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The isotropic-nematic phase transition is investigated for several model liquid crystals using
the density functional method. The models considered are hard ellipsoids of revolution (both
prolate and oblate cases), hard spherocylinders, and two additional fluids characterized by
pair potentials of a generalized Maier-Saupe type. The direct pair correlation functions for the
isotropic phase are obtained by numerical solution of the hypernetted-chain (HNC) and
Percus—Yevick (PY) integral equation theories. It is shown that second order density
functional theory is strongly dependent upon the approximation used for the isotropic direct
pair correlation function. In all cases the density functional results are qualitatively consistent
with conclusions based upon orientational stability criteria.

I. INTRODUCTION

In previous articles'™ we have solved the hypernetted-
chain (HNC) and Percus-Yevick (PY) integral equation
theories for several model fluids which form nematic phases.
These include models characterized by potentials of the
Maier-Saupe type,'™ as well as fluids of hard ellipsoids of
revolution®® and spherocylinders.>®” In this earlier work
stability criteria'* were examined in order to determine
the absolute stability limit of the isotropic phase. The stabil-
ity criterion applied essentially amounted to determining the
state points at which the reciprocal Kerr constant K ' = 0.
Of course this condition determines the spinodal line rather
than points on the thermodymamic coexistence curve. The
purpose of the present paper is to locate the true isotropic—
nematic phase transitions by applying the density functional
approach.

In recent years density functional theory has been wide-
ly and fruitfully employed in the study of the freezing transi-
tion®'¢ in both simple®~'* and molecular'*-'® systems. The
density functional method has also been used in investiga-
tions of the isotropic-nematic'’>' and nematic-smectic??
phase transitions for several model liquid crystals. Also it is
worth noting that the much earlier work of Onsager,>* Lash-
er,” and Workman and Fixman®’ on the isotropic-nematic
transition for systems of hard rods and spherocylinders is
closely related to what is now called density functional theo-
ry.

A key ingredient in the density functional formalism is
the direct pair correlation function commonly denoted
¢'?(12). For example, in order to apply the density func-
tional approach to determine the isotropic—nematic transi-
tion it is necessary to know ¢‘*’(12) for the isotropic phase.
In general the determination of ¢‘*’(12) for nonspherical
particles is a nontrivial task and this has posed a problem in
the application of the density functional method to such sys-
tems. However, our recently developed methods'**® for
solving integral equation theories now provide HNC and PY

*' Laboratoire associé au Centre National de la Recherche Scientifique.
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results for ¢ (12) for nonspherical models, and it is these
approximations for ¢/ (12) which are used in the present
calculations. For the models considered it is found that den-
sity functional theory predicts isotropic—nematic transitions
at state points which lie close to the spinodal curves deter-
mined by the orientational stability condition.

Il. THEORY

Density functional theory has been clearly discussed
several times in the recent literature'*'* and the essentials of
the approach are well known. Therefore, in the present pa-
per we shall simply quote the general result and discuss its
application to the problem of interest.

In the density functional analysis the grand potential
Q = — PV ( Pisthe pressure and V the volume of the sam-
ple) is treated as a functional of the singlet distribution func-
tion p(1). The central equation obtained'*"* for the differ-
ence in the grand potential between two states can be
expressed in the form

BAQ = AL p] —FQL pol =fd(1) {p(l)ln (;’0((11)))

() —po(m} —%fd(l)du)c(”(lz;[po])

% [ p(1) —po(1)] [ p(2) — po(2)] ——é—

xfd(l)d(2>d(3>cm<123;[p0])[p(l) — po(D)]

X[p2) —po(D) [ p(3) —pe(3)] + -+, (1)

where B = 1/kT, ¢'¥(123) is the direct three-body correla-
tion function, and [ p] is used to indicate functional depen-
dence on p(1). Also in Eq. (1), (1)=(r,»,) and d(1)
= dr, do, where r; and o, describe the position and orien-
tation of particle 1, respectively. We remark that the higher
order terms in the SA) expansion depend upon the higher
order direct correlation functions. Since reliable approxima-
tions are not presently available for the three-body and high-
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er order direct correlation functions, we follow previous
authors'”?” and truncate Eq. (1) after the second order
term.

In order to apply Eq. (1) to the isotropic-nematic tran-
sition we make the identifications

p(1) =py(1) (2)
and

pol1)y =p,; (1) =n, /47 =H,, (3)
where the subscripts fand V denote the isotropic and nema-
tic phases, respectively, and n, = N /V is the number den-
sity of the isotropic phase. Keeping terms to second order
Eq. (1) then yields

/J’An=fd<1> {pN(l)ln(pN_(l)
n

)— [Pw(l)—ﬁ:]]

4
—%fd(l)dm o (12:7,)

X[py (1) —7,] [ px(2) — 7] 4)

In order to find coexisting isotropic and nematic phases Eq.
(4) is minimized with respect to p (1). Coexistence occurs
when the condition'®

pAQ =0 (5)
is satisfied.

In the nematic phase the singlet distribution function
can be expanded in the form

pv(D)=py(e@)=ny | 1+ ¥ a,P,(cos8)],(6)

m>2

whereny = ny /4, 8 describes the orientation of the molec-
ular symmetry axis with respect to the director, and the
P, (cos @) are the usual Legendre polynomials. The coeffi-
cients a,, are given by

a,=Q2m+1)P,, (7)
where
— 1
Pm :n—pr(("))Pm(w)dm (8)
N

defines the usual order parameters. It is convenient to re-
write Eq. (6) in the form

H oA
pr(0) =7, [—'V——+ 1+— 3 a, P, (cos 9)]

iy Ny moa

=n, [ 1+ E b, P, (cos H)J
0
=1, F(cos 9), 9
where

Ry — 1y
by = ——H (10)
n;
is the fractional change in density associated with the iso-
tropic-nematic transition, and

Ry .
bm :(;—>alrl 1fm>2 (11)
ny,

We now assume axially symmetric particles and expand
the direct correlation function for the isotropic phase in the
form'—*2*

i (w,,05,r) = Z ()P (@ ,0,F), (12)
ml

wherer =r, —r,,f =r/|r|, and the @"""!(12) are rotational
invariants as defined by Eqgs. (5) and (36) of Ref. 26. We
note that expansion (12) has been frequently employed in
our earlier work.'~*?* Using Egs. (9), (12), and the ortho-
gonality properties of the ®""/(12), Eq. (4) can be reduced
to the expression

+ 1
/ﬁ*ﬂzﬂf dx F(x)In F(x)
V 2J

2 =minQ)
‘“nlbo"‘?‘l L2 (O),b,zm (13)
2 70 (2m+1)°
where x = cos 8, F(x) is as defined in Eq. (9), and

x

Z,mmO(O) —_ 477_ f rzcmm()(r)dr ( 14)

0

is the Fourier transform of ¢""°(r) evaluated at k = 0.
Equation (13) can be minimized with respect to the coeffi-
cients b, using standard variational methods. We note that
the minimization must be carried out subject to the physical
constraint that F(x) be positive for all x.

11l. RESULTS AND DISCUSSION

Fluids of hard ellipsoids and spherocylinders can be
conveniently characterized by specifying the length-to-
breadth ratio a/b, and the reduced density n* = n, b*. In
our earlier work®* HNC and PY results were obtained for a
wide range of a/b values and densities. The present density
functional calculations for hard particles were carried out
using both HNC and PY values for the #""°(0), and terms
to order m = 6 were included in Eq. (13). It was found that
the existence or nonexistence of an isotropic-nematic transi-
tion strongly depends upon the approximation used for the
direct correlation function in the isotropic phase. Indeed, for
densities where we were able to obtain numerical solutions of
the PY equations, the PY values did not give a transition for
any of the systems considered in the present calculations.
The HNC results, on the other hand, readily lead to isotrop-
ic—nematic transitions provided that the particles are suffi-
ciently anisotropic.

The density functional calculations were in fact unam-
biguous. In the cases where no phase transition was found
minimization of Eq. (13) yielded only the trivial isotropic
solution b,, = 0 for all values of n¥ for which HNC and/or
PY results could be obtained numerically. The behavior of
Eq. (13) for the fluids where transitions are observed is quite
remarkable and is illustrated in Figs. 1{a) and 1(b). For
these systems as well minimization of Eq. (13) gives the
isotropic result b,, = 0 over most of the density range con-
sidered. However, very close to the transition all the b, coef-
ficients “jump” to finite positive values in a discontinuous
manner. The density is then increased slightly until the coex-
istence condition SAQ/F = 0 is met, precisely determining
the location of the isotropic—nematic transition. We note
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FIG. 1. The values of SAQ/V, b, and the order parameters given by mini-
mization of Eq. (13) in the vicinity of the phase transition for (a) ellipsoids
and (b) model I. The discontinuous behavior is evident in the plots.

that the behavior is very similar for the simple temperature
dependent models discussed below.

It is useful at this point to very briefly recall our earlier
work '™ which attempted to investigate the phase behavior
of the present models by determining the absolute stability
limit of the isotropic phase. The general condition for stabil-
ity of the isotropic phase can be derived® and expressed in the
form'—?

- &m"’°(0)]>0. (15)
2m + 1

Furthermore, it is not difficult to show'™? that it is the
growth (i.e., with increasing density or decreasing tempera-
ture) of long-range orientational correlations which lead to
the violation of this condition and the destabilization of the
isotropic phase. In our actual calculations'™ the m = 2 case
was used and the stability limit was taken to be the state
point at which the reciprocal Kerr constant

ﬂAK“z[l—ﬁSiém(O)]=0, (16)

where A4 is a molecular constant independent of state param-
eters. However, it can be seen from Figs. 2 and 3 below that
the violation of Eq. (15) occurs essentially simultaneously
for all values of m.

Based upon this analysis the following conclusions were
reached. For the hard prolate ellipsoids’ and spherocy-
linders* considered the PY theory did not give the long-
range orientational correlations necessary to destabilize the
isotropic phase. On the other hand, the HNC theory did
predict a nematic phase for both models if a/b>3. We have
also carried out a single calculation for oblate ellipsoids with
a/b = 1/3 and the orientational stability criteria yield re-
sults which are very similar to the prolate case. Qualitative-
ly, the present density functional calculations are totally
consistent with the stability analysis.

The fact that the PY and HNC approximations give
different results is not surprising if one examines the density
dependence of the ¢™°(0). This is illustrated in Fig. 2 where
we have plotted HNC and PY results for n,6™™(0)
(m = 2,4,6) for ellipsoids with a/b = 3. [ When considering
this figure it is interesting to recall that at the level of On-
sager theory the ¢7™°(0) are positive density independent
constants,'”™® and hence the n,&"°(0) will be simple lin-
early increasing functions of n,.] It can be seen from Fig. 2
that both the HNC and PY values increase with »¥ for all
three projections. However, the HNC results deviate more
rapidly from the low density linear behavior and increase
very steeply in the vicinity of the phase transition {note that
Eq. (16) is satisfied when »,¢**°(0) = 5]. These steep in-
creases can in fact be related to the growth of long-range
orientational correlations.'™ It is possible that the PY theo-
ry would eventually give a transition if numerical solutions
could be obtained at higher values of n¥. It is likely, however,
that such a transition would lie above the freezing density.
Finally, we note that the n,6™7°(0) curves for other fluids of
ellipsoids and spherocylinders with a/b>3 (ora/b=1/3 in

FIG. 2. The density dependence of n,e""(0) for ellipsoids with a/b = 3.
The solid and dashed curves are HNC and PY results, respectively.
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TABLE I. Summary of results for hard ellipsoids and spherocylinders. The
order parameters quoted are the values at the isotropic—nematic transition
density.

n¥ (isotropic—nematic) Order parameters

a/b SL* DFT® MC nmy./B b P, P, P,
(A) Ellipsoids
3 0276 02662 0323 0038 0.0437 0.657 0.358 0.127
1/3 0.090 0.0878 0.108 0.037 0.0372 0.638 0.350 0.131
5 0122 0.1124 0.063 0.072 0.649 0356 0.129

(B) Spherocylinders
0.023 0.041 0.635 0.356 0.130
0.044 0.043 0.625 0333 0.120

30238 0231
6 0079 0073 0.089

“The stability limit as determined by Eq. (16).

®The results given by density functional theory with HNC direct correla-
tion functions.

¢ Monte Carlo results from Refs. 5 and 27.

the oblate case) are very similar to those shown in Fig. 2, and
that the remarks made above apply equally to those systems.

For the systems which exhibit isotropic-nematic phase
changes, the thermodynamic transition densities and stabil-
ity limits together with the values (calculated at the transi-
tion density ) of other properties of interest are given in Table
L. The quantity n,y /8= [1 — n,¢""°(0)] ~'is the reduced
isothermal compressibility of the isotropic fluid. We empha-
size again that all results given in Table I were obtained using
the HNC direct correlation functions since no phase changes
were found with PY values. From Table I it can be seen that
the transition densities obtained in the density functional
calculations lie quite close to the stability limits given by Eq.
(16). The fractional density changes b, found are rather
small which is consistent with the fact that these hard mod-
els are not very compressible at the transition densities (note
the values of n,y,./f8 in Table II). Also we observe that for
all three fluids the values of the order parameters at the tran-
sition density are similar.

For prolate ellipsoids with a/b = 3 it is possible to com-
pare the present theory with Monte Carlo simulations,” and
with previous density functional calculations'®=?' in which
different approximations for ¢;*’(12) were used. The Monte
Carlo transition density is given in Table IT and we note that
the present value is about 209 lower than the Monte Carlo

result. The fractional density change reported in Ref. 5 (i.e,,
0.02) is smaller than the value we obtain. It is not clear
whether the discrepancies between the present calculations
and the Monte Carlo results are due to the HNC theory, or to
the neglect of the three-body and higher order terms in Eq.
(1). Singh and Singh'® report the value 0.195 for the transi-
tion density of this system obtained using a direct correlation
function constructed from the PY result for hard spheres.
The values of b, P., and P, given in Ref. 19 are 0.040, 0.547,
and 0.197, respectively. We remark that other authors'**-?
have pointed out errors in the work of Singh and Singh
which seriously alter the results obtained for the isotropic
fluid to plastic crystal transition. However, these errors per-
tain to the treatment of the solid state and we would not
expect them to have influenced the results reported in Ref.
19 for the isotropic-nematic transitions (cf. Ref. 20). Re-
cently, additional density functional calculations using other
approximations for the direct correlation function have been
reported by Marko?” and by Baus ez al.”' The transition den-
sity and fractional density change obtained by Marko™ are
0.313 and 0.003, respectively. The corresponding values re-
ported by Baus et al.”>' are 0.300 and 0.025.

Monte Carlo results have also been reported” for oblate
ellipsoids witha/b = 1/3 and it can be seen from Table I that
(as for prolate particles) the present transition density is
lower than the Monte Carlo value. It was observed in Ref. §
that if a reduced density which takes the difference in vol-
ume of prolate and oblate ellipsoids into account (e.g., mul-
tiply the oblate densities in Table I by 3) is used then the
prolate (a/b = 3) and oblate (a/b = 1/3) transitions occur
at essentially the same value. We note that this is also true of
the density functional results.

For spherocylinders with a/b = 6 the Monte Carlo iso-
tropic-nematic transition density recently obtained by Fren-
kel?” is also included in Table I. Again we see that second
order density functional theory combined with the HNC di-
rect correlation functions gives a transition density which is
about 149 lower than the true value. It is also worth noting
that the transition densities given by Onsager—Lasher”>**
theory [cf. Eq. (10) of Ref. 24] for spherocylinders with
a/b =3 and 6 are 1.051 and 0.168, respectively. These val-
ues are obviously much higher than the present results.

In addition to the fluids of hard particles discussed
above, density functional calculations were carried out for
“soft” models defined'* by pair potentials of the type

TABLE II. Summary of results for the Luckhurst-Romano models with n¥ = 1,0 = 0.79 for model I and
n¥ = 0.7496 for model I1. The order parameters given are the values at the isotropic-nematic transition tem-

perature.
T* (isotropic-nematic) Order parameters
Models  SL* DFT® MC*  n,y,/B by P, P, P, P,
I 0.790 0.875 0.890 0.265 0.312 0.638 0.257 0.067 0.023
11 1.125 1.280 1.130 0.275 0.346 0.647 0.266 0.067 0.023
*Asin Table I.
" As in Table I.

¢ Monte Carlo results from Ref. 4.
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u(12) = uy(r) + u,(r)Py(cos y)
= uy(r) + uy(r)®>?°(12), (17)

where 7 is the angle between the symmetry axis. In the ear-
lier Monte Carlo simulations of Luckhurst and Romano,*
and in our subsequent HNC calculations’ u,(r) was taken to
be the usual Lennard-Jones interaction and two different
forms were considered for u,(r). These were

o

6
uz(r)=—4/16( ) (model 1) (18)

-
and

u(r) = —44e [ (2)12 + (1)6] (model II), (19)

r r

where € and o are the Lennard-Jones parameters, and 4 is a
variable determining the strength of the anisotropic interac-
tion. In Ref. 1 the models defined by Egs. (18) and (19) are
referred to as models I and II, respectively, and we shall
continue this designation here.

For models I and Il it is convenient to introduce the
reduced temperature 7* = kT /e and the reduced density
n¥ = n,0°. These reduced parameters together with A are
sufficient to determine the state of the system. As in our
previous work' the value A = 0.15 is used in the present cal-
culations. Also as in Ref. 1 the densities considered are
n¥ = 0.79 for model I and 0.7496 for model I1 since these are
the densities for which Luckhurst and Romano®* have re-
ported isotropic-nematic transition temperatures.

For these models the density functional theory was ap-
plied using reference HNC (RHNC) values' for the
™™ (0). The temperature dependence of ¢™"°(0) at fixed

n;C™Mo(0)
50~
220
40
30+
] 440
20t
1O+
660
— T 1:‘/1 ] 1
1.0 09 08 07

FIG. 3. The temperature dependence of n,¢”"(0) for model L. The curves
are HNC results.

density is shown in Fig. 3 for model I. Terms uptom =8
were included in the calculations. Equation (13) was mini-
mized at fixed n¥ for different values of 7* and the results
obtained for model I are illustrated in Fig. 1. At high tem-
perature minimization of Eq. (13) gives only the isotropic
solution b,, = 0. However, close to the transition tempera-
ture the order parameters jump to finite positive values. The
condition SAQ/V = 0 can then be easily satisfied by a small
decrease in T*. Model II gives results analogous to those
shown in Fig. 1(b). Obviously, this behavior is qualitatively
similar to the systems of hard particles described above ex-
cept that we are now considering temperature instead of den-
sity dependence. Also we remark that the temperature de-
pendence of the ¢™"°(0) shown in Fig. 3 is much like the
density dependences found for systems of hard particles
which show isotropic-nematic transitions. Specifically, the
¢™m°(0) are positive and increase at an increasing rate as T *
is decreased. This parallels the increasing density behavior
observed for fluids of hard ellipsoids and spherocylinders
(cf. Fig. 2).

Numerical values for the properties of interest for mod-
els I and II are given in Table II. For both models the ther-
modynamic transitions given by the density functional cal-
culations occur at temperatures which are considerably
higher than the absolute stability limits given by the HNC
theory. The transition temperatures obtained are in reasona-
bly good agreement with the Monte Carlo values.* Finally
we note that the fractional changes in density found for both
models I and II are about an order of magnitude larger than
those obtained for hard ellipsoids and spherocylinders (cf.
Table I). This is not surprising in view of the fact that for
these soft models the isothermal compressibilities are also
nearly an order of magnitude larger than the compressibili-
ties for the fluids of hard particles.

IV. SUMMARY AND CONCLUSIONS

The density functional method has been applied in order
to obtain the isotropic-nematic transition densities for fluids
of hard ellipsoids and spherocylinders. The required direct
pair correlation functions for the isotropic phase were deter-
mined by means of numerical solutions of the HNC and PY
integral equation theories. It is shown that for fluids of hard
nonspherical particles even the qualitative results given by
density functional theory are strongly dependent upon the
approximation used for the direct correlation function. A
striking example of this is that PY results do not give an
isotropic—nematic transition for any of the fluids considered.
The HNC approximation does lead to phase transitions for
hard prolate ellipsoids and spherocylinders if a/b>3. This is
also true for hard oblate ellipsoids with a/b = 1/3. We em-
phasize that in this regard the present density functional cal-
culations are consistent with the orientational stability anal-
ysis described in Refs. 2 and 3.

In addition to the hard models, we have also considered
two soft potentials which were originally the subject of a
Monte Carlo study by Luckhurst and Romano.* For these
systems second order density functional theory coupled with
the HNC approximation gives transition temperatures con-
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sistent with the stability analysis and in relatively good
agreement with the Monte Carlo values.
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