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Abstract.

In this note, which is an announcement of the long paper [8], we introduce new fractal zeta functions,
associated with polyhedral neighborhoods, better suited to fractals when exact expressions for the volume
of tubular neighborhoods cannot be computed. Accordingly, in the model – and very significant – case of
the Weierstrass Curve ΓW , we give exact expressions for the volume of polyhedral neighborhoods for the
sequence of prefractal graphs which converge to ΓW – the so-called Weierstrass Iterated Fractal Drums (in
short, Weierstrass IFDs). Those IFDs are associated with a suitable (and geometrically meaningful) sequence
of small parameters tending to zero, also known as the cohomology infinitesimals, due to their connections
with fractal cohomology. We also introduce the associated local and global polyhedral fractal zeta functions.
The local fractal zeta functions consist in the sequence of zeta functions associated with the sequence of
polyhedral neighborhoods, and satisfy a recurrence relation, which enables us to prove that the poles of
the limit fractal zeta function – the global zeta function, associated with the limit fractal object – are exactly
the same as the Complex Dimensions of the Weierstrass function itself. This result makes the connection
with fractal cohomology, where, for any nonnegative integer m, the mth cohomology group is comprised of
continuous functions which possess a generalized Taylor expansion, with fractional derivatives of orders the
underlying – and actual – Complex Dimensions.
By using the aforementioned exact expressions of the polyhedral neighborhoods, we also revisit the compu-
tation of the box–counting (or Minkowski) dimension of the Weierstrass Curve, in a fully rigorous manner
and therefore prove part of Mandelbrot’s conjecture concerning the fractal dimension of the Weierstrass
Curve.
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Résumé.
Dans cette note, qui annonce l’article [8], nous introduisons de nouvelles fonctions zeta fractales, asso-

ciées à des voisinages polyhedraux, qui sont les mieux indiqués lorsque l’on ne peut pas obtenir d’expressions
exactes pour le volume des voisinages tubulaires des objets fractaux considérés, ce qui est le cas ici. Dans
le cas modèle et très significatif de la courbe de Weierstrass ΓW , nous donnons les expressions exactes des
volumes de la suite de graphes préfractaux qui converge vers ΓW . Ces graphes, appelés tambours fractaux
itérés, sont associés à une suite de petits paramètres tendant vers 0 : les infinitésimaux cohomologiques.
Nous introduisons ensuite les fonctions zêta fractales locales et globale correspondantes. Les fonctions zêta
fractales locales sont les fonctions zêta associées à la suite de voisinages polyhédraux. Elles vérifient une
relation de récurrence, ce qui nous permet de prouver que les pôles de la fonction zêta limite, c’est-à-dire la
fonction zêta globale, associée à la courbe fractale elle-même, sont exactement les mêmes que les dimen-
sions complexes de la fonction de Weierstrass. Ce résultat est un écho direct à la cohomologie fractale où,

pour tout entier naturel m, le mi ème groupe de cohomologie est composé de fonctions continues possédant
un développement de Taylor gérénalisé, avec des dérivées fractionnaires dont les ordres sont les dimensions
complexes.
En utilisant les expressions exactes des volumes des voisinages polyhedraux, nous révisitons ensuite de façon
pleinement rigoureuse le calcul de la dimension de Minkowski de la courbe de Weierstrass. Nous donnons
ainsi une démonstration complète d’une partie de la conjecture de Mandelbrot concernant les dimensions
fractales de la courbe de Weierstrass.

1. Introduction

Up to now, tubular neighborhhoods were a compulsory and unavoidable step when it came
to computing fractal zeta functions (see [19], [24], [25]). However, one cannot always obtain the
exact expression of the associated volumes. For instance, this occurs when the fractals involved
are defined by means of nonlinear and noncontractive iterated function systems (i.f.s.). A model
– and very significant – object in this case is the (nowhere differentiable) Weierstrass Curve ΓW ,
where, in addition, nonlinearity makes the geometry extremely complicated.

A careful look at the sequence of prefractal, polygonal graph approximations which converge
to ΓW shows that not only polyhedral neighborhoods appear as perfectly suited to this fractal
curve, but, even more important, we can obtain the exact expressions of the associated volumes.
This comes from the fact that we know the coordinates of the vertex points which constitute the
prefractal approximations. More precisely, those coordinates involve values of the Weierstrass
function W .

A very interesting – and rather a priori unexpected – feature then arises. Indeed, the Weier-
strass functionW itself possess a Complex Dimensions series expansion. Recall that the theory of
Complex Dimensions, developed for many years now by Michel L. Lapidus and his collaborators
in [14], [15], [22], [20], [21], [16], [19], [23], [24], [17], [11], [18], makes the connection between the
geometry of an object and its differentiability properties, by means of geometric (or fractal) zeta
functions, which stand for the trace of a differential operator at a complex order s. The poles of
those fractal zeta functions are called the Fractal Complex Dimensions. The existence of nonreal
Complex Dimensions is a characteristic of fractality and gives rise (via explicit formulas) to the
oscillations that are intrinsic to fractal geometries.

By considering the fractal zeta functions associated with the sequence of polygonal neighbor-
hoods, we came across the recurrence relation between consecutive fractal zeta functions. To
our knowledge, this is the first time that such a result is obtained. It is all the more important that
it enables us to prove the existence of the limit fractal zeta function – the global zeta function,
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associated with the limit fractal object, the Weierstrass Curve here, or rather, the Weierstrass
iterated fractal drum (IFD). Moreover, this global zeta function has the same (possible) poles as
the Complex Dimensions involved in the aforementioned series expansion of the Weierstrass
function.

Our main results in the present setting can be found in the following places:

i. In Theorem 20, on page 11, where we obtain recurrence relations satisfied by the coeffi-
cients of the exact fractal (or Complex Dimensions) expansion for the complexified and
the ordinary Weierstrass functions.

ii. In Definition 23, on page 12, where we introduce the sequence of polyhedral neighbor-
hoods.

iii. In Theorem 24, on page 12, where we show that the polyhedral and tubular neighbor-
hoods are nested.

iv. In Theorem 28, on page 16, where we obtain an exact fractal power series expansion for
the volume of suitable mth polyhedral neighborhoods of the Weierstrass Curve.

v. In Theorem 32, on page 20, where we introduce the local and global effective polyhedral
zeta function and show that the global zeta function is well defined, meromorphic in all
of C, and is given by an explicit fractal power series.

vi. In Theorem 33, on page 24, where we obtain the exact Complex Dimensions of the
Weierstrass Curve (or of the Weierstrass IFD), precisely of the same form as the possible
Complex Dimensions occurring in the fractal cohomology theory developed in [6].

vii. In Theorem 37, on page 26, where we introduce a new and completely rigorous proof
of the computation of the box–counting dimension (or, equivalently, of the Minkowski
dimension) of the Weierstrass Curve ΓW , by simply using the covers of ΓW by polyhedral
neighborhoods – therefore fully establishing part of Mandelbrot’s conjecture [26] about
the fractal dimensions of ΓW .

2. Geometric Framework

Henceforth, we place ourselves in the Euclidean plane, equipped with a direct orthonormal
frame. The usual Cartesian coordinates are denoted by (x, y). The horizontal and vertical axes
are respectively referred to as (x ′x) and (y ′y). We also let N= {0, 1, 2, . . .} and N

⋆
= {1, 2, . . .}.

Given a, b with a, b ∈ R∪{−∞,∞}, we write, e.g., [a, b[= [a, b) and similarly for other inter-
vals.

Notation 1 (Weierstrass Parameters). In the sequel, λ and Nb are two real numbers such that

0< λ< 1 , Nb ∈ N
⋆

and λNb > 1 . (♣)
Note that this implies that Nb > 1 (i.e., Nb ≥ 2).

As explained in [3], we deliberately made the choice to introduce the notation Nb which
replaces the initial number b, in so far as, in Hardy’s paper [10] (in contrast to Weierstrass’s
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original article [28]), b is any positive real number satisfying λb > 1, whereas we deal here with
the specific case of a natural integer, which accounts for the natural notation Nb .

Definition 2 (Weierstrass Function, Weierstrass Curve). We consider the Weierstrass functionW
(also called, in short, the W-function) defined, for any real number x, by

W(x)=
∞

∑
n=0

λ
n

cos(2πN
n
b x) . (1)

We call the associated graph the Weierstrass Curve, and denote it by ΓW .

Due to the one–periodicity of the W–function, since Nb is an integer, from now on, and with-
out loss of generality, we restrict our study to the interval [0, 1[= [0, 1). We also identify the
points (0,W(0)) and (1,W(1))= (1,W(0)).

Definition 3 (Weierstrass Complexified Function). We introduce the Weierstrass Complexified
function Wcomp , defined, for any real number x, by

Wcomp(x)=
∞

∑
n=0

λ
n

e
2 i πN n

b x
.

Notation 4 (Logarithm). Given y > 0, ln y denotes the natural logarithm of y , while,

given a > 1, lna y =
ln y
ln a

denotes the logarithm of y in base a; so that, in particular, ln= lne .

Notation 5 (Minkowski Dimension and Hölder Exponent). For the parameters λ and Nb satis-
fying condition (♣) (see Notation 1, on page 3), we denote by

DW = 2+
lnλ

ln Nb
= 2− lnNb

1
λ
∈ ]1, 2[

the box–counting dimension (or Minkowski dimension) of the Weierstrass Curve ΓW , which
happens to be equal to its Hausdorff dimension [12], [1], [27], [13]. We point out that the results
in our present paper – and its long version [8] – also provide a direct geometric proof of the fact
that DW , the Minkowski dimension (or box–counting dimension) of ΓW , exists and takes the
above values, and that our results in our previous paper [5] show that W is Hölder continuous

with optimal Hölder exponent 2−DW =−
lnλ

ln Nb
= lnNb

1
λ

.

Note that the latter result was also obtained by G. H. Hardy in [10], although new key informa-
tion is obtained in [5] where we establish a new discrete analog of the reverse Hölder estimates (of
order DW ) which is used in an essential way in the present work; see Proposition 16, on page 8
and Theorem 17, on page 9.

Proposition 6 (Nonlinear and Noncontractive Iterated Function System (IFS)). Following our
previous work [2], we approximate the restriction ΓW to [0, 1[×R, of the Weierstrass Curve, by
a sequence of graphs, built via an iterative process. For this purpose, we use the nonlinear (and
noncontractive) iterated function system (IFS) of the family of C∞ maps from R

2 to R2 denoted by

TW = {T0,⋯, TNb−1} ,

where, for any integer i belonging to {0,⋯, Nb −1} and any point (x, y) of R2,

Ti (x, y)= (x+ i
Nb

,λ y + cos(2π (x+ i
Nb

))) .
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Theorem 7 (Attractor of the IFS [2], [3]). The Weierstrass Curve ΓW is the attractor of the

IFS TW , and hence, is the unique nonempty compact subset K of R2 satisfying K =

Nb−1

⋃
i=0

Ti (K);

in particular, we have that ΓW =

Nb−1

⋃
i=0

Ti (ΓW).

Notation 8 (Fixed Points). For any integer i belonging to {0,⋯, Nb −1}, we denote

by Pi = (xi , yi )= ( i
Nb −1

,
1

1−λ
cos( 2π i

Nb −1
)) the unique fixed point of the map Ti ; see [3].

Definition 9 (Sets of Vertices, Prefractals). We denote by V0 the ordered set (according to increas-
ing abscissae) of the points

{P0,⋯, PNb−1} .

The set of points V0 – where, for any integer i in {0,⋯, Nb −2}, the point Pi is linked to the
point Pi+1 – constitutes an oriented finite graph, ordered according to increasing abscissae, which
we will denote by ΓW0

. Then, V0 is called the set of vertices of the graph ΓW0
.

For any positive integer m, i.e., for m ∈ N
⋆, we set Vm =

Nb−1

⋃
i=0

Ti (Vm−1).

The set of points Vm , where two consecutive points are linked by an edge, is an oriented finite
graph, ordered according to increasing abscissa, called the mt h order W-prefractal. Then, Vm is
called the set of vertices of the prefractal ΓWm

; see Figure 2, on page 7. We call Weierstrass Iterated
Fractal Drums (IFD) the sequence of prefractal graphs which converge to the Weierstrass Curve.

Proposition 10 (Density of the Set V ⋆
= ⋃

n∈N
Vn in the Weierstrass Curve [5]). The

set V ⋆
= ⋃

n∈N
Vn is dense in the Weierstrass Curve ΓW .

Definition 11 (Adjacent Vertices, Edge Relation). For any m ∈ N, the prefractal graph ΓWm

is equipped with an edge relation ∼
m

, as follows: two vertices X and Y of ΓWm
(i.e. two points

belonging to Vm) are said to be adjacent (i.e., neighboring or junction points) if and only if the
line segment [X , Y ] is an edge of ΓWm

; we then write X ∼
m

Y . Note that this edge relation depends

on m, which means that points adjacent in Vm might not remain adjacent in Vm+1.

Proposition 12. [2] For any m ∈ N, the following statements hold:

i . Vm ⊂Vm+1 .

i i . #Vm = (Nb −1) N m
b +1, where #Vm denotes the number of elements in the finite set Vm .

i i i . The prefractal graph ΓWm
has exactly (Nb −1) N m

b edges.

iv. The consecutive vertices of the prefractal graph ΓWm
are the vertices of N m

b simple non-
regular polygons Pm,k with Nb sides (or Nb-gons). For any strictly positive integer m, the
junction point between two consecutive polygons is the point

( (Nb −1)k

(Nb −1)N m
b

,W ( (Nb −1)k

(Nb −1)N m
b

)) , 1≤ k ≤ N
m
b −1 .

Hence, the total number of junction points is N m
b −1. For instance, in the case Nb = 3,

the polygons are all triangles; see Figure 1.
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In the sequel, we will denote by P0 the initial polygon, whose vertices are the fixed
points of the maps Ti , 0≤ i ≤ Nb −1, introduced in Notation 8 and Definition 9, on page 5,
i.e., {P0,⋯, PNb−1}; see, again, Figure 1, on page 6.

P0
P2

T0 (P1)

T0 (P2) = T1 (P0) T1 (P2) = T2 (P0)

T2 (P1)

P1

polygon P1,0

polygon P1,1

polygon P1,2

initial polygon P0

1
x

-1

1

y

Figure 1. The initial polygon P0, and the polygons P1,0, P1,1, P1,2, in the case

whenλ=
1
2

and Nb = 3. (See also Figure 2, on page 7.)

Definition 13 (Polygonal Sets [4]). For any m ∈ N, we introduce the following polygonal sets

Pm = {Pm,k , 0≤ k ≤ N
m
b −1} and Qm = {Qm,k , 0≤ k ≤ N

m
b −2} .
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1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

1
x

-1

1

y

Figure 2. The prefractal graphsΓW0 ,ΓW1 ,ΓW2 ,ΓW3 ,ΓW4 ,ΓW5 , in the case whenλ=
1
2

and Nb = 3. For example, ΓW1 is on the right side of the top row, while ΓW4 is on the left
side of the bottom row.

Definition 14 (Vertices of the Prefractals, Elementary Lengths, Heights and Angles). Given a
strictly positive integer m, we denote by (M j ,m)0≤ j≤(Nb−1)N m

b
the set of vertices of the prefractal

graph ΓWm
. One thus has, for any integer j in {0,⋯,(Nb −1)N m

b }:
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M j ,m = ( j

(Nb −1)N m
b

,W ( j

(Nb −1)N m
b

)) .

We also introduce, for any integer j in {1,⋯,(Nb −1)N m
b −1}:

i. the elementary horizontal lengths:

Lm =
j

(Nb −1)N m
b

;

ii. the elementary heights:

h j−1, j ,m =

»»»»»»»»
W ( j

(Nb −1)N m
b

)−W ( j −1

(Nb −1)N m
b

)
»»»»»»»»

;

iii. the geometric angles:

θ j−1, j ,m = ((y
′
y),(M j−1,m M j ,m)) ,

which yield the following value of the geometric angle between consecutive edges,
namely, [M j−1,m M j ,m , M j ,m M j+1,m], with arctan= tan−1:

θ j−1, j ,m +θ j , j+1,m = arctan
Lm

∣h j−1, j ,m∣
+arctan

Lm

∣h j , j+1,m∣
.

Proposition 15 (Scaling Properties of the Weierstrass Function, and Consequences [5]). Since,

for any real number x, W(x)=
∞

∑
n=0

λ
n

cos(2πN
n
b x), one also has

W(Nb x)=
∞

∑
n=0

λ
n

cos(2πN
n+1
b x)= 1

λ

∞

∑
n=1

λ
n

cos(2πN
n
b x)= 1

λ
(W(x)− cos(2πx)) ,

which yields, for any strictly positive integer m and any j in {0, . . . , #Vm},

W ( j

(Nb −1)N m
b

)= λW ( j

(Nb −1)N m−1
b

)+ cos( 2π j

(Nb −1)N m
b

) .

By induction, one then obtains that

W ( j

(Nb −1)N m
b

)= λm W ( j

(Nb −1))+
m−1

∑
k=0

λ
k

cos( 2πN k
b j

(Nb −1)N m
b

) .

Proposition 16 (Lower Bound and Upper Bound for the Elementary Heights [5]). For any
strictly positive integer m and any j in {0,⋯,(Nb −1)N m

b }, we have the following estimates:

Ci n f L
2−DW
m ≤ ∣W (( j +1)Lm)−W ( j Lm)∣≤Csup L

2−DW
m , m ∈ N, 0≤ j ≤ (Nb −1)N

m
b

where the finite and positive constants Ci n f and Csup are given by

Ci n f = (Nb −1)2−DW min
0≤ j≤Nb−1,W( j+1

Nb−1
)≠W( j

Nb−1
)

»»»»»»»
W ( j +1

Nb −1
)−W ( j

Nb −1
)
»»»»»»»

and

Csup = (Nb −1)2−DW ( max
0≤ j≤Nb−1

»»»»»»»
W ( j +1

Nb −1
)−W ( j

Nb −1
)
»»»»»»»
+

2π

(Nb −1) (λNb −1)) .
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One should note, in addition, that these constants Ci n f and Csup depend on the initial polygon P0.

Theorem 17 (Sharp Local Discrete Reverse Hölder Properties of the Weierstrass Function).

For any natural integer m, let us consider a pair of real numbers (x, x ′) such that

x =
(Nb −1)k+ j

(Nb −1)N m
b

= ((Nb −1)k+ j) Lm , x
′
=

(Nb −1)k+ j +`

(Nb −1)N m
b

= ((Nb −1)k+ j +`) Lm ,

where 0≤ k ≤ Nb −1m −1, and

i. if the integer Nb is odd,

0≤ j <
Nb −1

2
and 0< j +`≤

Nb −1
2

or

Nb −1
2

≤ j < Nb −1 and
Nb −1

2
< j +`≤ Nb −1 ;

ii. if the integer Nb is even,

0≤ j <
Nb

2
and 0< j +`≤

Nb

2
or

Nb

2
+1≤ j < Nb −1 and

Nb

2
+1< j +`≤ Nb −1 ⋅

This means that the points (x,W(x)) and (x ′,W(x ′)) are vertices of the polygon Pm,k (see
Property 12, on page 5 above), both located on the left-side of the polygon, or both located on the
right-side; see Figure 3, on page 9.

Then, one has the following (discrete, local) reverse–Hölder inequality, with sharp Hölder

exponent−
lnλ

ln Nb
= 2−DW ,

Ci n f ∣x
′
− x∣2−DW

≤
»»»»»W(x

′)−W(x)»»»»» ⋅

Left - side vertices

Right - side vertices

Bottom vertex

1
x

-1

1

y

Figure 3. The left-side and right-side vertices.
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Sketch of the proof.

We simply use Proposition 16, on page 8.

3. Cohomology Infinitesimal – Complex Dimensions Series Expansion of the Weier-
strass Function

Definition 18 (mt h Cohomology Infinitesimal [5], [6] and mt h Intrinsic Cohomology Infinites-
imal). From now on, given any m ∈ N, we will call mth cohomology infinitesimal (of ΓW ) the
number εm

m > 0 which also corresponds to the elementary horizontal length introduced in part i .

of Definition 14, on page 7; i.e., εm
m = (εm)m

=
1

Nb −1
1

N m
b

.

Observe that, clearly, εm itself – and not just εm
m – depends on m.

In addition, since Nb > 1, εm
m satisfies the following asymptotic behavior,

ε
m
m → 0 , as m →∞,

which, naturally, results in the fact that the larger m, the smaller εm
m . It is for this reason that

we call εm
m – or rather, the infinitesimal sequence (εm

m)∞m=0 of positive numbers tending to zero

as m →∞, with ε
m
m = (εm)m , for each m ∈ N – an infinitesimal. Note that this mth cohomology

infinitesimal is the one naturally associated to the scaling relation of Proposition 15, on page 8.

In the sequel, it is also useful to keep in mind that the sequence of positive numbers (εm)∞m=0
itself satisfies

εm ∼
1

Nb
, as m →∞ ;

i.e., εm →
1

Nb
, as m →∞. In particular, εm /→ 0, as m →∞, but, instead, εm tends to a strictly

positive and finite limit.

We also introduce, given any m ∈ N, the mth intrinsic cohomology infinitesimal, denoted
by εm

> 0, such that

ε
m
=

1

N m
b

,

where

ε=
1

Nb
.

We call ε the intrinsic scale, or intrinsic subdivision scale.

Note that

ε
m
m =

ε
m

Nb −1

and that the mth intrinsic cohomology infinitesimal εm is asymptotic equal (when m tends to∞)
to the mth cohomology infinitesimal εm

m .
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Remark 19. We note that the choice of the mth intrinsic cohomology infinitesimal, instead of
the mth cohomology infinitesimal, as is done in [5] and [6], will significantly help the computa-
tion of the polyhedral prefractal volumes, the polyhedral fractal zeta functions and hence also, of
the Complex Dimensions, without any loss of information.

Theorem 20 (Complex Dimensions Series Expansion of the Weierstrass Complexified Func-
tion Wcomp [6], [7], [8] and of the Weierstrass function W). For any sufficiently large positive
integer m and any j in {0,⋯, #Vm −1}, we have the following exact expansion, indexed by the
Complex Codimensions k (DW −2)+ i k `k, j ,m p, with 0≤ k ≤m,

Wcomp ( j ε
m
m)=Wcomp ( j εm

Nb −1
) =

m

∑
k=0

ck, j ,m ε
k (2−DW )

ε
i `k, j ,m p

, (2)

where, for 0≤ k ≤m, εk is the k th intrinsic cohomology infinitesimal, introduced in Definition 18,

on page 10, with p=
2π

ln Nb
denoting the oscillatory period of the Weierstrass Curve, as introduced

in [5] and where:
i . `k, j ,m ∈ Z is arbitrary.

i i . cm, j ,m =Wcomp ( j
Nb −1

) and, for 0≤ k ≤m−1, ck, j ,m ∈ C is given by

ck, j ,m = exp ( 2 i π
Nb −1

j ε
m−k) . (3)

For any m ∈ N, the complex numbers {c0, j ,m+1,⋯, cm+1, j ,m+1} and the inte-
gers {`0, j ,+1,⋯,`m+1, j ,m+1} respectively satisfy the following recurrence relations:

cm+1, j ,m+1 =W ( j
Nb −1

)= cm, j ,m (4)

and

∀k ∈ {1, . . . , m} ∶ ck, j ,m+1 = ck, j ,m , `k, j ,m+1 = `k, j ,m , (5)

In addition, since relation (2) is valid for any m ∈ N
⋆, we note that the associated Complex

Dimensions (i.e., in fact, the Complex Dimensions associated with the Weierstrass function) are

DW −k (2−DW)+ i `k, j ,m p

where 0≤ j ≤ #Vm −1 and 0≤ k ≤m.

This immediately ensures, for the Weierstrass function (i.e., the real part of the Weierstrass
complexified function Wcomp ), that, for any strictly positive integer m and any j in {0,⋯, #Vm},

W ( j εm
m) = 1

2

m

∑
k=0

ε
k (2−DW ) (ck, j ,m ε

i `k, j ,m p
k + ck, j ,m ε

− i `k, j ,m p
k ) .

(6)

Remark 21. The recurrence relations (4) and (5) stated in part i i . of Theorem 20 just above are
new and will play a key role in order to establish the recurrence relations satisfied by the local
fractal zeta functions; see relation (13) in Theorem 32, on page 20 below.
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4. Polyhedral Neighborhoods

Definition 22 ((m,εm
m)-Neighborhood [5]). Given m ∈ N sufficiently large (so that εm

m be a
sufficiently small positive number), we define the (m,εm

m)-neighborhood of the mth prefractal
approximation ΓWm

as follows:

D (ΓWm
,ε

m
m)= {M = (x, y) ∈ R2

, d (M ,ΓWm
)≤ εm

m} .

Definition 23 (Sequence of Domains Delimited by the Weierstrass IFD – Polyhedral Neighbor-
hood of the Weierstrass Curve [4]).

We introduce the sequence of domains delimited by the Weierstrass IFD, or polygonal neigh-
borhood of the Weierstrass Curve, as the sequence (D (ΓWm

))m∈N
of open, connected polygonal

sets (Pm ∪Qm)m∈N, where, for each m ∈ N, Pm and Qm respectively denote the polygonal sets
introduced in Definition 13, on page 6.

Given ∈ N, we call D (ΓWm
) the mth polyhedral neighborhood (of the Weierstrass Curve ΓW );

see Figure 4, on page 12.

Theorem 24 (The Nested Neighborhoods). i . Given m ∈ N sufficiently large, there exists k1 ∈ N

such that, for all k ≥ k1, the polygonal neighborhood D (ΓWm
) introduced in Definition 23, on

page 12 contains, but for a finite number of wedges, the (m+k,εm+k
m+k)-neighborhood; see Fig-

ures 4–7, on pages 12–14.

i i . Given m ∈ N sufficiently large, there exists k2 ∈ N such that, for all k ≥ k2, the (m,εm
m)-

neighborhood contains the polygonal neighborhood D (ΓWm+k
) introduced in Definition 23, on

page 12; see Figure 8, on page 14 and Figure 9, on page 15.

i i i . Given m ∈ N sufficiently large, there exists k3 ∈ N such that, for all k ≥ k3, the polygonal
neighborhood D (ΓWm

) introduced in Definition 23, on page 12 contains the polygonal neighbor-
hood D (ΓWm+k

).

Figure 4. The polygonal neigborhood D (ΓW2), in the case whenλ=
1
2

and Nb = 3.
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Figure 5. The exterior boundary of the polygonal neigborhoodD (ΓW2) (in red), and the

tubular neighborhood D(ΓW7 ,ε7
7), in the case whenλ=

1
2

and Nb = 3.

Figure 6. The polygonal neigborhood D (ΓW3), in the case whenλ=
1
2

and Nb = 3.
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Figure 7. The exterior boundary of the polygonal neigborhoodD (ΓW3) (in red), and the

tubular neighborhood D(ΓW7 ,ε7
7), in the case whenλ=

1
2

and Nb = 3.

Figure 8. The polygonal neigborhood D (ΓW5), in the case whenλ=
1
2

and Nb = 3.

Corollary 25 (of Theorem 24, given on page 12).

We immediately deduce from Theorem 24 that, given any m ∈ N, there exists k0 ∈ N such that,
for all k ≥ k0, the polyhedral neighborhood D (ΓWm

) introduced in Definition 23, on page 12,
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Figure 9. The tubular neighborhood D(ΓW3 ,ε3
3) and the polygonal neigbor-

hood D (ΓW5), in the case when λ=
1
2

and Nb = 3. The size of the vertex points

of D (ΓW5) has intentionally been magnified, in order to obtain an illustrative and
understandable figure.

contains the set of vertices Vm+k . In particular, the density property 10 (Proposition 10, on page 5),
also ensures that the Weierstrass Curve is contained in ΓWm

:

∀m ≥ k0 ∶ ΓW ⊂D (ΓWm
) .

Notation 26 (Lebesgue Measure on R2). In the sequel, we denote by µL the Lebesgue measure
on R2.

Definition 27 (The Weierstrass Complex Curve). We place ourselves in the Riemann sphere
(or complex projective line) P1(C)= C∪∞. We define the Weierstrass Complex Curve as the
graph in P1(C)= C∪∞ associated with the Weierstrass complefixied function Wcomp ; i.e., the set
denoted by ΓW ,comp such that

ΓW ,comp = {(x,Wcomp(x)) , x ∈ [0, 1]}= ΓW + i ΓW ,I ,

where ΓW ,I is the graph (in R2) associated with the imaginary part WI of the Weierstrass comple-
fixied function Wcomp and defined, for any real number x, by
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WI(x)=
∞

∑
n=0

λ
n

sin(2πN
n
b x) . (7)

Theorem 28 (Exact Expression for the Volume of the mt h Polyhedral Neighborhood (or mth

Natural Polyhedral Volume)). Given m ∈ N
⋆ sufficiently large, the volume (or two–dimensional

Lebesgue measure) Vm(εm
m) of the mth polygonal neighborhood D (ΓWm

), or mth natural polyhe-
dral volume, is given by

Vm(εm
m) = µL (D (ΓWm

))

= ε
m

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)W ((Nb −1) j + q

(Nb −1)N m
b

)

= ε
m

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ε
k (2−DW )Re (cm,k,(Nb−1) j+q ε

i k `k,(Nb−1) j+q,m p) ,

(8)

where εm
= (Nb −1)εm

m =
1

N m
b

is the mth intrinsic cohomology infinitesimal introduced in Defini-

tion 18, on page 10, while the real numbersαq(Nb), with 0≤ q ≤ Nb , are coefficients which depend
on Nb and where the complex numbers cm,k,(Nb−1) j+q ∈ Chave been introduced in part i i . of The-
orem 20, on page 11, while the integers `m,k,(Nb−1) j+q ∈ Z are arbitrary (see also Theorem 20, on
page 11), with

a. When the integer Nb is odd:

α0(Nb)= αNb−1(Nb)=−α Nb−1
2

(Nb)=−α Nb−1
2
+Nb−1(Nb)=

Nb −2

2(Nb −1)
and for 1≤ q ≤ Nb −2,

α Nb−1
2
+q(Nb)=−αq(Nb)=−αN m

b ,(Nb−1)N m
b −(Nb−1)+q(Nb)=

1
Nb −1

,

along with

αN m
b ,(Nb−1)N m

b −(Nb−1)(Nb)= αN m
b ,1(Nb)=

Nb −2

2(Nb −1) .

b. When the integer Nb is even:

α0(Nb)= αNb−1(Nb)=−α Nb
2
(Nb)=−α Nb

2
+Nb−1(Nb)=

Nb −2

2(Nb −1)
and for 1≤ q ≤ Nb −2,

α Nb
2
+q(Nb)=−αq(Nb)=−αN m

b ,(Nb−1)N m
b −(Nb−1)+q(Nb)=−

1
Nb −1

,

along with

αN m
b ,(Nb−1)N m

b −(Nb−1)(Nb)= αN m
b ,1(Nb)=

Nb −2

2(Nb −1) .



Claire David and Michel L. Lapidus 17

Given the form of the expression in relation (8) just above, it is natural to introduce,
for any m ∈ N

⋆ sufficiently large, the associated mth complex natural polyhedral vol-
ume Vm,comp(εm

m), such that

Vm,comp(εm
m) = ε

m
N m

b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

cm,k,(Nb−1) j+q ε
k (2−DW )+i k `k,(Nb−1) j+q,m p

. (9)

By considering, in the same manner, given m ∈ N
⋆ sufficiently large, the volume (or two–

dimensional Lebesgue measure) VI,m(εm
m) of the mth polygonal neighborhood D (ΓW ,I m

), asso-

ciated with the mth prefractal approximation to the graph ΓW ,I of the imaginary part WI of the
Weierstrass complefixied function Wcomp (see Definition 27, on page 15 above), we note that the
complex volume Vm,comp(εm

m) can be envisioned as the volume associated with the Weierstrass
complex curve ΓW ,comp (see again Definition 27, on page 15) in the Riemann sphere (or complex

projective line) P1(C)= C∪∞.

Observe that much as for its Euclidean counterpart obtained in our earlier work, [5], the mth

polyhedral fractal formula in Theorem 28, on page 16, is expressed at the mth cohomology infin-
itesimal εm

m , for all m ∈ N sufficiently large (instead of being expressed at any real number ε> 0
sufficiently small).

Notation 29 (Minimal and Maximal Values of the Weierstrass Function W on [0, 1]).

We set

mW = min
t ∈[0,1]

W(t)=− 1
1−λ

, MW = max
t ∈[0,1]

W(t)= 1
1−λ

.
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Figure 10. The orthogonal projections H j ,m of the vertices M j ,m , for 0≤ j ≤ #Vm −1,
onto the horizontal line y =mW , where mW is introduced in Notation 29, on page 17.

Sketch of the proof. (See Figure 10, on page 18.)

The proof is based on the fact that for 0≤ j ≤ N m
b −1, the two–dimensional Lebesgue measure

(i.e., area) of the Nb–gon Pm, j+1, with (consecutive) vertices

M(Nb−1) j ,m , . . . , M(Nb−1) j+Nb−1,m

is obtained by substracting from the area of the trapezoid

H(Nb−1) j ,m M(Nb−1) j ,m M(Nb−1) j+Nb−1,m H(Nb−1) j+Nb−1,m
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the respective areas of the following Nb −1 trapezoids

H(Nb−1) j ,m M(Nb−1) j ,m M(Nb−1) j+1,m H(Nb−1) j+1,m

⋮

H(Nb−1) j+Nb−2,m M(Nb−1) j+Nb−2,m M(Nb−1) j+Nb−1,m H(Nb−1) j+Nb−1,m ;

i.e.,

µL (Pm, j+1) =
(Nb −1)εm

m

2
(W ( (Nb −1) j

(Nb −1)N m
b

)+W ((Nb −1) j +Nb −1

(Nb −1)N m
b

))

−
ε

m
m

2

Nb−2

∑
q=0

(W ((Nb −1) j + q

(Nb −1)N m
b

)+W ((Nb −1) j + q+1

(Nb −1)N m
b

))

=
(Nb −1)εm

m

2
(W ( (Nb −1) j

(Nb −1)N m
b

)+W ((Nb −1) j +Nb −1

(Nb −1)N m
b

))

−
ε

m
m

2

Nb−2

∑
q=1

2W ((Nb −1) j + q

(Nb −1)N m
b

)− ε
m
m

2
W ( (Nb −1) j

(Nb −1)N m
b

) .

The two–dimensional Lebesgue measure (i.e., area) of the non necessarily convex Nb–
gon Qm, j+1 is obtained in a similar manner.

Lemma 30 (Natural Polyhedral Volume Extension Formula). Given m ≥ 1 sufficiently large, we
set

Vm,comp(εm
m) = ε

m Vpar ti al ,m,comp (εm) , (10)

where

Vpar ti al ,m,comp (εm)=
N m

b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb)cm,k,(Nb−1) j+q ε
k (2−DW )+i k `k,(Nb−1) j+q,m p

and where εm
= (Nb −1)εm

m =
1

N m
b

is the mth intrinsic cohomology infinitesimal introduced in

Definition 18, on page 10, while the real numbers αq(Nb), with 0≤ q ≤ Nb , have been introduced
in Proposition 28, on page 16, and where the complex numbers cm,k,(Nb−1) j+q ∈ C have been
introduced in part i i . of Theorem 20, on page 11, while the integers `m,k,(Nb−1) j+q ∈ Z are
arbitrary (see Theorem 20, on page 11). We have used the notation Vpar ti al ,m,comp (εm), since,
as mentioned previously, the sum

N m
b −1

∑
j=0

Nb

∑
q=0

m

∑
k=0

αq(Nb)cm,k,(Nb−1) j+q ε
k (2−DW )+i k `k,(Nb−1) j+q,m p

can be considered as a function of the mth intrinsic cohomology infinitesimal εm .
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We then introduce, for all sufficiently large m ∈ N
⋆, Ṽpar ti al ,m,comp as the continuous func-

tion defined for all t ∈ [0,ε] by substituting t for ε in the right-hand side of the expression
for Vpar ti al ,m,comp (εm), in relation (10).

As is explained in [5] (in the case of the ordinary Euclidean volume), one can think of
ε

m Ṽpar ti al ,m,comp (t m) as being the effective polyhedral volume of the mth prefractal approxi-
mation to the Weierstrass Curve.

Notation 31 (Natural Polyhedral Complex Volume Extension).

For the sake of simplicity, given m ∈ N sufficiently large, we will from now on call
the mth natural polyhedral complex volume extension, the volume extension func-
tion Ṽm,comp = ε

m Ṽpar ti al ,m,comp associated with the mth natural polyhedral complex vol-

ume Vm,comp introduced in Theorem 28, on page 16. Alternatively, Ṽm,comp will be called the mth

effective polyhedral complex volume.

In the same way, as is done in [5], and given m ∈ N, we call the mth natural volume extension,
the volume extension function Ṽ tube

m associated with the the mth tubular volume V tube
m . Alterna-

tively, Ṽ tube
m will be called the mth effective tubular volume.

Theorem 32 (Local and Global Polyhedral Effective Zeta Functions: Fractal Power Expansions
and Recurrence Relations). Given m ∈ N sufficiently large, we introduce the mth local polyhe-
dral effective zeta function ζ̃e

m , such that, for all s ∈ Cwith Re (s)>DW ,

ζ̃
e
m(s)=∫

ε

0
t

s−3
ε

m Ṽm,comp(t)d t , (11)

where Ṽm = ε
m Ṽpar ti al ,m,comp is the mth effective polyhedral complex volume, introduced in

Notation 31, on page 20 above, with ε denoting the mth intrinsic cohomology infinitesimal intro-
duced in Definition 18, on page 10.

Then, for all m ∈ N sufficiently large, ζ̃e
m admits a (necessarily unique) meromorphic extension

to all of C, given, for all s ∈ C, by the following explicit expression:

ζ̃
e
m(s) = ε

m
N m

b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m p

s−2+k (2−DW)+ i `k,(Nb−1) j+q,m p
,

(12)

where ε is the intrinsic scale introduced in Definition 18, on page 10), and where, for 0≤ j ≤ N m
b −1

and 0≤ q ≤ Nb , the coefficients αq(Nb) ∈ R have been introduced in Theorem 28, on page 16,
while the coefficients ck,(Nb−1) j+q,m ∈ C, along with the arbitrary integers `k,(Nb−1) j+q,m ∈ Z,
have been introduced in Theorem 20, on page 11.

More specifically, still for all m ∈ N
⋆ sufficiently large, the function ζ̃

e
m is well defined and

meromorphic in all of C. Furthermore, its (necessarily unique) meromorphic extension (still de-
noted by ζ̃e

m) is given, for all s ∈ C by the expressions given in the last two equalities of relation (12)
just above.



Claire David and Michel L. Lapidus 21

Moreover, the associated sequence (ζ̃e
m)m∈N

– initially given (for Re(s)>DW ) by the truncated
Mellin transform in relation (11), on page 20 – satisfies the following recurrence relation, for all
values of the positive integer m sufficiently large, and for all s ∈ C,

ζ̃
e
m+1(s) = ε ζ̃

e
m(s)+εm+1

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
cm+1,(Nb−1) j+q,m+1 ε

s−2+(m+1)(2−DW )+i `m+1,(Nb−1) j+q,m+1 p

s+2(m+1−1)− (m+1)DW + i `m+1,(Nb−1) j+q,m+1 p

+εm+1
N m+1

b −1

∑
j=N m

b

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p
.

(13)
This ensures the existence of the limit fractal zeta function ζ̃

e
W , i.e., the fractal zeta function

associated with the Weierstrass Curve ΓW (or, rather, with the Weierstrass IFD), called the global
polyhedral effective zeta function and given by

ζ̃
e
W = lim

m→∞
ζ̃

e
m ,

where the convergence is locally uniform on C, along with the existence of an integer m0 ∈ N such
that, for all m ≥m0, the set of poles of ζ̃e

W consists of simple poles and contains the poles of the mth

fractal effective polyhedral zeta function ζ̃
e
m . More specifically, ζ̃e

W is meromorphic in all of C and
its meromorphic extension (still denoted ζ̃e

W ) is given, for all s ∈ C, by

ζ̃
e
W (s) =

∞

∑
m=m0

ε
m−m0+1

ζ̃
e
m(s)

+
∞

∑
m=m0

ε
m+1

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
cm+1,(Nb−1) j+q,m+1 ε

s−2+(m+1)(2−DW )+i `m+1,(Nb−1) j+q,m+1 p

s+2 m− (m+1)DW + i `m+1,(Nb−1) j+q,m+1 p

+
∞

∑
m=m0

ε
m+1

N m+1
b −1

∑
j=N m

b

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p
.

(14)

As was mentioned in the introduction, we note that our result is stronger than the one previ-
ously obtained in [5], where, in particular, the values of the possible Complex Dimensions of the
Weierstrass IFD included−2, 0 and 1−2 k, with k ∈ N arbitrary. As we can see in relation (14) just
above, the poles of the limit effective fractal zeta function ζ̃

e
W are exactly the same as the Complex

Dimensions of the Weierstrass function itself; see Theorem 20, on page 11. Note that, in [5], the
Complex Dimensions are defined in terms of the volume of the tubular (rather than polyhedral)
neighborhood of the Weierstrass IFD.

Sketch of the proof.

i . We first give the explicit expression for the mth local effective polyhedral zeta function ζ̃e
m .



22 Claire David and Michel L. Lapidus

We restrict ourselves to sufficienly large values of m ∈ N, i.e., m ≥m0, for some suitable inte-
ger m0 ∈ N.

We then have that, for Re (s)>DW ,

ζ̃
e
m(s) = ∫

ε

0
t

s−3 Ṽm,comp(t)d t (for Re (s)>DW)

= ε
m

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m

∑
k=0

ck,(Nb−1) j+q,m ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m p
.

We then have that, for any m ∈ N,

ζ̃
e
m+1(s) = ε

m+1
N m+1

b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p

= ε ζ̃
e
m(s)+εm+1

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
cm+1,(Nb−1) j+q,m+1 ε

s−2+(m+1)(2−DW )+i `m+1,(Nb−1) j+q,m+1 p

s+2 m− (m+1)DW + i `m+1,(Nb−1) j+q,m+1 p

+εm+1
N m+1

b −1

∑
j=N m

b

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p
.

(15)
i i . For any integer m ≥m0, we denote by P (ζ̃e

m)⊂ C the set of poles of the zeta function ζ̃e
m .

We set U = {s ∈ C , 1<Re(s)< 3}. We note that, for all m ≥m0, we have that

P (ζ̃e
m0

)⊂P (ζ̃e
m)⊂ U .

The series

∞

∑
m=m0

ε
m−m0+1

ζ̃
e
m(s)

+
∞

∑
m=m0

ε
m+1

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
cm+1,(Nb−1) j+q,m+1 ε

s−2+(m+1)(2−DW )+i `m+1,(Nb−1) j+q,m+1 p

s+2 m− (m+1)DW + i `m+1,(Nb−1) j+q,m+1 p

+
∞

∑
m=m0

ε
m+1

N m+1
b −1

∑
j=N m

b

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p

(16)

is (locally) normally convergent, and, hence, uniformly convergent on U . This ensures the exis-
tence of the limit effective global fractal zeta function, i.e., the fractal zeta function associated
with the Weierstrass Curve ΓW (or with the Weierstrass IFD), given by
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ζ̃
e
W(s) = lim

m→∞
ζ̃

e
m(s)

=

∞

∑
m=m0

ε
m−m0+1

ζ̃
e
m(s)

+
∞

∑
m=m0

ε
m+1

N m
b −1

∑
j=0

Nb

∑
q=0

αq(Nb)
cm+1,(Nb−1) j+q,m+1 ε

s−2+(m+1)(2−DW )+i `m+1,(Nb−1) j+q,m+1 p

s+2 m− (m+1)DW + i `m+1,(Nb−1) j+q,m+1 p

+
∞

∑
m=m0

ε
m+1

N m+1
b −1

∑
j=N m

b

Nb

∑
q=0

αq(Nb)
m+1

∑
k=0

ck,(Nb−1) j+q,m+1 ε
s−2+k (2−DW )+i `k,(Nb−1) j+q,m+1 p

s+2(k−1)−k DW + i `k,(Nb−1) j+q,m+1 p
.

Here, and in the remainder of this proof, a (complex–valued) meromorphic function f is
viewed as a continuous function with values in P

1(C), equipped with the chordal metric, and
such that, for any pole ω of f , f (ω) takes the value ∞ (for instance, as in [19], Section 3. 4 and
Appendix C ).

More precisely, if P1(C)= C∪∞ denotes the Riemann sphere (or complex projective line), we

can show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2
by

∥z1, z2∥=
∣z1− z2∣√

1+ ∣z2
1∣

√
1+ ∣z2

2∣
, if z1 ≠∞ and z2 ≠∞

and

∥z1,∞∥= 1√
1+ ∣z2

1∣
, if z1 ≠∞ ,

we have, thanks to the local uniform convergence of the series on C,

lim
m→∞

∥ζ̃e
m , ζ̃

e
W∥= 0 .

Indeed, for any η> 0 and any compact set K ⊂ C, we can choose m0 ∈ N
⋆ such that, for

all m ≥m0 and s ∈ K, we have that

∣ζ̃e
m(s)− ζ̃e

W(s)∣≤ η ,

and hence, still for all m ≥m0 and s ∈ K,

∥ζ̃e
m(s), ζ̃

e
W(s)∥≤ ∣ζ̃e

m(s)− ζ̃e
W(s)∣≤ η .

The sum of this series, i.e., the (uniform) limit fractal zeta function ζ̃
e
W , is holomorphic on U .

We can then deduce that, for all m ≥m0, the zeta function ζ̃e
m is meromorphic on C.

Moreover, the counterpart of the results obtained in [5] for the sequence of tube zeta func-
tions associated with the Weierstrass IFD, which admit a meromorphic continuation to all of C,
obviously hold for the sequence of polyhedral tube zeta functions: hence, ζ̃e

m is meromorphic
on C, with only simple poles, as specified in Theorem 33, on page 24.

In the next new result, which is now an immediate corollary of Theorem 32, on page 20,
we define implicitly the Complex Dimensions of the Weierstrass Curve ΓW (or, rather, of the
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associated Weierstrass IFD) as the poles of the polyhedral global effective zeta function ζ̃
e
W . The

phrase “possible Complex Dimension" then refers to ω ∈ C which is either an actual Complex
Dimension or appears as an ω-exponent in the fractal power series expansion (13), on page 21,
but is such that the corresponding residue vanishes: res (ζ̃e

W ,ω)= 0.

Theorem 33 (Complex Dimensions of the Weierstrass Curve). The possible Complex Dimen-
sions of the Weierstrass Curve (or of the Weierstrass IFD) are given by Theorem 32, on page 20. Fur-
thermore, if they are actual poles, they are simple poles. They are given as follows:

DW −k (2−DW)+ i `p , (17)

where the integers k ∈ N and ` ∈ Z are arbitrary (compare the corresponding result in Theo-
rem 20, on page 11).

We note that they only partly coincide with the possible poles of the tube fractal zeta func-
tion ζ̃

e,tube
m . In particular, we then deduce that the following possible Complex Dimensions pre-

viously obtained in [5], i.e., 1−2 k+ i `p, with k ∈ N and ` ∈ Z, along with −2 and 0, are not
actual Complex Dimensions, in the sense introduced in the present paper.

Moreover, the Complex Dimensions associated with DW , i.e.,

DW −k (2−DW)+ i `p ,

where k ∈ N and ` ∈ Z are arbitrary, are actual Complex Dimensions of ΓW . Hence, all of the
possible Complex Dimensions of ΓW , as given by relation (17) above, are exact and they are all
simple.

For the exceptional cases, we refer to [5] for a closely related discussion.

Remark 34. Note that, in Theorem 33 just above, the fact that – in light of relation (32) in
Theorem 12, on page 20, and of the expression of the coefficientsαq and ck, j m given, respectively,
in relation (8) in Theorem 28, on page 16 and in part i i . of Theorem 20, on page 11 – the possible
Complex Dimensions are all actual Complex Dimensions of the Weierstrass IFD follows from the
fact that the coefficients of the fractal power series for ζ̃e

W in relation (14) are nonzero, which
implies that the residues of ζ̃e

W at each possible pole is nonzero.

In the theory of Complex Dimensions (see, e.g., [19], [24], [17]), a geometric object is said to be
fractal if it admits at least one nonreal Complex Dimension (defined as a pole of the associated
geometric or fractal zeta function.) [In the present context, the fractal zeta function is the global
polyhedral effective zeta function in the case of the Weierstrass Curve ΓW . (resp., mth local
polyhedral effective zeta function of its mth prefractal approximation, with m ≥m0).]

In addition, given d ∈ R, it is fractal in dimension d if it has at least one nonreal Complex
Dimension with real part d . (Note that nonreal Complex Dimensions come in complex conjugate
pairs.) In particular, it is principally fractal if it is fractal in dimension d (here, DW ), the abscissa
of convergence of the associated fractal zeta function, which is the largest possible value of d .

We can now state the following corollary of Theorems 32, on page 20 and 33, on page 24.

Corollary 35 (Fractality of the The Weierstrass Curve and of the Prefractal Approximations).

The Weierstrass Curve ΓW (or the Weierstrass IFD) is fractal, and even principally fractal, as well
as fractal in infinitely many Complex Dimensions d – namely, d =DW −k (2−DW), with k ∈ N
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arbitrary).

The same is true for the mth prefractal approximation ΓWm
to the Weierstrass Curve ΓW ,

with m ∈ N
⋆ sufficiently large, except for the fact that ΓWm

is only fractal in finitely many di-
mensions – namely, d =DW −k (2−DW), with k ∈ N such that 0≤ k ≤m. (Indeed, the Complex
Dimensions of ΓWm

are given by

d =DW −k (2−DW)+ i `p ,

where k ∈ N, 0≤ k ≤m and ` ∈ Z is arbitrary.)

5. Revisiting the Computation of the Minkowski Dimension

Along the lines of our polyhedral fractal zeta functions, we hereafter revisit the computation
of the box-counting (or box) dimension DW of the Weierstrass Curve ΓW . Contrary to (classical)
covers of the fractal under study by means of balls (in dimension 2, disks or squares; see
Definition 36, on page 25 below, we simply use our polyhedral neighborhood (see Definition 23,
on page 12), which is undoubtedly the most natural cover of ΓW .

We therefore announce a fully rigorous proof of the fact that the Minkowski dimension
– which, as is well known, coincides with the box (or box–counting) dimension DW of the
Weierstrass Curve ΓW – is given by the expected formula, originally conjectured by Benoît
Mandelbrot in [26] (in Chapter XI, on top of page 390). Note that B. Mandelbrot only mentioned
he was talking about the fractal dimension and did not specify wether it was the Hausdorff or the
Minkowski dimension of the curve. In our present context (see Theorem 37, on page 26 below),

we have that DW = 2−
ln 1

λ

ln Nb
.

Note that earlier proofs of this fact were either not fully rigorous or complete. In addition,
they rely on unexplicit estimates, whereas we work with explicit estimates that had not been
obtained before, in relation with he local Hölder and reverse Hölder continuity of the Weierstrass
function W .

Definition 36 (Box–Counting Dimension). As can be found, for instance, in [9], we recall that
(when it exists) the box–counting dimension (or box dimension, in short), of ΓW , is given by

DW =− lim
δ→0+

ln Nδ (ΓW)
lnδ

, (⋄)

where Nδ (ΓW) stands for any of the following quantities:

i. the smallest number of sets (here, subsets of R2) of diameter at most δ that cover ΓW
on [0, 1[ ;

ii. the smallest number of closed balls (disks, here) of radius δ that cover ΓW on [0, 1[ ;
iii. the smallest number of cubes (squares, here) of side δ that cover ΓW on [0, 1[;
iv. the number of δ–mesh cubes (squares, here) that intersect ΓW on [0, 1[;
v. the largest number of disjoint balls (disks, here) of radius δ with centers in ΓW on [0, 1[.

Furthermore, for the Weierstrass Curve ΓW – as, more generally, for any bounded subset of
Euclidean space – the box–counting dimension coincides with the Minkowski dimension.
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Theorem 37. The box–counting dimension – or, equivalently, the Minkowski dimension – of the

Weierstrass Curve ΓW exists and is equal to DW = 2+
lnλ

ln Nb
.

Sketch of the proof.

We simply apply the result given in Corollary 25, on page 14. We then have the existence of an
integer m0 ∈ N such that

∀m ≥m0 ∶ ΓW ⊂D (ΓWm
) .

In other words, for all integers m ≥m0, the polyhedral neighborhood D (ΓWm
) covers the

Weierstrass Curve ΓW .

Note that we thus dispose, with the sequence of polyhedral domains (D (ΓWm
))m≥m0

, of a
nonusual (but admissible, in the sense of Definition 36, on page 25 above) sequence of covers.
However, (D (ΓWm

))m≥m0
is the most natural and optimal sequence of covers of the Weier-

strass Curve ΓW , insofar that for any m ≥m0, each domain D (ΓWm
) contains the Weierstrass

Curve ΓW , while, at the same time, the sequence (D (ΓWm
))m≥m0

converges to ΓW . This, in
particular, means that when m →∞, the two–dimensional Lebesgue measure (i.e., area) of each
polygon belonging to D (ΓWm

) tends to 0.

In our context, the cohomology infinitesimal εm
m plays the role of the elementary diameter δ

in Definition 36, on page 25. Moreover, the area of each polygon belonging to D (ΓWm
) also

corresponds to the area of the reunion of
(Nb −1)hm

εm
m

elementary and smaller polygons, each

of diameter εm
m , where the diameter of a polygon is to be understood in the sense of the largest

distance between any pair of vertices of the considered polygon.
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