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1 Introduction

“ Une courbe sans tangente où l’apparence géométrique fut en accord avec le fait dont il s’agit.”

“ A curve without any tangent where the geometric appearance would be in agreement with the
fact in question.”

Helge Von Koch [vK04]

The pathological, everywhere continuous, while nowhere differentiable function introduced by
Karl Weierstrass [KH16], [Wei75], has struck the mind and the imagination of many mathematicians.
And even the numerous examples and variants that later emerged – from the work of very famous
mathematicians such as Jean Gaston Darboux [Dar75], [Dar79] and Ulisse Dini [Din77], [Din78], to
name just a few – visibly did not seem satisfactory from the geometer’s point of view of Nils Fabian
Helge von Koch. This might explain the introduction, in 1904, of the so-called Koch curve [vK04].

The initial idea seems very simple: take the unit line segment, divide it intro three equal parts;
then, replace the middle segment by the other two sides of an equilateral triangle. You then have
a total of four line segments, to which you apply the same process: divide each segment into three
equal parts, and replace the middle segment by the other two sides of an equilateral triangle; at each
step, the sidelength of each of the line segments is divided by 3. And you iterate endlessly and in-
finitely . . . . So that, in the end, you obtain a nowhere differentiable curve! Unlike in the case of the
Weierstrass Curve, or of the Darboux Curve, or else of the Dini Curve, the construction process is
purely geometric. You do not have to rely on any complicated analytic expression – “ une expression
analytique qui cache la nature géométrique de la courbe correspondante, de sorte qu’on ne voit pas,
en se plaçant à ce point de vue, pourquoi la courbe n’a pas de tangente” (“an analytic expression
which hides the geometric nature of the corresponding curve, in such a way that one does not see,
from this point of view, why the curve does not have any tangent”), as was explained by Helge von
Koch in [vK04], at a time when many mathematicians écrivaient en français – wrote in French.

Since the tangent to a geometric curve is given by the limiting position of the secant, one easily
understands why this curve does not – and cannot, have any tangent.

Things could have remained at that stage without Benôıt Mandelbrot. In [Man77], [Man83],
B. Mandelbrot highlighted the fractal nature of the Koch Curve. He also described the resulting
variants which can be obtained by slightly changing the geometric process in the construction of the
curve: for instance, the rectangular Koch curve is obtained by dividing the initial line segment into
four equal parts – instead of three; then, the two middle segments are replaced by the three other
sides of a square, in the construction of the curve, so that the resulting squares are opposite to each
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other on either side of the initial line. And so on . . . .

Certainly thanks to Mandelbrot, the fractal Koch Curve became increasingly popular among sci-
entists, while also gaining interest in the mathematical community. Analysis was back: how could one
define function spaces in the case of this everywhere singular boundary? Those questions were partic-
ularly studied by Alf Jonsson and Hans Wallin in [JW84], [Wal91], for instance, who obtained trace
theorems which are still very useful (see, for example, our work on the Weierstrass Curve [DL24b]).

Nearly at the same time, physicists came accross anomalous diffusion, and unusual vibration modes
in disordered media; see the works of Rammal Rammal and Gérard Toulouse in [RT83], Samuel H. Liu
in [Liu86], or of Shlomo Havlin and Daniel Ben–Avraham [HBA87], [bA91]. As is explained in, [bA91],
“ the Koch curve can serve as a model for a linear polymer chain.” It goes without saying that, as
a result, the Koch Curve gained in popularity; more and more people began to work on the subject,
a phenomenon which went hand in hand with an exponential increase in the number of published
research articles.

In this ocean of papers, our interest focuses on the very specific vibrational properties of the Koch
Curve. As is pointed out in [LP95], Koch–like, fractal shaped coastlines, exhibit very powerful damp-
ing properties – as if fractal-shaped cells captured sound waves. This phenomena was experimentally
verified by Bernard Sapoval and his collaborators; see, for instance, [Sap89], [SGM91], [SG93], [HS98].
It was later rigorously established in [LP95]. Further results along these lines have since been obtained
by Nizar Riane in [Ria22].

From a theoretical point of view, our intuition is that those properties are directly connected to the
Complex Dimensions of the Koch Curve. Recall that the theory of Complex Dimensions, developed for
many years now by Michel L. Lapidus and his collaborators in [Lap91], [Lap93], [LP93], [LM95], [LP06],
[Lap08], [LvF13], [LRŽ17a], [LRŽ17b], [Lap19], [HL21], [Lap24], makes the connection between the
geometry of an object and its differentiability properties, by means of geometric (or fractal) zeta func-
tions, which stand for the trace of a differential operator at a complex order s. The poles of those
fractal zeta functions are called the Fractal Complex Dimensions. The existence of nonreal Complex
Dimensions is a characteristic of fractality and gives rise (via explicit formulas) to the oscillations
that are intrinsic to fractal geometries. However, in the case of the Koch Curve, the determination
of the associated Complex Dimensions still remains an open problem. In [LP06], preliminary results
give the approximate expression for the tubular volume, but one cannot deduce the values of the exact
Complex Dimensions.

In [DL23b] (announced in [DL23a]), and building upon [DL22], [DL24c], [DL24b], we introduced
new fractal zeta functions, associated with polyhedral neighborhoods, better suited to fractals when
exact expressions of tubular neighborhoods cannot be computed (see also [DL24a]). In the model –
and significant – case of the Weierstrass Curve ΓW , we therefore gave exact expressions of the volume
of polyhedral neighborhoods for the sequence of prefractal graphs which converge to ΓW – the so-called
Weierstrass Iterated Fractal Drums (in short, Weierstrass IFDs). Those IFDs are associated with a
suitable (and geometrically meaningful) sequence of small parameters tending to zero, also known as
the cohomology infinitesimal, due to their connections with fractal cohomology [DL24c]. It happens
that the associated local fractal (or polyhedral) zeta functions, which consist in the sequence of zeta
functions associated with the sequence of polyhedral neighborhoods, satisfy a recurrence relation,
which enables us to obtain the exact values of the poles of the limit fractal zeta function – called the
global (polyhedral) zeta function, associated with the limit fractal object – and hence, to determine
the exact (intrinsic) Complex Dimensions of the Weierstrass Curve.

We hereafter extend those results to the Koch Curve, thereby pursuing, in a completely differ-
ent and new way, the seminal work of E. P. J. Pearse and the second author in [LP06] (well before
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the development in [LRŽ17b] of the higher-dimensional theory of Complex Dimensions), where they
obtained a corresponding (approximate) fractal tube formula for the Koch Curve. (We note that by
using the tube zeta functions introduced in [LRŽ17b] and [LRŽ17a], one can nowadays deduce from
the results of [LP06] the possible Complex Dimensions of the Koch Curve, in the sense of [LRŽ17b],
and as given in Remark 3.3, on page 21 below.) For this purpose, given a sufficiently small positive
parameter ε→ 0

+
, they determined an approximation of the inner ε-neighborhood of the Koch Curve,

consisting in rectangles, wedges and triangles. Due to the specific geometry of the Koch Curve, which
involves what can be considered as a fringe – a region slightly larger than the exact ε-neighborhood had
to be considered. Hence, it was not possible to obtain the exact value of the associated two-dimensional
area. However, the authors gave very precise estimates for the corresponding error. Note that when
this work was carried out, the use of tubular neighborhoods was a compulsory and unavoidable step
when it came to computing fractal zeta functions (see [LvF13], [LRŽ17b], [LRŽ18]). They were thus
the very first to provide values for the possible Complex Dimensions of the Koch Curve; see the above
comment. As for the values of the actual Complex Dimensions of the Koch Curve, it has remained,
up to now, an open problem to determine them precisely. As a matter of fact, we are now able to
shed a new light on the values obtained by E. P. J. Pearse and the second author in [LP06] for the
possible Complex Dimensions associated with the Minkowski dimension DKC of the Koch Curve KC.
Our results go even further, since we obtain the full set of (actual) Complex Dimensions of the Koch
Curve, as well as of its prefractal approximations.

In order to establish these results, we rely on the same method as the one we used in the case of the
Weierstrass Curve [DL23b], [DL23a] – where things were at the same time more difficult – due to the
very complicated geometry, and the nonlinear IFS involved – and easier, since we had to our disposal
the Weierstrass function, which possesses an exact expansion expressed in terms of the cohomology
infinitesimal and of the Complex Dimensions. More precisely, once we had determined the sequence
of polyhedral neighborhoods, it was then possible to obtain the expression of the Lebesgue measure
(i.e., the area) of each polyhedral neighborhood. Nothing like that can be done for the present case of
the Koch Curve, since the only available analytic expression – the one given by Hans Sagan in [Sag94],
does not (explicitly at least) involve any Complex Dimensions-like complex numbers.

More specifically, we prove in Theorem 3.5, on page 20, that the set of intrinsic Complex Dimensions
is

{DKC −m (2 −DKC) − imp , DKC −m (2 −DKC) + imp ,with m ∈ N} , (R 1)

where N = {0, 1, 2, . . .}, DKC =
ln 4

ln 3
is the Minkowski dimension of the Koch Curve KC (which also

coincides with the Hausdorff dimension of KC), while p =
π

3 ln 3
is the oscillatory period of KC. Each

Complex Dimension in relation (R1) is simple and exact; i.e., it is a simple and actual pole of the
global polyhedral effective zeta function of the Koch iterated fractal drum (Koch IFD, in short).

For this reason, we had to think of something different here. The solution is, at each step of the pre-
fractal approximation, to consider the triangular patterns which constitute the sequence of polyhedral
neighborhoods, as the images of the initial triangular pattern. This enables us to involve the Complex
Codimensions, in the expression of the associated sequence of two-dimensional areas. As was already
the case in our previous work regarding the Weierstrass Curve, as shown in [DL23b], [DL23a], by
considering the fractal zeta functions associated with the sequence of polygonal neighborhoods, called
the local polyhedral zeta functions, we establish the recurrence relation between consecutive fractal
zeta functions. This enables us to prove the existence of the limit fractal zeta function – the global
polyhedral zeta function, associated with the limit fractal object, as well as to deduce from it the ex-
act Complex Dimensions of the Koch Curve and establish an associated fractal power series expansion.
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Our main results in the present setting can be found in the following places:

i. In Definition 3.1, on page 9, where we introduce the sequence of polyhedral neighborhoods.

ii. In Theorem 3.1, on page 11, where we give, for every m ∈ N , the exact expression for the
volume of the m

th
polyhedral neighborhood.

iii. In Theorem 3.3, on page 15, where we introduce the local and global effective polyhedral zeta
function and show that the global zeta function is well defined, meromorphic in all of C, and is
given by an explicit fractal power series, expressed in terms of the underlying intrinsic scale (or
cohomology infinitesimal).

iii. In Theorem 3.5, on page 20, where we give the values of the actual Complex Dimensions of the
Koch Curve KC (or of the Koch IFD). See also Theorem 3.6, on page 21, providing the exact
Complex Dimensions of the prefractal approximations KCm of KC, for all m ⩾ m0, with m0 large
enough, as well as Corollary 3.7, on page 21, regarding the fractality of KC and KCm, again for
all m ⩾ m0.

2 Geometric Framework

Notation 1 (Minkowski Dimension of the Koch Curve).

Hereafter, we denote by DKC =
ln 4

ln 3
= ln3 4 ∈ ]1, 2[ the Minkowski dimension of the Koch Curve KC

(which also coincides with the Hausdorff dimension of KC).

Remark 2.1 (Best Hölder Exponent for the Koch Curve).

The codimension 2 −DKC = 2 −
ln 4

ln 3
∈ ]0, 1[ is also the optimalt Hölder exponent of the Koch

Curve KC (viewed as a continuous parametrized curve).

Notation 2 (Rotation Matrix).

For θ ∈ R, we denote by RO,θ the following rotation matrix,

RO,θ = (cos θ − sin θ
sin θ cos θ

) .

Property 2.1 (The Koch IFS; see, e.g., [HOP92]).

Following our previous work on the Weierstrass Curve [Dav18], we will approximate the Koch
Curve KC by a sequence of graphs, built via an iterative process. For this purpose, we use the linear
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iterated function system (IFS) of the family of C
∞

maps – here, contracting similitudes – from R2

to R2
denoted by

T KC
= {TKC

0 , . . . , T
KC
3 } ,

where, for any point (x, y) of R2
,

T
KC
0 (x, y) = 1

3
(x
y
)+(

− 1√
3

1
3

) ; T
KC
1 (x, y) = 1

3
RO,π

3
(x
y
)+(0

2
3

) ; T
KC
2 (x, y) = 1

3
RO,−π

3
(x
y
)+(0

2
3

) ;

T
KC
3 (x, y) = 1

3
(x
y
) + (

1√
3
1
3

)

and where, for θ ∈ R, the rotation matrix RO,θ has been introduced in Notation 2, on page 5.

Note that the contracting similitudes {TKC
0 , . . . , T

KC
3 } can also be viewed as (complex) maps from C

to C; namely, for all s ∈ C, we have that

T
KC
0 (s) = 1

3
e
i θ0 s + s

KC
0 ; T

KC
1 (s) = 1

3
e
i θ1 s + s

KC
1 = εKC

i p
2 s + s

KC
1 ;

T
KC
2 (s) = 1

3
e
i θ2 s + s

KC
2 ;

T
KC
3 (s) = 1

3
e
i θ3 s + s

KC
3 = εKC

− i p
2 s + s

KC
3 ,

where

θ0 = 0 ; θ1 = −
π

3
; θ2 =

π

3
; θ3 = 0 ; (R 2)

along with

s
KC
0 = −

1√
3
+
i

3
; s

KC
1 = s

KC
2 =

2

3
; s

KC
3 =

1√
3
+
i

3
. (R 3)

The respective fixed points (in C) of the similarities {TKC
0 , . . . , T

KC
3 } are denoted by {PKC

0 , . . . , P
KC
3 }.

Note that

P
KC
0 = −

√
3

2
+
i

2
; P

KC
1 = −

√
3

7
+

5 i

7
; P

KC
2 =

√
3

7
+

5 i

7
; P

KC
3 =

√
3

2
+
i

2
.

Following standard terminology, T KC
= {TKC

0 , . . . , T
KC
3 } is called the iterated function system (IFS,

in short) determining the Koch Curve; see Property 2.2, on page 6.

Property 2.2 (Attractor of the Koch IFS).

The Koch Curve KC is the attractor of the IFS T KC
: KC =

3

⋃
i=0
T
KC
i (KC).

Definition 2.1 (Sets of Vertices, Prefractals).

We define the initial points, respectively denoted by I and J , of respective coordinates
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I = (0, 0) , J = (1, 0) .
We set

V0 = {I, J} and KC0 = [IJ] .
The line segment [IJ] is called the initial segment, while V0 is called the set of vertices of the

initial prefractal graph KC0.

For any positive integer m (i.e., for all m ∈ N⋆), we set Vm =

3

⋃
i=0
T
KC
i (Vm−1).

The set of points Vm, where two consecutive points are linked, is an oriented finite graph, denoted
by KCm and called the m

th
order Koch prefractal (also called the m

th
prefractal approximation of KC).

Then, Vm is called the set of vertices of the prefractal KCm; see Figure 1, on page 7. By analogy with
our work in [DL22], [DL23b], [DL23a], we call Koch Iterated Fractal Drums (IFD) the sequence of
prefractal graphs which converge to the Koch Curve.

Figure 1: The prefractal graphs KC0, KC1, KC2, KC3, KC4. For example, KC1 is on the
left side of the second row, while KC4 is on the right side of the bottom row.

Definition 2.2 (Adjacent Vertices, Edge Relation).

For any m ∈ N, two vertices X and Y belonging to Vm will be said to be adjacent (i.e., neighboring
or junction points) if and only if the edge XY belongs to KCm ; we then write X ∼

m
Y . Note that

this edge relation depends on m, which means that points adjacent in Vm might not remain adjacent
in Vm+1.

Property 2.3. For any m ∈ N, the following statements hold :

i. Vm ⊂ Vm+1 .
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ii. When m ⩾ 1, #Vm = 4
m + 1, where #Vm denotes the number of elements in the finite set Vm.

iii. The prefractal graph KCm has exactly 4
m

edges.

iv. The consecutive vertices of Vm+1 \ Vm are the vertices of 4
m

equilateral triangles PKC
j,m, with 1 ⩽ j ⩽ 4

m
;

see Figure 3, on page 8. As for PKC
0 = KC0, it can be considered as a flat (equilateral) triangle.

The triangle PKC
1,0 is called the initial triangle; see Figure 2, on page 8.

initial triangle P0
KC

Figure 2: The initial triangle PKC
1,0.

P1,1
KC

P3,1
KC

P2,1
KC

P4,1
KC

Figure 3: The triangles PKC
1,1, PKC

2,1, PKC
3,1 and PKC

4,1.

Proof.

i. By construction, the sequence of sets of vertices (Vm)m∈N is an increasing sequence.
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ii. The initial line segment V0 = [IJ] consists of an edge, and two points. By applying the maps {TKC
0 , . . . , T

KC
3 }

of the IFS given in Property 2.1, on page 5, we then obtain 2 + (2 − 1) × 3 = 5 points in V1. By in-
duction, we have that, for any integer m ⩾ 2,

#Vm = (#Vm−1 − 1) × 3 +#Vm−1 = 4 (#Vm−1) − 3 .

The sequence (#Vm)m∈N⋆ is an arithmetico-geometric sequence. We then have that, for any
integer m ⩾ 1,

#Vm = 4
m (#V0 − 1) + 1 = 4

m
+ 1 .

iii. We immediately deduce from ii. just above that the prefractal graph KCm has exactly 4
m

edges.

iv. By construction, each edge of Vm gives birth to an equilateral triangle, whose vertices belong
to Vm+1 \ Vm. This immediately ensures that the consecutive vertices of Vm+1 \ Vm are the vertices
of 4

m
equilateral triangles PKC

j,m+1, with 1 ⩽ j ⩽ 4
m

.

3 Polyhedral Neighborhoods – Cohomology Infinitesimal

We first introduce the notion of polyhedral neighborhoods of the Koch Curve KC, which will play
a key role in the remainder of this paper – much as is the case for the polyhedral neighborhoods of
the Weierstrass Curve in our earlier works [DL24b], [DL23b] [DL23a].

Definition 3.1 (Sequence of Polyhedral Neighborhoods of the Koch Curve).

We introduce the sequence of polygonal neighborhoods of the Koch Curve, as the sequence (D (KCm))m∈N
of open, connected polygonal sets such that D (KC0) = PKC

0 and for each m ∈ N⋆,

D (KCm) =
4
m

⋃
j=1

PKC
j,m = ⋃

k0,m+k1,m+k2,m+k3,m⩽m

(TKC
0 )k0,m (TKC

1 )k1,m (TKC
2 )k2,m (TKC

3 )k3,m (PKC
0 ) , (R 4)

where PKC
0 is the initial prefractal graph introduced in part iv. of Property 2.3, on page 7 just

above, {PKC
j,m , 1 ⩽ j ⩽ 4

m} is the family of 4
m

equilateral triangles also introduced in part iv. of
Property 2.3, on page 7, and where

{TKC
0 , . . . , T

KC
3 } = T KC

is the Koch IFS introduced in Property 2.1, on page 5. Furthermore, here (in relation (R4)) and
thereafter, k0,m, . . ., k3,m are arbitrary nonnegative integers satisfying the indicated inequality.

Given m ∈ N, we call D (KCm) the m
th

polyhedral neighborhood (of the Koch Curve KC).

Note that, for each integer m ∈ N⋆, D (KCm) is then comprised of the union of 4
m

open equi-

lateral triangles, of sidelength equal to
1

3m+1
; accordingly, to each edge of the prefractal graph KCm

corresponds an open triangle PKC
j,m. Indeed, the vertices of those triangles belong to Vm+1 \ Vm, it thus

makes sense to consider them as the polyhedral neighborhood of KCm. Also, it is because the vertices

of those triangles belong to Vm+1 \ Vm that the sidelength of all equilateral triangles is equal to
1

3m+1
.
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Figure 4: The polygonal neigborhood D (KC5) (in red) of the prefractal approximation KC5

(in green).

In our previous work – i.e., in the case of the Weierstrass Curve – things were at the same time
more difficult – due to the very complicated geometry, and the nonlinear IFS involved – and easier,
since we had to our disposal the Weierstrass function, which possesses an exact expansion in function
of the cohomology infinitesimal and of the Complex Dimensions; see [DL23b] (announced in [DL23a]).
More precisely, once we had determined the sequence of polyhedral neighborhoods, it was thus possible
to obtain the expression of the Lebesgue measure (i.e., the area) of each polyhedral neighborhood.
Nothing like that can be done with the Koch Curve, since the only available analytic expression – the
one given by Hans Sagan in [Sag94], does not (explicitly at least) involve any Complex Dimensions–
like complex numbers.

For this reason, we had to think of something different here. The solution is, at each stepm ∈ N⋆ of
the prefractal approximation, to consider the triangular patterns PKC

j,m, for 1 ⩽ j ⩽ 4
m

, which constitute

the polyhedral neighborhood, as the images of the initial triangular pattern PKC
0 , under the IFS given

in Proposition 2.1, on page 5.

Definition 3.2 (m
th

Intrinsinc Koch Cohomology Infinitesimal).

We introduce the intrinsic scale as

εKC =
1

3
.

From now on, given any m ∈ N, we call m
th

intrinsic Koch cohomology infinitesimal the num-

ber ε
m
KC = (εKC)m =

1

3m
. Obviously, ε

m
KC satisfies the following asymptotic behavior,

ε
m
KC → 0 , as m→∞ .

Remark 3.1. Note that our definition is in perfect agreement with the one we gave in the case of the

Weierstrass Curve ΓW , where the intrinsic scale was equal to
1

Nb
, with Nb ⩾ 3 denoting the number

of divisions which occurred in the corresponding iterative process giving birth, also by means of the
sequence of prefractals, to ΓW .
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Theorem 3.1 (Exact Expression for the Volume of the m
th

Polyhedral Neighborhood

(or m
th

Natural Polyhedral Volume)).

Much as in [LP06], we introduce the oscillatory period of the Koch Curve as

p =
π

3 ln 3
, (R 5)

which, however, differs from the one (p̃ =
2π

ln 3
) in [LP06].

Then, for any m ∈ N, the two-dimensional Lebesgue measure (or area) of the m
th

polyhedral
neighborhood D (KCm) is given by

Vm (εKC) =

√
3

8
ε
2 (m+1)
KC

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

(εKC−i `j,m p
+ εKC

i `j,m p)
⎞
⎟
⎠

=

√
3

4
ε
2 (m+1)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
⎞
⎟
⎠
,

(R 6)

where εKC is the intrinsic scale introduced in Definition 3.2, on page 10.

Given the form of the expression in relation (R6) just above, it is natural to introduce the associ-

ated m
th

complex natural polyhedral volume Vm,comp (εKC), such that

Vm,comp (εKC) =

√
3

4
ε
2 (m+1)
KC

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

(εKC−i `j,m p
+ εKC

i `j,m p)
⎞
⎟
⎠
.

(R 7)
For any integer m ∈ N, we have the following recurrence relation:

Vm+1,comp (εKC) =
1

9
Vm,comp (εKC) +

3
√

3

64
εKC

2−DKC ε
(m+1) (2−DKC)
KC (εKC−i (m+1)p + εKCi (m+1)p) .

(R 8)

Remark 3.2. Note that the complex exponents corresponding to the right-hand side of relation (R7)
of Theorem 3.1, on page 11, should be respectively interpreted as follows:

(m + 1) (2 −DKC) − i `j,m p = 2 − (DKC −m (2 −DKC) + i `j,m p)
and

(m + 1) (2 −DKC) + i `j,m p = 2 − (DKC −m (2 −DKC) − i `j,m p)
Accordingly, those exponents should be viewed as Complex Codimensions, respectively associated

with the Complex Dimensions

DKC −m (2 −DKC) + i `j,m p

and

DKC −m (2 −DKC) − i `j,m p .

11



Proof. (of Theorem 3.1, given on page 11)

Recall that the angles θ0, . . . , θ3 and the complex numbers s
KC
0 , . . . , s

KC
3 have respectively been in-

troduced in relation (R2), on page 6, and in relation (R3) (see Property 2.1, on page 5).

Furthermore, recall that, for any m ∈ N,

D (KCm) =
4
m

⋃
j=1

PKC
j,m = ⋃

k0,m+k1,m+k2,m+k3,m⩽m

(TKC
0 )k0,m (TKC

1 )k1,m (TKC
2 )k2,m (TKC

3 )k3,m (PKC
0 ) .

Now, since we are only concerned with the computation of the area – and thanks to the translation
invariance of the two-dimensional Lebesgue measure – the terms coming from the translations involved
in the maps

T KC
= {TKC

0 , . . . , T
KC
3 } ,

do not play any role; so that we do not have to take them into account.

Thus, we simply have to compute the two-dimensional area of 4
m

equilateral triangles, of sidelength

equal to
1

3m+1
and of associated height

√
1

9m+1
−

1

4

1

9m+1
=

√
3

2

1

3m+1
.

We obtain that

µL
⎛
⎜
⎝

4
m

⋃
j=1

PKC
j,m

⎞
⎟
⎠
= Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+k1,j,m+k2,j,m+k3,j,m=j

µL ((TKC
0 )k0,j,m (TKC

1 )k1,j,m (TKC
2 )k1,j,m (TKC

3 )k3,j,m PKC
0 )

⎞
⎟
⎠
⎞
⎟
⎠

=

√
3

4

1

9m+1
Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+k1,m+k2,j,m +k3,j,m=j

e
i (k1,j,m θ1+k2,j,m θ2)⎞⎟

⎠
⎞
⎟
⎠

=

√
3

4
ε
2 (m+1)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+k1,j,m+,k2,j,m+k3,j,m=j

e
iπ (k2,j,m−k1,j,m)

3
⎞
⎟
⎠
⎞
⎟
⎠

=

√
3

4
ε
2 (m+1)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

e
iπ `j,m

3
⎞
⎟
⎠
⎞
⎟
⎠

=

√
3

4
ε
2 (m+1)
KC ∑

k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

Re (εKC−i `j,m p)

=

√
3

8
ε
2 (m+1)
KC ∑

k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

(εKC−i `j,m p
+ εKC

i `j,m p) .

(R 9)
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We also have that

µL (
4
m+1

⋃
j=1

PKC
j,m) =

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m+1

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+1+k1,j,m+1+k2,j,m+1 +k3,j,m+1=j

e
i (k1,j,m+1 θ1+k2,j,m+1 θ2)⎞⎟

⎠
⎞
⎟
⎠

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m+1

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+1+k1,j,m+1+k2,j,m+1 +k3,j,m+1=j

e
i (k2,j,m+1−k1,j,m+1)π

3
⎞
⎟
⎠
⎞
⎟
⎠

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+1+k1,j,m+1+k2,j,m+1 +k3,j,m+1=j

e
i (k2,j,m+1−k1,j,m+1)π

3
⎞
⎟
⎠
⎞
⎟
⎠

+

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

∑
k0,j,m+1+k1,j,m+1+k2,j,m+1 +k3,j,m+1=m+1

e
i (k2,j,m+1−k1,j,m+1)π

3
⎞
⎟
⎠

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

e
i `j,m π

3
⎞
⎟
⎠
⎞
⎟
⎠

+

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜⎜
⎝

∑
k0,j,m+1+2 k1,j,m+1+`j,m+1+k3,j,m+1=j+1, `j,m+1 ∈ {−m−1,m+1}

e
i `j,m+1 π

3

⎞
⎟⎟
⎠

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
⎞
⎟
⎠

+

√
3

4
ε
2 (m+2)
KC Re (4

m+1
− 4

m) (εKC−i (m+1)p + εKCi (m+1)p)

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
⎞
⎟
⎠

+
3
√

3

4
ε
2 (m+2)
KC 4

mRe (εKC−i (m+1)p + εKCi (m+1)p)

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
⎞
⎟
⎠

+
3
√

3

16
ε
2
KC ε

2 (m+1)
KC 4

m+1Re (εKC−i (m+1)p + εKCi (m+1)p)

=

√
3

4
ε
2 (m+2)
KC Re

⎛
⎜
⎝

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
⎞
⎟
⎠

+
3
√

3

64
ε
2−DKC

KC ε
(m+1) (2−DKC)
KC Re (εKC−i (m+1)p + εKCi (m+1)p) ,

(R 10)
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where, in the second sum of the last equality, we have used the easily verified identities

4
m+1

= ε
−(m+1)DKC

KC and ε
2
KC =

ε
2−DKC

KC

4
,

since

DKC =
ln 4

ln 3
.

Furthermore, the triangles corresponding to `j,m+1 = m + 1 (resp., `j,m+1 = −m − 1) are obtained
when k1,j,m+1 = 0 and k2,j,m+1 = m + 1 (resp., when k1,j,m+1 = m + 1 and k2,j,m+1 = 0). Hence, this
amounts to the following number of triangles

4
m+1

− 4
m
= 3 × 4

m
=

3

4
× 4

m+1
=

3

4
ε
−(m+1)DKC

KC .

By letting, as is stated in relation (R7), on page 11,

Vm,comp (εKC) =
√

3

4
ε
2 (m+1)
KC

m

∑
j=0

⎛
⎜
⎝

∑
k0,j,m+2 k1,j,m+`j,m+k3,j,m=j,−j⩽`j,m⩽j

εKC
−i `j,m p⎞⎟

⎠
,

we then deduce that

Vm+1,comp (εKC) = ε2KC Vm,comp (εKC)+
3
√

3

64
εKC

2−DKC ε
(m+1) (2−DKC)
KC (εKC−i (m+1)p + εKCi (m+1)p) ,

as is claimed in relation (R8), on page 11.

This completes the proof of the theorem.

For the sake of the forthcoming computation of the associated fractal zeta functions, we note that
it is better to proceed with the equivalent following formula (in a manner equivalent to what is done
in our previous works [DL23b], [DL23a]),

Vm+1,comp (εKC) =
1

9
Vm,comp (εKC) +

3
√

3

64
ε
2
KC ε

(m+1) (2−DKC)
KC (εKC−i (m+1)p + εKCi (m+1)p) . (R 11)

Note now that we are looking for a polyhedral neighborhood. Then, the 4
m

aforementioned
triangles constitute the upper polyhedral neighborhood of KCm.

Lemma 3.2 (Natural Polyhedral Volume Extension Formula).

We introduce, for all sufficiently large m ∈ N⋆, Ṽm as the continuous function defined for all t ∈ [0, εKC]
by substituting t for εKC in the recurrence relation (R8), on page 11 (or, equivalently, in relation (R11),
on page 14), between Vm (εKC) and Vm+1 (εKC).

As is explained in [DL22] (in the case of the ordinary Euclidean tubular volume), one can think

of Ṽm (t) as being the polyhedral effective volume of the m
th

prefractal approximation to the Koch
Curve.

14



Notation 3 (Natural Polyhedral Complex Volume Extension).

For the sake of simplicity, given m ∈ N⋆ sufficiently large, we will from now on call the m
th

natural polyhedral complex volume extension, the volume extension function Ṽm,comp associated with

the m
th

natural polyhedral complex volume Vcomp introduced in Theorem 3.1, on page 11. Alterna-

tively, Ṽm,comp will be called the m
th

polyhedral effective complex volume.

In the same way, as is done in [DL22], and given m ∈ N⋆ large enough, we call the m
th

natural vol-

ume extension, the volume extension function Ṽtubem associated with the the m
th

tubular volume Vtubem .
Alternatively, Ṽtubem will be called the m

th
effective tubular volume.

Theorem 3.3 (Local and Global Polyhedral Effective Zeta Functions).

Given m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, for some m0 ∈ N⋆), we introduce the m
th

local polyhedral effective zeta function ζ̃
e
m, such that, for all s ∈ C with Re (s) > DKC,

ζ̃
e
m(s) = ∫

εKC

0
t
s−3 Ṽm,comp(t) dt , (R 12)

where Ṽpartial,m,comp is the m
th

polyhedral effective complex volume, introduced in Notation 3, on
page 15 above, and where εKC is the intrinsic scale introduced in Definition 3.2, on page 10 above.

Then, for all m ∈ N⋆ sufficiently large (i.e., for all m ⩾ m0, for some m0 ∈ N⋆), ζ̃
e
m admits a

(necessarily unique) meromorphic extension to all of C, given, for all s ∈ C, by the following explicit
expression, which is a convergent fractal power series:

ζ̃
e
m(s) =

3
√

3

64

m

∑
k=0

ε
s−DKC+(k+1) (2−DKC)−i (k+1)p
KC

s −DKC + (k + 1) (2 −DKC) − i (k + 1)p

+
3
√

3

64

m

∑
k=0

ε
s−DKC+(k+1) (2−DKC)+i (k+1)p
KC

s −DKC + (k + 1) (2 −DKC) + i (k + 1)p
,

(R 13)

where εKC is the intrinsic scale introduced in Definition 3.2, on page 10).

More specifically, still for all m ∈ N⋆ sufficiently large, the function ζ̃
e
m is well defined and mero-

morphic in all of C. Furthermore, its unique meromorphic extension (still denoted by ζ̃
e
m) is given,

for all s ∈ C by the expressions given in relation (R13) above.

Moreover, the associated sequence (ζ̃em)
m∈N

– initially given (for Re(s) > DW) by the truncated

Mellin transform in relation (R12), on page 15 – satisfies the following recurrence relation, for all
values of the positive integer m sufficiently large, and for all s ∈ C:

15



ζ̃
e
m+1(s) = ε

2
KC ζ̃

e
m(s)

+
3
√

3

64

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

+
3
√

3

64

ε
s−DKC+(m+1) (2−DKC)+i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) + i (m + 1)p

= ε
2
KC ζ̃

e
m(s)

+
3
√

3

32
Re

⎛
⎜
⎝

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

⎞
⎟
⎠
.

(R 14)

The expression for the m
th

local polyhedral effective zeta function ζ̃
e
m given in relation (R13) above

ensures the existence of the limit fractal zeta function ζ̃
e
KC, i.e., the fractal zeta function associated

with the Koch Curve KC (or, rather, with the Koch IFD), called the global polyhedral effective zeta
function of KC, and given by the following convergent (and locally convergent) fractal power series:

ζ̃
e
KC = lim

m→∞
ζ̃
e
m ,

where the convergence is locally uniform on C, along with the existence of an integer m0 ∈ N such
that, for all m ⩾ m0, the set of poles of ζ̃

e
KC consists of simple poles and contains the poles of the m

th

fractal polyhedral effective zeta function ζ̃
e
m. More specifically, ζ̃

e
KC is meromorphic in all of C and its

(necessarily unique) meromorphic extension (still denoted ζ̃
e
KC) is given, for all s ∈ C, by the following

convergent fractal power series:

ζ̃
e
KC(s) =

3
√

3

64

∞

∑
m=0

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

+
3
√

3

64

∞

∑
m=0

ε
s−DKC+(m+1) (2−DKC)+i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) + i (m + 1)p
.

(R 15)

The following lemma will be used in part ii. of the proof of Theorem 3.3.

Lemma 3.4 (A Preliminary Result About the Sets of Poles of the Local Polyhedral Zeta
Functions).

Let us denote by P⋆ = ⋃
m⩾m0

P (ζ̃em) the union of the discrete sets of poles of the local polyhedral

zeta functions ζ̃
e
m, for all m ∈ N such that m ⩾ m0. Then, the sequence (P (ζ̃em))

m⩾m0
of subsets of C

is increasing.

Furthermore, the set P⋆ is discrete and countably infinite. It is, also, the set of poles of the global
polyhedral zeta function ζ̃

e
W .
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In addition, its complement U in C is an open, connected subset of C (since P⋆ is necessarily
closed).

Proof. (of Lemma 3.4)

As is done in [DL23b], the proof relies on the fact that, for all m ∈ N sufficiently large,

P (ζ̃em) = {DW − (k − 1) (2 −DW) ± i `k,(Nb−1) j+q,m p , 1 ⩽ k ⩽ m} ⊊ P (ζ̃em+1) .
This ensures that, as a countable union of discrete sets, and without any accumulating points (in C),

the set P⋆ is itself discrete and, hence, countably infinite. This ensures that its complement U ⊂ C is
an open, connected subset of C. This implies that P⋆ intersects each compact set K ⊂ C at a finite
number of points.

The fact that P⋆ is the set of poles of the global polyhedral zeta function ζ̃
e
W comes from the

expression given in relation (R15), on page 16.

Also, the fact that, for all m ⩾ m0, P (ζ̃em) ⊆ P (ζ̃em+1), is established in the proof of Theorem 3.3
below.

Proof. (Of Theorem 3.3, given on page 15)

i. We first give the explicit expression for the m
th

local polyhedral effective zeta function ζ̃
e
m.

We restrict ourselves to sufficienly large values of m ∈ N⋆, i.e., to all m ⩾ m0, for some suitable
integer m0 ∈ N⋆.

Thanks to the recurrence relation (R8), on page 11, or, equivalently, to relation (R11), on page 14,
between Vm (εKC) and Vm+1 (εKC), we then have that, for all s ∈ C with Re (s) > DKC,
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ζ̃
e
m+1(s) = ∫

εKC

0
t
s−3 Ṽm+1,comp (t) dt

=
1

9
∫
εKC

0
t
s−1−DKC Ṽm,comp (t) dt

+
3
√

3

64
∫
εKC

0
t
s−1−DKC t

(m+1) (2−DKC) (t−i (m+1)p + ti (m+1)p) dt

=
1

9
ζ̃
e
m(s)

+
3
√

3

64

⎛
⎜
⎝

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

⎞
⎟
⎠

+
3
√

3

64

⎛
⎜
⎝

ε
s−DKC+(m+1) (2−DKC)+i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) + i (m + 1)p

⎞
⎟
⎠

= ε
2
KC ζ̃

e
m(s)

+
3
√

3

64

⎛
⎜
⎝

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

⎞
⎟
⎠

+
3
√

3

64

⎛
⎜
⎝

ε
s−DKC+(m+1) (2−DKC)+i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) + i (m + 1)p

⎞
⎟
⎠
.

(R 16)
By induction, for all m ⩾ m0, we then obtain the poles of ζ̃

e
m as

s = DKC − k (2 −DKC) − i k p

and
s = DKC − k (2 −DKC) + i k p ,

where k is an arbitrary integer such that 0 ⩽ k ⩽ m. These poles are all simple.

ii. We then place ourselves in a compact set K ⊂ C contained in the connected open set U ⊂ C which
is the complement in C of the discrete (and hence, closed) set P⋆ = ⋃

n∈N, n⩾m0

P (ζ̃en), the countable

union of the sets of poles of the local polyhedral zeta functions ζ̃
e
n, for all n ⩾ m0 (see Lemma 3.4, on

page 16).

The series of functions

m

∑
k=0

ε
s−DKC+k (2−DKC)−i kp
KC

s −DKC + k (2 −DKC) − i k p

⎛
⎜
⎝

resp.,
m

∑
k=0

ε
s−DKC+k (2−DKC)+i kp
KC

s −DKC + k (2 −DKC) + i k p

⎞
⎟
⎠

(R 17)

is (locally) normally convergent, and, hence, also (locally) uniformly convergent on K. This ensures
the existence of the limit effective fractal zeta function, i.e., the fractal zeta function associated with
the Koch Curve KC (or with the Koch IFD), given by

18



ζ̃
e
KC(s) = lim

m→∞
ζ̃
e
m(s)

=
3
√

3

64

∞

∑
m=0

ε
s−DKC+(m+1) (2−DKC)−i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) − i (m + 1)p

+
3
√

3

64

∞

∑
m=0

ε
s−DKC+(m+1) (2−DKC)+i (m+1)p
KC

s −DKC + (m + 1) (2 −DKC) + i (m + 1)p
.

(R 18)

We note in passing that all the expressions involving the real parts in the statement of the theorem
simply follow from the fact that for all z ∈ C, z + z̄ = 2Re (z).

The remainder of our proof – in the case when we place ourselves in a compact set K ⊂ C contain-
ing some of the potential poles (necessarily, finitely many of them, since K is compact and the poles
are isolated) of ζ̃

e
m – can be obtained by using the chordal metric.

For this purpose, a (complex-valued) meromorphic function f is viewed as a continuous function
with values in P1(C), equipped with the chordal metric, and such that, for any pole ω of f , f(ω) takes
the value ∞ (for instance, as in [LvF13], Section 3. 4 and Appendix C).

More precisely, if P1(C) = C ∪∞ denotes the Riemann sphere (or complex projective line), we can

show that, for the chordal metric, defined, for all (z1, z2) ∈ (P1(C))2 by

∥z1, z2∥ =
∣z1 − z2∣√

1 + ∣z21∣
√

1 + ∣z22∣
, if z1 ≠∞ and z2 ≠∞ , (R 19)

and

∥z1,∞∥ = 1√
1 + ∣z21∣

, if z1 ≠∞ . (R 20)

Since the discrete set P⋆ = ⋃
m∈N

P (ζ̃em) intersects each compact set K ⊂ C at a countably finite

number of points (see Lemma 3.4 above, on page 16), we can restrict ourselves to the case when K
contains one single pole of a given ζ̃

e
n, for some n ⩾ m0.

The (uniform) limit fractal zeta function ζ̃
e
W , is holomorphic on U , as the (locally) uniform limit of a

sequence of holomorphic functions on U (the complement in C of the discrete set P⋆ = ⋃
n∈N, n⩾m0

P (ζ̃en),

the countable union of the sets of poles of the local polyhedral zeta functions ζ̃
e
n, for all n ⩾ m0). By

applying Weierstrass’ Theorem, we then deduce that, for all m ⩾ m0, the zeta function ζ̃
e
m is mero-

morphic on C.

Moreover, the counterpart of the results obtained in [DL22] for the sequence of tube zeta functions
associated with the Weierstrass IFD, which admit a meromorphic continuation to all of C, obviously
holds for the sequence of polyhedral tube zeta functions: hence, ζ̃

e
m is meromorphic on C, with only

simple poles, as specified in Theorem 3.5, on page 20 below.

More specifically, our earlier discussion (ending just after relation (R18), on page 19, shows the

uniform convergence of (ζ̃em)
m⩾m0

on K – and, hence also, the existence of the global polyhedral effec-

tive zeta function ζ̃
e
W , whenever the compact set K ⊂ C does not intersect P⋆ (i.e., K ⊆ U = C \ P⋆).

The fact that ζ̃
e
W is holomorphic on the (connected) open set U ⊆ C then follows at once from Weier-

strass’ Theorem about the holomorphicity of a (locally) uniformly convergent sequence of holomorphic
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functions (here, the sequence of holomorphic functions (ζ̃em)
m⩾m0

on U).

In the above case when K ∩ P⋆ is nonempty – and, without loss of generality, when K ∩ P⋆ = {ω},
where ω is a pole of ζ̃

e
m1

, for some integer m1 ⩾ m0 (and, thus, for any m ⩾ m1), our above argu-

ment shows that ζ̃
e
W is well defined and is continuous on K (as the uniform limit on the compact

set K of of the sequence (ζ̃em)
m⩾m0

of continuous functions on K, with all the functions involved be-

ing viewed as taking their values in the compact – and thus, complete – metric space (P1(C),∥⋅∥)
(i.e., lim

m→∞
sup
s∈K

ÂÂÂÂÂζ̃
e
m(s), ζ̃eW(s)ÂÂÂÂÂ = 0) and such that ζ̃

e
W (ω) =∞ since ζ̃

e
m (ω) =∞, for all m ⩾ m1. Con-

sequently, ζ̃
e
W is meromorphic on U and ω is also a pole of ζ̃

e
W (i.e., ω ∈ P (ζ̃eW)).

In summary, we deduce that ζ̃
e
W is well defined (by the locally uniform limit in relation (R15), on

page 16), is meromorphic on all of C and P (ζ̃eW) = P⋆.

This completes the proof of the theorem.

Definition 3.3 (Intrinsic Complex Dimensions of the Koch Curve).

Since they are obtained via the polyhedral neighborhoods (instead of via the Euclidean tubular
neighborhoods) of the Koch IFD, we call the poles of ζ̃

e
KC (resp., for all m ⩾ m0, of ζ̃

e
m) the intrinsic

Complex Dimensions of the Koch Curve (resp., of its m
th

prefractal approximation).

In the sequel, a Complex Dimension is said to be exact (or actual) if it is a pole of ζ̃
e
KC (resp., for

all m ⩾ m0, of ζ̃
e
m). Otherwise, it is said to be a possible Complex Dimension – which allows for the

possibility that res (ζ̃eKC, ω) = 0 (resp., that res (ζ̃em, ω) = 0).

Theorem 3.5 (Complex Dimensions of the Koch Curve).

The intrinsic Complex Dimensions of the Koch Curve KC (or of the Koch IFD), which are the
poles of the global polyhedral effective zeta function ζ̃

e
KC given in relation (R15), on page 16, are given

as follows:

DKC −m (2 −DKC) − imp ,

and

DKC −m (2 −DKC) + imp ,

where the integer m ∈ N is arbitrary.

Furthermore, the intrinsic Complex Dimensions of KC are all simple and exact.

The following result is an immediate corollary of Theorem 3.3, on page 15, and Theorem 3.5, on
page 20, respectively, as well as of their proofs.
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Theorem 3.6 (Complex Dimensions of the Prefractal Approximations of KC).

For all (positive) integers sufficiently large (i.e., for all m ⩾ m0, for some m0 ∈ N⋆), the intrinsic

Complex Dimensions of the m
th

approximation KCm of KC are all exact and simple. Furthermore,
they are given as follows:

DKC − k (2 −DKC) − i k p

and

DKC − k (2 −DKC) + i k p ,

where k is an arbitrary integer such that 0 ⩽ k ⩽ m (see relation (R13) in Theorem 3.3, on page 15).

Recall that in the theory of Complex Dimensions (see, e.g., [LvF13], [LRŽ17b], [Lap19]), a geo-
metric object is said to be fractal if it admits at least one nonreal Complex Dimension (defined as a
pole of the associated geometric or fractal zeta function) – and hence, at least two nonreal complex
conjugate poles. Furthermore, given a real number d, it is fractal in dimension d if it has at least one
nonreal Complex Dimension with real part d.

Finally, it is said to be principally fractal if it is fractal in dimension dKC, where dKC is the abscissa of
convergence of the associated fractal zeta function (here, ζ̃

e
KC in the case of KC or else, ζ̃

e
m, with m ⩾ m0,

in the case of KCm). Note that in either case, in light of Theorems 3.3 , on page 15 (or of Theorem 3.5,
on page 20, and Theorem 3.6, on page 21), we have that

dKC = DKC =
ln 4

ln 3
,

the Minkowski dimension of the Koch Curve KC.

In light of the above definitions, we can now state the following immediate corollary of Theorem 3.5,
on page 20 and Theorem 3.6, on page 21.

Corollary 3.7 (Fractality of the Koch Curve).

The Koch Curve KC is fractal, and even principally fractal. Somewhat surprisingly, so are all of
its prefractal approximations KCm, for any m ⩾ m0.

However, there is one important difference between KC and any KCm. Indeed, KC is fractal in
infinitely (and countably) many values of d (namely, d = DKC −m (2 −DW), with m ∈ N arbitrary).

By contrast, for all m ⩾ m0 sufficiently large, KCm is fractal in finitely many dimensions d (namely,
d = DKC − k (2 −DKC), where k is an arbitrary integer such that 0 ⩽ k ⩽ m).

Remark 3.3.

i. Our result in Theorem 3.5 extends the previous one of Erin P. J. Pearse and the second author
in [LP06], where the possible Complex Dimensions of the Koch Curve were obtained as
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{DKC + i n p̃ , n ∈ Z} ∪ {i n p̃ , n ∈ Z} ,

where a different oscillatory period p̃ =
2π

ln 3
was involved. The difference between our oscillatory pe-

riod p =
π

3 ln 3
and p̃ =

2π

ln 3
comes from the fact that in [LP06], the oscillatory period is obtained via

a Fourier series expansion involving the intrinsic scale εKC =
1

3
, whereas ours comes from the rotations,

of respective angles −
π

3
and

π

3
.

We also note that, in [LP06], no fractal zeta function was used, as the higher-dimensional theory
of Complex Dimensions (as expounded in [LRŽ17b]) was not yet developed. Instead, an approximate
fractal tube formula was used, deduced for the volume (i.e., area) of the Euclidean tubular neighbor-
hoods (instead of the polyhedral neighborhoods) of the Koch Curve – and then, the possible Complex
Dimensions were derived by analogy with the one-dimensional theory of Complex Dimensions (i.e.,
with the case of fractal strings studied in detail in [LvF13]).

It would be interesting to determine the precise possible Complex Dimensions of the Koch IFD,
by using the method developed in our earlier work [DL22], where Euclidean tubular neighborhoods
were also used (in the case of the Weierstrass Curve) and to decide, in particular, whether their real
parts are of the form DKC − k (2 −DKC), with k ∈ N arbitrary, and 0.

ii. Our result is also in perfect agreement with the results obtained in our previous works [DL23b], [DL23a]
about the Weierstrass Curve, in which case the exact Complex Dimensions of the Weierstrass Curve
(or of the Weierstrass IFD) are given as follows:

DW −m (2 −DW) + i `p , (R 21)

where the integers m ∈ N and ` ∈ Z are arbitrary.

Remark 3.4 (Comparison with the Weierstrass Curve).

In the case of the Weierstrass Curve ΓW (see our previous works [DL23b], [DL23a]), ΓW is also

fractal for infinitely many values of d, whereas, for all m ⩾ m0, with m0 ∈ N sufficiently large, the m
th

prefractal approximation ΓWm
to ΓW is fractal for finitely many values of d (namely, d = −m, . . . ,m)

(and not in just one value of d, as is the case for the m
th

prefractal approximation KCm to the
Koch Curve KC; see Corollary 3.7, on page 21 above). Indeed, the Complex Dimensions of ΓWm

(for
any m ⩾ m0) are all simple and exact; furthermore, they are given by

d = DW − k (2 −DW) + i `k p ,

where k is an arbitrary integer such that 0 ⩽ k ⩽ m and `k ∈ Z is arbitrary.

This difference comes from the fact that the Weierstrass Curve ΓW is not self-simlar, contrary
to the Koch Curve KC. This results, in the case of the m

th
prefractal approximation ΓWm

to the
Weierstrass Curve ΓW , in the kind of memory effect which keeps all the Complex Dimensions coming
from all the previous prefractal approximations (namely, ΓW0

, . . ., ΓWm−1
).
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4 Concluding Comments

The characterization of fractality by means of the Complex Dimensions now takes its full mean-
ing: indeed, a unique and real value – in the fractal context, the sole Minkowski dimension – which
only corresponds to the iterative division process, cannot represent the succession of geometric trans-
formations which go hand in hand with this process. In this light, the Koch Curve is of particular
significance, since it is obtained both by dividing line segments and by applying rotations. The in-
formation concerning both processes (the division process, and the geometric process associated with
the rotations) is fully contained in the Complex Dimensions.

By using exact expressions for the polyhedral neighborhoods, we completely revisit the computa-
tion of the exact Complex Dimensions of a fractal curve, obtained by means of an i.f.s. Note that,
with some effort, our method could clearly be extended not only to other Koch-type curves, but,
also, to other planar curves, as the Devil’s staircase (the graph of the Cantor–Lebesgue function),
the Bedford–McMullen (self-affine) carpets, the Peano and Hilbert (space-filling) curves, as well as
a variety of fractal trees, along with Brownian paths and other random fractals, in two or higher
dimensions. We expect to address this issue in later work.
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2, 4:57–112, 1875.
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