m → ∞. In particular, ε m / → 0, as m → ∞, but, instead, ε m tends to a strictly positive and finite limit.

We also introduce, given any m ∈ N, the m t h intrinsic cohomology infinitesimal, denoted by ε

m > 0, such that ε m = 1 N m b , where ε = 1 N b .
We call ε the intrinsic scale, or intrinsic subdivision scale.

Note that

ε m m = ε m N b -1
and that the m t h intrinsic cohomology infinitesimal ε m is asymptotic equal (when m tends to ∞)

to the m t h cohomology infinitesimal ε m m .
Remark 19. We note that the choice of the m t h intrinsic cohomology infinitesimal, instead of the m t h cohomology infinitesimal, as is done in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] and [START_REF]Weierstrass fractal drums -II -Towards a fractal cohomology[END_REF], will significantly help the computation of the polyhedral prefractal volumes, the polyhedral fractal zeta functions and hence also, of the Complex Dimensions, without any loss of information. 

+ i k k, j ,m p, with 0 ≤ k ≤ m, W comp j ε m m = W comp j ε m N b -1 = m k=0 c k, j ,m ε k (2-D W ) ε i k, j ,m p , ( 2 
)
where, for 0 denoting the oscillatory period of the Weierstrass Curve, as introduced in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] and where:

≤ k ≤ m, ε k is the k t h intrinsic
i . k, j ,m ∈ Z is arbitrary. i i . c m, j ,m = W comp j N b -1 and, for 0 ≤ k ≤ m -1, c k, j ,m ∈ C is given by c k, j ,m = exp 2 i π N b -1 j ε m-k . ( 3 
)
For any m ∈ N, the complex numbers c 0, j ,m+1 , ⋯, c m+1, j ,m+1

and the integers 0, j ,+1 , ⋯, m+1, j ,m+1 respectively satisfy the following recurrence relations:

c m+1, j ,m+1 = W j N b -1 = c m, j ,m (4) 
and

∀ k ∈ {1, . . . , m} ∶ c k, j ,m+1 = c k, j ,m , k, j ,m+1 = k, j ,m , (5) 
In addition, since relation ( 2) is valid for any m ∈ N ⋆ , we note that the associated Complex Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

D W -k (2 -D W ) + i k, j ,m p where 0 ≤ j ≤ #V m -1 and 0 ≤ k ≤ m.
This immediately ensures, for the Weierstrass function (i.e., the real part of the Weierstrass complexified function W comp ), that, for any strictly positive integer m and any j in {0, ⋯, #V m },

W j ε m m = 1 2 m k=0 ε k (2-D W ) c k, j ,m ε i k, j ,m p k + c k, j ,m ε -i k, j ,m p k . ( 6 
)
Remark 21. The recurrence relations (4) and (5) stated in part i i . of Theorem 20 just above are new and will play a key role in order to establish the recurrence relations satisfied by the local fractal zeta functions; see relation [START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF] in Theorem 32, on page 20 below. contains the set of vertices V m+k . In particular, the density property 10 (Proposition 10, on page 5), also ensures that the Weierstrass Curve is contained in Γ W m :

D Γ W m , ε m m = M = (x, y) ∈ R 2 , d M , Γ W m ≤ ε
∀ m ≥ k 0 ∶ Γ W ⊂ D Γ W m .

Notation 26 (Lebesgue Measure on R

2 ). In the sequel, we denote by µ L the Lebesgue measure on R 2 .

Definition 27 (The Weierstrass Complex Curve). We place ourselves in the Riemann sphere (or complex projective line) P 

Γ W,comp = x, W comp (x) , x ∈ [0, 1] = Γ W + i Γ W,I ,
where Γ W,I is the graph (in R

2 ) associated with the imaginary part W I of the Weierstrass complefixied function W comp and defined, for any real number x, by 

W I (x) = ∞ n=0 λ n sin 2 π N n b x . ( 7 
V m (ε m m ) = µ L D Γ W m = ε m N m b -1 j =0 N b q=0 α q (N b ) W (N b -1) j + q (N b -1) N m b = ε m N m b -1 j =0 N b q=0 α q (N b ) m k=0 ε k (2-D W ) Re c m,k,(N b -1) j +q ε i k k,(N b -1) j +q,m p , ( 8 
)
where

ε m = (N b -1) ε m m = 1 N m b
is the m t h intrinsic cohomology infinitesimal introduced in Definition 18, on page 10, while the real numbers α q (N b ), with 0 ≤ q ≤ N b , are coefficients which depend on N b and where the complex numbers c m,k,(N b -1) j +q ∈ C have been introduced in part i i . of Theorem 20, on page 11, while the integers m,k,(N b -1) j +q ∈ Z are arbitrary (see also Theorem 20, on page 11), with a. When the integer N b is odd:

α 0 (N b ) = α N b -1 (N b ) = -α N b -1 2 (N b ) = -α N b -1 2 +N b -1 (N b ) = N b -2 2 (N b -1) and for 1 ≤ q ≤ N b -2, α N b -1 2 +q (N b ) = -α q (N b ) = -α N m b ,(N b -1) N m b -(N b -1)+q (N b ) = 1 N b -1 , along with α N m b ,(N b -1) N m b -(N b -1) (N b ) = α N m b ,1 (N b ) = N b -2 2 (N b -1) . b. When the integer N b is even: α 0 (N b ) = α N b -1 (N b ) = -α N b 2 (N b ) = -α N b 2 +N b -1 (N b ) = N b -2 2 (N b -1) and for 1 ≤ q ≤ N b -2, α N b 2 +q (N b ) = -α q (N b ) = -α N m b ,(N b -1) N m b -(N b -1)+q (N b ) = - 1 N b -1 , along with α N m b ,(N b -1) N m b -(N b -1) (N b ) = α N m b ,1 (N b ) = N b -2 2 (N b -1)
.

Given the form of the expression in relation (8) just above, it is natural to introduce, for any m ∈ N

⋆ sufficiently large, the associated m t h complex natural polyhedral vol- 

ume V m,comp (ε m m ), such that V m,comp (ε m m ) = ε m N m b -1 j =0 N b q=0 α q (N b ) m k=0 c m,k,(N b -1) j +q ε k (2-D W )+i k k,(N b -1) j +q,m p . ( 9 
(C) = C ∪ ∞.
Observe that much as for its Euclidean counterpart obtained in our earlier work, [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF], the m t h polyhedral fractal formula in Theorem 28, on page 16, is expressed at the m t h cohomology infinitesimal ε m m , for all m ∈ N sufficiently large (instead of being expressed at any real number > 0 sufficiently small).

Notation 29 (Minimal and Maximal Values of the Weierstrass Function

W on [0, 1]).
We set 

m W = min t ∈ [0,1] W(t) = - 1 1 -λ , M W = max t ∈ [0,1] W(t) = 1 1 -λ .
M (N b -1) j ,m , . . . , M (N b -1) j +N b -1,m
is obtained by substracting from the area of the trapezoid

H (N b -1) j ,m M (N b -1) j ,m M (N b -1) j +N b -1,m H (N b -1) j +N b -1,m
the respective areas of the following N b -1 trapezoids

H (N b -1) j ,m M (N b -1) j ,m M (N b -1) j +1,m H (N b -1) j +1,m ⋮ H (N b -1) j +N b -2,m M (N b -1) j +N b -2,m M (N b -1) j +N b -1,m H (N b -1) j +N b -1,m ; i.e., µ L P m, j +1 = (N b -1) ε m m 2 W (N b -1) j (N b -1) N m b + W (N b -1) j + N b -1 (N b -1) N m b - ε m m 2 N b -2 q=0 W (N b -1) j + q (N b -1) N m b + W (N b -1) j + q + 1 (N b -1) N m b = (N b -1) ε m m 2 W (N b -1) j (N b -1) N m b + W (N b -1) j + N b -1 (N b -1) N m b - ε m m 2 N b -2 q=1 2 W (N b -1) j + q (N b -1) N m b - ε m m 2 W (N b -1) j (N b -1) N m b .
The two-dimensional Lebesgue measure (i.e., area) of the non necessarily convex N bgon Q m, j +1 is obtained in a similar manner.

Lemma 30 (Natural Polyhedral Volume Extension Formula).

Given m ≥ 1 sufficiently large, we set

V m,comp (ε m m ) = ε m V par t i al ,m,comp ε m , ( 10 
)
where

V par t i al ,m,comp ε m = N m b -1 j =0 N b q=0 m k=0 α q (N b ) c m,k,(N b -1) j +q ε k (2-D W )+i k k,(N b -1) j +q,m p
and where

ε m = (N b -1) ε m m = 1 N m b is

the m t h intrinsic cohomology infinitesimal introduced in

Definition 18, on page 10, while the real numbers α q (N b ), with 0 ≤ q ≤ N b , have been introduced in Proposition 28, on page 16, and where the complex numbers c m,k,(N b -1) j +q ∈ C have been introduced in part i i . of Theorem 20, on page 11, while the integers m,k,(N b -1) j +q ∈ Z are arbitrary (see Theorem 20,on page 11). We have used the notation V par t i al ,m,comp ε m , since, as mentioned previously, the sum

N m b -1 j =0 N b q=0 m k=0 α q (N b ) c m,k,(N b -1) j +q ε k (2-D W )+i k k,(N b -1) j +q,m p
can be considered as a function of the m t h intrinsic cohomology infinitesimal ε m .

We then introduce, for all sufficiently large m ∈ N ⋆ , Ṽpar t i al ,m,comp as the continuous function defined for all t ∈ [0, ε] by substituting t for ε in the right-hand side of the expression for V par t i al ,m,comp ε m , in relation [START_REF] Hardy | Weierstrass's Non-Differentiable Function[END_REF].

As is explained in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] Then, for all m ∈ N sufficiently large, ζe m admits a (necessarily unique) meromorphic extension to all of C, given, for all s ∈ C, by the following explicit expression:

ζe m (s) = ε m N m b -1 j =0 N b q=0 α q (N b ) m k=0 c k,(N b -1) j +q,m ε s-2+k (2-D W )+i k,(N b -1) j +q,m p s -2 + k (2 -D W ) + i k,(N b -1) j +q,m p , ( 12 
)
where ε is the intrinsic scale introduced in Definition 18, on page 10), and where, for 0 ≤ j ≤ N m b -1 and 0 ≤ q ≤ N b , the coefficients α q (N b ) ∈ R have been introduced in Theorem 28, on page 16, while the coefficients c k,(N b -1) j +q,m ∈ C, along with the arbitrary integers k,(N b -1) j +q,m ∈ Z, have been introduced in Theorem 20, on page 11.

More specifically, still for all m ∈ N

⋆ sufficiently large, the function ζe m is well defined and meromorphic in all of C. Furthermore, its (necessarily unique) meromorphic extension (still denoted by ζe m ) is given, for all s ∈ C by the expressions given in the last two equalities of relation [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF] just above.

Moreover, the associated sequence ζe m m ∈ N -initially given (for Re(s) > D W ) by the truncated Mellin transform in relation [START_REF] Herichi | Quantized Number Theory, Fractal Strings and the Riemann Hypothesis: From Spectral Operators to Phase Transitions and Universality[END_REF], on page 20 -satisfies the following recurrence relation, for all values of the positive integer m sufficiently large, and for all s ∈ C,

ζe m+1 (s) = ε ζe m (s) + ε m+1 N m b -1 j =0 N b q=0 α q (N b ) c m+1,(N b -1) j +q,m+1 ε s-2+(m+1) (2-D W )+i m+1,(N b -1) j +q,m+1 p s + 2 (m + 1 -1) -(m + 1) D W + i m+1,(N b -1) j +q,m+1 p +ε m+1 N m+1 b -1 j =N m b N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m+1 p . ( 13 
)
This ensures the existence of the limit fractal zeta function ζe W , i.e., the fractal zeta function associated with the Weierstrass Curve Γ W (or, rather, with the Weierstrass IFD), called the global polyhedral effective zeta function and given by ζe

W = lim m→∞ ζe m ,
where the convergence is locally uniform on C, along with the existence of an integer m 0 ∈ N such that, for all m ≥ m 0 , the set of poles of ζe W consists of simple poles and contains the poles of the m t h fractal effective polyhedral zeta function ζe m . More specifically, ζe W is meromorphic in all of C and its meromorphic extension (still denoted ζe

W ) is given, for all s ∈ C, by ζe W (s) = ∞ m=m 0 ε m-m 0 +1 ζe m (s) + ∞ m=m 0 ε m+1 N m b -1 j =0 N b q=0 α q (N b ) c m+1,(N b -1) j +q,m+1 ε s-2+(m+1) (2-D W )+i m+1,(N b -1) j +q,m+1 p s + 2 m -(m + 1) D W + i m+1,(N b -1) j +q,m+1 p + ∞ m=m 0 ε m+1 N m+1 b -1 j =N m b N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m+1 p . ( 14 
)
As was mentioned in the introduction, we note that our result is stronger than the one previously obtained in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF], where, in particular, the values of the possible Complex Dimensions of the Weierstrass IFD included -2, 0 and 1 -2 k, with k ∈ N arbitrary. As we can see in relation [START_REF] Lapidus | Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture[END_REF] just above, the poles of the limit effective fractal zeta function ζe W are exactly the same as the Complex Dimensions of the Weierstrass function itself; see Theorem 20, on page 11. Note that, in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF], the Complex Dimensions are defined in terms of the volume of the tubular (rather than polyhedral) neighborhood of the Weierstrass IFD.

Sketch of the proof.

i . We first give the explicit expression for the m t h local effective polyhedral zeta function ζe m .

We restrict ourselves to sufficienly large values of m ∈ N, i.e., m ≥ m 0 , for some suitable integer m 0 ∈ N.

We then have that, for Re (s)

> D W , ζe m (s) = ε 0 t s-3 Ṽm,comp (t) d t (for Re (s) > D W ) = ε m N m b -1 j =0 N b q=0 α q (N b ) m k=0 c k,(N b -1) j +q,m ε s-2+k (2-D W )+i k,(N b -1) j +q,m p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m p .
We then have that, for any m ∈ N, We set U = {s ∈ C , 1 < Re(s) < 3}. We note that, for all m ≥ m 0 , we have that

ζe m+1 (s) = ε m+1 N m+1 b -1 j =0 N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m+1 p = ε ζe m (s) + ε m+1 N m b -1 j =0 N b q=0 α q (N b ) c m+1,(N b -1) j +q,m+1 ε s-2+(m+1) (2-D W )+i m+1,(N b -1) j +q,m+1 p s + 2 m -(m + 1) D W + i m+1,(N b -1) j +q,m+1 p +ε m+1 N m+1 b -1 j =N m b N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k
P ζe m 0 ⊂ P ζe m ⊂ U . The series ∞ m=m 0 ε m-m 0 +1 ζe m (s) + ∞ m=m 0 ε m+1 N m b -1 j =0 N b q=0 α q (N b ) c m+1,(N b -1) j +q,m+1 ε s-2+(m+1) (2-D W )+i m+1,(N b -1) j +q,m+1 p s + 2 m -(m + 1) D W + i m+1,(N b -1) j +q,m+1 p + ∞ m=m 0 ε m+1 N m+1 b -1 j =N m b N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m+1 p (16) 
is (locally) normally convergent, and, hence, uniformly convergent on U. This ensures the existence of the limit effective global fractal zeta function, i.e., the fractal zeta function associated with the Weierstrass Curve Γ W (or with the Weierstrass IFD), given by ζe

W (s) = lim m→∞ ζe m (s) = ∞ m=m 0 ε m-m 0 +1 ζe m (s) + ∞ m=m 0 ε m+1 N m b -1 j =0 N b q=0 α q (N b ) c m+1,(N b -1) j +q,m+1 ε s-2+(m+1) (2-D W )+i m+1,(N b -1) j +q,m+1 p s + 2 m -(m + 1) D W + i m+1,(N b -1) j +q,m+1 p + ∞ m=m 0 ε m+1 N m+1 b -1 j =N m b N b q=0 α q (N b ) m+1 k=0 c k,(N b -1) j +q,m+1 ε s-2+k (2-D W )+i k,(N b -1) j +q,m+1 p s + 2 (k -1) -k D W + i k,(N b -1) j +q,m+1 p .
Here, and in the remainder of this proof, a (complex-valued) meromorphic function f is viewed as a continuous function with values in P 1 (C), equipped with the chordal metric, and such that, for any pole ω of f , f (ω) takes the value ∞ (for instance, as in [START_REF] Lapidus | Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings[END_REF], Section 3. 4 and Appendix C ).

More precisely, if P 1 (C) = C ∪ ∞ denotes the Riemann sphere (or complex projective line), we can show that, for the chordal metric, defined, for all (z 1 , z 2 ) ∈ P 1 (C) The sum of this series, i.e., the (uniform) limit fractal zeta function ζe W , is holomorphic on U. We can then deduce that, for all m ≥ m 0 , the zeta function ζe m is meromorphic on C.

2 by ∥z 1 , z 2 ∥ = |z 1 -z 2 | 1 + |z 2 1 | 1 + |z 2 2 | , if z 1 ≠ ∞ and z 2 ≠ ∞ and ∥z 1 , ∞∥ = 1 1 + |z 2 1 | , if z 1 ≠ ∞ ,
Moreover, the counterpart of the results obtained in [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] for the sequence of tube zeta functions associated with the Weierstrass IFD, which admit a meromorphic continuation to all of C, obviously hold for the sequence of polyhedral tube zeta functions: hence, ζe m is meromorphic on C, with only simple poles, as specified in Theorem 33, on page 24.

In the next new result, which is now an immediate corollary of Theorem 32, on page 20, we define implicitly the Complex Dimensions of the Weierstrass Curve Γ W (or, rather, of the 

D W -k (2 -D W ) + i p , ( 17 
)
where the integers k ∈ N and ∈ Z are arbitrary (compare the corresponding result in Theorem 20, on page 11).

We note that they only partly coincide with the possible poles of the tube fractal zeta function ζe,tube For the exceptional cases, we refer to [START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF] for a closely related discussion.

Remark 34. Note that, in Theorem 33 just above, the fact that -in light of relation (32) in Theorem 12, on page 20, and of the expression of the coefficients α q and c k, j m given, respectively, in relation [START_REF]Polyhedral neighborhoods vs tubular neighborhoods: New insights for fractal zeta functions and complex dimensions[END_REF] in Theorem 28, on page 16 and in part i i . of Theorem 20, on page 11 -the possible Complex Dimensions are all actual Complex Dimensions of the Weierstrass IFD follows from the fact that the coefficients of the fractal power series for ζe W in relation ( 14) are nonzero, which implies that the residues of ζe W at each possible pole is nonzero.

In the theory of Complex Dimensions (see, e.g., [START_REF] Lapidus | Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings[END_REF], [START_REF]Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions[END_REF], [START_REF]An overview of complex fractal dimensions: From fractal strings to fractal drums, and back[END_REF]), a geometric object is said to be fractal if it admits at least one nonreal Complex Dimension (defined as a pole of the associated geometric or fractal zeta function.) [In the present context, the fractal zeta function is the global polyhedral effective zeta function in the case of the 

= D W -k (2 -D W ) + i p ,
where k ∈ N, 0 ≤ k ≤ m and ∈ Z is arbitrary.)

Revisiting the Computation of the Minkowski Dimension

Along the lines of our polyhedral fractal zeta functions, we hereafter revisit the computation of the box-counting (or box) dimension D W of the Weierstrass Curve Γ W . Contrary to (classical) covers of the fractal under study by means of balls (in dimension 2, disks or squares; see Definition 36, on page 25 below, we simply use our polyhedral neighborhood (see Definition 23, on page 12), which is undoubtedly the most natural cover of Γ W .

We therefore announce a fully rigorous proof of the fact that the Minkowski dimension -which, as is well known, coincides with the box (or box-counting) dimension D W of the Weierstrass Curve Γ W -is given by the expected formula, originally conjectured by Benoît Mandelbrot in [START_REF] Mandelbrot | The Fractal Geometry of Nature[END_REF] (in Chapter XI, on top of page 390). Note that B. Mandelbrot only mentioned he was talking about the fractal dimension and did not specify wether it was the Hausdorff or the Minkowski dimension of the curve. In our present context (see Theorem 37, on page 26 below), we have that D W = 2 - Note that earlier proofs of this fact were either not fully rigorous or complete. In addition, they rely on unexplicit estimates, whereas we work with explicit estimates that had not been obtained before, in relation with he local Hölder and reverse Hölder continuity of the Weierstrass function W.

Definition 36 (Box-Counting Dimension).

As can be found, for instance, in [START_REF] Falconer | The Geometry of Fractal Sets[END_REF], we recall that (when it exists) the box-counting dimension (or box dimension, in short), of Γ W , is given by

D W = -lim δ→0 + ln N δ (Γ W ) ln δ , (⋄)
where N δ (Γ W ) stands for any of the following quantities: i. the smallest number of sets (here, subsets of R

2 ) of diameter at most δ that cover Γ W on [0, 1[ ; ii. the smallest number of closed balls (disks, here) of radius δ that cover Γ W on [0, 1[ ; iii. the smallest number of cubes (squares, here) of side δ that cover Γ W on [0, 1[; iv. the number of δ-mesh cubes (squares, here) that intersect Γ W on [0, 1[; v. the largest number of disjoint balls (disks, here) of radius δ with centers in Γ W on [0, 1[. Furthermore, for the Weierstrass Curve Γ W -as, more generally, for any bounded subset of Euclidean space -the box-counting dimension coincides with the Minkowski dimension. Note that we thus dispose, with the sequence of polyhedral domains D Γ W m m≥m 0 , of a nonusual (but admissible, in the sense of Definition 36, on page 25 above) sequence of covers.

However, D Γ W m m≥m 0 is the most natural and optimal sequence of covers of the Weier- strass Curve Γ W , insofar that for any m ≥ m 0 , each domain D Γ W m contains the Weierstrass Curve Γ W , while, at the same time, the sequence D Γ W m m≥m 0 converges to Γ W . This, in particular, means that when m → ∞, the two-dimensional Lebesgue measure (i.e., area) of each polygon belonging to D Γ W m tends to 0. , where the diameter of a polygon is to be understood in the sense of the largest distance between any pair of vertices of the considered polygon.

In our context, the cohomology infinitesimal ε

Notation 1 (

 1 ∞}, we write, e.g., [a, b[ = [a, b) and similarly for other intervals. Weierstrass Parameters). In the sequel, λ and N b are two real numbers such that 0

Proposition 10 (

 10 Density of the Set V dense in the Weierstrass Curve Γ W . Definition 11 (Adjacent Vertices, Edge Relation). For any m ∈ N, the prefractal graph Γ W m is equipped with an edge relation ∼ m , as follows: two vertices X and Y of Γ W m (i.e. two points belonging to V m ) are said to be adjacent (i.e., neighboring or junction points) if and only if the line segment [X , Y ] is an edge of Γ W m ; we then write X ∼ m Y . Note that this edge relation depends on m, which means that points adjacent in V m might not remain adjacent in V m+1 .

  denotes the number of elements in the finite set V m . i i i . The prefractal graph Γ W m has exactly (N b -1) N m b edges. iv. The consecutive vertices of the prefractal graph Γ W m are the vertices of N m b simple nonregular polygons P m,k with N b sides (or N b -gons). For any strictly positive integer m, the junction point between two consecutive polygons is the point

1 yFigure 1 . 1 , 1 , P 1 , 2 , in the case when λ = 1 2 and N b = 3 . (See also Figure 2 , on page 7

 1111122327 Figure 1. The initial polygon P 0 , and the polygons P 1,0 , P 1,1 , P 1,2 , in the case when λ = 1 2 and N b = 3. (See also Figure 2, on page 7.)

1 yFigure 2 . 1 , Γ W 2 , Γ W 3 , Γ W 4 , Γ W 5 , in the case when λ = 1 2 and N b = 3 .

 121234523 Figure 2. The prefractal graphs Γ W 0 , Γ W 1 , Γ W 2 , Γ W 3 , Γ W 4 , Γ W 5 , in the case when λ = 1 2 and N b = 3. For example, Γ W 1 is on the right side of the top row, while Γ W 4 is on the left side of the bottom row.

side vertices Right -side vertices Bottom vertex 1 x -1 1 yFigure 3 .

 13 Figure 3. The left-side and right-side vertices.

  m m -depends on m. In addition, since N b > 1, ε m m satisfies the following asymptotic behavior, ε m m → 0 , as m → ∞, which, naturally, results in the fact that the larger m, the smaller ε m m . It is for this reason that we call ε m m -or rather, the infinitesimal sequence ε m m ∞ m=0 of positive numbers tending to zero as m → ∞, with ε m m = (ε m ) m , for each m ∈ N -an infinitesimal. Note that this m t h cohomology infinitesimal is the one naturally associated to the scaling relation of Proposition 15, on page 8.

Theorem 20 (

 20 Complex Dimensions Series Expansion of the Weierstrass Complexified Function W comp [6], [7], [8] and of the Weierstrass function W). For any sufficiently large positive integer m and any j in {0, ⋯, #V m -1}, we have the following exact expansion, indexed by the Complex Codimensions k (D W -2)

  cohomology infinitesimal, introduced in Definition 18, on page 10, with p = 2 π ln N b

  Neighborhood [5]). Given m ∈ N sufficiently large (so that ε m m be a sufficiently small positive number), we define the (m, ε m m )-neighborhood of the m t h prefractal approximation Γ W m as follows:

Definition 23 (

 23 Sequence of Domains Delimited by the Weierstrass IFD -Polyhedral Neighborhood of the Weierstrass Curve [4]). We introduce the sequence of domains delimited by the Weierstrass IFD, or polygonal neighborhood of the Weierstrass Curve, as the sequence D Γ W m m ∈ N of open, connected polygonal sets (P m ∪ Q m ) m ∈ N , where, for each m ∈ N, P m and Q m respectively denote the polygonal sets introduced in Definition 13, on page 6. Given ∈ N, we call D Γ W m the m t h polyhedral neighborhood (of the Weierstrass Curve Γ W ); see Figure 4, on page 12. Theorem 24 (The Nested Neighborhoods). i . Given m ∈ N sufficiently large, there exists k 1 ∈ N such that, for all k ≥ k 1 , the polygonal neighborhood D Γ W m introduced in Definition 23, on page 12 contains, but for a finite number of wedges, the (m + k, ε m+k m+k )-neighborhood; see Figures 4-7, on pages 12-14. i i . Given m ∈ N sufficiently large, there exists k 2 ∈ N such that, for all k ≥ k 2 , the (m, ε m m )neighborhood contains the polygonal neighborhood D Γ W m+k introduced in Definition 23, on page 12; see Figure 8, on page 14 and Figure 9, on page 15. i i i . Given m ∈ N sufficiently large, there exists k 3 ∈ N such that, for all k ≥ k 3 , the polygonal neighborhood D Γ W m introduced in Definition 23, on page 12 contains the polygonal neighborhood D Γ W m+k .

Figure 4 .

 4 Figure 4. The polygonal neigborhood D Γ W 2 , in the case when λ = 1 2 and N b = 3.

Figure 5 .

 5 Figure 5. The exterior boundary of the polygonal neigborhood D Γ W 2 (in red), and the tubular neighborhood D Γ W 7 , ε 7 7 , in the case when λ = 1 2 and N b = 3.

Figure 6 . 2 and

 62 Figure 6. The polygonal neigborhood D Γ W 3 , in the case when λ = 1 2 and N b = 3.

Figure 7 .

 7 Figure 7. The exterior boundary of the polygonal neigborhood D Γ W 3 (in red), and the tubular neighborhood D Γ W 7 , ε 7 7 , in the case when λ = 1 2 and N b = 3.

Figure 8 . 2 and N b = 3 .Figure 9 . 3 and 2 and N b = 3 .

 8239323 Figure 8. The polygonal neigborhood D Γ W 5 , in the case when λ = 1 2 and N b = 3.

1

  (C) = C ∪ ∞. We define the Weierstrass Complex Curve as the graph in P 1 (C) = C ∪ ∞ associated with the Weierstrass complefixied function W comp ; i.e., the set denoted by Γ W,comp such that

Figure 10 .

 10 Figure 10. The orthogonal projections H j ,m of the vertices M j ,m , for 0 ≤ j ≤ #V m -1, onto the horizontal line y = m W , where m W is introduced in Notation 29, on page 17.

  ,(N b -1) j +q,m+1 p . (15) i i . For any integer m ≥ m 0 , we denote by P ζe m ⊂ C the set of poles of the zeta function ζe m .

  we have, thanks to the local uniform convergence of the series on C, lim m→∞ ∥ ζe m , ζe W ∥ = 0 . Indeed, for any η > 0 and any compact set K ⊂ C, we can choose m 0 ∈ N ⋆ such that, for all m ≥ m 0 and s ∈ K, we have that | ζe m (s) -ζe W (s)| ≤ η , and hence, still for all m ≥ m 0 and s ∈ K, ∥ ζe m (s), ζe W (s)∥ ≤ | ζe m (s) -ζe W (s)| ≤ η .

m.

  In particular, we then deduce that the following possible Complex Dimensions previously obtained in[START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF], i.e., 1 -2 k + i p, with k ∈ N and ∈ Z, along with -2 and 0, are not actual Complex Dimensions, in the sense introduced in the present paper.Moreover, the Complex Dimensions associated with DW , i.e., D W -k (2 -D W ) + i p ,where k ∈ N and ∈ Z are arbitrary, are actual Complex Dimensions of Γ W . Hence, all of the possible Complex Dimensions of Γ W , as given by relation[START_REF]An overview of complex fractal dimensions: From fractal strings to fractal drums, and back[END_REF] above, are exact and they are all simple.

Theorem 37 .

 37 The box-counting dimension -or, equivalently, the Minkowski dimension -of the Weierstrass Curve Γ W exists and is equal to DW = 2 + ln λ ln N b .Sketch of the proof.We simply apply the result given in Corollary 25, on page 14. We then have the existence of aninteger m 0 ∈ N such that ∀ m ≥ m 0 ∶ Γ W ⊂ D Γ W m .In other words, for all integers m ≥ m 0 , the polyhedral neighborhood D Γ W m covers the Weierstrass Curve Γ W .

mm

  plays the role of the elementary diameter δ in Definition 36, on page 25. Moreover, the area of each polygon belonging to D Γ W m also corresponds to the area of the reunion of (N b -1) h m ε m m elementary and smaller polygons, each of diameter ε m m

Weier- strass Function Definition 18 (m t h Cohomology Infinitesimal [5], [6] and m t h Intrinsic Cohomology Infinites- imal

  

	number ε	t h cohomology infinitesimal (of Γ W ) the m > 0 which also corresponds to the elementary horizontal length introduced in part i . m
	of Definition 14, on page 7; i.e., ε

). From now on, given any m ∈ N, we will call m

  )

	Theorem 28 (Exact Expression for the Volume of the m Natural Polyhedral Volume)). Given m ∈ N ⋆ sufficiently large, the volume (or two-dimensional t h t h Polyhedral Neighborhood (or m
	Lebesgue measure) V m (ε	m m ) of the m	t h polygonal neighborhood D Γ W m , or m	t h natural polyhe-
	dral volume, is given by			

  )

	By considering, in the same manner, given m ∈ N ⋆ sufficiently large, the volume (or two-
	dimensional Lebesgue measure) V I,m (ε ciated with the m t h prefractal approximation to the graph Γ W,I of the imaginary part W I of the m m ) of the m t h polygonal neighborhood D Γ W,I m , asso-
	Weierstrass complefixied function W comp (see Definition 27, on page 15 above), we note that the complex volume V m,comp (ε m m ) can be envisioned as the volume associated with the Weierstrass
	complex curve Γ W,comp (see again Definition 27, on page 15) in the Riemann sphere (or complex projective line) P 1

Local and Global Polyhedral Effective Zeta Functions: Fractal Power Expansions and

  Ṽpar t i al ,m,comp associated with the m t h natural polyhedral complex volume V m,comp introduced in Theorem 28, on page 16. Alternatively, Ṽm,comp will be called the m

				(in the case of the ordinary Euclidean volume), one can think of
	ε	m Ṽpar t i al ,m,comp t	m as being the effective polyhedral volume of the m	t h prefractal approxi-
	mation to the Weierstrass Curve.
	Notation 31 (Natural Polyhedral Complex Volume Extension).
		For the sake of simplicity, given m ∈ N sufficiently large, we will from now on call
	the m	t h natural polyhedral complex volume extension, the volume extension func-
	tion Ṽm,comp = ε	
					t h
	effective polyhedral complex volume.
					t h natural volume extension,
	the volume extension function tively, Ṽ t ube m will be called the m Ṽ t ube m t h effective tubular volume. associated with the the m	t h tubular volume V m t ube	. Alterna-
	Theorem 32 (ε	t	s-3 ε
				0

m

In the same way, as is done in

[START_REF]Weierstrass fractal drums -I -A glimpse of complex dimensions[END_REF]

, and given m ∈ N, we call the m Recurrence Relations). Given m ∈ N sufficiently large, we introduce the m t h local polyhedral effective zeta function ζe m , such that, for all s ∈ C with Re (s) > D W , ζe m (s) = m Ṽm,comp (t) d t , (11) where Ṽm = ε m Ṽpar t i al ,m,comp is the m t h effective polyhedral complex volume, introduced in Notation 31, on page 20 above, with ε denoting the m t h intrinsic cohomology infinitesimal introduced in Definition 18, on page 10.

  associated Weierstrass IFD) as the poles of the polyhedral global effective zeta function ζe W . The phrase "possible Complex Dimension" then refers to ω ∈ C which is either an actual ComplexDimension or appears as an ω-exponent in the fractal power series expansion[START_REF] Keller | A simpler proof for the dimension of the graph of the classical Weierstrass function[END_REF], on page 21, but is such that the corresponding residue vanishes: res ζe

	Theorem 33 (Complex Dimensions of the Weierstrass Curve). The possible Complex Dimen-
	sions of the Weierstrass Curve (or of the Weierstrass IFD) are given by Theorem 32, on page 20. Fur-
	thermore, if they are actual poles, they are simple poles. They are given as follows:

W , ω = 0.

Fractality of the The Weierstrass Curve and of the Prefractal Approximations).

  Weierstrass Curve Γ W . (resp., m t h local polyhedral effective zeta function of its m t h prefractal approximation, with m ≥ m 0 ).] In addition, given d ∈ R, it is fractal in dimension d if it has at least one nonreal Complex Dimension with real part d . (Note that nonreal Complex Dimensions come in complex conjugate pairs.) In particular, it is principally fractal if it is fractal in dimension d (here, D W ), the abscissa of convergence of the associated fractal zeta function, which is the largest possible value of d . We can now state the following corollary of Theorems 32, on page 20 and 33, on page 24. The same is true for the m t h prefractal approximation Γ W m to the Weierstrass Curve Γ W , with m ∈ N ⋆ sufficiently large, except for the fact that Γ W m is only fractal in finitely many dimensions -namely, d = D W -k (2 -D W ), with k ∈ N such that 0 ≤ k ≤ m. (Indeed, the Complex Dimensions of Γ W m are given by d

	Corollary 35 (

The Weierstrass Curve Γ W (or the Weierstrass IFD) is fractal, and even principally fractal, as well as fractal in infinitely many Complex Dimensions d -namely, d = D W -k (2 -D W ), with k ∈ N arbitrary).
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