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Abstract—Virtual Machine (VM) migration presents several
advantages for both cloud operators and cloud users. The
benefits of VM migration are amplified in the context of Joint-
clouds, in which multiple clouds owned by distinct operators
exchange VMs. However, inter-cloud VM migrations might
require the usage of the Internet, which creates the possibility
of external threats and therefore, a risk to the VMs’ integrity.
Thus, we propose a novel approach to secure VM migration for
Joint-clouds. We consider both local migration and inter-cloud
migration. Our solution is based on a multi-blockchain system,
in which each cloud provider participates in the maintenance
of a consortium blockchain to store relevant information about
the migrations. In addition, each cloud operator might choose
to keep a local blockchain to secure its local VM migrations.
Therefore, inter-blockchain communication plays an important
role in our work.

I. INTRODUCTION

Cloud computing is a consolidated technology in which
cloud operators deploy a set of physical servers that offers
computing resources to their clients. Hence, these computer
resources are often provided as virtual machines. The main
idea consists of dividing the resources of physical servers
into virtual machines that can be dynamically allocated ac-
cording to the demand. Besides this basic concept, clouds
from different operators might cooperate not only to scale
resources for handling short-term spikes but also to provide
adequate responsiveness and usability to clients distributed
worldwide [1]. Hence, several solutions have been proposed
to deploy cross-cloud cooperative architectures, for instance,
Federated clouds [2], Joint-cloud [3], and Edge federation [4].

In this context, the migration of virtual machines plays a
key role in bringing even more flexibility to cloud systems.
VM migration allows cloud operators to perform server main-
tenance, load balancing, energy management, reduce service
delay, avoid SLA violations, and provide security. Despite all
its benefits, it is clear that VM migration introduces overheads
to all the involved roles. Thus, several works try to improve the
migration performance [5]. In addition, there are other issues
to consider at the time of VM migration, such as respecting the
SLA of the original VM [6], how to monitor SLA violations
by different clouds [7], ensuring the same configuration in the
new server, how to trust in VM migrations [8], or preventing
infected VM migrations. This last issue is a challenge because
one must keep the VM safe from attacks while it is running
and assure the VM is not modified before arriving at the
destination. During migration, a VM is vulnerable to DDoS

attacks, loss of data integrity, confidentiality, unauthorized
access, and virus contamination [9].

Hence, the main goal of this paper is twofold: (i) assuring
the integrity of virtual machines during migration and (ii)
keeping immutable records of VM migrations. Hence, our
work is not concerned with protecting nor detecting VM
attacks or malfunctioning. Instead, we aim to ensure that a
VM has not been tempered after leaving its original server
by taking a snapshot of its ultimate status using a one-way
cryptographic function. In addition, upon the detection of a
problem with a VM, cloud operators will be able to track
down all the servers that have hosted this VM following all
the migration history.

In this paper, we propose to benefit from the advantages
of blockchain technology, specifically the immutability and
high availability to achieve our goals. We consider a Joint-
cloud scenario, in which several clouds from different tenants
might exist. Virtual machines might migrate locally, i.e., inside
their own cloud, or to an external one. Therefore, we propose
a multi-blockchain system named BASIC, where each cloud
provider participates in the maintenance of a consortium
blockchain to record information about inter-cloud migrations.
Additionally, each cloud provider might choose to keep a local
blockchain to secure intra-cloud migrations. Inter-blockchain
communication is possible via a node, which has access to
both blockchain and functions as a gateway. Results show the
impact of different parameters on the system performance,
especially the influence of a generic consensus algorithm on
the migration delay.

This paper is organized as follows. Section II presents
the related work. Section III describes the architecture and
the main characteristics of our multi-chain system. In Sec-
tion IV, we detail our simulation scenario and parameters.
In Section V, we present and analyze the simulation results.
Section VI presents our conclusion and future work.

II. RELATED WORKS

Most common approaches concentrate on mitigating spe-
cific attacks on virtual machines and their components [10]
and to build trust on VM migration, especially when con-
sidering Joint-cloud scenarios [8], [11]. However, our goal
does not focus on protecting nor detecting VM attacks or
malfunctioning. Instead, we concentrate our efforts to verify
the integrity of a VM when it arrives at the destination server.



In the most similar work, the authors [12] propose to
secure VM migration using blockchain technologies. The
authors consider only intra-cloud migration and use a unique
blockchain to store every single VM migration procedure,
by each physical server. Therefore, our approach differs in
two aspects. First, we consider both intra- and inter-cloud
migrations, which has led us to propose a multi-chain system.
Second, to improve the system performance and, as a conse-
quence, its scalability, we reduce the number of transactions
that correspond to a unique migration. In another related work,
the authors propose using a blockchain approach to secure
the migration of Virtual Network Functions (VNF) [13]. Their
goal is to store VNF configuration states in transactions, using
a single blockchain. However, they do not consider a multi-
cloud scenario.

Some work applies blockchain technology in a Joint-cloud
context but does not consider VM migrations nor contem-
plate the possibility of multiple blockchains. Kai Wang et
al. propose using blockchain technology to coordinate the
collaborative services of vehicular Joint-cloud [14]. In [15],
the authors use smart contracts to store the rights of users in
Joint-cloud scenarios.

Several approaches consider multi-blockchain systems, for
a variety of applications and thus, the concept of cross-chain
communication arises. Hence, different cross-chain communi-
cations might exist with distinct complexity [16]. In general,
there are three main approaches to cross-chain communica-
tions: (i) using an inter-chain protocol that is responsible for
exchanging transactions among different chains [17]; (ii) us-
ing an intermediate chain combined with smart contracts [18],
and (iii) a hybrid approach that considers the two previous
ones [17].

In this paper, we propose a hybrid cross-chain approach in
which a global blockchain is maintained by a consortium of
cloud providers to ensure the integrity of VM inter-cloud mi-
grations. Moreover, an inter-blockchain communication sys-
tem is proposed by using nodes capable of routing transactions
in both blockchains when using a local blockchain.

III. BASICS

In our scenario, several cloud operators need to migrate
virtual machines not only inside their clouds, namely a local
VM migration, but also across clouds from different cloud
operators, namely, an inter migration. However, these virtual
machines might suffer from malfunctioning problems, might
be compromised due to security attacks, or even be modified
along the path to the destination, like in a man-in-the-middle
attack. In these cases, it is not recommended to accept such
a machine in a new physical server, regardless of the type
of migration (local or inter). Therefore, the main goal of this
work is twofold: (i) preventing physical servers to accept a
VM that was modified by third parties before its arrival; and
(ii) providing means of tracking all VM migrations.

We assume that cloud operators are responsible for all
migration decisions. Hence, after a migration decision is
made, the cloud manager must follow four basic steps: (i) stop

the execution of the virtual machine and (ii) generate unique
identification (VMID), by applying a hash function to the VM
content. Next, (iii) the cloud manager sends the VM to its new
destination. Finally (iv), it creates a transaction, containing
all relevant information about the VM migration, including
the VMID, and sends it to the blockchain. Therefore, upon
receiving the VM, the destination can apply a hash function to
the content of the VM and then compare it to the VMID from
the transaction associated with this migration, which is already
in the blockchain. If the hash matches with the VMID, the
migration has succeeded, otherwise the VM is discarded. This
basic procedure prevents the destination server from accepting
VMs that have been modified by third parties. In addition, it
provides means of tracking the history of VM migrations.

A. System architecture

BASIC is a multi-chain approach in which each cloud
operator participates in the maintenance of a consortium
blockchain to store information on inter-cloud migration. The
consortium blockchain has the advantage of decentralization
and therefore, is trustless since cloud operators do not need
to trust each other to reach a consensus on the state of the
distributed ledger. Moreover, it provides high performance due
to the limited and selective group of nodes participating in the
blockchain. In addition, each cloud operator might choose to
maintain a local blockchain to secure its intra-cloud migra-
tions between the same or distant data centers. Participants
of the local blockchain might be nodes operating in each
data center of the cloud operator. Thus, the local blockchain
is considered to be permissioned. In our case scenario, we
have considered that each cloud operator maintains a local
blockchain to evaluate the inter-chain communication. It is
worth noticing, that the local blockchain and the consortium
blockchain are independent and run their own consensus
algorithm.

In this architecture, each cloud contains miners for the local
blockchain, named local validators, as well as miners for the
global chain, named inter validators. Cloud operators decide
the amount of local and inter validators. Additionally, each
cloud maintains a gateway node that receives the transactions
from the cloud manager and is also responsible for the
communication between the two blockchains.

B. Migration procedure

BASICS includes 4 types of transactions:
• Indication: this transaction indicates an attempt to mi-

grate a VM to a specific physical server. It must include
the VMID.

• Confirmation: the destination server use this transaction
to confirm that the VM has been received and the hash
matches the one included in the Indication transaction.

• Arrival: it indicates that a new VM has been accepted
in the cloud.

• Leave: it indicates that a VM from this cloud has
successfully migrated to another cloud, and thus, no
longer belongs to this cloud.



In step three from the basic procedure, after creating the
transaction associated with the current migration, the cloud
manager sends it to the cloud gateway.

Upon receiving a transaction, the cloud gateway verifies
the type of migration and sends an indication transaction
to the proper set of validators, local or inter. Validators will
mine blocks with a specific number of transactions. When
the block is in the blockchain, one of the validators, in each
cloud, announces to the cloud gateway all the new committed
transactions in the current block that concerns its own cloud.
Hence, whenever a new indication transaction is committed,
the destination cloud gateway will receive it and send it to
the destination cloud manager. Next, the hash verification
occurs, and the cloud manager confirms the successful re-
ception of the VM to the cloud gateway. The gateway creates
a confirmation transaction and sends it to all validators,
according to the type of migration.

Fig. 1. BASICS - Inter-migration procedure

Similarly, the source cloud gateway will receive the con-
firmation, as soon the confirmation transaction appears in
a committed block. Therefore, whenever a cloud gateway
receives a confirmation transaction, it must verify whether
it is a local or inter migration. In the first case, the migration
has successfully finished, and it is already stored in the local
blockchain because the VM has not left its cloud. However, if
the confirmation refers to an inter migration, then it means
that the transaction has appeared in the global chain. Thus, the
source gateway creates a leave transaction in its local chain,
and the destination gateway creates an arrival transaction in
its local chain. Hence, the inter migration can be considered
finished only when a leave transaction is committed in the
local blockchain in the source cloud, as illustrated in Figure 1.

IV. SIMULATIONS

We use NS-3 to perform our simulation. To that, we have
developed a blockchain and a generic consensus module that
allows us to measure the performances of our cross-blockchain
system based on a full-stack TCP/IP network infrastructure.
Figure 2 shows the main scenario with three clouds where
each cloud has a set of local and inter validators. The number
of clouds and the number of validators are a parameter in our
simulation. All nodes in a cloud are connected to a switch

to simulate realistic cloud throughput, delays, and jitters.
Besides, every cloud owns a router that is connected to the
Internet.

Fig. 2. Simulation scenario

The Internet is simulated by a single router that is con-
nected via a point-to-point connection to every cloud router.
Therefore, local validators are connected by a switch in a
local network, while inter validators connect to their peers
through a P2P overlay connection that traverses the Internet.
Hence, we have two distinct communication delays for each
blockchain. The validators implement the Blockchain module
that manages the blockchain, while the gateways implement a
TransactionApp module that creates and manages transactions.

A. Consensus

Since our multi-chain system supports different types of
consensus, we implement a generic consensus that is aware
of everything. The main idea consists of simulating dif-
ferent types of consensus with specific characteristics, just
by tuning the parameters of the Oracle consensus. Hence,
Oracle have three main parameters: sendblockdelay, block−
commitdelay, and the factor. The block-commit delay cor-
responds to the time Oracle takes to send the block to all its
peers. Therefore, considering a blockchain with np peers, with
a block size of bcksize, measured in number of transactions,
and the average size of transactions txsize, the total delay for
sending the block to all peers, considering multiple parallel
connections is approximately given by:

delay send = np× (Dtr +Dpg) +Dqu +Dpc (1)

where Dtr is the transmission delay, Dpg is the propagation
delay, Dqu is the queuing delay, and Dpc is the processing
delay. We consider this the delay for committing a block after
it was sent to all peers, as the time to process and receive the
ACKs. As a simplification, we considered the same value as
the time to send the block. As a consequence, we consider
the total delay to commit the block is commit delaymin =
2×Delay send.

Finally, we assume that this commit delay is the ideal
consensus, namely a lower bound to the block-commit delay.
To evaluate the impact of different consensus, we include the
Oraclefactor (Of ) parameter, which allows us to consider



different values for the block-commit delay, according to
the minimum delay, explained above. Therefore, the block-
commit delay is given by:

bck commit delay = Of × commit delaymin, (2)

with Of ≥ 1. Besides, Oracle elects one leader, from the
set of validators, responsible for generating the blocks in
its blockchain. Table I summarizes the main parameters of
our simulator along with their default values used for every
simulation run.

Module Parameters Value

Number of clouds 4

Number of Local validators 4

Topology Number of Inter validators 12

CSMA data rate 10 Gbps

P2P data rate 1 Gbps

P2P Queuing delay 50 ms

Avg. local mig. rate 1

Transactions App. Avg. inter mig. rate 0.25

Tx process delay 0.1 ms

Blockchain Block size (txs) 16

Oracle Oracle factor 1

Election delay 100 ms

TABLE I
MAIN PARAMETERS AND STANDARD VALUES

V. RESULTS

To evaluate the performance of BASICS we run different
sets of simulations and measure four performance metrics:

• VM migration delay: is defined by the time a migration
transaction arrives at the gateway until the last transaction
associated to this migration appears in one block in the
local blockchain.

• Block-commit delay: is defined as the time interval
between the moment the Blockchain module sends a new
block Bi to the Oracle consensus and the Blockchain
module adds the block Bi in the blockchain. This metric
is expressed in Equation 2.

• Inter-block delay: is defined as the time interval be-
tween the inclusion of two consecutive blocks in the
blockchain.

• Number of blocks: is defined as the number of blocks
committed by the consensus and stored in the blockchain.

In each set of simulations, we vary different parameters
to assess their impact on the system performance. Hence,
for each simulation, we define the varying parameters and
their respective values as well as specific values for particular
parameters. All other parameters not mentioned assume the
default values presented in Table I. The simulation time is
200 seconds. All results correspond to the mean of at least ten
simulation runs, with a 95% confidence interval, represented
by the error bars.

A. System stability

First, it is important to understand that our multi-chain
system might present two basic behaviors regarding the mi-
gration delay, as shown in Figure 3, which illustrates the
inter-migration delay variation over time in a simulation of 60
seconds, for two different migration rates. The blue line, with
the lower rate, shows a bounded migration delay, and thus, a
stable behaviour. The black line indicates the average delay
of the blue line. However, the red line, with a much higher
rate, manifests an unstable behavior with an unbounded delay.
Therefore, it is crucial to respect the system capacity in terms
of the migration rate to avoid unstable behaviours.
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Fig. 3. Multi-chain stability

B. Oracle consensus performance

We evaluate the performance of Oracle regarding the block-
commit delay. The main idea is to assess the impact of other
parameters on the block-commit delay. Figure 4 reveals the
influence of the number of inter validators on the block-
commit delay, defined in Eq. 2, varying the oracle factor and
the link data rate for the P2P connections. It is interesting to
notice that the number of inter validators has no perceptive
impact on the block-commit delay with a higher link data
rate, even when we multiply by four the minimum commit
delay, as shown in Figure 4(a). It is important to remember
that we considered the possibility of creating multiple TCP
connections. On the other hand, Figure 4(b) shows that, with
a lower link data rate, increasing the number of validators
augments the block-commit delay. Most important, Figure 4
illustrates how we can parameterize the oracle consensus to
simulate different block-commit delays.
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Fig. 4. Block-commit delay

C. Local blockchain

To evaluate the local blockchain we isolated it from the
global chain by setting the inter-migration rate to zero. Hence,



there are only local migrations. First, we analyze the effect of
the number of local validators on the migration delay. Figure 5
shows the delay when we vary the number of validators from
4 to 164. In Figure 5(a), we use different values for the block-
commit delay, represented by the Oracle factor. Results show
that the variation of the number of validators has no perceptive
impact on the migration delay. However, the block-commit
delay directly affects the migration delay. In Figure 5(b), we
use two different values for the data link rate of the local
network. We observe that increasing the number of validators
with a lower data link rate has a significant impact on the
migration delay.
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Fig. 5. The effect of the number of local validators on the migration delay

Next, we vary the local migration rate to evaluate the
migration delay and the scalability of the local blockchain
regarding the number of migrations per second. Figure 6
shows the migration delay with different migration rates, using
two block sizes. First, we can observe that the size of the
block is an important parameter to define the migration delay,
as expected. The larger is the size of the block, the longer
the system will take to fill the block, considering a specific
migration rate. Therefore, the inter-block interval increases
as shown in Figure 6(b). It is important to remember that
increasing indefinitely the migration rate is not an option
since, at some point, the system reaches its own limit beyond
which the stability of the system is compromised. In this
specific scenario, the limit is between 128 and 256 migrations
per second.
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Fig. 6. Local migration with different migration rates for block sizes of 4
and 16 transactions.

D. Global blockchain

We evaluate the behavior of the global chain regarding the
inter-migration delay. Figure 8 shows the results for the inter-
migration delay when varying the inter-migration rate from

0.25 to 16 migrations per second for two block sizes. We
can observe that, similar to the local blockchain, increas-
ing the inter-migration rate allows the leader to complete
a block faster, and as a consequence, we can reduce the
inter-migration delay significantly. However, for the global
chain, the limit on the migration rate is much lower than the
local chain, due to the significant difference in the delay for
committing a block in both blockchains. The main reason for
this discrepancy is the difference in the Round Trip Time
(RTT), since local migrations are confined to a local network,
while inter migrations must traverse the Internet.
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Fig. 7. The effect inter-migration rate on the migration delay with different
block sizes

Another interesting result is the impact of the inter-
migration rate on the local blockchain. The blue curves
in Figure 8 indicate that increasing the inter-migration rate
reduces the local migration delay. Indeed, inter migration also
generates local transactions, as explained in Section III-B.

Figures 8(a) and 8(b) point out the total number of blocks
in the local chains and the global chain. Results confirm that
using a larger block size implies fewer blocks, as expected.
In addition, we observe the effect of the inter migrations
generating local transactions in the local chains. Thus, the
rise in the number of blocks in the local chain is entirely due
to the inter migrations since the number of local migrations
does not change.
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Fig. 8. The effect inter-migration rate on the number of blocks

E. Multi-chain system

After understanding the performance of the two blockchains
separately, it is important to evaluate the whole multi-chain
system. First, we assess the impact of the number of partici-
pating clouds on the system performance. To accomplish this
goal, we fixed the number of validators and migration rates
to their default values and vary the number of clouds from 4
to 20. Figure 9(a) shows that increasing the number of clouds



only affects the global chain performance. This is an expected
result, since every cloud generates a certain number of local
and inter migration. Hence, local migrations are confined to
each cloud, and as a consequence, the number of clouds
has no effect on the local-migration delay. However, as inter
migrations share the same global blockchain, augmenting the
number of clouds leads to a rise in the overall migration rate,
which reduces the migration delay, as discussed previously.
Even though inter migrations also generate transactions in the
local blockchains, the increase in the overall inter-migration
rate does not affect the performance of local chains because
these local transactions are proportionally spread among the
participating clouds.
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Fig. 9. The effect of the number of clouds on the performance of our multi-
chain system.

Figure 9(b) shows the number of blocks in the local chains
and global chain when varying the number of clouds. Results
confirm that increasing the number of clouds augments the
number of blocks in the global and local blockchains. Besides,
the blue curve concerning the local chains presents a higher
slope. It occurs because, additionally to the rise of the number
of blocks due to the augmentation of the number of clouds,
there is the effect of the inter migrations on the local chains,
as discussed above.

Afterward, we set the proportion between local and inter
migrations rates to 4:1, in each cloud. Then, we vary the local-
migration rate from 1 to 32 for different block-commit delays
(Oracle factors). Figures 10 illustrate the results for the global
chain with a block size of 4. We can observe the shift in
the stability point when the block-commit delay increases.
Figure 10(b) indicates when the inter-block delay reaches the
minimum block-commit delay that corresponds to the point
beyond which the system becomes unstable.
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Fig. 10. The effect migration rate on the inter migration delay and inter-block
delay, with 4:1 proportion and different Oracle commit delays.

VI. CONCLUSION

In this paper, we propose BASICS, a multi-blockchain
system to secure VM migration in Joint-cloud systems. We
implement the proposed solution in NS-3 to evaluate the
system performance and its scalability. We developed emulate
a generic consensus, named Oracle, that emulate consensus
with different characteristics. Hence, we evaluate our system
in terms of migration delay, inter-block delay, the number of
blocks, and the block commit-delay. We assess the influence
of several parameters on the performance of our multi-chain
systems. Results allow us to characterize and understand
the behavior of the system as well as its relations to the
main parameters. They also show the stability limitation of
our systems and the trade-off between increasing the system
capacity and reducing the average migration delay.
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