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Abstract. This works studies abstract backward semantics to infer suf-
�cient program preconditions, based on an idea �rst proposed in previous
work [38]. This analysis exploits under-approximated domain operators,
demonstrated in [38] for the polyhedra domain, to under-approximate
Dijkstra's liberal precondition. The results of the analysis were imple-
mented into a static analysis tool for a toy language. In this paper we
address some limitations that hinder its applicability to C-like programs.
In particular, we focus on two improvements: handling of user input and
integer wrapping. For this, we extend the semantic and design sound
and e�ective abstractions. Furthermore, to improve the precision, we ex-
plore an under-approximated version of the power-set construction. This
in particular helps handling arbitrary union that is di�cult to imple-
ment with under-approximated domains. The improved analysis is im-
plemented and its performance is compared with other static analysis
tools in SV-COMP23 using a selected subset of benchmarks.

Keywords: Abstract interpretation · Software veri�cation · Program
analysis · Bug catching · Under-approximation.

1 Introduction

The focus of static analysis by abstract interpretation [16,17] has traditionally
been on the assurance of program correctness. However, the dual problem of
verifying the presence of bugs is equally intriguing, since in practice sound static
analysis tools generate many false positives and checking them manually can
be time-consuming. This calls for a novel kind of abstract semantics where do-
mains and operators are under-approximated rather than over-approximated.
A preliminary study in this area was done in our previous work [38], where we
investigated an abstract backward semantic to infer su�cient program precondi-
tions. This analysis builds on conventional abstract domains, but in this analysis
they represent an under -approximation of the concrete invariant. To achieve this
analysis, novel under-approximation domain operators are required, and in [38]
we have shown how they can be designed for the polyhedra domain [21]. The
results were implemented in a static analysis tool targeting a toy language.
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unsigned int i = 10;

while (i >= 10) {

i++;

}

i += input();

assert(i != 5);

(a) Program with integer over�ow and
input.

int i = input();

int j;

assume(i >= 0 && i <= 2);

if (i == 0) j = 0;

else if (i == 1) j = 1;

else if (i == 2) j = 0;

assert(j == 1);

(b) Simple disjunctive program.

Fig. 1: Programs that show the limits of the semantics of [38].

Motivation. Consider the program of Fig. 1a. The while loop starts with i = 10

and terminates when i over�ows to 0. Therefore, if input() returns 5 the as-
sertion will fail. Unfortunately the semantic proposed in [38] can not detect the
over�ow as it only supports mathematical numbers (i.e., numbers with in�nite
precision). Moreover in this semantic there is no built-in encoding for user input
and thus the preconditions that it can �nd concern only program's arguments.
Consequently, it can not �nd the su�cient precondition, input() = 5, for the
assertion to fail.

Additionally, under-approximated operators were studied only for the poly-
hedra domain, but as for conventional abstract interpretation, other domains can
be considered and the choice of the domain boils down to a precision-e�ciency
trade-o�. As an example, the polyhedra domain fails to �nd the su�cient precon-
dition, input() = 1, for the correctness of the program of Fig 1b as the invariant
before the assertion, (i ∈ {0, 2} ∧ j = 0) ∨ (i = 1 ∧ j = 1), is not polyhedral.

Termination. The preconditions found by this analysis under-approximate Di-
jkstra's weakest liberal precondition, ensuring either divergence or termination
within the post-condition. The former case can be problematic, such as when
the analysis is used to �nd preconditions for bugs, as a non-empty precondi-
tion may be a symptom of an in�nite loop rather than an actual bug. However,
non-termination can be ruled out with various techniques, including termination
checking with a ranking function and modern works on its synthesis have been
quite successful [15,14]. For the sake of simplicity we do not implement those
techniques and instead opt for a simple approach of checking termination by
experimentally executing the program (with a time limit).

Related Works. Lately there has been an increase in interest on under-
approximations following the seminal work of Peter O'Hearn on Reverse Hoare
Logic/Incorrectness Logic [24,41]. Compared to our approach, this stream of
works focuses on forward, not backward, analyses, thus they do not study precon-
ditions for bugs but instead they �nd post-conditions for them. Moreover, as logic
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methods, they can prove that a post-condition is a valid under-approximation
of the reachable states. Some hints on how post-conditions can be inferred were
discussed in [41, Sect. 6], but they handle loops by unrolling, thus limiting the
analysis to some loop bound. On the contrary, our approach can infer pre-
conditions and loops are handled with widening operators, so that unrolling is
not needed and unbounded loops can be handled. Incorrectness logic was made
memory aware by Raad et al. [42] using ideas from separation logic [43]. In com-
parison, our work focuses exclusively on numeric programs and abstract domains
for handling memory properties are left as a future work. Finally, reasoning with
incorrectness logic can be made automatic with theorem provers as in [33,42],
whereas in our work, reasoning occurs with abstract domains. This makes the
analysis more scalable.

Counter-examples generation is also possible with several instances of model
checking, e.g., symbolic execution [32,5] and CEGAR [13], where the state ex-
ploration is handled using SMT solvers (CEGAR is guided by counter-examples
and utilizes other techniques besides SMT for the re�nement phase, e.g., inter-
polants).

Traditional backward analyses based on abstract interpretation [18,19,12]
focus on inferring necessary preconditions P , that is conditions such that no
execution starting from ¬P can succeed. For example Cousot et al. [20] propose
a backward precondition analysis for code contracts. They di�er from us in the
handling of non-determinism as they keep states that succeed at least for one
non-deterministic program path, whereas we keep states that succeed for all
non-deterministic paths. Moreover, unlike us, they use symbolic reasoning, not
numeric domains.

In this work we focus on su�cient preconditions P , that is conditions such
that all executions from P must succeed: these require under-approximated oper-
ators. Designing under-approximation domains featuring optimal operators can
be challenging [3] at least partially explaining why they are rarer than over-
approximation ones. Several high-order constructions have been proposed in
which conventional domains are used to construct under-approximation ones.
Lev-Ami et al. [34] propose to use set-complements of abstract domains, but
this yields shapes that are rarely interesting. Other methods based on existen-
tial quanti�cation [44] and disjunctive completions [40] were proposed, but they
incur in a too high complexity and are di�cult to abstract away.

Under-approximations were used also in the work of Urban et al. [47], namely
for the co-domain. However, the results are di�cult to compare in theory due to
di�erent abstractions and di�erent concrete semantics.

Contribution. In this paper we extend upon the backward su�cient precon-
ditions analysis, addressing some of the limitations that hinder its applicabil-
ity to C-like programs, namely: handling of user input and integer wrapping.
To improve the precision of the polyhedra domain, we consider the well-known
power-set construction and derive sound under-approximation operators for it.

We then proceed to implement the improved analysis in a static analysis tool
and add support for extracting a violation witness in SV-COMP's format [8].
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a ::= [x, y] | v | a1 + a2 | a1 − a2 | a1 ∗ a2 | a1/a2

b ::= a1 = a2 | a1 ̸= a2 | a1 ≤ a2 | a1 < a2 | a1 > a2 | a1 ≥ a2

| t | f | ¬b | b1 ∧ b2 | b1 ∨ b2

s ::= skip() | v := a | assume(b)

| s1; s2 | if b then s1 else s2 | while b do s done

Fig. 2: While language.

To the best of our knowledge, this is the �rst abstract interpretation based tool
that can certify program incorrectness (at least among the ones participating
in SV-COMP). We compare its performance with that of other static analysis
tools participating in SV-COMP23 [7] on a selected subset of the competition's
benchmarks.

2 Semantics

The semantic studied in [38] is limited to numeric variables and properties and
is given for a toy language with mathematical numbers. In this paper, we ad-
dress how it can be adapted to support �xed-precision integers and user input.
Handling more advanced features of C-like languages, such as pointers, arrays,
structures, dynamic memory allocation, remains a future work. Floating-point
arithmetic is out of the scope of this work but it should not be a large prob-
lem as [38] shows that expression evaluation can be over-approximated and still
leads to sound under-approximated statements, thus rounding errors can be ab-
stracted as small non-deterministic error intervals, as in forward analysis, and
easily supported in a polyhedral analysis.

This section is organized as follows: in 2.2 we recall the semantics of [38],
then in 2.3 we extend it with user input and in 2.4 with �nite-precision integers.

2.1 Notation

Given a set X, we denote with P(X) the set of all subsets of X. If f is a function,
then dom(f) denotes its domain. If X is a poset and f : X → X, we denote with
gfpR f the greatest �x-point of f less or equal than R.

2.2 Background on Su�cient Preconditions Semantic

We recall here the semantics from [38], on top of which we construct our new
analysis. The analysis is given both in equational form (where the program is
represented as a control �ow graph) and in big-step form (where the program is
represented with an inductive language), for our purposes we only consider the
latter.
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←τ [[skip()]]S ≜ S

←τ [[v := a]]S ≜ {ρ | ∀x ∈ E[[a]]ρ. ρ[v 7→ x] ∈ S}
←τ [[assume(b)]]S ≜ S ∪ {ρ | B[[b]]ρ = {f}}

←τ [[s1; s2]]S ≜ (←τ [[s1]] ◦←τ [[s2]])S
←τ [[if b then s1 else s2]]S ≜ (←τ [[assume(b)]] ◦←τ [[s1]])S ∩ (←τ [[assume(¬b)]] ◦←τ [[s2]])S
←τ [[while b do s done]]S ≜ gfp←τ [[¬b]](λX.X ∩ (←τ [[assume(b)]] ◦←τ [[s]])X)

Fig. 3: Backward semantic of statements.

Language and Forward Semantics. We assume a simple While programming
language with assume(b), assignments and skip() atomic statements and se-
quencing, if-then-else and while loops inductive statements (see Fig. 2). The
set of variables is denoted with V and it is assumed to be �xed. Variables
are of mathematic integer type, hence program stores (or environments) are
in E ≜ V → Z. Arithmetic and boolean expressions are interpreted respectively
by E[[a]] : P(E) → P(Z) and B[[b]] : P(E) → P({t, f}), whereas statements by
τ [[s]] : P(E)→ P(E). For more details we refer the reader to [38,39].

Backward Semantic. Conventional backward analyses focus on inferring nec-
essary preconditions for some post-condition. In particular, given a program
s ∈While and a post-condition S ∈ P(E), they infer an over-approximation (an
over-approximation of a necessary precondition is again a necessary precondi-
tion) of Pn ≜ {ρ | ∃ρ′ ∈ τ [[s]]{ρ}. ρ′ ∈ S}. Notice that if τ [[s]]{ρ} ∈ S then
ρ ∈ Pn, i.e., if a store ρ transitions to S, then it is contained in Pn.

On the contrary, the backward analysis proposed in [38] infers su�cient pre-
conditions. In particular, it infers an under-approximation (an under-
approximation of a su�cient precondition is again a su�cient precondition) of
Ps ≜ {ρ | ∀ρ′ ∈ τ [[s]]{ρ}. ρ′ ∈ S}. Notice that necessary and su�cient precon-
ditions can di�er in the presence of non-determinism as demonstrated in the
following example.

Example 1. Consider the program s ≡ x := x+ [−1, 1] with post-condition S ≜
[0, 5]1. The strongest necessary precondition is Pn = [−1, 6] as for any x ∈ Pn

there exists a trace leading to the post-condition (∀x ∈ Pn. τ [[s]]{x} ∩ S ̸= ∅).
The weakest su�cient precondition is Ps = [1, 4] as for any x ∈ Ps all traces
lead to the post-condition (∀x ∈ Pn. τ [[s]]{x} ⊆ S). ⊓⊔

Let f : P(A) → P(B) be a function, we de�ne the backward version of f ,

denoted
←
f , as

←
f (B) ≜ {a ∈ A | f({a}) ⊆ B}.

In particular, letting f ≡ τ [[s]] yields ←τ [[s]] that computes the su�cient pre-
condition of s. Backward versions of functions enjoy several properties and in

1 With an abuse of notation we confuse the store [x 7→ z] with z.
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particular we can exploit them to compute ←τ [[s]] by induction on the syntax of
s. We report the resulting backward semantic in Fig. 3 and refer the reader to
Theorems 2 and 3 of [38] for further details (in particular, the soundness of this
construction).

Abstract Semantic. As usual in abstract interpretation, we represent program
properties with abstract domains. An abstract domain is a tuple ⟨D♯, γ♯,⊑♯,
⊔♯,⊓♯,∇♯, τ ♯[[s]]⟩ where γ♯ : D♯ → P(E) is a monotonic map, ⊑♯: D♯ × D♯ is a
partial order relation, ⊔♯, ⊓♯, are sound over-approximations of ∪, ∩, ∇♯ is a
widening operator and τ ♯[[s]] is a sound over-approximation of τ [[s]] for atomic
statements (compound statements are handled by induction on the syntax).

Whereas conventional reachability analysis is sound when it over-
approximates concrete invariants, the su�cient precondition analysis is sound
when it under-approximates them. For this reason, an abstraction of the con-
crete semantic of Fig. 3 can not be obtained by simply replacing the concrete
operators with the abstract ones (as typically done in abstract interpretation),
instead they must be replaced with a new special set of abstract operators that
guarantee an under-approximation of the concrete computation. In particular,
we need operators ⊔♯, ⊓♯, that under-approximate respectively ∪, ∩, a lower
widening2 ∇♯ and ←τ ♯[[s]] that under-approximates ←τ [[s]] for atomic statements.
As an example, in [38] it is shown how to design such operators for the polyhedra
domain, with the exception of ⊔♯. However a simple, yet imprecise, de�nition
for ⊔♯ is to just return one of its arguments. A more precise operator will be
presented in Sect. 3, exploiting the powerset domain. Consequently, a sound
abstraction of the backward semantic can be obtained by leveraging the under-
approximated versions of domain operators.

Additionally, even though the concrete backward semantics depends solely
on the post-condition, to design an abstract transfer function, it can be useful
to have an over-approximation of the precondition (e.g., to linearize arithmetic
expressions as in [37]). Fortunately this over-approximation can be easily com-
puted (through a traditional forward reachability analysis) and stored for later
usage in the backward pass. Hence, for the rest of this paper, we will assume the
availability of an over-approximation of the result of each backward operator.

Correctness and Incorrectness. Program speci�cations can be modeled in the
language with assert(b) statements. Their semantic changes depending on the
goal of the analysis, whether it is for preconditions for program correctness or
incorrectness. We can see this with an example.

Example 2. Consider the programs of Figs. 4a, 4b, 4c. Program 4a contains no
assertion, thus it is trivially always correct (and never incorrect). In Program 4b,
to compute a su�cient precondition for correctness we collect x ≥ 50 from the

2 A lower (or dual) widening ∇♯ : D♯ × D♯ → D♯ is a binary operator such that: 1.
for all d♯1, d

♯
2 ∈ D♯, γ♯(d♯1 ∇♯ d♯2) ⊆ γ♯(d♯1) ∩ γ♯(d♯2); 2. for any sequence (x♯

i)i∈N, the
sequence de�ned as y♯

0 ≜ x♯
0 and y♯

i+1 ≜ y♯
i ∇

♯ x♯
i+1 becomes stable in a �nite number

of iterations.
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1: x := x+ 10

(4a)

1: x := x+ 10
2: assert(x ≥ 50)

(4b)

1: x := x+ 10
2: assert(x ≥ 50)
3: x := x− 10
4: assert(x ≤ 50)

(4c)

assertion and then subtract 10, which yields x ≥ 40 (likewise, for incorrectness
we obtain x < 40). In Program 4c the reasoning for correctness is the same as the
previous program: we proceed backwards and for each assertion encountered we
retain only the states satisfying its guard. This yields x ∈ [40, 50]. On the other
hand, to �nd preconditions for program incorrectness we have two possibilities:
the failure of the assertion at line 2 or 4. For the one at line 2 we proceed as in
Program 4b (which yields x < 40). For the one at line 4 we collect x > 50 and
proceed backwards. As soon as we encounter the assertion at line 2, we retain
the states satisfying its guard (as for correctness), as in order to reach line 4,
an execution must satisfy the assertion at line 2. Combining the preconditions
yields x /∈ [40, 50]. ⊓⊔

The previous example suggests that our semantics can infer preconditions for
both correctness and incorrectness. In the former case the analysis has to start
from ⊤ (or some other post-condition of interest) and compute ←τ [[assert(b)]]S
as S ∩ [b] where [b] denotes the set of states satisfying b. In the latter it has to
start from ⊥ and compute ←τ [[assert(b)]]S as (S ∩ [b]) ∪ [¬b].

2.3 User Input

A crucial aspect of programming is I/O. The language we studied has a limited
support for I/O in the form of input arguments and return values, but this is
often not enough as real-world programs can perform I/O operations at arbitrary
execution points. In particular, as we focus on �nding preconditions, we are
mostly interested in the e�ect of user input.

To address this issue, a new statement, v := input(), is added to the lan-
guage. When this statement is executed, the machine reads a value from an
external source and stores it in v. As di�erent input statements may read from
di�erent sources, we assume that �nitely many sources are available, each identi-
�ed with an index, and annotate each input statement with the index identifying
the source, e.g., v := inputn() for an input from the nth source.

Remark 1 (Input versus non-determinism). It might appear that the following
two programs

x := input1() x := [−∞,+∞]

assert(x > 100) assert(x > 100)

have the same semantics, but this is not the case: intuitively, input1() di�ers
from the non-deterministic interval [−∞,+∞] in that the former depicts an
user-controllable, input to the program, while the latter depicts an �internal�
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uncontrollable form of input. Consequently, the (correctness) precondition for
the �rst program involves not only the value of x but also the value returned by
input1(). Vice versa, the one of the second program only concerns the value of
x. In the �rst case, the precondition is: input1 > 100. Indeed, if this condition
holds the program satis�es the assertion. In the second one, the precondition
is ∅. Indeed, there is no set of stores that for any non-deterministic execution
ensures that the assertion is satis�ed. ⊓⊔

Concrete Semantic In order to model user input, our representation of states
as program stores is not su�cient anymore. Inspired by the input representation
proposed in [25], we model external inputs as streams, i.e., pairs of an in�nite
sequence of integers and an index, where the index is used to store the position of
the next number to be read from the sequence. The set of streams is denoted with
S ≜ Zω × N and get(s) indicates the current value of the stream s. We further
assume that p di�erent input sources are available, modeled as multi-streams,
i.e., vectors of p streams, denoted with M ≜ Sp. Therefore program states are
modeled as pairs of a store (environment) and a multi-stream, E ′ ≜ E × M.
We further denote with incrn(m) the multi-stream m in which the nth stream is
equal tomn but with its index incremented and the other streams left unchanged.

For non-input statements, the semantic τ [[s]] : P(E ′) → P(E ′) operates on
the store as before, while leaving the streams untouched, e.g.,

τ [[v := a]]P ≜ {(ρ[v 7→ x],m) | (ρ,m) ∈ P, x ∈ E[[a]]ρ}.

On the contrary, the semantic of v := inputn() stores in v the current value of
the nth stream and increments its index:

τ [[v := inputn()]]P ≜ {(ρ[v 7→ get(mn)], incrn(m)) | (ρ,m) ∈ P}.

Time-invariant Stream Abstraction In the concrete semantics, user inputs
are modeled as reads from an in�nite sequence, but since sequences are not
directly representable by conventional numeric abstract domains, some further
abstraction is necessary. Rather than providing directly an encoding of concrete
states into numeric domains, we propose an intermediate abstraction allowing
later an easier representation in numeric domains.

Abstraction. Input streams can be abstracted in several di�erent ways, e.g., by
retaining a �nite pre�x, or with an automaton, etc. In this work, we consider an
abstraction that classi�es streams as either time-invariant (e.g., (111..., 0) ∈ S) or
time-dependent (e.g, (123..., 0) ∈ S). The set of time-invariant streams is denoted
with Si and the set of time-dependent streams with St. In this abstraction, in
the former case we track the value that is repeated in the stream, while in the
latter all the information is discarded. In both cases the information regarding
the current position on the stream (the index) is not preserved.
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Example 3. Consider the following example.

i, j := 0
for x = 1 to 10 do
i := i+ input1()
j := j + input2()

end for
assert(i = j)

There are several streams that can render the assertion true, for instance if
input1() returns 10 at the �rst iteration and 0 for other iterations and input2()
always returns 1. In this case the stream for input1() is time-dependent and the
one for input2() is time-invariant.

Notice that the abstraction tracks sets of states, maintaining the value of
both program variables and time-invariant streams, and thus it is able to express
relationships between them. For instance, the set of preconditions where both
streams are time-invariant, with the same value in [0, 100]. It can also infer
relations between stream values and programs variables. ⊓⊔

To formalize this abstraction we use a partial map from p stream variables to
Z. We denote the nth stream variable with vsn and with Vs the set of stream vari-
ables. If vsn is de�ned in the map, then the corresponding stream is time-invariant
with value matching the variable's value, otherwise it is time-dependent. More
formally:

De�nition 1 (Time-invariant stream abstraction). Let E ′ be a set of states.
We de�ne Ê ′ ≜ (V ∪Vs) ⇀ Z, the concretization γ̂ : P(Ê ′)→ P(E ′) and abstrac-

tion α̂ : P(E ′)→ P(Ê ′) functions as follows:

� γ̂(R) ≜ {(ρ,m) | ∃ρ̂ ∈ R. ρ̂(vk)
∣∣
V = ρ(vk)

∣∣
V , matchStream(ρ̂,m)}

� α̂(R) ≜ {ρ̂ | ∃(ρ,m) ∈ R. ρ̂(vk)
∣∣
V = ρ(vk)

∣∣
V , matchStream(ρ̂,m)}

where:

matchStream(ρ̂,m)⇔ ∀n = 1, .., p. ρ̂(vsn) =

{
get(mn) if mn ∈ Si

undef if mn ∈ St

⊓⊔

Theorem 1. The following Galois Connection holds: (P(E ′),⊆) −−−→←−−−
α̂

γ̂
(P(Ê ′),⊆).

Proof. See Appendix A.

Semantic. The semantic of statements di�erent from v := inputn() coincides
with the concrete one as those statements only operate on the store part of the
state (not on the streams), and that part is not abstracted; for example

τ̂ [[v := a]]P ≜ {ρ̂[v 7→ x] | ρ̂ ∈ P, x ∈ E[[a]]ρ̂
∣∣
V}.

On the other hand, τ̂ [[v := inputn()]] a�ects the stream. In particular, if the
stream is time-invariant (thus vsn is de�ned in ρ̂) then τ̂ [[v := inputn()]] copies
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vsn (which is equal to the stream's value) to v. Otherwise, if the stream is time-
dependent, v gets [−∞,+∞] as no information is retained in the abstraction
and [−∞,+∞] is always a sound choice. More formally:

τ̂ [[v := inputn()]]P ≜ {ρ̂[v 7→ x] | ρ̂ ∈ P, x ∈ Z. (vsn ∈ dom(ρ̂)⇒ x = ρ̂(vsn))}.

As in the forward semantic, the backward semantic of non-input statements
can be easily derived from the concrete semantic; for example

←̂τ [[v := a]]S = {ρ̂ | ∀x ∈ E[[a]]ρ̂. ρ̂[v 7→ x] ∈ S}.

The backward semantic of input statements ensures that if the stream is time-
dependent (vsn unde�ned) then for all substitutions of v in ρ̂ the resulting store
is in the post-condition. Otherwise if the stream is time-independent, then ρ̂[v 7→
ρ̂(vsn)] must be in the post-condition. More formally we have:

←̂τ [[v := inputn()]]S = {ρ̂ | ∀x ∈ Z. (vsn /∈ dom(ρ̂) ∧ ρ̂[v 7→ x] ∈ S)∨
(vsn ∈ dom(ρ̂) ∧ (x = ρ̂(vsn)⇔ ρ̂[v 7→ x] ∈ S))}

Theorem 2. The semantic of statements, both forward and backward, is sound:

τ [[s]]γ̂(R) ⊆ γ̂(τ̂ [[s]]R) γ̂(←̂τ [[s]]S) ⊆ ←τ [[s]]γ̂(S).

Proof. See Appendix A.

Abstract Semantic In the previous section, we demonstrated an abstraction
of input streams into environments where some variables can be de�ned (time-
invariant streams) or not (time-dependent streams). The usual numeric domains
can not be used directly as they assume that all variables are de�ned. This issue
was already studied in the context of abstracting heterogeneous environments
(i.e., environments where some variables are optional). One simple approach is
to partition the environments according to the de�ned variables, but this scales
poorly as there can be an exponential number of partitions in the worst case.

We adopt instead the method proposed in [31], though in a simpli�ed version.

This approach lifts a numeric domain D♯, to a domain D̂♯ consisting of pairs
⟨d♯, l⟩, where V ⊆ l ⊆ V∪Vs and d♯ ∈ D♯. The element d♯ is de�ned on V∪Vs and
the concretization of ⟨d♯, l⟩ yields states with domain subsuming l and satisfying

the constraints of d♯. In the original approach [31], the elements of D̂♯ contained
an additional set u ⊇ l representing an upper bound for the domain of the
states (here u = V ∪ Vs), but in our case this additional �exibility is not needed
since stream variables can not be added or removed explicitly (e.g., with ad-hoc
statements) but they can only be added as a side-e�ect of input statements,
hence only the lower bound can vary.

More formally the concretization is de�ned as γ̂♯(⟨d♯, l⟩) ≜ {ρ̂ | ∃ρ̂′ ∈
γ♯(d♯),V ⊆ l ⊆ dom(ρ̂) ⊆ V ∪ Vs, ρ̂ = ρ̂′

∣∣
dom(ρ̂)

}. Details on the construction

of over-approximation domain operators can be found in [31]. Here instead we
focus on under-approximation operators. If ⊓♯, ⊔♯, ∇♯ are under-approximation
operators for the base domain D♯, then they can be lifted to D̂♯:
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� Join: ⟨d♯1, l1⟩ ⊔̂
♯ ⟨d♯2, l2⟩ ≜ ⟨d

♯
1 ⊔♯ d

♯
2, l1 ∪ l2⟩;

� Meet: ⟨d♯1, l1⟩ ⊓̂
♯ ⟨d♯2, l2⟩ ≜ ⟨d

♯
1 ⊓♯ d

♯
2, l1 ∪ l2⟩;

� Widening: ⟨d♯1, l1⟩ ∇̂
♯
⟨d♯2, l2⟩ ≜

{
⟨d♯1 ∇

♯ d♯2, l1⟩ if l2 ⊆ l1

⟨d♯1 ⊓♯ d
♯
2, l2⟩ if l1 ⊂ l2

.

Proposition 1. ⊔̂♯, ⊓̂♯ are sound under-approximations of ∪, ∩ and ∇̂
♯
is a

lower widening.

Proof. See Appendix A.

Semantic. The semantic of input statements can be handled as follows:

τ̂ ♯[[v := inputn()]]⟨D♯, l⟩ ≜

{
⟨τ ♯[[v := [−∞,∞]]]D♯, l⟩ if vsn /∈ l

⟨τ ♯[[v := vsn]]D
♯, l⟩ if vsn ∈ l

Indeed, if vsn /∈ l then the concretization contains both time-invariant and time-
dependent streams: for the latter no information is stored, thus v gets ⊤. If
instead vsn ∈ l then the concretization contains only time-invariant streams and
thus the assignment copies the value from the stream variable.

The backward semantic is computed as:

←̂τ
♯
[[v := inputn()]]⟨D♯, l⟩ ≜

{
⟨D♯, l⟩ if vsn /∈ l ∧←τ ♯[[v := [−∞,∞]]]D♯ = D♯

⟨←τ ♯[[v := vsn]]D
♯, l ∪ {vsn}⟩ otherwise

Indeed, we can distinguish three cases:

1. If vsn ∈ l then we only have time-invariant streams in the post-condition.
In this case the forward transfer function performs the assignment v := vsn,
thus the backward precondition can simply invert this assignment;

2. If vsn /∈ l and ←τ ♯[[v := [−∞,∞]]]D♯ = D♯ then we have both time-invariant
and time-dependent streams. In addition, as the backward projection leaves
D♯ unmodi�ed, for all states ρ̂ ∈ γ♯(D♯) and x ∈ Z, ρ̂[v 7→ x] ∈ γ♯(D♯).
Therefore the backward precondition is simply ⟨D♯, l⟩. Notice that the con-
dition on the backward projection is crucial to ensure the soundness of time-
dependent streams: the projection over-approximates any assignment, thus
[38, Theorem 2.6] ensures that ρ̂[v 7→ x] ∈ γ♯(D♯).

3. If vsn /∈ l and ←τ ♯[[v := [−∞,∞]]]D♯ ̸= D♯ then, as before, we have both time-
invariant and time-dependent streams, but, unlike the previous case, there
exist ρ̂ ∈ γ♯(D♯) and x ∈ Z such that ρ̂[v 7→ x] /∈ γ♯(D♯). Consequently,
time-dependent streams can not be included in the precondition as they
would be unsound. For this reason the precondition adds vsn to l (thus under-
approximating the precondition) and transforms D♯ as in the �rst case.

Theorem 3. The abstract semantic is sound, i.e., for any s ∈While and d̂♯ ∈
D̂♯ the following holds:

τ̂ [[s]]γ̂♯(d̂♯) ⊆ γ̂♯(τ̂ ♯[[s]]d̂♯) ←̂τ [[s]]γ̂♯(d̂♯) ⊇ γ̂♯(←̂τ
♯
[[s]]d̂♯)

Proof. See Appendix A.



12 Marco Milanese and Antoine Miné

2.4 Integer Wrapping

In this section, we generalize our framework to support �xed precision integers
(i.e., with wrap-around), typically found in C-like languages. This is important
as some analyzers detect integer over�ows but do not handle wrap-around: they
either stop the analysis for the traces that over�ow (which is not sound for
programs that do wrap-around on purpose) or put the variable to the full range
of their type (which is sound but imprecise). For the sake of brevity, we limit our
presentation to unsigned 8-bit integers, but it is easy to generalize this framework
to other types.

Arithmetic and boolean semantics are replaced with versions that operate
with 8-bit unsigned integers, e.g., E[[x + 10]]{x 7→ 250} = {[x 7→ 4]}. To do
so, it su�ces to replace the usual arithmetic operators with versions that take
care of integer wrapping. Unfortunately this requires new wrap aware operators
to be designed. To avoid this di�culty, we prefer a modular approach in which
�rstly the result is computed with in�nite precision operators (i.e., the usual
unwrapped ones), and then it is wrapped with a wrapping operator.

De�nition 2 (Wrapping operator). De�ne wrap : Z→ [0, 255] as
wrap(z) ≜ z mod 256, where mod computes the Euclidean remainder. ⊓⊔

Consequently, the abstract semantic must take into account wrapping of
integers. Several approaches have been proposed in the literature to handle this
problem [45,29,27,46].

Case Study: Polyhedra Domain As an example, we show how to instantiate
the abstract semantic to the case of the polyhedra domain. Our work is based
on the work of Simon et al. [46]: they demonstrate how to design sound abstract
operators for the polyhedra domain that take into account integer wrapping. For
this purpose, they presented an algorithm for computing a wrap♯ operator. It
takes in input a polyhedron P , a variable v to wrap, and as result it produces
a new polyhedron P ′ in which v lies in [0, 255]. Fig. 5 shows an example of the
computation of wrap♯.

We extend their work (which only tackles over-approximation forward oper-
ators) to handle under-approximation backward operators. Intuitively, the back-
ward version of wrap♯ for a polyhedron P (along a variables v) should compute
a polyhedral representation of the points that, after wrapping, end up in P . This
boils down to replicating P in�nitely many times, where each copy is translated
by a integer multiple of 256 along v, i.e., the sequence {P + 256kev}k∈Z. Fig. 6
shows an example of this computation.

Although all the polyhedra of the sequence above are valid unwrappings,
not necessarily all of them represent reachable states. In particular, if pre is an
over-approximation of the input of wrap♯, then the valid polyhedra are only the
ones intersecting pre. This information can be used to guide the unwrapping of
a polyhedron. We present in Algorithm 1 a procedure for computing ←−−−wrap♯. The
auxiliary function quadrantIndices(pre, v) computes the indices of the quad-
rants spanned by v in pre (see [46, Algorithm 1]). Notice that the polyhedra of
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0 256 512
0

256

512

(a) Polyhedron before wrapping.

0 256 512
0

256

512

(b) Polyhedron after wrapping.

Fig. 5: Wrapping of a polyhedron along the horizontal axis. The polyhedron on
the left is split in two parts: one that does not need wrapping (x ∈ [0, 255]) and
another that does (x ∈ [256, 511]). To compute the result (green polyhedron),
the �rst part is joined with the translation of the second one by −256 (along x).

the sequence are merged together with an under-approximating join, but this
can incur a loss of precision if the polyhedra are separated (as in Fig. 6) since
in this case the set union is not convex, and thus to under-approximate it with
a polyhedral shape, only one polyhedron can be retained (hence in Fig. 6, the
result must be either one of the polyhedra in green or the one in blue). A ro-
bust solution to this kind of imprecisions will be addressed in the next section.
Additionally, the meet with pre in the algorithm excludes the polyhedra that
are surely not reachable, thus increasing the odds of retaining an appropriate
polyhedron.

3 Powerset Domain

As noted in [38], designing an under-approximating join for polyhedra can be
challenging. This problem was sidestepped by designing such an operator only
in some speci�c cases, namely on joins occurring in the analysis of backward
�lters of if-then-else statements and while loops. This simpli�es the design as
only under-approximations of the join of an arbitrary polyhedron with a half-
space are handled. This is carried out using special heuristics, tailored to handle
many practical cases. Unfortunately, they are not robust and may cause losses
of precision in other cases. This is especially true for our semantic, as, unlike the
one in [38], we use ⊔♯ to handle arbitrary joins (e.g., in ←−−−wrap and later in this
section for widenings).

Furthermore, even if a perfect join heuristic could be designed, the polyhedra
domain would still not be precise if the concrete union is non-convex. This can
often occur in real world programs (e.g., in the unwrapping of the polyhedron
of Fig. 6).

3.1 Under-approximated Powerset

A robust approach to addressing this issue is to leverage the powerset [26] con-
struction: in this construction, a base domain D♯ is lifted to a �nite set of
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Algorithm 1 Calculate ←−−−wrap♯(P, v, t, pre)

Require: Parameter m > 0: maximum number of
copies.
ql, qu ← quadrantIndices(pre, v, t)
if ql = −∞∧ qu = +∞ then

return P
else if ql = −∞ then

ql ← qu −m
else if qu = +∞ then

qu ← ql +m
else

{Retain at most m copies}
qu ← ql +min(qu − ql,m)

end if

Q← ⊥♯

for k ← ql to qu − 1 do
Q← Q ⊔♯((τ ♯[[v := v − 256k]]P ) ⊓♯ pre)

end for

return Q

−512−256 0 256 512 768
0

256

Fig. 6: Unwrapping of x. The
unwrapping of the blue polyhe-
dron produces in�nitely many
(here only four are shown)
copies of it, separated by the
integer's size. The wrapping of
each polyhedron in green (de-
picted with the arrows) coin-
cides with P.

abstract elements Pfinite(D
♯). The concretization of a set yields the union of

the concretizations of all its elements. Notably, the join operator becomes ex-
act, and thus it is a sound under-approximation of ∪. Consequently the under-
approximation join ⊔♯p can coincide with the over-approximating one ⊔♯p.

De�nition 3 (Powerset domain). Let D♯ be an abstract domain. We let
P (D♯) ≜ Pfinite(D

♯) be its powerset lifting. P (D♯) is partially ordered by

S♯
1 ⊑♯

p S♯
2 ⇔ ∀d

♯
1 ∈ S♯

1. ∃d
♯
2 ∈ S♯

2. d
♯
1 ⊑♯ d♯2. Moreover, join and meet are respec-

tively de�ned as S♯
1 ⊔♯p S

♯
2 ≜ S♯

1 ∪S
♯
2 and S♯

1 ⊓♯p S
♯
2 ≜ {d♯1 ⊓♯ d

♯
2 | d

♯
1 ∈ S♯

1, d
♯
2 ∈ S♯

2}.
⊓⊔

Additionally, if the base meet is exact (which is the case in many numeric
domains, including polyhedra), also ⊓♯p is, thus it is a sound under-approximating
operator as well.

Widening. A trivial widening can be obtained by joining all elements of the
powerset (for each argument) and then applying the base widening (hence the
result is a singleton). Likewise to get a trivial lower widening, it is possible to
apply the base lower widening on just one element of each argument and discard
all the others. Unfortunately, these operators are quite imprecise, as shown in
the following example.
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0 4 8

0

4

8

b1

b2

0 4 8

0

4

8

b′1

b′2

Fig. 7: Powerset re�nement. The blue polyhedron (left �gure) can be extended
over the green one (right �gure) without changing the overall concretization of
the powerset.

Example 4. Consider the following example suggested by Gopan and Reps [28].

i, j := 0
for i := 1 to 100 do
if i ≤ 50 then j ← j + 1 else j ← j − 1

end for

The while loop presents two phases: one in which j is incremented (then branch),
and one in which it is decremented (else branch). This induces a non-convex
loop invariant, that requires at least two polyhedra to be represented precisely.
It is clear that the trivial widenings can not �nd such a result as they yield a
singleton. ⊓⊔

A simple, yet useful, improvement consists in retaining stable elements, i.e.,
elements that are shared in both arguments, and widen only the remaining
(unstable) elements. More formally:

De�nition 4 (Improved Powerset Widening). Let S♯
1 = ⟨d♯1,1, .., d

♯
1,n⟩ and

S♯
2 = ⟨d♯2,1, .., d

♯
2,m⟩. De�ne:

S♯
1 ∇♯

p S♯
2 ≜

{
⟨d♯1 ∇♯ (⊔♯S♯

u2
)⟩ ∪ (S♯

s \ {d
♯
1}) if S♯

u1
= ∅ ∧ S♯

u2
̸= ∅ ∧ d♯1 ∈ S♯

1

⟨(⊔♯S♯
u1
) ∇♯ (⊔♯S♯

u2
)⟩ ∪ S♯

s otherwise

S♯
1 ∇

♯
p S♯

2 ≜

{
S♯
s if S♯

u1
= ∅ ∨ S♯

u2
= ∅

⟨d♯u1
∇♯ d♯u2

⟩ ∪ S♯
s if d♯u1

∈ S♯
u1
∧ d♯u2

∈ S♯
u2

where S♯
s ≜ S♯

1∩S
♯
2 is the set of stable elements, S♯

u1
≜ S♯

1 \S♯
s the set of unstable

elements of S♯
1 and S♯

u2
≜ S♯

2 \ S♯
s the set of unstable elements of S♯

2. ⊓⊔

Proposition 2. ∇♯
p (∇♯

p) is an upper (lower) widening operator for P (D♯).

Proof. See Appendix A.

Re�nement. Consider the program s computing y := y + [0, 8] and the power-
set S ≜ {b1, b2} of Fig. 7. The backward (concrete) semantic of S, computed
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Algorithm 2 Integer polyhedral re�nement: adjacent constraints

Require: d♯1, d
♯
2 polyhedra in constraint representation.

Ensure: d♯ re�nes d♯1 with d♯2.
d♯ ← d♯1
for c matching a · v ≥ b in d♯1 do

d♯1,nc ← d♯1 \ {c}
v1, r1 ← sat(d♯1, c) {sat(d

♯, c) returns the vertices and rays of d♯ saturating c}
c′ ← a · v ≥ b− 1
v2, r2 ← sat(d♯2, c

′)
d♯m ← gen(v1∪v2, r1∩r2) {gen(v, r) returns the polyhedron generated by vertices
v and rays r}
if c′ ∈ d♯m then

d♯m,nc′ ← d♯m \ {c′}
d♯i ← d♯1,nc ∩ d♯m,nc′ ∩ d♯2

else

d♯i ← d♯1,nc ∩ d♯m ∩ d♯2
end if

d♯h ← d♯1 ⊔♯ d♯i
{rays(·) computes the set of rays of a polyhedron}
if rays(d♯1) ⊆ rays(d♯h) then

d♯ ← d♯h
break

end if

end for

point-wise, is {∅} as both ←τ [[s]]b1 = ∅ and ←τ [[s]]b2 = ∅. But the set of states
represented by S, that is ∪b∈S b, does admit a non-empty precondition since
←τ [[s]]∪b∈S b = [x 7→ [0, 4], y 7→ 0] ̸= ∅. This is possible as the backward semantic
(unlike the forward one) is not a ∪−morphism, but instead only the inclusion
holds, i.e.,

⋃
i
←τ [[s]]Si ⊆ ←τ [[s]]

⋃
i Si for any family of states {Si}i∈N (whereas the

equality holds for ∪−morphisms).

However, the powerset S′ ≜ {b′1, b′2} admits a non-empty backward semantic
as {←τ [[s]]b′1,←τ [[s]]b′2} = {[x 7→ [0, 4], y 7→ 0],∅}, even if S′ represents the same
states as S (the only di�erence is the internal composition of the powerset).
For this reason the elements of the powerset domain should be kept as large as
possible, so that ←τ ♯[[s]] is maximized (notice that in the forward analysis setting,
we strive for the opposite goal, namely keeping the elements as small as possible).
In particular, we can allow some sharing of states among elements of the set,
provided that this does not a�ect the overall concretization of the powerset.

For this purpose we use a re�nement operator: an under-approximation join
⊔♯ is a re�nement operator if d♯ ≜ d♯1 ⊔♯ d♯2 ⊒♯ d♯1, meaning that d♯ re�nes d♯1
with states from d♯2. Then, we can re�ne a powerset by replacing each element
with its re�nement with all the other elements. Additionally, re�nements can
help mitigate the computational cost of the powerset as, after re�nement, some
elements may become redundant and thus can be removed.
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Algorithm 3 Integer polyhedral re�nement: adjacent singleton variables

Require: d♯1, d
♯
2 polyhedra in constraint representation.

Ensure: d♯ re�nes d♯1 with d♯2.
d♯ ← d♯1
for c matching v = n in d♯1 do
if v = n+ 1 ∈ d♯2 ∨ v = n− 1 ∈ d♯2 then
{rays(·) computes the set of rays of a polyhedron}
if rays(d♯1) = rays(d♯2) then

d♯ ← d♯1 ⊔♯ d♯2
break

end if

end if

end for

3.2 Case Study: Polyhedra Re�nement

To design a re�nement operator, it is possible to leverage a procedure for check-
ing if the over-approximation join is exact. Indeed, an exact join is also a valid
re�nement. For the polyhedra domain, this problem has been studied by Bem-
porad et al. [6] and Bagnara et al. [4], but they focus on polyhedra representing
real-valued environments.

On the other hand, if variables are of integer type (as in our semantic), the
join can be exact even if the union of the polyhedra is not convex. For example
the union of the polyhedra (in constraint representation) d♯1 ≜ {0 ≤ x ≤ 1} and
d♯2 ≜ {2 ≤ x ≤ 3} is not a convex set, but still the join is exact: γ(d♯1) ∪ γ(d♯2) =

{0, 1, 2, 3} = γ(d♯1 ⊔♯ d
♯
2).

3 Since this kind of polyhedra appears frequently in
practice (e.g., in loops incrementing variables by one unit), we propose two
re�nement algorithms tailored for these cases.

Consider the bi-dimensional polyhedra d♯1 ≜ {x ≥ 0, y ≥ 0, x + y ≤ 4} and
d♯2 ≜ {x ≤ 3, y ≤ 3, x + y ≥ 5}. It is easy to check that there exists a part of

d♯2 that can be exactly joined with d♯1 (the triangle with vertices (2, 3), (3, 2),

( 83 ,
8
3 )), and thus can re�ne d♯1. This is the case as the strip 4 < x + y < 5

separating it from d♯1 does not contain any integer. Algorithm 2 tackles this case
by scanning for constraints of this kind and if they are found, computes parts of
the second argument that can re�ne the �rst.

Algorithm 3 scans for a variable in d♯1 and d♯2 that is �xed in the two polyhedra
to constants di�ering by one unit. If such a variable is found, then the join
between the two polyhedra is exact. As an example, let d♯1 ≜ {x = 0, 0 ≤ y ≤ 2}
and d♯2 ≜ {x = 1, 4 ≤ y ≤ 6}. Since the strip 0 < x < 1 does not contain any
integer, the join is exact.

3 With an abuse of notation, we confuse {x} → Z with Z.
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4 Implementation and Experiments

In addition to the theoretical foundations, the contribution [38] included a PoC
static analyzer, Banal [1]. This analyzer targets a toy language with a semantic
not compatible with the one of C (e.g., it assumes mathematical integers instead
of machine integers). We extended it with the features presented in this work:
an implementation of a subset of the C semantic and a frontend for a signi�cant
subset of the language, user input (Sect. 2.3), machine integers (Sect. 2.4), a
powerset domain (Sect. 3) and improved operators. As a consequence, our new
prototype is able to analyze benchmarks from the SV-COMP competition. As
our work focuses on incorrectness, we report only the results of the analysis of
incorrect programs.

Witnesses Generation. To analyze SV-COMP benchmarks, Banal translates
each call site to __VERIFIER_nondet_int() with an input statement (each with
a distinct stream). Consequently, it computes preconditions in the form of an
abstract element relating the input variables. Then, as all states in the abstract
element are valid su�cient preconditions for the violation of some assertion, we
extract one concrete vector of values. Notice that for the purpose of SV-COMP,
the quality of a violation witness [8] is measured by how much it restricts the
state-space exploration. The more restricted it is, the less states the validator
has to explore in order to check the witness. By picking a concrete vector (which
represents only one execution path) we obtain the most precise kind of witness.

Furthermore, as previously discussed, the preconditions generated by our
analysis may simply lead to an in�nite loop, rather than a true bug. To rule
out this possibility Banal replaces each input call site with its concrete value,
compiles the benchmark and runs it with a time limit (2s). If an assertion fails,
then the counter-example is con�rmed.

Finally, a witness is generated in SV-COMP's graphml format: we make a
control �ow automaton resembling the control �ow graph of the benchmark and
specify for each input site the corresponding concrete value. Moreover, to certify
the correctness of our result using independent techniques, we validate the wit-
ness with the CPA-W2T [9] validator (which is speci�cally tailored for checking
concrete witnesses) and declare the benchmark to be successfully analyzed only
if successfully validated.

Experimental Evaluation. To asses the performance of our analysis, we run
our tool and three leading tools from SV-COMP23: CPAChecker [10,22], UAu-
tomizer [30] and Veriabs [2,23] on a selected subset of the competition's bench-
marks. In particular, we built our set of benchmarks from the
ReachSafety-Loops set of the competition, as it comprises several simple numer-
ical programs, from which we removed the nla-digbench and
nla-digbench-scaling folders as they contain programs with polynomial in-
variants that require special analysis techniques that are out of scope of this
work. Our set of benchmarks contains 63 C �les (35172 LOC) corresponding to
61% (in terms of LOC) of the ReachSafety-Loops set.
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Count

Analyzer Success Unknown Timeout/OOM Unsupported Other

Banal 16 16 6 25 0
CPAChecker 44 0 18 0 1
UAutomizer 37 0 25 0 1
Veriabs 43 3 17 0 0

Table 1: Outcome of the analysis of ReachSafety-Loops excluding
nla-digbench and nla-digbench-scaling folders.

Time [s]

Benchmark Analyzer 101 102 103 104 105 106

Mono3_1 Banal 0.94 1 0.84 0.96 0.84 0.92
CPAChecker 10 22 83 ✗ ✗ ✗

UAutomizer 50 ✗ ✗ ✗ ✗ ✗

Veriabs 42 47 50 92 190 ✗

Mono4_1 Banal 0.79 0.81 0.8 0.82 0.85 0.85
CPAChecker 9.7 19 63 ✗ ✗ ✗

UAutomizer 36 97 ✗ ✗ ✗ ✗

Veriabs 43 43 46 64 ✗ ✗

Mono5_1 Banal 1.2 1.3 1.2 1.2 1.2 1.3
CPAChecker 10 20 69 ✗ ✗ ✗

UAutomizer 42 ✗ ✗ ✗ ✗ ✗

Veriabs 42 43 45 78 ✗ ✗

Mono6_1 Banal 1.4 1.2 1.2 1.3 1.2 1.2
CPAChecker 9.9 21 76 ✗ ✗ ✗

UAutomizer 75 ✗ ✗ ✗ ✗ ✗

Veriabs 41 42 46 70 ✗ ✗

const_1-2 Banal 0.38 0.41 0.4 0.42 0.39 0.41
CPAChecker 9.5 19 55 ✗ ✗ ✗

UAutomizer 36 ✗ ✗ ✗ ✗ ✗

Veriabs 30 32 32 32 32 32

Time [s]

Benchmark Analyzer 101 102 103 104 105 106

count_up_down-2 Banal 0.49 0.5 0.51 0.51 0.5 0.49
CPAChecker 9.6 19 62 ✗ ✗ ✗

UAutomizer 37 ✗ ✗ ✗ ✗ ✗

Veriabs 31 32 30 28 29 28
multivar_1-2 Banal 0.61 0.65 0.71 0.67 0.63 0.61

CPAChecker 7.7 8 7.6 7.7 7.8 7.8
UAutomizer 28 27 27 27 27 27
Veriabs 27 28 27 29 28 28

simple_2-2 Banal 0.31 0.33 0.32 0.31 0.34 0.34
CPAChecker ✗ ✗ ✗ ✗ ✗ ✗

UAutomizer ✗ ✗ ✗ ✗ ✗ ✗

Veriabs 26 26 27 26 27 27
simple_nested Banal 11 11 11 11 11 11

CPAChecker 27 ✗ ✗ ✗ ✗ ✗

UAutomizer 83 ✗ ✗ ✗ ✗ ✗

Veriabs 39 100 ✗ ✗ ✗ ✗

assert_loop Banal 0.46 0.41 0.38 0.41 0.46 0.41
CPAChecker 9.8 21 73 ✗ ✗ ✗

UAutomizer 34 110 ✗ ✗ ✗ ✗

Veriabs 36 35 37 88 ✗ ✗

Table 2: Analysis time for increasing number of loop iterations, for some selected
benchmarks. ✗ denotes a timeout.

All tests were conducted on an Intel Core i7-8550U CPU with 3GiB memory
limit and 300 seconds time limit using the BenchExec [11] platform. We report
the results in Table 1, where unknown indicates an inconclusive result and un-
supported indicates a failure due to missing support for some C features (e.g.,
arrays, pointers).

Despite some encouraging results, Banal performs worse than the other tools
due to several imprecisions (e.g, widening failure, non-linear arithmetic) in the
analysis and missing support for several C features. However, since it is based
on abstract interpretation, Banal is faster than the other tools. In particular, on
the successfully analyzed tasks Banal is 22x faster than CPAChecker, 50x than
UAutomizer and 50x than Veriabs. This performance gap becomes even wider
if we consider programs where bugs are reached after many loop iterators (so
called deep bugs) as Banal uses widening operators whereas other tools often
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for (int a = 0; a < 1000; ++a) {

for (int b = 0; b < 1000; ++b) {

assert(a != 1000-1 || b !=

1000-1);↪→

}

}

(a) simple_nested

int i = 0;

while (i < 1000) {

i++;

assert(i < 1000);

}

(b) assert_loop

Fig. 8: Simple programs with deep bugs.

necessitate loop unrolling and thus are limited to bugs reachable in few loop
iterations (so called shallow bugs). To assess this, we selected some benchmarks
from the previous set and re-run the analysis �xing the number of loop iter-
ations with di�erent values. The results are reported in Table 2. CPAChecker
and UAutomizer hit timeouts when loops require > 1000 unrollings, while Ba-
nal's execution time is not a�ected. In all cases (including shallow bugs, e.g.,
< 10 iterations) we observe that Banal is much faster than the other tools. In-
terestingly, also Veriabs can scale thanks to loop summarization [48] techniques
allowing it to replace loops with expressions summarizing their e�ect. However
these techniques only work with special loop structures. To exhibit this, we added
two synthetic benchmarks simple_nested and assert_loop (see Fig 8a, 8b) for
which the summarization fails (thus forcing Veriabs to unroll the loop) but Banal
succeeds.

5 Conclusion

In this article, we built on top of the preliminary work of [38], studying how to
improve it to construct a more e�ective analysis. It supports more varied and
realistic semantics (such as wrap-around) as well as classic abstract domain con-
structions (such as powerset domains, improved widenings, etc.), to the point
where it can provide encouraging results on realistic analysis problems. Our im-
plementation targeted C programs, but the semantics are agnostic with respect
to the language and can used to analyze any language with machine integers
data types.

Future work. Although this work displays promising results, much work is still
needed to analyze real-world programs. Firstly, we believe that more precise ab-
stractions are needed to analyze numeric properties (e.g., domains for constants,
congruences, bit-wise operations). The semantic should be extended to handle
more features of the C language (e.g., memory allocation, arrays, structs). We
do support non-linear integer arithmetic, thus adding support for �oating point
arithmetic should not be a too large e�ort. Moreover, we proposed an abstrac-
tion modeling streams as returning always the same value: this may su�ce in
loop-free programs (as each stream is read only once), but can be imprecise in
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other cases. Whereas the polyhedra domain (and even its power-set) is precise,
it comes with a signi�cant computational cost. We believe that more lightweight
domains (like intervals [16] or octagons [36]) and packing techniques will play a
crucial role in making this analysis more scalable to real world programs.

Acknowledgments This work was supported by the SECURVAL project. The
SECUREVAL project was funded by the �France 2030� government investment
plan managed by the French National Research Agency, under the reference
ANR-22-PECY-0005.

6 Data Availability Statement

All the software used for the experimental part of this work was released in an
artifact [35]. It includes not only the source code of the Banal static analyzer,
but also the benchmarks and scripts used to produce the Tables 1, 2.
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A Proofs

Theorem 1. The following Galois Connection holds: (P(E ′),⊆) −−−→←−−−
α̂

γ̂
(P(Ê ′),⊆).

Proof. It is easy to check that γ̂(·) and α̂(·) are monotonic. Then, we need to
show that γ̂ ◦ α̂ is extensive, i.e., R ⊆ γ̂(α̂(R)). Assume that (ρ,m) ∈ R. By
construction, there exists ρ̂ ∈ α̂(R) such that ρ̂

∣∣
V = ρ and mn is time-invariant

i� ρ̂(vsn) is de�ned and it evaluates to the value of mn. To conclude, γ̂(α̂(R))
contains (ρ,m) because for ρ̂ all the conditions of the de�nition are satis�ed.

Secondly, we need to show that α̂ ◦ γ̂ is reductive, i.e, α̂(γ̂(R)) ⊆ R. Assume
that ρ̂ ∈ α̂(γ̂(R)). By construction, there exists (ρ,m) such that ρ̂

∣∣
V = ρ and mn

is time-invariant with value ρ̂(vsn) if v
s
n belongs to the domain of ρ̂, otherwise mn

is time-dependent. Finally, exists ρ̂′ ∈ R such that ρ̂′
∣∣
V = ρ and vsn corresponds

to mn; this proves that ρ̂
′ = ρ̂. ⊓⊔

Theorem 2. The semantic of statements, both forward and backward, is sound:

τ [[s]]γ̂(R) ⊆ γ̂(τ̂ [[s]]R) γ̂(←̂τ [[s]]S) ⊆ ←τ [[s]]γ̂(S).

Proof. We focus on the input case as the other cases are trivial.

Forward transfer function: Assume (ρ,m) ∈ τ [[v := inputn()]]γ̂(R). By con-
struction, there exists (ρ′,m′) such that ρ = ρ′[v 7→ get(m′n)] andm = incrn(m

′).
Furthermore, we have ρ̂ ∈ R such that ρ̂

∣∣
V = ρ′ and ρ̂(vsn) matches m′n. Notice

that by monotonicity of γ̂, γ̂(τ̂ [[v := inputn()]]{ρ̂}) ⊆ γ̂(τ̂ [[v := inputn()]]R),
so that it is enough to show that (ρ,m) is in the former. τ̂ [[v := inputn()]]{ρ̂}
contains states ρ̂′ such that if ρ̂(vsn) is de�ned then ρ̂′(v) = ρ̂(vsn) = ρ̂′(vsn),
otherwise ρ̂′(v) is unconstrained; in both cases ρ̂

∣∣
V\{v} = ρ̂′

∣∣
V\{v}. Finally,

γ̂(τ̂ [[v := inputn()]]{ρ̂}) contains states (ρ′′,m′′) such that ρ̂′
∣∣
V = ρ′′ and m′′n

matches ρ̂′(vsn).
To conclude we need to show that (ρ,m) satis�es all the constraints of the

states (ρ′′,m′′). Indeed, ρ
∣∣
V\{v} = ρ′

∣∣
V\{v} = ρ̂

∣∣
V\{v} = ρ̂′

∣∣
V\{v} = ρ̂′′

∣∣
V\{v}. If

mj is time-invariant with value x, then x = ρ̂(vsj ) = ρ̂′(vsj ) and it satis�es the
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constraints of m′′j ; while if it is time-dependent ρ̂(vsj ) = ρ̂′(vsj ) is unde�ned and
thus also in this case we satisfy the constraints of m′′j . Finally, if mn is time-
invariant, ρ(v) = get(m′n) = ρ̂(vsn) = ρ̂′(vsn) = ρ′(v) = ρ′′(v); otherwise ρ̂′(v) is
unconstrained.

Backward transfer function: Firstly, notice that ←̂τ [[v := inputn()]] computes the
backward version of τ̂ [[v := inputn()]]:

←̂τ [[v := inputn()]]R = {ρ̂ | τ̂ [[v := inputn()]]{ρ̂} ⊆ R}
= {ρ̂ | ∀x ∈ Z. ((vsn ∈ dom(ρ̂)⇒ x = ρ̂(vsn))⇒ ρ̂[v 7→ x] ∈ R)}
= {ρ̂ | ∀x ∈ Z. (vsn /∈ dom(ρ̂) ∧ ρ̂[v 7→ x] ∈ R)∨

(vsn ∈ dom(ρ̂) ∧ (x = ρ̂(vsn)⇔ ρ̂[v 7→ x] ∈ R))}.

To conclude, we recall few results from [38, Theorem 2]:

� Theorem 2.5 f is a ∪−morphism, then f ◦
←
f is reductive.

� Theorem 2.6: if f is a ∪−morphism, then P (X) −−−→←−−−
f

←
f

P (Y );

Using the second fact and the soundness of τ [[v := inputn()]] we have that:

γ̂(←̂τ [[v := inputn()]]) ⊆ ←τ [[v := inputn()]]γ̂(τ̂ [[v := inputn()]]◦←̂τ [[v := inputn()]])

then by the �rst fact:

γ̂(←̂τ [[v := inputn()]]R) ⊆ ←τ [[v := inputn()]]γ̂(R) ⊓⊔

Proposition 1. ⊔̂♯, ⊓̂♯ are sound under-approximations of ∪, ∩ and ∇̂
♯
is a

lower widening.

Proof.

� Join: Let d̂♯1 = ⟨d♯1, l1⟩, d̂
♯
2 = ⟨d♯2, l2⟩. Assume that ρ̂ ∈ γ̂♯(d̂♯1 ⊔̂

♯
d̂♯2). By def.,

exists ρ ∈ γ♯(d♯1 ⊔♯ d
♯
2) satisfying the de�nition. By soundness of the under-

approximation join of D♯ we have that ρ ∈ γ♯(d♯1) or ρ ∈ γ♯(d♯2), without
loss of generality assume the former. The result follows from the chain of
inclusions: l1 ⊆ l1 ∪ l2 ⊆ dom(ρ).
Remark: to compute the set of variables, we use the union rather than the
intersection (as in the upper join). This is needed to preserve the soundness.

Indeed, consider V̂ ≜ {x, y}, d̂♯1 ≜ ⟨[0, 5] × [0, 5], {x}⟩ and d̂♯2 ≜ ⟨[5, 10] ×
[5, 10], {x, y}⟩; if we computed the variables of d̂♯1⊔♯d̂

♯
2 by taking the inter-

section we would have ⟨[0, 5]× [0, 5]∪ [5, 10]× [5, 10], {x}⟩, but this includes
the state [x 7→ 10] which is present in neither arguments.

� Meet: Let d̂♯1 = ⟨d♯1, l1⟩, d̂
♯
2 = ⟨d♯2, l2⟩. Assume that ρ̂ ∈ γ̂♯(d̂♯1 ⊓̂

♯
d̂♯2). By def.,

exists ρ ∈ γ♯(d♯1 ⊓♯ d
♯
2) satisfying the de�nition. By soundness of the lower

meet of D♯ we have that ρ ∈ γ♯(d♯1) and ρ ∈ γ♯(d♯2), moreover l1,2 ⊆ l1∪ l2 ⊆
dom(ρ̂).
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� Lower widening: It is easy to check that ∇̂
♯
under-approximates the inter-

section. The second case can only occur a �nite number of times and the
�rst one terminates by the properties of ∇♯.

⊓⊔

Theorem 3. The abstract semantic is sound, i.e., for any s ∈While and d̂♯ ∈
D̂♯ the following holds:

τ̂ [[s]]γ̂♯(d̂♯) ⊆ γ̂♯(τ̂ ♯[[s]]d̂♯) ←̂τ [[s]]γ̂♯(d̂♯) ⊇ γ̂♯(←̂τ
♯
[[s]]d̂♯)

Proof. The proof is done by induction on the syntax. We only focus on the input
statement as the other ones are handled as usual.

Forward transfer function: The �rst case (vsn /∈ l) is easily sound as we add all
values for v. If instead, vsn ∈ l then for all the environments of the concreatization
we have that the variable vsn is de�ned, hence the premise of the implication
(vsn ∈ dom(ρ̂) - see the de�nition of the concrete semantic) is always satis�ed,
so that x must be equal to ρ̂(vsn), hence the soundness of the second case.

Backward transfer function: The soundness of the second case follows from the
fact that all the environments will contain the stream variable vsn and thus only
the �rst case of the concrete semantic will be reached (which performs sim-
ply the assignment v := vsn). In the �rst case we perform the check ←τ ♯[[v :=
[−∞,∞]]]D♯ = D♯ which corresponds to the test of the second case of the con-
crete semantic. Notice also that this subsumes the �rst case, as ∀x. ρ̂[v 7→ x] ∈ R
implies ρ̂[v 7→ ρ̂(vsn)] ∈ R, this ensures that the states de�ned also in vsn are han-
dled properly. ⊓⊔

Proposition 2. ∇♯
p (∇♯

p) is an upper (lower) widening operator for P (D♯).

Proof. In order to prove that ∇♯
p is a widening operator, we need show:

1. for any S♯
1, S

♯
2 ∈ D♯

p, it holds: S
♯
1 ⊔♯p S♯

2 ⊑♯
p S♯

1∇♯
p S

♯
2;

2. for any sequence {Xi}i∈N the sequence {Yi}i∈N de�ned by Y0 ≜ X0, Yi+1 ≜
Yi∇♯

pXi+1 converges in a �nite number of steps.

In order to prove the �rst point, it is enough to exhibit, for every element of
S♯
1 ⊔♯p S♯

2 an element of S♯
1∇♯

p S
♯
2 that subsumes it. Assume that d♯ ∈ S♯

1 ⊔♯p S♯
2.

By construction, ⊔♯p = ∪, thus we can further assume without loss of generality

that d♯ ∈ S♯
1. If also d♯ ∈ S♯

2, then d♯ ∈ S♯ thus d♯ ∈ S♯
1∇♯

p S
♯
2, proving the

claim. Otherwise if d♯ /∈ S♯
2, then d♯ ∈ S♯

u1
and thus d♯ ⊑♯ ⊔♯S♯

u1
. Since ∇♯ is a

widening, then d♯ ⊑♯ ⊔♯S♯
u1
⊑♯ (⊔♯S♯

u1
) ∇♯ (⊔♯S♯

u2
), which proves the result.

In order to prove the second point, we need to show that there exists k ∈
N such that Yk = Yk+i for all i ≥ 0. As a preliminary step, notice that by
construction of Yi and de�nition of ∇♯, i ≤ j implies |Yi| ≥ |Yj | and for all
i ∈ N |Yi| ≥ 0, so that the size of the powerset must converge in n steps to
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the limit l = |Yn|. Crucially, after n steps, since the size of the set must remain
constant, either all elements are stable or both S♯

u1
and S♯

u2
contain one element,

as otherwise the size would decrease.
For i ≥ n, we can link each element of Yi with an element of Yi+1. In

particular, we construct l sequences {Zr
i }i≥n (indexed by r), so that i ≥ n,

Yi = {Z1
i , .., Z

l
i}. The base case is Zr

n ≜ yn,r (where yn,r are elements of Yn).
For the inductive case we have:

� if Yi = Yi+1, then Zr
i+1 ≜ Zr

i for all r;
� otherwise all elements except one are stable, say the element corresponding
to the pth sequence. We de�ne Zr

i+1 ≜ Zr
i for r ̸= p and Zp

i+1 ≜ Zp
i ∇♯ x

(where x is the unstable element of Xi+1).

Consider Ẑr, obtained by retaining only the elements of Zr from the second case.
If Ẑr is �nite (in�nitely many elements were �ltered out) then Zr converges in
a �nite number of steps. Consider now the remaining m ≤ l sequences that
vary in�nitely many times4. They also must converge: indeed we can invoke the
convergence property of∇♯ as by construction Ẑr

i+1 ≜ Ẑr
i ∇♯ x and this sequence

must converge by de�nition of widening. To conclude, de�ne k as the maximum
of the number of steps required for each sequence to converge. It turns out that
Yk+i = {Z1

k+i, .., Z
l
k+i} = {Z1

k , .., Z
l
k} = Yk.

The same reasoning can be used to show that ∇♯
p is a lower widening. ⊓⊔

Remark 2. Before proving the correctness of Algorithms 2, 3 we provide a useful
decomposition of the points in the polyhedra join. Let P1, P2 be two closed
polyhedra and P ≜ P1 ⊔♯ P2. For any z ∈ P we have that

z =
∑
i

λivi +
∑
i

λ′iv
′
i +

∑
i

µiri +
∑
i

µ′ir
′
i,

where
∑

i λi +
∑

i λ
′
i = 1, {vi}i, {v′

i}i are respectively the vertices of P1 and P2

and {ri}i, {r′i}i are respectively the rays of P1 and P2. Three cases are possible.

1. If
∑

λi = 0, then z is a convex combination of vertices of P2 plus a non-
negative linear combination of rays from both P1 and P2;

2. If
∑

λ′i = 0, then z is a convex combination of vertices of P1 plus a non-
negative linear combination of rays from both P1 and P2;

3. Otherwise, let A =
∑

i λi, B =
∑

i λ
′
i so that

z = A

(
1

A

∑
i

λivi +
1

A

∑
i

µiri

)
+B

(
1

B

∑
i

λ′iv
′
i +

1

B

∑
i

µ′ir
′
i

)
= Ax+By,

where x ∈ P1 and y ∈ P2. Since A+B = 1, z ∈ [x,y]. ⊓⊔

4 m will turn out to be 0.
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Theorem 4. Algorithm 2 computes a re�nement of the �rst argument.

Proof. Assume that the re�nement succeeded, that is d♯ is replaced with d♯h.

Such value is obtained by joining d♯i with d♯1. To prove our result we need to
show that the join is exact, i.e., all the points (intersecting the integer lattice)

of d♯ are either in d♯1 or in d♯2 (as d♯i ⊆ d♯2).
Let z ∈ d♯. z must satisfy one of the three cases of Remark 2. Case 3 subsumes

case 1 as, by construction, the rays of d♯1 are also in d♯2. Therefore, we only need
to handle cases 2 and 3.

2) Consider z obtained as a combination of vertices of d♯1 and rays both in d♯1
and d♯i :

z =
∑
i

λivi +
∑
i

µiri +
∑
i

µ′iqi

where {vi}i are vertices of d♯1, {ri}i are rays of d
♯
1 and {qi} are rays exclu-

sively of d♯i (or that can not be obtained by a combination of rays of d♯1).

Since {qi}i are rays of d♯i they are also of d♯1,nc, thus they must violate c,

but satisfy all the other constraints of d♯1:

qi · a < 0 qi · ai ≥ 0

where {ai}i represents the other constraints of d♯1. We consider three cases:

� a · z ≥ b) z is in d♯1 as it satis�es all the constrains of d♯1
• z · ai =

∑
i λivi · ai +

∑
i µiri · ai +

∑
i µ
′
iqi · ai ≥ bi;

• z · a ≥ b by hypothesis.
Since z ∈ d♯1, then z ∈ d♯1 ∪ d♯2.

� b − 1 ≤ a · z ≤ b) By hypothesis b ∈ Z and a · z is a linear expression
of integral variables, thus the only assignments satisfying the inequality
yield either b or b − 1. If a · z = b we can conclude as in the previous
case. Otherwise, exists λ ∈ [0, 1] such that z = x+λ

∑
i µ
′
iqi, where x =∑

i λivi +
∑

i µiri + (1− λ)
∑

i µ
′
iqi is in d♯1 and saturates c. Therefore,

x ∈ d♯m and consequently z ∈ d♯m. For this reason there exist αi, βi, γi
such that z =

∑
i αiv

1
i +

∑
i βiv

2
i +

∑
i γir

′
i where

∑
i αi +

∑
βi = 1,

{v1
i }i are vertices of d

♯
1 saturating c, {v2

i }i are vertices of d
♯
2 saturating

c′, and {ri}i are rays of both d♯1 and d♯2 saturating c.
Consequently:

a · z =
∑
i

αia · v1
i +

∑
i

βia · v2
i +

∑
i

γia · r′i

=
∑
i

αi(b) +
∑
i

βi(b− 1) +
∑
i

γi(0)

which implies αi = 0, hence z ∈ d♯2. As in the previous case we conclude

z ∈ d♯1 ∪ d♯2.
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� a · z ≤ b − 1) Even in this case, we aim to prove that z ∈ d♯2. Let
A =

∑
i λivi · a +

∑
i µiri · a and B =

∑
i µ
′
iqi · a. Moreover, by con-

struction A ≥ b and B < 0, but by hypothesis b − 1 ≥ a · z = A − B.
Therefore, exists α ∈ [0, 1] such that A − αB = b − 1. Let z′ be∑

i λivi +
∑

i µiri + α
∑

i µ
′
iqi. By the previous point z′ ∈ d♯2. Finally,

z = z′ + (1− α)
∑

i µ
′
iqi, thus ({qi}i are rays of d

♯
2) z ∈ d♯2.

3) Consider z obtained as a combination of x ∈ d♯1 and y ∈ d♯i , that is z =
αx+ (1− α)y where α ∈ [0, 1]. We can consider three cases:

� a · z ≥ b) since y ∈ d♯1,nc we that
• z · ai = αx · ai + (1− α)y · ai ≥ bi;
• z · a ≥ b by hypothesis

thus z ∈ d♯1.
� b− 1 ≤ a · z ≤ b) As in 2

� a ·z ≤ b−1) We have b−1 ≥ a ·z = αx ·a+(1−α)y ·a, but as x ∈ d♯1,
x · a ≥ b, hence exists β ∈ [α, 1] such that βx · a+ (1− β)y · a = b− 1.

Let z′ = βx + (1 − β)y. By the previous point z′ ∈ d♯2. If β = 0, then
a · z = b− 1 and we can conclude as in the previous point. Otherwise if

β ̸= 0, x = z′−(1−β)y
β which implies z = α

β z
′ + (1− α

β )y, but as z
′ ∈ d♯2

and y ∈ d♯2, by convexity z ∈ d♯2. ⊓⊔

Theorem 5. Algorithm 3 computes a re�nement of the �rst argument.

Proof. Assume that the re�nement succeeded, that is d♯ is replaced with d♯1⊔♯d
♯
2.

We need to show that the join is exact, i.e., all the points (intersecting the integer

lattice) of d♯ are either in d♯1 or in d♯2.
Let z ∈ d♯. Hence, z must satisfy one of the three cases of Remark 2. Since

d♯1 and d♯2 share the same rays, cases 1 and 2 are subsumed by case 3. Therefore
we can assume z = αx+(1−α)y where α ∈ [0, 1]. By construction |vx−vy| = 1,
where vx and vy denote the value of the variable v respectively in x and y.
Consequently, the value of v in z cat not be an integer unless z = x or z = y,
thus proving the result. ⊓⊔
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