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The solution of the hypernetted-chain and Percus-Yevick approximations for

fluids of hard spherocylinders
A. Perera and G. N. Patey

Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Y6, Canada

(Received 22 January 1988; accepted 27 July 1988)

The hypernetted-chain (HNC) and Percus—Yevick (PY) approximations are solved
numerically for isotropic fluids of hard spherocylinders with length-to-breadth ratios ranging
from 2 to 6. The theoretical results are compared with the available Monte Carlo data for the
equation of state and the pair correlation function. The HNC theory was found to predict the
existence of a nematic phase at densities in reasonable agreement with recent computer

simulations.

. INTRODUCTION

In a recent' paper we have described a general method
which can be applied in order to solve the hypernetted-chain
(HNC) and Percus—Yevick (PY) integral equation theories
for fluids of hard nonspherical particles. Also in Ref. 1 ex-
plicit numerical results were presented for fluids of hard el-
lipsoids of revolution with length-to-breadth ratios a/b vary-
ing from 1.25 to 5. Comparison with the available Monte
Carlo results® strongly indicated that the HNC theory gives
a rather good description of the macroscopic properties of
this model predicting isotropic-nematic phase changes at
densities in good agreement with the Monte Carlo results.
The PY approximation, on the other hand, does not give an
orientational instability at densities lower than the Monte
Carlo freezing transition.

The purpose of the present paper is to describe a similar
study carried out for fluids of hard spherocylinders. The
HNC and in most cases also the PY equations have been
solved for a number of spherocylinders with length-to-
breadth ratios varying from a/b = 2 to 6 and the equations
of state and structural properties are compared with earlier
Monte Carlo calculations.*™” It is shown that as for ellipsoi-
dal fluids the HNC theory provides a relatively accurate de-
scription of spherocylinders in the dense isotropic phase
yielding pair correlation functions in good agreement with
the available Monte Carlo results. The HNC theory also pre-
dicts that the isotropic phase becomes orientationally unsta-
ble at densities in reasonable agreement with recent Monte
Carlo calculations.” In some cases the PY theory gives an
equation of state which is more accurate than the HNC ap-
proximation but the PY pair correlation functions are gener-
ally less accurate than the HNC results. Furthermore, as was
the case for hard ellipsoids, the PY approximation does not
appear to develop the long-range orientational correlations
necessary to destabilize the isotropic phase.

il. THEORY

The pair interaction u (r,Q,,€2,) characterizing fluids of
hard nonspherical particles is given by

w, if particles overlap

u(ryﬂlyﬂz) = { (1)

0, if particles do not overlap’
where Q, and @, denote sets of Euler angles describing the
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orientations of particles 1 and 2, and r =r, — r, is a vector
joining their centers. In order for Eq. (1) to be of use it is
obvious that the minimum contact distance between a pair of
particles must be a known function of the particle orienta-
tions. This is, of course, the case® for the spherocylinders
considered in the present paper.

The HNC and PY approximations for hard nonspheri-
cal objects are defined by the Ornstein—Zernike (OZ) equa-
tion

7(12) =§%fc<13)[n<32> LeBDIB), @)
together with the closure conditions
— 1 —7(12), ifoverlap
12) = , 3
<t {CCL(IZ), if no overlap 3

where 7(12) = A(12) — ¢(12),h(12), and ¢(12) are the
pair and direct correlation functions, respectively, p is the
number density and d(3) = d Q, dr;. In Eq. (3) ¢¢ (12)
denotes the HNC and PY closures which for nonoverlap-
ping pairs can be written in the form

cune (12) = h(12) —1ng(12) 4
and

cpy (12) =0, (5
respectively.

The method of solution of Egs. (2) and (3) for sphero-
cylinders is analogous to that applied in our earlier work on
hard ellipsoids and we will not give the details here. How-
ever, in order to introduce the notation it is necessary to
indicate that the solutions are obtained by expanding®™® the
correlation functions in a basis set of rotational invariants,
¢m(Q,,Q,,F), defined by

q)mnl(ﬂ Q f') _fmnl Z (m n l )

uv 19952 - it #/ vl A '

XRI QIR ()R, (F), (6)

where £ is a unit vector in the direction of r, ™"/ is a nonzero
constant, R, () is a generalized spherical harmonic,'
and the large brackets denote the 3-jsymbol.'* Thus, the pair
correlation function is given by
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h(12) = 3 honi(n@r(12) @)

mnl

g
and the macroscopic quantities of interest such as the Kerr
constant can be expressed' in terms of the A Z’V"’(r) coeffi-
cients.

. RESULTS

We have investigated fluids of spherocylinders with val-
ues of a/b ranging from 2 to 6. The numerical calculations
were performed as in Ref. 1. The integral equations were
solved by iteration employing 1024 grid points. Fora/b =2
and 3 the grid width used was 0.015 and this was increased to
0.02b for a/b = 6. The orientational integrals necessary in
the calculation of the 4 7%, () coefficients [cf. Eq. (12b) of
Ref. 1] were carried out using Simpson’s rule with 81 points.
The results reported in this paper were obtained using a basis
set which included all terms such that m,n<6 and /<10. A
few calculations were also carried out with different basis
sets (i.e., m,n,[ <6 and m,n<8, I<6) and, although some
basis set dependence can be detected at high densities, the
qualitative behavior of the thermodynamic and structural
properties does not change. The basis set dependence is in
fact similar to that found for hard ellipsoids as shown in Figs.
10 and 16 of Ref. 1. The very small scale oscillations discern-
ible in some plots [e.g., Figs. 6(a) and 8(b)] are strongly
dependent upon the variables of the numerical solution (i.e.,
the basis set employed, the number of points used in numeri-
cal integrations, etc.) and hence should not be regarded as
having physical significance. We emphasize that this com-
ment applies only to the fine “wiggles” and not to the gross
structural features discussed in the text.

A. The equation of state

The compressibility factors SP /p, where 5 = 1/kT, for
fluids of spherocylinders with a/b = 2,3, and 6 are plotted in
Figs. 1-3. The figures contain HNC and PY resuits obtained
using both the virial and compressibility equations [denoted
by (V) and (C), respectively]. The curves given by a density
expansion due to Boublik [cf. Eq. (14) of Ref. 11] as well as
Monte Carlo results for a/b = 2,3 (from Refs. 5 and 6), and
6 (from Ref. 7) are also included.

From Fig. 1 it can be seen that for a/b = 2 the present
results for spherocylinders follow the pattern previously ob-
served' (note erratum) for fluids of hard ellipsoids. That is
the PY(C) route provides the best agreement with the
Monte Carlo calculations. This is qualitatively similar to the
situation for fluids of hard spheres. However, for a/b =3
(cf. Fig. 2) and 6 (cf. Fig. 3) the accuracy of the PY(V)
and/or HNC(C) values can equal or better the PY(C) re-
sults.

Finally we note that the Boublik expansion which gives
very good values for P /p at a/b = 2(cf. Fig. 1) is accurate
only at low densities for a/b = 3 and 6 (cf. Figs. 2 and 3).

B. The pair correlation function

The general expansion (7) for the pair correlation func-
tion is defined in terms of the projections A mnl(py  For the

v

1 BP/p
20

16
1

FIG. 1. The compressibility factor for a/b = 2. The solid dots represent the
Monte Carlo data given in Refs. 5 and 6, and the crosses the density expan-
sion of Boublik (Ref. 11). The solid and dashed curves are the HNC results
obtained from the compressibility and virial equations, respectively. The
dotted and dash-dot curves are the PY results also obtained with the com-
pressibility and virial equations, respectively.

present axially symmetric model 4 = v = 0, and hence for
notational simplicity we drop these indices in the following
discussion.

1. Comparison with Monte Carlo results

Nezbeda® has reported some Monte Carlo results for the
angle-dependent pair correlation function in fluids of hard
spherocylinders. Nezbeda did not expand the pair correla-
tion function as in Eq. (7), but instead in products of spheri-
cal harmonics'® according to the equation

| BP/p *

FIG. 2. The compressibility factor for a/b = 3. The curves are as in Fig. 1.
The Monte Carlo results are from Refs. 5 and 6.
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] BP/p v,
12-

FIG. 3. The compressibility factor for a/b = 6. The curves are as in Fig. 1.
The Monte Carlo results are from Ref. 7.

h(12) =47 3 h i (NY5(QNY 7 X(Q),  (8)
mny
where we have used the superscript (¥) in order to avoid
confusing the coefficients in Eq. (8) with those of Eq. (7). In
the Appendix it is shown that if

Sr=J2n+ H2m+ 1), 9
then the 27" (r) and h [}, coefficients are related by real

space “y-transform” pairs.*® We obtain

m+n (m n !

{N) — mn —_ mnl
B (N =H ' (1) > v - o)h (r,

(10)

and the inverse relationship

min{a,n) 1
ST o,
(11)

Ry = (21 + 1)

x = —min(m,n)

where H ) (r) denotes a real space y transform. The
H " (r) are analogous to the Fourier space y transforms
introduced by Blum®*® and applied® in the resolution of the
OZ equation.

Thus given our ™" (r) projections it is easy to calculate
the coefficients obtained by Nezbeda.* Of course for the radi-
al distribution function, g°°(r) = A %°(r) + 1 (i.e., the first
coefficient) both expansions are equivalent. In addition to
g"°(r) Nezbeda also reports the coefficients 4 {3 (r) and
A $52 (r) which in terms of our projections are explicitly giv-
en by the expressions

1
hiea (r) =—\/—_-5-h2°2(r) (12)

and

1 ’ 2
hg\g("):?;hzm(r)— *gkzn(f)

2 224

+ 35 h=2(r) . (13)

The HNC and PY curves found for a/b =2 and

p* =0.2292, 0.3056, and 0.3820 are compared with Monte
Carlo results (the Monte Carlo values were obtained from
the curves given in Ref. 4) in Figs. 4(a)-4(c), 5(a)-5(c),
and 6(a)~6(c), respectively. From Figs. 4(a)—4(c) it can be
seen that at p* = 0.2292 the HNC and PY curves are similar

1.99
o]
U.O“:
1.
0.9 he (b)

-1.0 r : . r . . . .
1.0 1.5 2.0 2.5 3.0
r/b
1.0 h(:o (e)

r/b

FIG. 4. Comparison with Monte Carlo results (Ref. 4) for (a) g*°(r); (b)
hiM(ry; and (c) A0 (r) for a/b=2 and p* = 0.2292. The solid and
dashed curves are the HNC and PY results, respectively. The solid dots are
the Monte Carlo values.

J. Chem. Phys., Vol, 89, No. 9, 1 November 1988

Downloaded 18 Dec 2001 to 134.157.8.35. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5864 A. Perera and G. N. Patey: Fluids of hard spherocylinders

and are in good agreement with the Monte Carlo results. At
p* =0.3056 [cf. Figs. 5(a)-5(c)] there are significant dif-
ferences between the HNC and PY results and the HNC
theory is clearly superior. At the highest density
p* = 0.3820 [cf. Figs. 6(a)-6(c)] the HNC curves are still
in reasonably good agreement with the Monte Carlo values
but some discrepancies are evident particularly in the short-
range behavior. For example, the HNC theory gives a small
peak in g°°°(r) near r/b=1.15 [cf. Fig. 6(a) ] whereas only a
shoulder is found in the Monte Carlo curve.

For spherocylinders with a/b = 3 Monte Carlo results

o e (a)

(v)

1.0 1.5 2.0 2.3 3.0

-1.0 T T T T T T T 1
1.0 1.5 2.0 2.5 3.0

FIG. 5. Comparison with Monte Carlo results (Ref. 4) for (a) g*°(r); (b)
R (r);and (¢) B D) (r) forasb =2 and p* = 0.3056. The curves are as in
Fig. 4.

(a)

2.0+ g (r)

(v)

-1.5 ' T T | T T ' 1
1.0 1.5 2.0 2.5 3.0

FIG. 6. Comparison with Monte Carlo results (Ref. 4) for (a) g"°(r); (b)
Ao (r);and () 7530 (r) fora/b = 2 and p* = 0.3820. The curves are as in
Fig. 4.

for the pair correlation function have been reported only for
the relatively low density p* = 0.1432. These results are
compared with the HNC and PY theories in Figs. 7(a)-
7(c). It is evident from these figures that the HNC and
Monte Carlo curves are in excellent agreement for all three
projections. The PY approximation, on the other hand, gives
a rather poor description of the short-range behavior.

2. The radial distribution function and the structure
factor

For a/b =2 the HNC and PY results for g°°°(r) are
compared in Figs. 4(a), 5(a), and 6(a). As noted above,

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988
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(a)

157 g™(r)

r/b

0.5_] h(:ﬂ (v)

_l 0 T T f T L T T |
1.0 1.5 2.0 2.5 3.0
r/b
- ()
1.0 h(:.l, ©

r/b

FIG. 7. Comparison with Monte Carlo results (Ref. 4) for (a) g*(r); (b)
k() and (¢) A5 (r) fora/b = 3 and p* = 0.1432. The curves areasin
Fig. 4.

both approximations are similar at low density but differ as
p* is increased. Specifically, the HNC curve develops a
shoulder and then a peak at r/b~ 1.15 whereas the PY theo-
ry does not show this short-range structure rising more or
less smoothly to a first maximum at /b= 1.5. A shoulder at
r/b=1.15 was also found in the Monte Carlo calculations.
The HNC and PY radial distribution functions for
a/b = 3 are compared in Figs. 8{a) and 8(b). It is obvious
that the different approximations predict very different re-
sults as the density is increased. For example, the HNC
curve has a strong distinct peak at /b= 1.15 which grows

" 000
g (r) {a)

0.04+——— —
1.0 1.5 2.0 2.5 3.0
r/b
] gm(r) )
1.5+

o

FIG. 8. Radial distribution functions for a/b == 3 obtained using the (a)
HNCand (b) PY approximations. The dashed, dotted and solid curves are
for p* = 0.1, 0.19, and 0.23, respectively.

with increasing density whereas the PY result exhibits very
little structure. Unfortunately, for a/b = 3 there are no
Monte Carlo results for g?*°(r) at high density. Therefore,
we cannot conclude with certainty which closure approxi-
mation is the more accurate. However, the comparisons
made above with Monte Carlo calculations for a/b =2 at
high density {cf. Fig. 6(a)] and for a/b = 3 at low density
[cf. Fig. 7(a) ] strongly suggest that the HNC theory is clos-
er to the true result. The HNCand PY results fora/b = 6 are
shown in Figs. 9(a) and 9(b). Here again at high density the
HNC theory gives a relatively sharp peak at short-range
whereas the PY curves exhibit only weak structural features.

We remark that at high density the HNC radial distri-
bution functions for spherocylinders are generally more
structured than the results obtained for ellipsoids of the same
length-to-breadth ratio. Most notably the peak at short
range is not so sharp and pronounced for fluids of hard ellip-
soids (cf. Fig. 8 of Ref. 1).

The structure factor §(k) is defined by the equation

S(k) =14 ph " (k) , (14)
where 2 °%° (k) is the Fourier transform of # °°° (). The struc-
ture factors given by the HNC theory for a/b = 3 and 6 are
shown in Figs. 10(a) and 10(b). It can be seen that at high
density the S(k) have oscillatory structural features which
change as a/b is increased. For a/b =3 [cf. Fig. 10(a)]

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988
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) (a)

.27 000 (v)
127 g™(r)

r/b

FIG. 9. Radial distribution functions for a/b = 6 obtained using the (a)
HNCand (b) PY approximations. The dashed, dotted, and solid curves are
for p* = 0.01, 0.045, and 0.07, respectively.

S(k) has a shoulder at bk ~ 3 and a peak at bk = 6. When a/b
is increased to 6 [cf. Fig. 10(b)] the shoulder becomes a
weak peak. The peak at bk~6 decreases in height as a/b
increases and is not very pronounced for a/b = 6. The Per-
cus—Yevick structure factors are qualitatively similar to the
HNC results.

At high density the structure factors for spherocylinders
differ significantly from the corresponding results for ellip-
soids. In particular, for a/b = 3 the ellipsoids give essentially
a single peak at kb~2 and the oscillatory structure with
peaks at kb= 6, 12, etc. [cf. Fig. 10(a)] is not present (cf.
Fig. 12 of Ref. 1). This reflects the differences in the radial
distribution functions noted above.

C. Stability of the isotropic phase and the static Kerr
constant

For axially symmetric nondipolar particles the static

Kerr constant X is given by"'%"?
f220 ~
K:[;’A[1+ 7 phzzo(o)]’ (1%
where
ilzzo(o) :47Tfr2h 220(r)dr (16)

1 -5_' S(k) (a)
1.0- = —
0.54 /
I e e
0 3 6 S 12 15
kb

(v)

FIG. 10. Structure factors given by the HNC approximation for: (a) a/
b =3, the dashed, dotted, and solid curves are HNC results for p* = 0.1,
0.19, and 0.23, respectively; (b) a/b = 6, the dashed, dotted, and solid
curves are HNC results for p* = 0.01, 0.045, and 0.07, respectively.

is the value of the Fourier transform 4 *2°(k) at k = 0, and 4

is a constant dependent only upon single particle properties.

It is shown in Ref. 1 that K can also be expressed in terms of

the direct correlation function according to the equation
fZZO -1

K=pB4]1-— oE pc?°(0) , (17)
where ¢22°(0) is defined as in Eq. (16).

It can also be shown"'>'* that the absolute stability lim-
it of the isotropic relative to the nematic phase is signalled by
the divergence of 4 22°(0) or equivalently of K. Thus as the
isotropic phase becomes orientationally unstable the inverse
Kerr constant K ~ ' — 0. Itis important to emphasize that the
condition K ~' -0 does not determine the thermodynamic
phase transition, but rather a point on the spinodal line. For
hard objects this means that the density at which K 7' =0
establishes a stability limit in the sense that at higher densi-
ties the isotropic phase cannot exist even as a metastable
state.

The reduced Kerr constants 4K ~! for the various
fluids studied are plotted in Fig. 11. The curves obtained are
obviously very similar to those obtained for fluids of hard
ellipsoids (cf. Fig. 17 of Ref. 1). That is for the same value of
a/b the HNC curves fall to zero much more rapidly than the
PY results. The HNC spinodal points occur at p*~0.238

J. Chem. Phys., Vol. 89, No. 9, 1 November 1988

Downloaded 18 Dec 2001 to 134.157.8.35. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



A. Perera and G. N. Patey: Fluids of hard spherocylinders 5867

0.0 LE 1 iy ! ! —
0.0 01 0.2 03 04

/o %k
FIG. 11. The reduced inverse Kerr constant as a function of density. The
values of a/b for the various curves are indicated on the plot. The calculated

and extrapolated HNC curves are represented by solid and dotted lines,
respectively. The dashed curves denote the PY results.

and 0.079 for a/b = 3 and 6, respectively. For a/b = 3 the
HNC value does not agree with the Monte Carlo calcula-
tions of Baron® which did not indicate a nematic phase for
this system. However, for a/b = 6 Frenkel has recently re-
ported’ an isotropic—nematic transition at p* =0.089 which
is somewhat higher than the density of the HNC spinodal
point. Thus, it appears that the HNC theory predicts that the
isotropic phase becomes unstable at densities which are a
little lower than the true values.

As previously observed' for ellipsoidal systems, the PY
theory for spherocylinders (at least for densities where nu-
merical solutions can be obtained) does not appear to devel-
op the long-range orientational correlations necessary to de-
stabilize the isotropic phase. Thisis illustrated in Figs. 12(a)
and 12(b) where we have plotted the HNC and PY resulits
for h22°(k) for a/b = 6. We note that at low density both
theories are very similar but the divergence of 4 22°(0) evi-
dent in the HNC curves does not occur in the PY case.

1V. CONCLUSIONS

In this paper we have given numerical results obtained
by solving the HNC and PY theories for fluids of hard spher-
ocylinders with length-to-breadth ratios of 2, 3, and 6. Com-
parisons with existing Monte Carlo data show that for
a/b = 2, the PY compressibility equation is the most accu-
rate route to the equation of state. However, for the larger
values of a/b this is no longer true and other routes [i.e.,
PY (V) and/or HNC(C) ] can yield results of equal or better
accuracy.

1239

100+

h ®(k) (@

100

FIG. 12. The Fourier transform # 2*° (k) for a/b = 6 obtained using the (a)
HNC and (b) PY approximations. The curves are as in Figs. 9.

For a/b = 2 and 3, we have compared the radial distri-
bution functions as well as two additional coefficients in the
spherical harmonic expansion of g(12) with Monte Carlo
results reported by Nezbeda.* For these functions the HNC
theory is found to be in very good agreement with the Monte
Carlo calculations. The PY approximation is less accurate
especially at the higher densities.

We have also attempted to locate the stability limit of
the isotropic phase by determining the density at which the
static Kerr constant diverges. Comparisons with Monte
Carlo results indicate that the stability limits given by the
HNC theory are about 10% lower than the true values.
These observations are consistent with the HNC results for
hard ellipsoids. The PY theory, on the other hand, does not
produce long-range orientational correlations at densities
for which we were able to obtain numerical solutions. Again
this is in accord with our earlier calculations for hard ellip-
soids.
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APPENDIX: THE DERIVATION OF EQ. (10)

Here we assume that @,’fv’”( 12), A(12), and f ™™ are as
defined by Egs. (6), (7), and (9), respectively. Then if we
choose r,, to be aligned with the laboratory fixed z axis such
that

Rﬁlo(f'\zgi)zéaoy (A1)
and using the properties of the 3-j symbols we obtain
min(m,n)
r(12) =3 > H[7 (r)
mnl y = —min(m,n)
Hv
XJ2m+1)2n+ DR, (HR™ ,(2),
(A2)
where
m+n m n l
H7 (r)= ( )h ey (A3)
X = |m— nj y 4 - X 0 #

is the y transform of Blum®® defined in r space. The inverse
of Eq. (A3) is given by*®

min{(m,n) (m n 1)
H™ (r).
Y= ~§n(m,n) X —X 0 o
(A4)

One can check that inserting Eq. (A4) into Eq. (7) leads to
Eq. (A2) by using Eq. (A1) and the identity'®

m n IN(m n l)
Z(ZHU(X —X 0)(# —p o) T
(AS)

RIoR) = 21+ 1)

Equation (A2) is a generalization to arbitrary symmetry of
an expression often found in the literature** for axially sym-
metric molecules. For that particular case g = v =0, and
the Wigner matrix elements occuring in Eq. (A2) are given
byIO

47
R?(1)= [———Y¥(1). A6
w (D) \/2m+1 m (D (A6)
This leads immediately to the result
h(12)=477'ZH(')"o';}(r)Yﬁ.(l)Y,f’((Z), (A7)

mny

from which Eq. (10) can be readily deduced.
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