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Meudon, France12
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Key Points:28

• All Jupiter–moon radio emissions are shown to be similarly triggered by the CMI.29

• The crossed radio sources are colocated with either MAW, RAW or TEB footprints.30

• The crossed radio sources coincide with downward field–aligned currents and Alfvén31

perturbations.32
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Abstract33

At Jupiter, part of the auroral radio emissions are induced by the Galilean moons Io,34

Europa and Ganymede. Until now, except for Ganymede, they have been only remotely35

detected, using ground–based radio–telescopes or electric antennas aboard spacecraft.36

The polar trajectory of the Juno orbiter allows the spacecraft to cross the range of mag-37

netic flux tubes which sustain the various Jupiter–satellite interactions, and in turn to38

sample in situ the associated radio emission regions. In this study, we focus on the de-39

tection and the characterization of radio sources associated with Io, Europa and Ganymede.40

Using electric wave measurements or radio observations (Juno/Waves), in situ electron41

measurements (Juno/JADE–E), and magnetic field measurements (Juno/MAG) we demon-42

strate that the Cyclotron Maser Instability (CMI) driven by a loss–cone electron distri-43

bution function is responsible for the encountered radio sources. We confirmed that ra-44

dio emissions are associated with Main (MAW) or Reflected Alfvén Wing (RAW), but45

also show that for Europa and Ganymede, induced radio emissions are associated with46

Transhemispheric Electron Beam (TEB). For each traversed radio source, we determine47

the latitudinal extension, the CMI–resonant electron energy, and the bandwidth of the48

emission. We show that the presence of Alfvén perturbations and downward field–aligned49

currents are necessary for the radio emissions to be amplified.50

Plain Language Summary51

At Jupiter, the auroras are much more intense and long-lasting than on Earth, and52

some are influenced by Jupiter’s three largest moons: Io, Europa, and Ganymede. We’re53

particularly interested in the radio signals from these auroras. Until recently, these sig-54

nals were mainly studied from a distance, using Earth-based telescopes or spacecraft pass-55

ing by Jupiter. However, since 2016, the Juno spacecraft has been orbiting Jupiter, fly-56

ing through the auroral zone. Our study investigates the creation of these radio auro-57

ras using Juno’s instruments to measure radio waves, particles, and magnetic fields. Our58

research strongly suggests that a phenomenon called the Cyclotron Maser Instability is59

the cause of these radio signals. This instability happens because some electrons are not60

coming back from Jupiter after causing Ultraviolet aurora on top of Jupiter’s atmosphere.61

These radio signals are connected to the moons’ ultraviolet auroras. Additionally, our62

research highlights the importance of specific perturbations in Jupiter’s magnetic field,63

known as Alfvén perturbations, and currents that link Jupiter to these moons. This study64

deepens our understanding of Jupiter-moon interactions and sheds light on Jupiter’s fas-65

cinating auroras.66

1 Introduction67

One of the main objectives of the Juno mission is to probe Jupiter’s auroral regions68

in situ (Bagenal et al., 2017) and, in particular, to search for the sources of auroral ra-69

dio emission. This is made possible by a suite of instruments capable of acquiring high–70

quality plasma and wave measurements, such as Waves (Kurth et al., 2017), JADE–E71

(Jovian Auroral Distributions Experiment–Electrons, McComas et al., 2017) and MAG72

(Connerney et al., 2017). Imagers on–board Juno are also really useful to compare with73

auroral emissions in other wavelengths, such as in ultraviolet with the UVS instrument74

(Ultraviolet Spectrograph Gladstone et al., 2017).75

These instruments provide measurements to study the radio wave amplification pro-76

cess, and have already been able to locate the position of the sources (Imai et al., 2017,77

2019; Louis et al., 2019a) and to confirm the Cyclotron Maser Instability (CMI) as their78

underlying generation mechanism (Louarn et al., 2017, 2018; Louis et al., 2017a, 2020;79

Collet et al., 2023, and see below for more details).80
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The Galilean moons Io, Europa and Ganymede are known to induce auroral emis-81

sions, at radio (Bigg, 1964; Louis et al., 2017b; Zarka et al., 2017, 2018; Jácome et al.,82

2022), ultraviolet (UV, Prangé et al., 1996; Clarke, 1998; Clarke et al., 2002) and infrared83

(Connerney et al., 1993; Mura et al., 2017, 2018) wavelenghts . The motion of the moons84

across Jupiter’s magnetosphere in the plasma torus surrounding them (Szalay et al., 2022)85

generates an electric field, inducing electric currents and/or Alfvén waves (Goldreich &86

Lynden-Bell, 1969; Neubauer, 1980; Saur, 2004) which both accelerate electrons along87

the magnetic field lines in the moons’ flux tubes to kilo–electron–volts (keV) energy. Note88

that the case of Callisto is not studied here, even if a tentative detection of the Callisto89

UV footprint has been reported (Bhattacharyya et al., 2018), and hints of radio emis-90

sions have been observed to this day using Galileo and Voyager data (Menietti et al., 2001;91

Higgins, 2007). To date, Juno has not observed any UV or radio emissions likely to be92

induced by Callisto, nor any intensification of the electron energy flux while crossing Cal-93

listo’s flux tubes..94

The Io, Europa, and Ganymede induced UV emissions are known to be produced95

by downgoing electrons interacting with the Jovian neutral atmosphere. These signa-96

tures are observed at the moons’ magnetic footprint and along their tails, i.e the longi-97

tudinal extension of these spots in the downstream direction relative to the plasma flow98

encountering the moon (Bonfond et al., 2017a, 2017b). Recent in situ studies probed the99

magnetic field lines connected to these UV footprints, and found that they are consis-100

tent with production by Alfvénic interaction (Szalay et al., 2018, 2020a, 2020b; Allegrini101

et al., 2020). On the radio side, the moons’ induced emissions are believed to be produced102

by the CMI and have already been simulated and well match the observations (Hess et103

al., 2008; Louis et al., 2017a, 2019b). This mechanism is also responsible for the auro-104

ral radio emission (independent of the moons) and has been verified in situ by Louarn105

et al. (2017, involving loss–cone electron distribution functions, or EDF), Louarn et al.106

(2018, conics–type EDF) and Collet et al. (2023, shell–type EDF). Recently, Louis et al.107

(2020) showed with in situ Juno measurements that the radio emission induced by the108

Jupiter–Ganymede interaction is indeed produced by the CMI, from a loss cone–type EDF,109

i.e., a lack in the up–going electron population, with a characteristic energy of 4–15 keV.110

Since Jupiter–satellite radio and UV emissions are expected/assumed to be colo-111

cated (Hess et al., 2010), the question of the link between these emissions at two differ-112

ent wavelengths naturally arises. In the Io case, we know that UV and radio auroral emis-113

sions are produced by Alfvénic interactions, and that the main and secondary radio emis-114

sions are respectively produced on the magnetic field lines connected to the main Alfvén115

wing (MAW) and reflected Alfvén wing (RAW) spots, and highly suspected for the Tran-116

shemispheric Electron Beam (TEB) spots (Hess et al., 2010; Lamy et al., 2022). But no117

simultaneous in situ measurements have yet been analyzed. In the Ganymede case, Louis118

et al. (2020) showed, extending the work of Szalay et al. (2020a), that radio emission is119

produced above a magnetic flux tube mapping to a UV RAW spot. Hue et al. (2022) showed120

that radio emission seems to be produced above the TEB spot. Finally in the Europa121

case, UV emissions have been observed at the moon’s footprint and along the moon’s122

footprint tail (Bonfond et al., 2017a, 2017b; Allegrini et al., 2020; Hue et al., 2023; Ra-123

bia et al., 2023), but no simultaneous observation of UV and radio emissions has yet been124

analyzed.125

This study is a follow–up of the Louis et al. (2020) analysis, focusing on the three126

known types of Jupiter–satellite radio emissions. In Section 2, we briefly recall the the-127

ory of the Cyclotron Maser Instability. In Section 3, we present the observations of Jupiter–128

Io (J–I), –Europa (J–E) and –Ganymede (J–G) radio emission source crossings and cal-129

culate the CMI growth rate (whenever possible) and determine the emission parameters.130

Finally, in Section 4, we summarize and discuss the results.131
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2 The Cyclotron Maser Instability132

The CMI is known to be responsible for the production of auroral radio emission133

of Earth, Saturn and Jupiter (Wu & Lee, 1979; Le Queau et al., 1984a, 1984b; Wu, 1985;134

Pritchett, 1986; Treumann, 2006; Mutel et al., 2010; Lamy et al., 2010; Kurth et al., 2011;135

Louarn et al., 2017, 2018).136

In a tenuous and sufficiently magnetized plasma, i.e., wherever the electron plasma137

frequency fpe is much lower than the electron cyclotron frequency fce, and with weakly138

out–of–equilibrium/non–maxwellian relativistic electrons, the CMI can directly amplify139

X–mode waves at a frequency close to the electron cyclotron frequency fce. The radio140

waves are then emitted at a certain beaming angle θ from the local magnetic field B (k cos θ =141

k⃗ · B⃗ = k|| the parallel component of the wave vector k), which by symmetry around142

the local magnetic field line forms a hollow cone of emission. The CMI is a wave–electron143

instability for which the resonance condition is reached when the Doppler–shifted an-144

gular frequency of the wave in the frame of the electrons (ω−k||vr||) is equal to the rel-145

ativistic gyration frequency of resonant electrons (ωceΓ
−1
r ):146

ω = ωceΓ
−1
r + k||vr|| , (1)

with k the wave vector and vr the velocity of the resonant particle, and Γ−1
r =

√
1− v2r/c

2
147

the relativistic Lorentz factor. The ⊥ and || indices represent the perpendicular and par-148

allel components of the wave vector k or the velocity vr with respect to the magnetic149

field B.150

In the weakly relativistic case (vr ≪ c), the above resonance condition can be rewrit-151

ten as the equation for a resonant circle in the [v⊥, v||] velocity space:152

v2⊥ + (v|| − v0)
2 = v2r , (2)

defined by its center:153

v0 =
k||c

2

ωce
, (3)

and its radius154

vr =
√

v20 − 2c2∆ω , (4)

with155

∆ω = (ω − ωce)/ωce (5)

the frequency shift between the emission frequency and the cyclotron electron frequency.156

For the CMI to amplify radio emissions, the wave growth rate calculated along this157

resonance circle must be positive. The simplified version of the growth rate expression158

used by Louarn et al. (2017, 2018) and Louis et al. (2020) is well adapted to the ampli-159

fication of X–mode waves propagating at frequencies close to fce, for a refraction index160

N = 1 and a moderately energetic (E ≪ 511 keV) and low–density (fpe ≪ fce) plasma.161

But this expression contains an approximation at low pitch angle, and therefore applies162

only to growth rate calculation in the loss cone. Therefore to generalize the calculation163

of growth rate in the whole electron distribution function, we use the expression of Collet164

et al. (2023), derived from the dispersion relation in X mode from Le Queau et al. (1984b)165

(see Annexe A of Collet et al., 2023, for the full demonstration of the growth rate ex-166

pression). They assumed that the plasma is composed of one cold population at ther-167

modynamic equilibrium that support wave propagation and one non–thermal energetic168

(or hot) population that feeds the instability.169
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γ =
(π2 ϵh)

2

1 + ( ϵc
2∆ω )

2
c2
∫ π

0

dϕ v2r sin
2(ϕ)

∂fh
∂v⊥

(v0 + vr cos(ϕ), vr sin(ϕ)) (6)

In this equation ϵα = ωpα/ωce, where ωpα is the plasma frequency of the hot (α =170

h) or cold (α = c) electrons. fh is the normalized electron distribution function of hot171

electrons (
∫
fhdv

3 = 1). In practice, the factor to normalize the distribution function172

is c310−18/ne, where ne is the electron density (in cm−3). In this study, the hot electron173

density is the one measured by JADE–E for electrons above 1 keV energy (as in Collet174

et al., 2023). Note that, in the examples presented in Section 3, the mean ratio between175

hot and cold population is nhot/ntotal = 0.3.176

Equation 6 means that the growth rate is obtained by integrating ∂fh/∂v⊥ along177

a resonant circle in the normalized velocity space [v||,v⊥], defined by its center v0 (Equa-178

tion 3), its radius vr (Equation 4) and the angle ϕ ⊆[0–π] along this circle.179

By calculating and maximizing the growth rate, we are able to assess the most CMI–180

unstable electron population and characterize the resulting amplified waves, and then181

obtain the characteristics of the emission (e.g., the energy of the resonant electrons and182

the aperture of the beaming angle).183

One of the 3 anodes of JADE–E is unfortunately not functional. As a result, due184

to Juno’s spin and its orientation with respect to the magnetic field lines, some pitch an-185

gles may not be sampled (up to one third of the electron distribution function). In or-186

der to calculate the growth rate of the wave along the different resonance circles in ve-187

locity space, JADE–E needs to sample sufficient pitch angles. If too much of the EDF188

measurement is missing (60% along a resonant circle), we cannot calculate the growth189

rate and determine the characteristics.190

However, assuming that Juno is located within the radio source region (if the ra-191

dio emission is observed very close to, or even below, fce), we are still able to obtain some192

information about the source size and the characteristics of the emission, by measuring193

the emission frequency observed by Juno/Waves data. If the EDF is of shell type, i.e.194

if f ≤ fce, then the resonant circle is centered on v0 = 0, therefore k|| = 0 (see Equa-195

tion 3), and Equation 1 can then be rewritten as:196

ωshell = ωce

√
1− v2r

c2
. (7)

Thus, from the measurements of the local electron cyclotron frequency (ωce = 2πfce)197

and the emission frequency fshell, and using E = 0.5 × mev
2 (with me = 511 keV/c2198

the electron mass), the electron energy in keV in the shell–driven CMI case can be writ-199

ten as:200

E = 255.5×

(
1−

(
fshell
fce

)2
)

. (8)

In the case of a loss–cone (lc) type EDF, i.e. if f > fce, the resonant equation can201

be rewritten as (for more details see Equations 2–12 of Louis et al., 2019b):202

ωlc =
ωce√
1− v2

r

c2

, (9)

and therefore the electron energy in keV in the loss cone–driven CMI case can be writ-203

ten as:204

–5–
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E = 255.5×

(
1−

(
fce
flc

)2
)

(10)

3 Observations and Analysis of Radio Emission Sources Crossings205

Due to the large extension of Io’s tail (Szalay et al., 2020b) and to Juno’s polar or-206

bit, the spacecraft crossed Io’s magnetic flux tubes at least twice every orbit (North, then207

South). However, electron fluxes connected to Io’s UV aurora are not observed in ap-208

preciable or detectable amounts by Juno/JADE–E every transit of these flux tubes. There-209

fore, during the first 26 Juno perijoves, 18 cases of electron fluxes connected to Io’s mag-210

netic flux tube have been reported using the JADE–E measurements (Szalay et al., 2020b).211

By studying the data from perijoves (PJ) #27 to #31, we report five more cases of Io’s212

tail flux tube crossing where electron fluxes were measured. In the Europa case, electron213

fluxes connected to Europa’s UV aurora were measured ten times (Allegrini et al., 2020;214

Rabia et al., 2023). Finally, electron flux connected to Ganymede’s UV aurora were mea-215

sured only two times. The first one during PJ #20 (reported by Szalay et al., 2020a; Louis216

et al., 2020) and the second one during PJ #30 (studied in details by Hue et al., 2022).217

For all moon’s flux tube crossings detected by JADE–E, we investigate Waves ob-218

servations to look for radio emission located below 1 % the local electron cyclotron fre-219

quency fce (determined from the local magnetic field amplitude measured by the MAG220

instrument). We therefore considered these cases as a potential crossing of a radio source.221

We then study the EDF obtained from JADE–E. Szalay et al. (2020a, 2020b); Allegrini222

et al. (2020); Rabia et al. (2023) studied the downward electrons and the production of223

UV emissions linked to these downward electron currents, as well as the presence of Alfvénic224

current systems capable of accelerating these electrons. We study here the CMI–unstability225

of measured EDF, in the continuity of Louis et al. (2020). To go further than Louis et226

al. (2020), we study instability in the whole EDF, to search not only for loss–cone type227

instabilities, but also shell type. We also study the upward and downward electrons, as228

well as the magnetic field perturbation, to determine the presence of field–aligned cur-229

rents (FAC) using Wang et al. (2021) and Al Saati et al. (2022) method and Alfvén per-230

turbations capable of accelerating electrons.231

Downtail distances with respect to the main spot were recently revised using Juno/UVS232

data. Over 1,600 spectral images of the Io, Europa, and Ganymede UV footprint were233

analyzed to provide statistical positions of the main Alfvén wing spots. This allowed Hue234

et al. (2023) to estimate the distance from Juno to the main spot at the time of the source235

crossings that will be described in this Section, as well as derived observationally an es-236

timation of the Alfvén travel time for each three moons. Note that the actual position237

of the main Alfvén wing spots is affected by the background magnetospheric conditions238

(density of the plasma sheet along the field line connected to the satellite footprint and/or239

magnetic field strength), and therefore shifts of the main Alfvén wing spots mapped to240

the equatorial region up to ±2o (Io), ±4o (Europa) and ±5o (Ganymede) are not un-241

usual (See Hue et al., 2023, Figures 4, 5, 7). A negative distance to the main spot there-242

fore translate either (i) a source crossing associated with a transhemispheric electron beam243

located much upstream of the Alfvén wing spots, or (ii) a change in the plasma condi-244

tion (e.g., lower plasmasheet density and/or higher magnetic field magnitude).245

3.1 Jupiter–Io radio emission source crossings246

Out of the 23 cases where electron fluxes connected to Io’s tail flux tube were mea-247

sured, simultaneous radio emissions below 1.01×fce were observed in only 4 cases. Fig-248

ure 1 displays Juno measurements around an Io flux tube encounter, during PJ#5 on249

2017–03–27 (2017 March 27th) in the Southern hemisphere (already reported by Louis250

et al., 2019a). Panel (A) presents the Juno/Waves measurements (in low–resolution mode,251

–6–
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Kurth et al., 2017) around the perijove (from ∼ −1.5 h before to ∼ 2.5 h after). Panel252

(B) is a 5 min zoom–in of panel (A) using Juno/Waves high–resolution mode. The de-253

creasing solid–black and dashed–black lines in panels (A,B) represent respectively the254

electron cyclotron frequency fce and 1.01×fce. Panels (C)–(E) show the Juno/JADE–255

E measurements of (C) the electron differential number flux (or intensity), (D) the elec-256

tron distribution function of upgoing electrons and (E) the partial electron density (where257

all the energy population < 0.1 keV is not accounted for). Figure 1F displays the FAC258

calculated based on Al Saati et al. (2022)’s method (see sections 1.3 and 2 of their SI259

for more details). This method used the residual magnetic field perturbation δB, defined260

as the difference between the Juno/MAG magnetic field measurements and the magnetic261

field values obtain from the combination of the Connerney et al. (2018) magnetic field262

and Connerney et al. (1981) current sheet models. The FAC are then calculated from263

the residual magnetic field perturbation in the azimuthal direction (δBϕ).264

Figure 1B displays an emission very close to 1.01× fce, while we observe an en-265

hancement in the electron energy flux (panel C) at a few keV, a strong intensification266

in the distribution function (panel D), an increase of the electron density (panel F) and267

a clear upward current surrounded by downward FAC (panel G). Figure S1 in Support-268

ing Information displays the magnetic field fluctuations for all the magnetic field com-269

ponents in spherical coordinates. The magnetic field perturbation associated to the FAC270

shows clear fluctuations in the transverse component (perpendicular to B, correspond-271

ing to δBϕ and δBθ) while no fluctuations are observed in the radial component (δBr).272

The fluctuations are therefore confined to the transverse components, which is indica-273

tive of a lack of horizontal current, and therefore indicative of FAC (displayed Figure 1G).274

Moreover, no fluctuations are seen in the total magnetic field magnitude δ|B|, indicat-275

ing that these variations are Alfvénic in nature (Gershman et al., 2019; Kotsiaros et al.,276

2019).277

Figures 2A–B display the electron distribution function in the velocity space mea-278

sured by Juno/JADE–E at (A) 09:30:52 and (B) 09:31:00. From these data and Equa-279

tion 6 we can calculate the normalized growth rate of the emission along different res-280

onant circles to determine the unstable electron population. Figures 2C–D show the es-281

timated normalized growth rate γ/ωce along resonant circles in the whole EDF, calcu-282

lated for different centers (x–axis) and different radii (y–axis). Figures 2E–F displays the283

growth rate γ as a function ∆ω for each resonant circle displaying a positive growth rate.284

Positive growth rates are obtained for the EDF of Figure 2A, and not for the EDF285

of Figure 2B. Only resonant circles inside the theoretical loss cone show positive growth286

rate (blue circles and orange stars in Figure 2E), while no positive growth rate are found287

for shell–type resonant circles (green diamonds). By doing this calculation before, dur-288

ing and after the crossing of the Io’s tail flux tube (see Figure 1E), we are able to de-289

termine when Juno is in the source, and thus determine its size and the characteristics290

of the emission. In this case, positive growth rate are obtained along loss–cone type res-291

onant circles from 09:30:51 to 09:30:59 (±1 sec). This time interval is indicated in Fig-292

ure 1 by the two vertical dashed red lines. Juno’s velocity being ∼ 45 km/s during this293

time, we determined that the source size is 360±45 km. From the growth rate calcu-294

lation, we can determine that the energy of the resonant electrons responsible for this295

emission is in the range [1–15] keV, with an opening angle θ of the beaming cone in the296

range [74◦–85◦]. To determine this value, we used Equation 7 of Louis et al. (2020):297

θ = acos(β0/(1 + ∆ω)) , (11)

based on the assumptions of Section 2.298

It is interesting to note that enhanced electron fluxes are observed for the period299

of 09:30:51 to 09:31:02 (determined as the flux tube crossing, Szalay et al., 2020b), while300

the J–I radio source is only crossed from 09:30:51 to 09:30:59 (determined from the growth301

–7–
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Figure 1: Juno data during Perijove 5, on 27 March 2017. Panels (A,B) display
Juno/Waves data (A) in low–resolution mode and (B) in high–resolution mode. The
solid–black lines represent the electron cyclotron frequency derived from the magnetic
field measurements of Juno/MAG, and the dashed–black line is 1.01 × fce.Panels (C–D)
display Juno/JADE–E measurements: (C) the electron differential number flux (or in-
tensity) of all electrons; (D) the electron distribution function for energy in range [2–21]
keV as a function of pitch angles; Panels (E) displays the normalized growth rate γ/ωce

maximal value calculated using Equation 6. Panel (F) shows the partial electron density
calculated from the JADE–E flux. Panel (G) shows the field–aligned currents calculated
based on Al Saati et al. (2022)’s method, using magnetic field fluctuations in the az-
imuthal direction (δBϕ) deduced from the Juno/MAG measurements.The vertical dashed
black lines represent the flux tube crossing as inferred from JADE data, while vertical
dashed red lines represent the time interval where positive growth rate are calculated from
JADE–E measurements. The vertical solid and dashed green lines indicate where the elec-
tron distribution functions displayed in Figure 2 are taken. Panel (H) displays a UV map
of the southern hemisphere, using Juno/UVS measurements from 09:35:49 to 09:55:20.
The red line indicates Juno’s trajectory, with the red dots its position at the start and
end time of the measurements used for this image. Io UV footprint is highlighted by the
red ellipse.

rate calculation), which corresponds to the time where Juno is inside a downward cur-302

rent (corresponding to upward electrons). When Juno is located inside an upward cur-303

rent (i.e., downward electrons), no positive growth rate are obtained.304

The same method is applied to the data from PJ#6 (North) on 2017–05–19, dur-305

ing which a J–I radio source is crossed between 05:39:31 and 05:39:39 (see Figure S2),306

and to PJ#29 (North) on 2020–09–16 during which a J–I radio source is crossed between307

02:00:34 and 02:00:36 (see Figure S3). For the crossing of the J–I radio source that oc-308

curs in the northern hemisphere during PJ#5 on 2017–03–26 around 08:34:40 (see Fig-309

ure S4), we do not have JADE–E measurements of the upgoing electrons, and we there-310

fore can not calculate the growth rate. Since no radio emission is observed below fce,311

we therefore assume that loss–cone EDF remain the prominent source of free energy for312

the CMI, and we therefore use Equation 10 to determine the electron energy. The re-313

sults for these three crossings, i.e., radio source size, resonant electron energy, femission314

and opening angle of the beaming cone, are summarized Table 1.315

As for PJ#5 (South), FAC and Alfvénic perturbations are observed during PJ#5316

(North) and PJ#29 (North) Io’s flux tube crossing (see Figures S4 and S3, respectively),317

with perturbations in the transverse components of the magnetic field (δBϕ and δBθ)318

while no perturbation is observed in the radial (δBr) and compressive (δ|B|) components.319

Furthermore, as for PJ#5 (South), the radio source is not crossed anywhere inside Io’s320

flux tube, but only when Juno is located inside a downward current (i.e., upward elec-321

trons). During PJ#6 (North), nothing is observed in the magnetic field perturbations,322

which could be due to the fact that the electron density is very low (< 1 cm−1), which323

could induce a perturbation too weak for the MAG instrument to detect.324

Based on the recalculation of the downtail distance to the main spot of Io ∆λAlfvén325

(Hue et al., 2023), the J–I radio emission source crossings of PJ#5 North, PJ#5 South,326

PJ#6 South are all associated with a Reflected Aflvén Wing (RAW) spot downtail of327

Io. The intensity of the radio emission seems to be quite similar for crossings occurring328

close to the main spot, with an intensity of 2–3×10−6 V2.m−2.Hz−1 when 3.3o < ∆λAlfvén <329

10.8o. The intensity seems to be lower when ∆λAlfvén is large, with an intensity of 8×330

10−8 V2.m−2.Hz−1 for ∆λAlfvén = 87.4o.331

–9–
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Figure 2: Caption on next page
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Figure 2: Panels (A,B): electron distribution function in the velocity space [v||, v⊥] mea-
sured by JADE–E on 2017–03–27 at (A) 09:30:52 (inside the Io tail radio source, see
vertical solid green line Figure 1) and (B) 09:31:00 (outside the Io tail radio source, but
inside Io’s flux tube, see vertical dashed green line Figure 1). In that case, the v|| < 0 part
of the EDF represents upgoing electrons, while v|| > 0 represents downward electrons.
The colorbar and the isocontours are shown using a logarithmic scale in units of s3.km−6.
The radial red thick line indicates the theoretical loss cone value. The blue circular half–
circle in panel (A) display the resonant circle with the highest growth rate. Panels (C,D):
Normalized growth rate (γ/ωce) estimates for different resonant circles at different centers
v0 and radii vr. Panels (E,F): Normalized growth rate as a function of the frequency shift
∆ω between the emission frequency and the cyclotron electron frequency (see Equation 5
for all resonant circle with positive growth rate γ. Blue circles represent growth rate for
resonant circles tangential to the theoretical value of the loss cone. Orange stars represent
growth rate growth rate for resonant circle inside the theoretical loss cone. Both are con-
sidered as loss–cone type instabilities. Green diamonds represent growth rate for resonant
circles of shell-type.

3.2 Jupiter–Europa radio emission332

During the 26 first perijoves, enhanced electron fluxes connected to Europa’s UV333

aurora were measured ten times (Allegrini et al., 2020; Rabia et al., 2023). A radio source334

was crossed only during PJ#12 on the Northern hemisphere, on 2018–04–01 around 08:15:44.335

Figure 3 displays Juno/Waves (panels A–B), Juno/JADE–E measurements (pan-336

els C–E) and Juno/UVS (panel F) during the crossing of flux tube connected to a Eu-337

ropa’s downtail UV footprint (Allegrini et al., 2020). During the time of the flux tube338

crossing, determined by the enhancement of the electron flux in JADE–E measurements339

(Figures 3C–D), a radio emission is observed below 1.01 × fce (Figure 3B). However,340

the JADE–E instruments did not record data of upgoing electrons in the loss cone dur-341

ing this time. We therefore cannot calculate the loss–cone or shell CMI growth rate for342

this EDF. Since no radio emission is observed below fce, we therefore assume that loss–343

cone EDF remain the prominent source of free energy for the CMI. We then apply Equa-344

tion 10 to estimate the energy of the resonant electron. Looking at the Juno/Waves mea-345

surements (Figure 3B), we determine that the radio emission observed during Europa’s346

flux tube crossing is emitted at a frequency between 0.7 and 1.5% above the electron cy-347

clotron frequency fce (solid dark line). This frequency measurement leads to an energy348

of the resonant electrons in the range [3–8] keV, and an opening angle of the beaming349

cone in the range [79◦–84◦].350

The MAG measurements of the magnetic field perturbation show no strong vari-351

ation of the different components. Once again, as in the case of PJ#6N for Io, the elec-352

tron density is very low (∼ 2 cm−1) which could induce perturbations too weak and/or353

too short for the MAG instrument to detect.354

Based on the latest work of Rabia et al. (2023) and the recalculation of ∆λAlfvén355

(Hue et al., 2023), we can conclude that the J–E radio source crossed during PJ#12 is356

associated with a Transhemispheric Electron Beam (TEB) spot uptail of the main Eu-357

ropa UV spot.358

3.3 Jupiter–Ganymede radio emission359

So far, flux tubes connected to Ganymede footprint tail aurora have been crossed360

twice: the first one during PJ #20 on 2019–05–19 between 07:37:14 and 07:37:32 (reported361
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Figure 3: Panels (A,B) display Juno/Waves data (A) in low–resolution mode and (B) in
high–resolution mode. The solid–black lines represent the electron cyclotron frequency
derived from the magnetic field measurements of Juno/MAG, and the dashed–black line
is 1.01 × fce. Panels (C–E) display Juno/JADE–E measurements: (C) the electron differ-
ential number flux (or intensity) of all electrons; (D) the electron distribution function for
energy in range [2–21] keV only for pitch angles [0◦–60◦] corresponding to up–going elec-
trons; (E) partial electron density calculated from the JADE–E flux. Panel (F) displays
a UV map of the northern hemisphere, using Juno/UVS measurements from 08:50:24 to
09:10:20. The red line indicates Juno’s trajectory, with the red dots its position at the
start and end time of the measurements used for this image. Europa UV footprint is high-
lighted by the red ellipse.
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by Szalay et al., 2020a; Louis et al., 2020) and the second one during PJ #30, on 2020–362

11–08 around 02:55:02 (Hue et al., 2022).363

We already reported the PJ#20N crossing in Louis et al. (2020), but at that time,364

we did not look at the Juno/MAG measurements, which was done by Szalay et al. (2020a)365

(and plotted in Figure S5). During this Ganymede footprint tail aurora flux tube cross-366

ing, fluctuations in the transverse components (δBϕ and δBθ) were observed, while no367

fluctuations were measured in the radial (δBr) and compressive (δ|B|) components, which368

indicates the presence of field–aligned currents and Alfvénic perturbations. As for the369

J–I radio emission sources, it should be noted that the radio source is only crossed when370

Juno is in a downward current (i.e., upward electrons). Based on Szalay et al. (2020a);371

Louis et al. (2020), this radio emissions is associated with a RAW UV spot (with a ∆λAlfvén =372

8◦). However, based on the recent work of Hue et al. (2023), for this J–G radio source,373

∆λAlfvén = −1.8◦. Therefore, due to the error of ±5◦ on the position of the MAW for374

Ganymede (due to possible change in the in situ plasma condition, see penultimate para-375

graph of Section 1), it appears that the J–G radio source crossed during PJ#20, is con-376

nected not to the RAW spot, but to the MAW spot.377

Concerning the second case, during PJ#30 on 2020–11–08 (northern hemisphere),378

Ganymede footprint tail aurora flux tube was crossed around 02:55:02, with radio emis-379

sion tangent to 1.01× fce at the same time (see Hue et al., 2022). Unfortunately, the380

field–of–view of JADE–E was unable to measure the upward electrons during Ganymede381

flux tube crossing. Therefore, we can only estimate the electron energy using Equation382

10 (as no radio emission is observed below fce). Around 02:55:02, Waves measured a ra-383

dio emission between 1.804 MHz and 1.894 MHz. Based on the Juno/MAG measurements384

of the magnetic field amplitude, fce = 1.7857 MHz. These values of the emission fre-385

quency lead to an estimation of the resonant electron energy in the range [5.1–28.5] keV,386

and an aperture angle of the beaming cone in the range [70◦–81◦], provided that Juno387

actually flew through the radio source. During the crossing, MAG measurements show388

a ∼ 10 nT perturbation in δBϕ, while no perturbation is observed in the radial δBr and389

compressive δ|B| components, which indicates again the presence of Alfvénic perturba-390

tions and field–aligned currents, with an upward current equatorward of a downward cur-391

rent.392

By using UVS, JADE and MAG measurements, Hue et al. (2022) demonstrate that393

the UV spot connected to the crossed magnetic field lines is fully consistent with a Tran-394

shemispheric Electron Beam (TEB), which is reinforced by the ∆λAlfvén = −7◦ calcu-395

lated using Hue et al. (2023) model. Therefore, we can also conclude that the J–G ra-396

dio emission source crossed during PJ#30 is associated with a Transhemispheric Elec-397

tron Beam (TEB) spot uptail of the main Ganymede UV spot.398

The results for these two J–G radio source crossings are summarized in Table 1.399

4 Summary and Discussion400

Concerning the characteristics of the radio emission, the results are similar for the401

three Galilean moons Io, Europa and Ganymede, in terms of driving mechanism (CMI),402

electron energy, and beaming. The in situ measurements by JADE–E show that the ra-403

dio emission is triggered by the Cyclotron Maser Instability, driven by a loss–cone elec-404

tron distribution function. No unstable shell–type electron distribution function are de-405

tected in JADE–E measurements. The energy of the resonant electrons is in the range406

[1–20] keV, and the half–opening cone angle is in the range [74◦–86◦].407

These values are in agreement with those recently obtained using ground–based ra-408

dio observation, such as the Nançay Decameter Array or NenuFAR, such as the recent409

work of Lamy et al. (2022) who determined for Io an opening angle θ(f) in the range [70◦–410

80◦] and electron energies in the range [3–16] keV. For Europa, Lamy et al. (2023) mea-411
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Table 1: Results for the Jupiter–Io, Jupiter–Europa and Jupiter–Ganymede radio emis-
sions source crossings. Is given for each crossing: the name of the moon; the hemisphere
of the emission; the associated perijoves; the date and time interval of the radio source
crossing as inferred from growth rate calculation when JADE data were available; the
JADE data availability; the minimal frequency reached by the radio emission (in MHz);
the frequency bandwidth of the emission (in percentage above fce); the maximum inten-
sity (in V2.m−2.Hz−1) of the emission; the maximum estimated flux (in W.m−2.Hz−1)
of the emission (based on Louis et al., 2021a, 2023); the electron energy (in keV); the
opening half–angle of the beaming cone (in ◦); the radio source size (in km); the downtail
distance to the Main Alfvén Wing spot ∆λAlfvén (Hue et al., 2023); the associated UV
emission at the footprint of the magnetic field line associated to the source (MAW: Main
Alfvén Wing: RAW: Reflected Alfvén Wing; TEB: Transhemispheric Electron Beam).

Moon Io Io Io Io Europa Ganymede Ganymede
Hemisphere South North North North North North South
Perijove PJ5 PJ5 PJ6 PJ29 PJ12 PJ20 PJ30

Date (Year–Month–Day) 2017–03–27 2017–03–27 2017–05–19 2020–09–16 2018–04–01 2019–05–29 2020–11–08
Time interval (HH:MM:SS) 09:30:51–59 around 08:34:40 05:39:31–39 02:00:34–36 around 09:15:44 07:37:25–30 around 02:55:02

JADE data Yes No Yes Yes No Yes No
fmin (MHz) 4.7 20.8 12.8 27.7 6.7 6.5 1.8

femission (% > fce) 3–18 × 10−3 3–29 × 10−3 2–14 × 10−3 5–40 × 10−3 7–15 × 10−3 5–21 × 10−3 5–40 × 10−3

Intensity max. (V2.m−2.Hz−1) 3 × 10−6 3 × 10−6 8 × 10−8 2 × 10−6 1 × 10−7 1 × 10−6 3.5 × 10−9

Estimated flux max. (W.m−2.Hz−1) 4.0 × 10−6 1.08 × 10−6 2.5 × 10−7 7.7 × 10−6 2.4 × 10−7 2.4 × 10−6 7.2 × 10−9

Electron energy (keV) 1–15 2–20 1–5 3–10 3–8 4–15 2–20
Opening angle 74–85◦ 74–85◦ 77–86◦ 73–84◦ 79–84◦ 76–83◦ 74–85◦

Radio source size (km) 360 ± 45 500 ± 100 415 ± 50 250 ± 50 200 ± 49 250 ± 50 75 ± 50
∆λAlfvén (o) 3.3o 10.8o 87.4o 7.8o −10.5o −1.8o −7o

Associated UV emission RAW RAW RAW RAW TEB MAW TEB

sured on an unique detection an opening angle in the range θ = [80◦–86◦] and an elec-412

tron energy in the range [0.5–3] keV. For Ganymede, the observations of three emissions413

lead them to a determination of a beaming angle in the range θ = [71◦–87◦] and an elec-414

tron energy in the range [0.5–15] keV415

The radio sources have a latitudinal extent of a few hundreds of kilometers. In the416

cases where we are able to constrain the radio source location (provided that we have417

JADE–E measurement of the up–going electrons), the sources were not crossed anywhere418

in the flux tube, but only in the downward field–aligned currents.419

Based on the previous works of Szalay et al. (2020a, 2020b); Louis et al. (2020);420

Hue et al. (2022); Rabia et al. (2023) and the recalculated downtail distances from the421

UV moon main spot using Hue et al. (2023), we also concluded that in the case of Io,422

all radio source crossed were associated with a RAW UV spot. These crossed radio sources423

are therefore associated with the secondary radio emissions observed in the usual dynamic424

spectrum.425

In the case of Europa, the only case of radio emission source so far is associated426

with a TEB spot. Finally, for Ganymede, one radio source is associated with a MAW427

spot, while the second one is associated with a TEB spot. Even if we didn’t detect any428

radio emission above TEB for Io, these results are in agreement with the interpretation429

of the first identification of some Io–DAM linked to the TEB spot analyzed in Lamy et430

al. (2022).431

For each source crossed, we estimate the flux density (see Table 1) based on Louis432

et al. (2021a) and Louis et al. (2023). The maximum values of the estimated flux den-433

sity in the sources are quite similar between all cases close to the main UV spot, with434

values in the range [1–8]×10−6 W.m−2.Hz−1 in the interval −1.8o < ∆λAlfvén < 10.8o,435

with a decrease of the intensity with long distance downtail (2.5× 10−7 W.m−2.Hz−1
436

for the case at ∆λAlfvén = 87.4o). But with only one case very far downtail, we can’t437

produce a fit of this decrease as a function of ∆λAlfvén. However, the maximal intensity438

of the emission is quite smaller for the radio source crossed above a TEB spot (7.2×10−9
439
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and 2.4 × 10−7 W.m−2.Hz−1). This could be related to the type of electron distribu-440

tion, which seems different near tail (non–monotonic) than far tail (broadband), at least441

for Europa with a separation at ∆λAlfvén ≃ 4o downtail to the Main spot (Rabia et al.,442

2023).443

From these latest observations, it therefore appears that the cyclotron maser in-444

stability driven by a loss–cone electron distribution function is a common way of ampli-445

fying radio emission at Jupiter. This is the case both for auroral radio emission (Louarn446

et al., 2017, 2018) and for moon–induced radio emission (Louis et al., 2020; Hue et al.,447

2022, and this present study). We have also shown here that the presence of Alfvénic448

perturbation as well as field–aligned current are necessary for the radio emissions to be449

amplified. The radio sources are located only in the downward part of the FAC, i.e. when450

the current is carried by upgoing electrons. This supports the results obtained from very451

high resolution observations (Zarka et al., 1996; Zarka, 2004; Hess et al., 2007a, 2007b;452

Louis et al., 2022; Mauduit et al., 2023), which show that the millisecond bursts observed453

in the J–I and J–G emissions present only negative drifts, i.e. upward–moving electrons.454

Finally, radio emission are found to be associated with TEB, MAW and RAW spot at455

the footprint of the flux tube connected to the moons.456

However, the Cyclotron Maser Instability does not trigger radio emission at a de-457

tectable level for Waves every time Juno is in the flux tube of the moons, even if UV emis-458

sion is observed at the footprint of the flux tube in each case. Radio sources are crossed459

in the two cases of Ganymede flux tube crossings. In contrast, a radio source is crossed460

only once over ten Europa flux tube crossings, while for Io, only four radio sources are461

crossed over 23 Io flux tube crossings. Therefore, it is clear that several criteria are nec-462

essary to amplify a radio wave through the CMI to an observable intensity.463

First, we knew that for the CMI to occur, a low energetic plasma is needed (fpe/fce ≪464

0.1). But in this study, we also found that the CMI needs to have a sufficiently dense,465

hot and energetic plasma to occur. If the ratio between fpe and fce is too low, the in-466

tegration of the δf/δv⊥ gradient along the resonant circles gives an insufficiently high467

growth rate to amplify the wave to an observable intensity. For example, in the case where468

UV emissions are observed at the footprint of the magnetic field lines, the too low elec-469

tron density in the up-going electron population could be due to an enhanced loss of pre-470

cipitating electrons in the Jovian ionosphere.471

A second necessary condition seems to be the presence of an Alfvénic acceleration472

process and field–aligned current. As suggested by Crary (1997), accelerated electron beams473

–up to a few 10s of keV– could be created by repeated Fermi acceleration by field–aligned474

electric fields produced by the Alfvén waves. If a fraction of this electron population pro-475

duces UV aurorae at the footprint of the magnetic field lines and another fraction, keep-476

ing the fpe/fce ≪ 0.1 condition, is accelerated or reflected back upward, this creates477

a partially empty upward loss cone in the electron distribution function. There are thus478

∂f/∂v⊥ gradients within the upward loss cone in the electron distribution function. This479

therefore creates the instability needed to obtain positive growth rates (see Equation 6),480

and thus amplify radio emissions via the loss cone–driven CMI.481

To resolve the question of the conditions required to amplify a radio wave through482

the CMI, more crossings of Jupiter-Moon radio emissions will be necessary, and future483

Juno observations could further illuminate these important processes.484

Data Availability Statement485

The Juno data used in this manuscript are found at the Planetary Data System486
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doi.org/10.17189/1519715 for JADE–E data (Allegrini et al., 2022) and at https://488

doi.org/10.17189/1519711 for MAG data (Connerney, 2017).489
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Prangé, R., Rego, D., Southwood, D., Zarka, P., Miller, S., & Ip, W. (1996, Jan-713

uary). Rapid energy dissipation and variability of the lo-Jupiter electrody-714

namic circuit. Nature, 379 , 323-325. doi: 10.1038/379323a0715

Pritchett, P. L. (1986, December). Cyclotron maser radiation from a source struc-716

ture localized perpendicular to the ambient magnetic field. Journal of Geo-717

physical Research, 91 (A12), 13569-13582. doi: 10.1029/JA091iA12p13569718
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