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Abstract

There are many group-based cryptosystems in which the security relies
on the difficulty of solving Conjugacy Search Problem (CSP) and Simul-
taneous Conjugacy Search Problem (SCSP) in their underlying platform
groups. In this paper we give a cryptanalysis of these systems which use
certain semidirect product of abelian groups.

1 Introduction

The field of group-based cryptography began with the seminal work of Anshel,
Anshel and Goldfeld in 1999 when they proposed a commutator key-exchange
protocol based on the difficulty of simultaneus conjugacy search problem in cer-
tain classes of groups, namely braid groups [1]. The search for the platform
group for this protocol has been an active area including several cryptanaly-
sis. For a survey on group-based cryptography in the quantum era see [13] and
book [14]. Polycyclic group-based cryptography was introduced by Eick and
Kahrobaei in [5]. More precisely, they proposed such groups as platform for the
Commutator Key-Exchange Protocol, also known as Anshel-Anshel-Goldfeld
(a.k.a. AAG) [1], as well as for the non-commutative Diffie-Hellman Key-
Exchange Protocol (a.k.a. Ko-Lee) [18]. The security of these protocols relies on
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the difficulty to solve the Simultaneous Conjugacy Search Problem (SCSP) and
the Conjgacy Search Problem (CSP) in some classes of groups. Their argument
is based on experimental results for the CSP for certain metabelian polycyclic
groups arising from field extensions. These groups are not virtually nilpotent,
hence the CSP cannot be solved using the analysis provided in [20]. Neverthe-
less, some of these groups can be avoided as platform since, in [19], Kotov and
Ushakov did a cryptanalysis for some groups of this type. A connected work is
due to Gryak, Kahrobaei, and Martinez Perez who investigated another class of
metabelian groups. Indeed, in [10] they obtain a complexity result concerning
the CSP which is proved to be at most exponential for the analyzed class of
groups.

The methods used to test conjugacy decision problem are different and in-
clude experiments conducted with machine learning algorithms, as done by
Gryak, Kahrobaei and Haralick, in [8], but also Length-based attack. Garber,
Kahrobaei, and Lam, in [7], showed that the Length-based attack is inefficient
for certain classes of metabelian polycyclic groups.

There are other proposed cryptosystems based on the difficulty of CSP in
certain classes of groups, (see the survey by Gryak and Kahrobaei [9]), for exam-
ple Kahrobaei-Koupparis Digital Signature Scheme [16], and Khan-Kahrobaei
Non-commutative El Gamal Key-exchange [15].

In this paper we go further to the results Field-Based-Attack (FBA) in [19]
and show how to cryptanalyze the CSP and SCSP for some other classes of
metabelian groups.

The authors in [19] investigated security properties of the Commutator Key-
Exchange Protocol used with certain polycyclic groups. They showed that de-
spite low success of the length based attack the protocol can be broken by a
deterministic polynomial-time algorithm. They call this approach FBA and
they implemented it in GAP to compare LBA and FBA.

In this paper we show that FBA could be generalized for protocols based
on the difficulty of CSP and SCSP in certain classes of metabelian groups. In
particular we prove the followings theorems:
Theorem 4.1: Let G =M ⋉N , where M ≅ Zn and N = Z[m±11 , . . . ,m±1n ] (as addi-
tive groups), with m1, . . . ,mn positive integers, then there exists a polynomial-
time algorithm to break Commutator Key-Exchange protocol for such a group
G.
Theorem 4.2: Let G =M ⋉N , where M ≅ Zn and N = Z[m±1

1
, . . . ,m±1n ] (as addi-

tive groups), with m1, . . . ,mn positive integers, then there exists a polynomial-
time algorithm to break Diffie-Hellmann Key-Exchange protocol for such a
group G.

This paper is structured as follow: in Section 2, we recall the definitions

2



of Conjugacy Search Problem and Simultaneous Conjugacy Search Problem
and we describe some Key-Exchange Protocols such as Non-commutative Diffie-
Hellman and nshel-Anshel-Goldfeld Commutator. Section 3 presents the family
of metabelian groups we are interested in with some examples. In Section 4
we prove the main result i.e. how to cryptanalyze the CSP and SCSP in such
platform groups and we provide the proofs of Theorem 4.1 and Theorem 4.2.
The conclusions of our work are in Section 5.

2 Background

2.1 (Simultaneous) Conjugacy Search Problem

We start out by giving a brief description of two group-theoretic algorithmic
problems on which the security of a number of protocols is based. Here and in
the following, if x and g are group-elements, the conjugate of g by x, which is
denoted by gx, is the element x−1gx.

The Conjugacy Search Problem (CSP): Let G be a finitely presented group
such that the conjugacy decision problem is solvable. Given g ∈ G and h = gx

for some x ∈ G, the Conjugacy Search Problem asks to search such an element
x ∈ G.

The Simultaneous Conjugacy Search Problem (SCSP): Given a finitely
presented group G and g1, . . . , gn, h1, . . . , hn elements of G such that hi = g

x
i , for

all i ∈ {1, . . . , n} and some x ∈ G, the Simultaneous Conjugacy Search Problem
asks to recover such an element x ∈ G.

Please note that CSP and SCSP are always solvable since we assume that the
decision conjugacy problem is solvable in the definitions of these problems. Also,
a solution of gx = h is not unique. In fact, given a solution x, the set of solutions
is {ax ∶ a ∈ CG(g)}.
Examples of well known protocols whose security is based on the difficulty of
solving the CSP or the SCSP are the non-commutative Diffie-Hellman (a.k.a
Ko-Lee) Key-Exchange Protocol and the Anshel-Anshel-Goldfeld Commutator
Key-Exchange Protocol. We recall these protocols below.

2.2 Non-commutative Diffie-Hellman (a.k.a. Ko-Lee) Key
Exchange Protocol

Originally proposed by Ko, Lee, et al. [18] using braid groups, their non-
commutative analogue of Diffie-Hellman key exchange can be generalized to
work over other platform groups. Let G be a finitely presented group, with
A,B ≤ G such that all elements of A and B commute.

An element g ∈ G is chosen, and g,G,A,B are made public. A shared secret
can then be constructed as follows:
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• Alice chooses a random element a ∈ A and sends ga to Bob.

• Bob chooses a random element b ∈ B and sends gb to Alice.

• The shared key is then gab, as Alice computes (gb)a, which is equal to
Bob’s computation of (ga)b as a and b commute.

The security of such a protocol is based on the difficulty to get a and b,
which are private, from public information g, ga and gb. That is to solve the
conjugacy equations

gx = h and gy = h′

where h = ga and h′ = gb. In other words, the security of Ko-Lee rests upon
solving the conjugacy search problem within the subgroups A,B.

2.3 Anshel-Anshel-Goldfeld Commutator (a.k.a. AAG)
Key-Exchange Protocol

The Anshel-Anshel-Goldfeld Commutator Key-Exchange Protocol [1] is a two-
party protocol performed as follows:

• Fix a finitely presented group G, called the platform group, a set of gen-
erators g1, . . . , gk for G and some positive integers n1, n2, l,m. All this
information are made public.

• Alice prepares a tuple of elements ā = (a1, . . . , an1
) called Alice’s pub-

lic tuple. Each ai is generated randomly as a product of gi’s and their
inverses.

• Bob prepares a tuple of elements b̄ = (b1, . . . , bn2
) called Bob’s public tuple.

Each bi is generated randomly as a product of gi’s and their inverses.

• Alice generates a random element A as a product aǫ1s1⋯a
ǫl
sl
of ai’s and their

inverses. The element A (or more precisely its factorization) is called the
Alice’s private element.

• Bob generates a random element B as a product bδ1t1⋯b
δm
tm

of bi’s and their
inverses. The element B (or more precisely its factorization) is called the
Bob’s private element.

• Alice publishes the tuple of conjugates b̄A = (A−1b1A, . . . ,A
−1bn2

A).

• Bob publishes the tuple of conjugates āB = (B−1a1B, . . . ,B−1an1
B).

• Finally, Alice computes the element KA as a product:

A−1(B−1aǫ1s1B⋯B
−1aǫlslB) = A

−1B−1AB = [A,B]

using the elements of Bob’s conjugate tuple āB.
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• Similarly, Bob computes the element KB as a product:

(A−1bδ1t1A⋯A
−1bδmtmA)−1B = A−1B−1AB = [A,B]

using the elements of Alice’s conjugate tuple b̄A.

• The shared key is then K =KA =KB = [A,B].

The security of such a protocol is based on the fact that it is difficult to recover
A and B from ā, b̄, b̄A and āB, which are public. In practice, if b̄A = (b′

1
, , b′n2

)
and āB = (a′

1
, . . . , a′n1

), it is achieved by solving a system of conjugacy equations
for A and B:

⎧⎪⎪
⎨
⎪⎪⎩

X−1b1X = b
′

1

. . .

X−1bn2
X = b′n2

(1)

⎧⎪⎪
⎨
⎪⎪⎩

Y −1a1Y = a
′

1

. . .

Y −1an1
Y = a′n1

(2)

This means that the security of AAG rests upon solving the simultaneous con-
jugacy search problem in G.

3 Examples of Metabelian Groups

Here we describe some families of metabelian groups whose CSP and SCSP
will be discussed in the next section. To be more precise, we are interested in
groups G of the form G =M ⋉N , with both groups M and N abelian. We use
multiplicative notation for the whole group G but additive notation for N . So
if s ∈M and c ∈ N , the action of the element s maps c to

c ⋅ s with additive notation or,

cs = s−1cs with multiplicative notation.

This kind of groups are metabelian and arise quite naturally in linear algebra
and ring theory, as we will show in more details in the following examples.

Example 3.1. In [19], Kotov and Ushakov studied the security of AAG protocol
for some polycyclic platform groups. More precisely they considered the group
M as the multiplicative group of a specific field F and the group N as the
additive group of the same field F ; hence G = F ∗ ⋉ F . To construct F they
considered an irreducible monic polynomial f(x) ∈ Z[x] and put:

F = Q[x]/(f). (3)

If a ∈ F ∗ and b ∈ F , the action of a maps b to b ⋅ a. They showed that in such a
group it is possible to reduce the systems (1) and (2) to two systems of linear
equations over the field F . Then there exist conditions under which each system
has a unique solution.
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Example 3.2. Let V (+, ⋅) be a vector space over a field F . Take the group M

as the multiplicative group F ∗ of F and the group N as the additive group of
V . If λ ∈ F ∗ and v ∈ V , the action of λ maps v to v ⋅ λ. Hence G = F ∗ ⋉ V has
the same structure of the general group we considered before. Notice that, for
V = F , if F is of the form described in (3) we obtain the same example we found
in [19]. Similarly we could start with a module over a commutative unitary ring.

Such examples are interesting from a mathematical point of view but more
practical examples, as they have been described in [10], follow.

Example 3.3. Split metabelian groups of finite Prüfer rank. We will focus in
the case when the group G is given by a presentation of the form

G = ⟨q1, . . . , qn, b1, . . . , bs ∣ [qi, qj] = 1, [bl, bt] = 1, b
ql
i = qlbiq

−1

l = b
m1i

1
bm2i

2
. . . bmsi

s ⟩.

Observe that q1, . . . , qn generate a free abelian group which we denote by M

and b1, . . . , bs generate the abelian group N as normal subgroup of G. Then
G = M ⋉N . Under these conditions one can show that there is an embedding
N → Qs mapping the family b1, . . . , bs to a free basis of Qs. This means that our
group is torsion free metabelian of finite Prüfer rank (meaning that the number
of generators needed to generate any finitely generated subgroup is bounded).
Observe that the action of M on N can be described using integer matrices:
the action of ql is encoded by the (s× s)-matrix Ml with columns m1i, . . . ,msi .
Moreover G is polycyclic if and only if the matrices Mi can be taken to be
integer matrices with integral inverses [3].

One of the main advantages of these groups is that they admit the following
fairly simple set of normal forms:

qα1

1
. . . qαn

n b
β1

1
. . . bβs

s q
γ1

1
. . . qγn

n .

with γ1, . . . , γn > 0. Moreover there is an efficient algorithm (collection) to
transform any word in the generators to the corresponding normal form: given
an arbitrary word in the generating system, move all of the instances of qi with
negative exponent to the left and all the instances of qi with positive exponents
to the right.

Example 3.4. Generalized metabelian Baumslag-Solitar groups. Letm1, . . . ,mn

be positive integers. We call the group given by the following presentation a
generalized metabelian Baumslag-Solitar group

G = ⟨q1, . . . , qn, b ∣ [qi, qj] = 1, b
qi
= bmi , i, j = 1, . . . , n⟩.

It is a constructible metabelian group of finite Prüfer rank and G ≅M ⋉N with
M = ⟨q1, . . . , qn⟩ ≅ Z

n and N = Z[m±1
1
, . . . ,m±1n ] (as additive groups). In [10],

the authors showed the CSP in such groups reduce to the Discrete Logarithm
Problem.
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Example 3.5. Let L ∶ Q be a Galois extension of degree n and fix an integer
basis {u1, . . . , uk} of L over Q. Then {u1, . . . , uk} freely generates the maximal
order OL as a Z-module.

Now, we choose integer elements, q1, . . . , qn, generating a free abelian multi-
plicative subgroup of L−{0}. Each qi acts on L by left multiplication and using
the basis {u1, . . . , uk}, we may represent this action by means of an integer ma-
trix Mi. Let N be the smallest sub Z-module of L closed under multiplication
with the elements qi and q−1i and such that OL ⊆ N , i.e.,

N =OL[q
±1

1
, . . . , q±1n ].

We then may define G = M ⋉ N where the action of M on N is given by
multiplication by the elements qi. The generalized Baumslag-Solitar groups of
the previous example are a particular case of this situation for L = Q. If the
elements qi lie in UL which is the group of units of OL, then the group G is
polycyclic.

4 Cryptanalysis of the Commutator and the Non-

Commutative Diffie-Hellman key exchange Pro-
tocols

In this section, we show that the AAG and the Ko-Lee Key Exchange Proto-
cols are not suitable in the case of the generalised metabelian Baumslag-Solitar
groups (Example 3.4). Similar arguments can be used with minor modifications
for the other examples in Section 3.

We begin studying the CSP and SCSP in a metabelian group of the form
G = M ⋉ N , as described in Section 3. Assume that we have conjugated el-
ements g, h ∈ G and we want to solve the CSP for g, h, i.e., we want to find
x ∈ G such that

gx = h.

We put g = sc, h = s′c′ and x = td, where s, s′, t ∈M and c, c′, d ∈ N . Then

gx = x−1gx = d−1t−1sctd = d−1st−1ctd = s(d−1)sctd.

Now gx = h implies s′ = s and c′ = (d−1)sctd. Since the element (d−1)sctd
belongs to N we can write it additively as

−d ⋅ s + c ⋅ t + d = d ⋅ (1 − s) + c ⋅ t.

This means that the CSP above is equivalent to the problem of finding t ∈ M

and d ∈ N such that
d ⋅ (1 − s) + c ⋅ t = c′, (4)

where s ∈M and c, c′ ∈ N are given.
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In particular, if we need to face the SCSP, which means to solve system (1),
we can apply the reduction process described above. Then, if we put bi = sici,
b′i = s

′

ic
′

i with si, s
′

i ∈ M and ci, c
′

i ∈ N , for all i ∈ {1, . . . , n2}, and X = td with
t ∈M, d ∈ N we will get the following system of equations

⎧⎪⎪
⎨
⎪⎪⎩

d ⋅ (1 − s1) + c1 ⋅ t = c
′

1

. . .

d ⋅ (1 − sn2
) + cn2

⋅ t = c′n2

(5)

where si ∈M and ci, c
′

i ∈ N are given and we need to find t ∈M and d ∈ N .

Then the next results follow.
We start analyzing the cryptanalysis of AAG protocol in a generalized metabelian
Baumslag-Solitar groups, as described in Example 3.4.

Theorem 4.1. Let G =M ⋉N , where M ≅ Zn and N = Z[m±11 , . . . ,m±1n ] (as ad-
ditive groups), with m1, . . . ,mn positive integers, then there exists a polynomial-
time algorithm to break Commutator Key-Exchange protocol for such a group
G.

Proof. In AAG protocol the attacker knows bX
1
, bX

2
, . . . , bXn2

for some b1, . . . , bn2

(which are public) and n2 > 1. To find X = td, with t ∈ M and d ∈ N , the
attacker has to solve several equations as (5). Let us consider two of them

d ⋅ (1 − s) + c ⋅ t = c′

d ⋅ (1 − s̃) + c̃ ⋅ t = c̃′.

Here s, s̃, c, c̃, c′, c̃′ are known and the attacker has to find t and d. Recall
that c′, c̃′, c, c̃, d lie in N which is a subring of Q. If we identify s and t with
the integer they act by, then they also lie in N . So the above can be seen as
a system of two equations in N , moreover we know a priori that the system
has a solution. This means that unless the second equation is a multiple of
the first one, this solution is unique and the standard procedure to solve the
system yields then the suitable value of t and d in polynomial time (see [10,
Section 2]).

The argument in the previous proof applies also when G is as described in
Example 3.2, choosing V = Fn with n ∈ N.

Next, let us move to the non-commutative Diffie-Hellmann key exchange proto-
col (Section 2.2).

Theorem 4.2. Let G =M ⋉N , where M ≅ Zn and N = Z[m±1
1
, . . . ,m±1n ] (as ad-

ditive groups), with m1, . . . ,mn positive integers, then there exists a polynomial-
time algorithm to break Diffie-Hellmann Key-Exchange protocol for such a group
G.
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Proof. In Ko-Lee protocol the main problem is that Alice and Bob must agree
on a set Ω of pairwise commuting elements and then choose their conjugators a
and b from that set. Recall that we are denoting G =M ⋉N . As M is abelian
a possible choice would be Ω =M , and if a lies in M then the attacker can find
a from ga in polynomial time. Another possibility would be to choose a, b ∈ N .
But then a = d and equation (4) for ga is

d ⋅ (1 − s) + c = c′,

and the only unknown is d which can be found easily in polynomial time (see
[10, Section 3]).

In the case when a is an arbitrary element not in M or N , Ω must be a
subset of the centralizer CG(a) of a in G.

Things are particularly easy in the case when the element a belongs to M r

for some r ∈ N , which happens if and only if

a = td = tr
1
= r−1t1r = t1t

−1

1
r−1t1r = t1r

−t1r,

for some t, t1 ∈M and d ∈ N . Additively this is equivalent to

d = r − r ⋅ t = r ⋅ (1 − t).

It is a standard fact that M r
= {xδ(x) ∣ x ∈M} where δ is the inner derivation

given by δ(x) = r ⋅ (1 − x). In this case it is easy to check that

Ω ⊆ CG(a) =M
r.

If the attacker has the extra information that a belongs to M r for some r, then
the equation that he has to solve is

r ⋅ (1 − t)(1 − s) + c ⋅ t = c′

equivalently
(c − r + r ⋅ s) ⋅ t = c′ − r + s ⋅ r.

This can be seen as an equation in Q and only requires to perform the quotient
of c′ − r + r ⋅ s by c − r + r ⋅ s thus can be solved in polynomial time (see [10,
Section 3]).

Moreover, we are going to see now that by embedding our group G in a
bigger group we may always assume that a lies in some conjugated subgroup of
M . Let G̃ =M⋉Ñ where Ñ = N⊗ZQ = Q. Then a = td lies in M r for some r ∈ Ñ
if and only if d = r ⋅ (1 − t). This can always be solved in Q, in other words, we
can always find a suitable r ∈ Q. Then one proceeds as we did before with this r.
The fact that r might not belong to N does not create any troubles: recall that
we are dealing not with the conjugacy problem but with the conjugacy search

problem, meaning that we know a priory that our equations have a solution so
the procedure above yields the right values of t, d even if r does not belong to
N .
Observe that behind what we said above is the fact that for the group G̃, the
first cohomology group H1(M, Ñ) is zero, thus all the complements of Ñ in G̃

are conjugated.
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Notice that exactly the same argument in the previous proof happens for
any group G =M ⋉N with N ⊆ Qn for some n, so can be extended to the more
general version of our groups (Example 3.3).

5 Conclusion

In this paper we do cryptanalysis for the CSP and SCSP in certain metabelian
groups. In particular we show the following.

1. The generalized metabelian Baumslag-Solitar groups can not be used as
platform groups in commutator key-exchange protocol.

2. The generalized metabelian Baumslag-Solitar groups can not be used as
platform groups in non-commutative Diffie-Hellman protocol.

Finally we want to point out that this cryptanalysis could be extended to the
other examples in Section 3 and to all cryptosystems based on the difficulty of
CSP and SCSP.
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