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A SCATTERING OPERATOR FOR SOME NONLINEAR
ELLIPTIC EQUATIONS

RAPHAEL COTE AND CAMILLE LAURENT

ABsTRACT. We consider non linear elliptic equations of the form
Au = f(u, Vu).

for suitable analytic nonlinearity f, in the vinicity of infinity in R, that is
on the complement of a compact set. We show that there is a one-to-one
correspondence between the non linear solution u defined there, and the linear
solution uy, to the Laplace equation, such that, in an adequate space, u—uy, —
0 as |z| — +oo. This is a kind of scattering operator.

Our results apply in particular for the energy critical and supercritical pure
power elliptic equation and for the 2d (energy critical) harmonic maps and the
H-system. Similar results are derived for solution defined on the neighborhood
of a point in R%.

The proofs are based on a conformal change of variables, and studied as
an evolution equation (with the radial direction playing the role of time) in
spaces with analytic regularity on spheres (the directions orthogonal to the
radial direction).
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1. INTRODUCTION

1.1. Motivations and setting of the problem. The purpose of this article is
to give a classification of solutions of certain nonlinear elliptic equations, by their
behavior at infinity. We consider equations of the form

(1.1) Au = f(u, Vu),

where the nonlinearity f is analytic, and with an extra emphasis on the elliptic
nonlinear equation with H? critical power nonlinearity, conformal equations in di-
mension 2, and smooth harmonic maps. Roughly speaking, we will construct, in
these considered examples, a scattering operator: we prove that when considering

2020 Mathematics Subject Classification. 35J60, 35B40, 58J05.
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eq:ell_lin_intro |

the vicinity of (spatial) infinity, there is a one-to-one correspondence between linear
solutions of

(1.2) Aur, =0 on R4\ B(0,1), wur|sa1 = uo,

where ug is a given function on S?~! and nonlinear solutions of (ﬂﬁj%eﬁned for
sufficiently large x; and furthermore nonlinear solutions behave as a linear one in
an appropriate space.

This space is strong enough to distinguish each linear solution from another one
only from their asymptotic behavior. For instance, since all linear solutions converge
to 0 at infinity, the space we consider should be much finer than L or H'. The
space we use specifically translates the behaviour of the linear elliptic solutions. In
particular, it implies some analyticity in the angular variable.

Note also that the full classification is obtained in some general examples that are
critical or with additional assumptions. Yet, the construction of nonlinear solutions

from their behavior at infinity (that is one part of the scattering operator) is made
in a great generality, see for instance Theorem E@t

The problem we consider is natural and has its own interest; we believe it will also
prove useful for related evolution problems. Indeed, one extra motivation comes
from the evidence that the asymptotic behavior of non linear object like the well-
known soliton plays a fundamental role in dynamical contexts, as it drives the
interactions: for example, the construction of blow up solutions, the construction of
multi-solitons, the analysis of collision of solitons, the soliton resolution conjecture
etc.

Let us elaborate somehow on this last example, in the case of the energy-critical
wave equation, which was studied by Duyckaerts-Kenig-Merle. Tt Xv&%ﬁgo?f in
particular the channel of energy method: in the 3D radial setting l}FDK'N[TS, e
authors manage to conclude that some initial datum giving rise to “nonlinear non
radiative solutions” should behave at infinity as the Newtonian potential % and next,
should actually be the ground state W : x > (1 + |x|>/3)~/2 (up to scaling). This
idea to “catch the ground-state by the tail” has bee[Bngc:t%}c.lgﬁlLs\ﬂ%I%g{gDmgg
subtleties to other dimensions and other equations [CKLSTha, [(CKLSIHb, [(CoIh]
DKM23].

One of the key roadblocks in generalizing the above results to the non radial setting
is the lack of understanding of the non radial nonlinear objects, such as spectral
properties when linearizing around them, or their asymptotic behavior.

Our work here provides a first description in the non radial context, within a frame-
work that encompass semilinear elliptic equations together with harmonic maps or
the H-system.

We address the question by recasting the elliptic equation in terms of an evolution
equation on the sphere, where time is played by the radial variable. After performing
a conformal change of variable, the equation is obviously (strongly) ill posed, but
is amenable to resolution from infinity, for data without growing modes.

We will now define the functional setting in the next paragraph, so as to state our
results with the following ones.

1.2. The functional setting. The proof will be performed after a conformal

change of coordinates from R? to R x S?~! using spherical coordinates. The har-

monical analysis on S9~! will play a crucial role. We begin by a few generalities.

Let d > 2. We denote Aga—1 the Laplace-Beltrami operator on the sphere S?~!, and

let (¢¢.m)een,m<n, be an L? orthogonal basis of normalized spherical harmonics, so
2



that ¢¢,r, is the restriction of a harmonic homogeneous polynomial of degree ¢ € N.
Recall that ¢g ., are eigenfunctions for —Aga—1

—Agi-1¢em = L+ d = 2)pe,m,

and so Ny is the dimension of the eigenspace of —Aga-1 for the eigenvalue £(¢+d—2).
Let P, be the orthogonal projection onto this eigenspace: if v is a function defined
on S4-1,

Ny Ny
(13) PZ'U - Z(fa (bﬂ,m)(b@,m; HP[UH%Z(Sdfl) = Z |<’Ua¢€,m>|2-
m=1 m=1

We consider the positive elliptic operator on the sphere S¢—1

d—2\°
D = \/—Agdl + (T) s

so that for all £ € N and m < Ny,
d—2
Qd)é,m - (6 + T) ¢Z,m-

We denote LZ(S?!) = Span(de,m,? € N,m < N} the space of (finite) linear
combinations of eigenfunctions of ©; all normed spaces below will be meant as
completion of L3 for the underlying norm.

The space H*(S%1!) is the completion of L2(S~1) for the H* norm defined as

+oo

103 @11y == D (O PevlFaga-sys
£=0

where (¢) = /1 + |£|? is the japanese bracket (here ¢ is an integer, but we also use
the notation for a vector or a multi-index). There hold

[0l o sa-1) = [|(1 = Aga1)* 20|l p2(say,
and both these norms are equivalent to the usual Sopoley norm considered (thanks
to some partition of unity) in each coordinate charts, [LM72] Section 7.3]. Therefore,
all usual Sobolev embeddings apply.

We will state our results using the spaces Z2° and Z? ., made of functions on S,

NS s,1

and which are the completion of L2(S?~1) for the respective norms:

+oo 1/2
lollzze, =7 0] o gusy = (Zw%r““d-”lPevlliz@d1>> )
Z:JFOOO 1/2
and oll gy, =5 20l s = <z<e>28r—%||m||iz(gd1)> |
=0

Notice that for 1 < r < 7/, we have the continuous embedding Z;OT, C Z;‘; C H?®
together with [[v]| ;o < ||v|[4 and similarly for 0 < 7" < r < 1, there hold

20, €20, € and Jolly < ol .
For functions defined on R¢\ B(0,rg) or B(0, 1) respectively, we will be interested
in the Z;, regularity on rescaled restrictions u(r-) : (y — u(ry) (defined on the
sphare S?~1) (for » < 7 or r > r( respectively: this dependence of the space on
the radius prompt us to the following definitions, which are meaningful due to the
continuous embedding mentioned above.
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We say that u € 255, if u defined on R*\ B(0,7¢) and such that, for all r > ro,
u(r) € 235,05 (Opu)(r) € Z32

(p = u(pr)) € €([r, +00),

s—1,r/rg’

) ne' ([Ta +OO), Z;.il,r/ro)v

s T/To

and such that the following norm is finite:

d—2 d—2 ou
s, =ro® s (Il + || (G520t roe) )

r>ro o/

oo
Z3 /o

Similarly, u e 22, if it is defined on B(0,7¢) so that for all 0 < r < 7o, u(r-) €
Oru)(r) € Z_, /e

(p = u(p)) € C€((0,7], 20 1/0,) NE (0,71, 201 1),

and such that the related norm is finite:

d=2 2 ou
lulls,, =™ s (Il + | (SR rge) )

0<r<ro

s 7‘/7"0

0
Zg ey

The exponent oo reminds that we will be interested in the behavior for || — 400,
while the exponent 0 denotes a space adapted to the vicinity of 0 (or a point).
The regularity index s appears as a fine tuning parameter: it plays an important
role in the product laws, and so in the multi-linear estimates; one could simply fix
for the rest of the article
d 3

s> 5 + 5"
For some purposes, we stated some intermediary results with more precision on s:
except if a specific weaker bound is precised, all the following results assume s as

above.

u € Zg5, implies that u has the same decay.as;cz% linear solution of Auy = 0,
ec

that is |u(x)| = O(Jz|~(@=2?)) (see Lemma . It 15 actually more precise: when

decomposing in spherical harmonics, each component decays as a linear solution,
that is || Pou(r)|| o ga-1) = Op(r=d=2=) a5 r — +o0.

Note that in several results that we will prove, the functions we consider are vector
valued. In order to keep reasonable notations which are already heavy, we always
mean that every coordinate belongs to the related spaces: for instance, we will write
Z2 instead of (£2°)V. This should not lead to any confusion.

Finally, we drop the index r when r = 1, for example Z* := Z29

Now, we begin to present our main results for specific types of equations. The
constructions of the nonlinear solutions with p d ha,\cni)r lgxt mﬁmty are. . conf
b.ol presented in Section E]f

always co equence g£ the two general T
1S o] aln b
Theorem E{g 1S a relinement of Theorem b.4l needed 1n some critical cases where we

have to use some better properties of the first iterate of the Picard iteration. This
improved behavior is observed in the case of conformal equations in dimension 2
where a “null” structure is observed.

1.3. Main results on the semilinear equation. In this section we state those
of our results which are concerned with the case of the (non derivative) nonlinearity

eq:f_semilinear ‘ (1.4) fly) = Z apy?,

peN
with a positive radius of convergence.
The first statement constructs, for a general nonlinearity, nonlinear solutions having
a prescribed linear behavior at infinity. The second one, restricted to H!-critical
4



analytic nonlinearities, realizes the converse, that is, establishes that a finite energy
solutions behaves as a linear solution at infinity. The combination of both results
leads to a kind of scattering operator identifying linear and nonlinear germs of

solutions.
. :f_semilinear . .
‘thmexistglobPintro‘ Theorem 1.1. Let d > 3. Assume that f as in 1]'2i salisfies the supercriticality
assumption
‘hypbpqinftyintro ‘ ap 0= (d—2)p—d > vy > 0.

cred—1 . . :ell_lin_intro
Let ug € H*(S*™ 1), and ur, € Z5° given in “'2} (o1l
Then, there exist ro > 1 and a unique small solution u € Zg5. of (ﬂﬁj}?n {lz| =2 7o}
and such that

scattranslrdintro | Il(w —ur)(r )sz <t 0.

Moreover, the map uo — u is injective; and if ||uo| gr. ga-1y is small enough, we can
take ro = 1.

(Here and below, we say that there is a unique small solution u in a Banach space
Z if there exists € > 0 such that u is the unique solution in the ball centered at 0
and of radius € of Z.)

When we restrict to H! critical exponents with analytic nonlinearities (which ac-
tually leaves the three possibilities mentioned below), we obtain a full classification
of all possible solutions close to infinity.

Theorem 1.2 (Semilinear energy critical equation). We consider the equation

eq:elliptic_nonlin | (1.5) Au = kuP.

where kK € R, and we assume to be in one of the following situations:
(d;p) € {(3,5), (4,3), (6,2)}.
:elliptic_nonlin
JdeLet u € H'({|z| > 1}) be a solution of ( T80 in the weak sense (see Definition

uext
3. Zi Then, there exist ro = 1 so that uw € ZJ5. and a unique ur, € ZJ5 = solution
of Auy, =0 on {|z| = ro} so that

nslrdinverseHlregpuiss ‘ (1.6) lu(r) —ur(r)| g <Or~?2 — 0.
s,r/To r—+00

9) Reci I . s (Sd-1 d Zoo :ell lin_intro
) CCZpTQCG Y, groen Uo G ( )’ and i, E £ic nonQ1 ere € %Tl[éflrdlnverseleegpulss
and a unique small solution u € ZZ3, — of on {|x] = 1o satzsfymg ).

To our knowledge, such classification did not appear elsewhere in the literature, for
any elliptic type equation. It gives both a complete rigidity and a fine description
for nonlinear solutions, concerning their behavior at infinity.

In particular, the previous theorem also implies a result of unique continuation at
infinity.

Corollary 1.3. In the situalion of the previous Theorem %ngu e H'({|z| >
(55 50 that

1}) is a solution of
Ve e N, ri-2+t [ Pew(r) |l s ga-1) = 0 as r— o0,

then u = 0 on R%\ B(0,1). In particular, if u(x) = O(|z|~?) for any B € R, then

u = 0.
5.B:14
The results in this direction we are aware of (see for instance ir BKUD, [Davi4])

would be obtained considering u” as Vu for some potential V = uP~! They require
exponential decay without distinction between the spherical hann iﬁ’s

X1s obPintro
For power nonlinearities u?, p > 5% (p integer), Theorem i ii cons%rucfs a lot of so-
lutions with prescribed asymptotic hnear behavior. We can perform a classification
under further decay assumption.



Theorem 1.4 (Semilinear equation with decay). Let d > 3, kK € R and p € N*

with p > ﬁ and consider the equation

eq:elliptic_nonlingen ‘ (1.7) Au = kuP.

I Hl S 1 b luti :elliptic_nonlingen D .
ddsLet u € H ({|z]| > 1}) be a solution of ( T3 i the weak sense (see Definition
5. 23 so that for some n >0 and C > 0, we have

Vo > 1, Ju(z)] < Claf 77",

Then, there exists ro = 1 so that u € Z25 ~ and there exists a unique uy, € Z75,

solution of Aur, =0 on {|x| > ro} so that

dinverseHlregpuissgene ‘ (1.8) lu(r) —ur(r)|| ;o < Cyr~(d=2p=d) _, g
s,m/7T0 r—4o0

2) Reci Il . H* Sd71 d Zo0 . i:';ell lin_intro S
) eciprocatly, grven o € ( )’ an (ﬁléjl‘l_e%lp%icago%ﬂi ’ ere exts %t%r@lrdinversel-[lreg‘puissgene

and a unique small solution u € 233~ of ) on{]z] = ro} satisfying )

In the defocusing case, the decay can be obtained using Jesults of Véron hv“s‘*l] for
solutions constructed by Benilan-Brézis-Crandall in F BBCTH|.

Corollary 1.5. Letd >3, p € 2N 4.1 with p > 3%. Let f € L'(R?) be real valued

with compact support. Due to [BBCTH|, there exist a unique real valued solution
u € L7 (RY) with Au € LY(RY) of
Au=1u? + f.

. thmregdeca
Then the conclusion of Theorem olds for u.

Here .qu'oo (Rd) are the \jveak—Lq spaces, for 1 < ¢ <,zog, and are ca'lled SHAGEs Of  FourierEucl
Marcinkiewicz M?(R%) in the above reference, see [BBCT75, Appendix| or [SWTI]
Chap V.3].
%g Faemr%%glar, in the defocusing case, the assumption of additional decay in Theorem
is not necessary and can be obtained under reasonable assumptions on the
solution. Yet, this assumption is sometimes necessary with the power % being

optimal. For instance, for a H!-supercritical nonlinearity p > %, in the focusing

case k < 0, it is known that there exist radial positive solutions that behave like

C|x|7% at infinity. These solutions have a slower decay than the solutions we
copstruct in Z2° which decay as the linear solutions, that i VC:‘SJicr(d’Q). We refer
to [KSU7, Theorem 5.2] for a nice summary. We refer also to WBVVQL Theorem 3.3]
for a dichotomy result in the case of positive solutions in the defocusing case and
p# 2, p>1.

The class of equations covered by our theorems for constructing Eglg@{i{)&s %o]iﬁ? quite

general, either for prescribed behavior at égﬁsr%i% b(&gr{ar Theorem elow) or pre-
Etﬂ below). Yet

scribed Dirichlet value (see Theorem et, the regularity results and
uniqueness of the Dirichlet boundary value problem has to be adapted to each
equation. This is the reason why we only treated some examples for the classifica-
tion; we nonetheless believe that the strategy can be applied in many more cases.

Assuming that we are able to construct solution %itg Pgeﬁﬁril%egelgghavior at infinity,
the road map for the classification in Theorem an goes as follows:
e prove by scaling and regularity arguments that, for a rescaled version of
the solution, the trace on S%~! is small in H*(S%~1) with s large enough.
e construct a solution in the space Z2° with the same Dirichlet data on S¢~1.
By construction, this solution has the correct decay and will “scatter” to a
linear solution.
e prove a uniqueness result for the Dirichlet value problem in some appropri-

ate space containing the original solution and the solution we constructed.
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systconformembed ‘

thmH1lregHarmon ‘

anslrdinverseHarmonMap ‘

The full classification as in Theorem 118r Tot always true, but we believe that
some modifications of the methods we introduce in this paper might lead to similar
results. It would be natural to try to construct, by a modification of the space Z2°,
other sets of nonlinear solutions with different asymptotic behavior.

1.4. Main results on conformal equations in dimension 2. Let (N, h) be an
analytic compact Riemannian manifold of dimension V. Without loss of generality,
we assume that N is actualﬂllgstﬁﬂlgf‘(’jtq%d ](‘BI%M gf% some large integer M) analyti-
cally and isometrically, see [Nas66} G, Jac72]. For Q C RY open subset (d = 2 in
this section, but some definitions will also be used for any d > 2), we will consider

maps in the space
Hip(QUN) = {u € Hi, (QRM) : u(z) € N for ae. 2 € Q}.
We define similarly the spaces € (2, N) for r > 0. We will say that w = (uy, ..., unr)

is of finite energy on Q if Vu, defined in the distributional sense on €, is in L?(Q),
i.e., the following quantity £(u) is finite:

M d
(1.9) E(u) :== / |Vul?de < +oo, where |Vul? = Z Z |Oas]?.
Q2 i=1 a=1
. cours
We refer to the lecture notes [Rivi 2| for a survey on the subject and appropriate
references. Let w be an analytic 2-form on N'. We denote @ = ma*w the pullback of
w by 7, the orthogonal projection on N, defined in a small tubular neighborhood

of N. For u € €%(Q, N), we are studying solutions of

(Conf-E) Ay = —A(u)(Vu, Vu)—H (u)(0pu, Oyu)

where A is the second fundamental forml] of the embedding V' C RM and for z € N,
H(z) is the T, N-valued alternating 2-form on 7, defined by

(1.10) VU,V,W € LN, dw.(U,V,W)=U-H(z)(V,W)

Let (e;)i=1...m be the canonical basis of RM. Denote for y € N, H;k (y) =

diy(e;, e;, ex). Note that we have H;k =—-H Zk The previous formulations is quite
general and contains the following particular cases:

.....

e Harmonic maps: Au = —A(u)(Vu, Vu)
o for d = 2 and N' = R?® (or T?), the H-system (surfaces with prescribed
mean curvature) :()%u = H(uw)ug A uy.
It was proved by Riviére lzglpilgtihat in dimension d = 2, weak solutions are actually
smooth (see also Hélein [HEI9I[ for the case H = 0, that i, harmonic m S), SO we
. . . . . ormembe
won’t distinguish between weak and smooth solutions in in this case. Our
main result on the system is the following.
heorem 1.6. 1) Let u € HE (R?\ B(0,1),N) be a finite energy solytion of
. en, there exists 1o = 1 so that u € Z25 . Moreover, there exists one
unique oo € N and ug, € Z5, solution of Auy, = 0 on {|z| = ro} and with value
in T, N so that
(1.11) Hﬂ'TuOcN(u(r-) — Uso) — uL(r-)HZOO <Cr %2 — 0,

s,/ 7m0 r—+00

where Tr, _n is the orthogonal projection on Ty N (and Pour = 0).
2) Reciprocally, for any uso € N and up, € Z5° with value in T, N and solution
of Aur, = 0 on R?\ B(0,1) with Pyur, = 0, there exists rq_> 1. and a unique

smqll splut'on y € 2 g&in@e‘fs":}{a@;ow 0,70), N) solution of on {]x] =2 1o}
satisfying .

Lwe denote A(u)(Vu, Vu) = Zle A(u)(Og; u, Oz, u)
7



. ormembed | .
It turns out that conformal equations awhcal with respect to the
limit exp ents S1%1 O qgeral Theorem 0, we need a refined version, namely
Theorem iétgt that usos a better behavior of the first iteration of the Picard term.

This improved decay is proved as a consequence of a general "null" condition of the
form

(1.12) VEeC?, (£=0= f(&=0).

We have not seen this condition elsewhere. Since ¢2 is the symbol of A, i, seems
like an elliptic version of the celebrated null condition of Klainerman [KIa86] in
the context of hyperbolic equations. Note that the null condition has to be checked
for complex frequencies while the usual u]lugggdition for hyperbolic equations
is checked for real £&. We refer to Section Eiiﬁ for more precisions and equivalent
formulations in dimension 2.

1.5. Main results on Harmonic maps in dimension d > 3. For u € €?(Q,/N),
we will say that u is solution of the harmonic map equation if it satisfies

eqnHarmonicMaps ‘ (HM-E) Ay = —A(u)(Vu, Vu)

where A is the second fundamental form of the embedding of AV in RM. This

iﬁ e%act}%i’ghg Dprevious equation with H = 0. For u € HL_(,N), the equation

makes sense in the the distributional sense and we will say thag ‘toi%e%ﬂ_m
weak solution of the harmonic map when it is the case (see Definition E'é for a

more precise statement).

thmH1Harmondimd | Theorem 1.7. Let d > 3.

icM
1) Let u € €*(R*\ B(0,1); ) be a finite energy solution of (ﬁ%@gﬁ%{% there

exists Uoo €N and ro > 1 so that u—ue € Z 50 Moreover, there exists one unique

ug, € 255, solution of Auy, =0 on {|z| > r0}7and with value in T, N so that
ttranslrdinverseHMgeq3 ‘ (1.13) HﬁTuOON(U(T') — Uoo) — UL(T')HZOO < Or~2d=2) = 0
S’T/TU r—+00

|7, () = )

where Tr, A and ﬂ'i A are the orthogonal projections on T, N and T N*,
respectively.
2) Reciprocally, for any us € N and ur, € 2 solution of Aur, = 0 on R\ B(0,1)

and wi vglllz{g#nsTuxN, thefe e‘xists T %r%n%@%ﬁu%@%%% %Tréallﬁ solution u € 273,
of on {]x] = ro} satisfying .
Additionally, we denote up i the first iterate of the Duhamel formula, that is the

only solution of

Aurp 1 =T(ur)(Vur,Vur) so that |‘UL71(T')|‘ZD<>/ ? 0,
s,r/rg T oo

where I' are the Cristoffel symbols in coordinates given by wr, a. Then, we have
the improved decay

addidecaythmHM | (1.14) HWTMN(U(T') —Uoo) — (up(r) + up 1 (r)) < Cp—4d-2),

Remark 1.8. The regularity 2 is not optimal, but some assumption is necessary
to avoid singylar solutions that do not enter in our framework, as the ones con-
structed in |Riv9H M;%e precisely, in the proof, we needed enough regularity to
apply Theorem

Yet, it could be repla %ﬁlolgy other types of assumption implying some smoothness.
We refer to the book [LWO08| on the available regularity results.

2 Eﬁexistglongain .
See Theorem or a precise condition.



For instance, it is proved in Wﬁé’%()] (in the case N' = SNL)' that €° solutions are
actually analytic. Also, the theory of Schoen-Uhlenbeck TSUSZ] proves that small
energy minimizing harmonic maps are smooth, which happens in our context for
Ry large enough.

Remark 1.9. The convergence of the orthogonal component seems very bad with
respect to the tangential part. Yet, since the manifold N can be locally written as
a graph of the tangential part, the orthogonal component is completely computable
(without referring to the PDE) once the tangential expansion is performed. So,
with a Taylor expansion of the graph locally defined by N, it might be possible to
obtain the same precision as the formula for the tangential part.

Remark 1.10. The analysis in "A%QS] computes an expansion of the (locally
energy minimizing) soluticEg ¥E1;r‘£1rem ggfﬁonic maps in dimension 3 with target. 2
at the order r—*. Theorem allows to obtain a similar expansion, see Remark

for further details.

1.6. Main results on semilinear equations close to a point. We also obtain
some result close to 0.

Theorem 1.11. Let f : R — R be an analytic function with positive radius of
convergence and such that f(0) = 0.

1) For any smooth solution u of Au = f(u) on B(0,1), there exist a solution ur, of
Aup, =0 and g analytic on B(0,1¢) for some 0 < ro <1 so that u can be written

(1.15) u=uy, + |z|*g.

2) Reciprocally, for any uy, bounded solution of Auy, =0 on B(0,1) with ur(0) =0,

there exist 0 < rg. <. 1 %d a unique small analytic solution u of Au = f(u) on
gifgfert

B(0,r0) so that olds for one g analytic on B(0,ro).
Moreover, the application ur, — u is injective.

i erthm

The decomposition (MTE own in_the literature as the Fischer decomposition
of the function u (see Section . This decomposition is already known to hold
for any analytic function, so the first part is not really new. The main part of our
proof is the construction of the nonlinear solution. This result can be seen as a local
solvability result for a semi linear elliptic equations with a prescribed behavior at
a point. It seems that the available results in this context only prescribe the first 2
derivatives at one point, see for instance [[Tay97, Section 14.3, Proposition 3.3]. So,
our result constructs much more local solutions, and actually all of them.

In the context of 9nfq¥mal maps in dimension 2, one can adapt in a straightforward .
regHarmon . . L. istzero

way Theorem“ Eg iEo derive a statement close to a point in the spirit of Theorem i { E

For harmonic maps in dimension at least 3, it seems that a similar result should

hold as well, but one !WOSIE%H%XgotO first prove an extra gain (for example due to a

null condition as in

2. THE LINEAR FLOW AND DUHAMEL FORMULATION

The starting point of the analysis is the following. If Au = 0 then denoting for
(t,y) € R x S¥! the conformal change of variable

(d—2)t

v(t,y) =e 2 ule'y),
v solves
(21) Gttv - @2’() =0.

This equation is not a well behaved evolution equation but can still be amenable
to an analysis.



To make this more precise, we introduce suitable Y, ; spaces, intimately related to
the Z spaces (after a conformal change of variables) in which the results are stated.

2.1. The Y;; spaces. For a function u defined of S let

[ully,, = HetQUHHS(SH),
or equivalently,
= d—2
(4 9-2
lul2,, = > (022 T P2 gamy.
=0

As before, the space Y is defined as the completion of LE(S*~!) for the || - ||y, ,
norm. Note that for 0 < ¢ < ¢/, we have the inclusion Y, C Y5, C H® together
with [|lull o < [Jully, , < [lully., - Given a regularity index s > 1 and a “time” ¢ > 0,

we also define the norm Y+ by

1w, D)., = sup ([o(D)lly... + 10(7)lly. ) -
T>t

for (v,?) defined on [t,+oc) x S?~L. The purpose of the second variable © is to
take into account the time derivative 0yv for a solution, as is usual for second order
evolution equations.
The space )s ¢ is defined as the space of functions (v, ) defined on [t, +00) x S~1,
so that for all 7 > ¢, v|[; 4o0) € ([T, +00), Yy 7) and 0+ 400y € € ([T, +00), Ys_1.7)
and ||(v,?)||y,, < +oc. This is in the same spirit as was done for the Z, ; spaces;
we make use that the Y, spaces are decreasing in ¢ (for the inclusion ordering).
We will also sometimes need the following translated version for tg > 0:

[1(w; 0)llyro, = sup (G P (LGOI

and we say that (v,0) € Vi% when for all 7 > t, v[(; 4o0) € €([T,+00), Y r—¢,) and

Ojr, +o0) € ([T, +00), Ys—1,7-1,) and |[(v,9)]|y,00 < +00. We will essentially always
s,t

consider these spaces for ¢ > to: in which case it is a weaker space that ) ;. More

precisely, there hold

(2.2) VE>t0>0, vl

yi, < llyg < olly,., < o]y, .

for v = (v,0) € Vs, Note that the inequalities between Y norms imply (given
t>0)

suplo(lly,.._,. = sup( sup ||v<f>||ys,/to>

T>t t<r \t<7/<T

= sup { sup ||v(7)]|y. ., = sup ||u , , .
sup (sl ., ) =510 Bl oy,
Similar equality holds for © and we easily get that for t > ty > 0, the spaces y;f?t
are Banach spaces as intersection of Banach spaces.

The spaces )V, ; are well suited to linear solutions of the Laplace equation, in con-

formal variables, as it is shown in the next paragraphs. In particular, we have

l(vr, Orvr)lly, , = llvoll s (sa-1) where vy, is the decaying linear solution with Dirich-
st ienlinY .

let data v at ¢t =0 (see Lemma or a more precise statement).

The Z spaces are in fact the Y spaces after conformal transform. More precisely,

for r > 0 and s € R and a function u defined on S¢~!, then

d—2 —2

d
(23)  ullgs =7 Nl and Julzo =1 fuly, e

10



‘ def:conf_uv_infty ‘

| def:conf_uv_zero |

equivnorm

ImlienlinY

‘ est:Hs_YstO_exp ‘

Similarly, for a function defined on R%\ B(0,r() or B(0, ry) respectively, if we denote
for (t,y) € R x S4-!

(d—2)
vX(t,y) =e = tu(ety) close to infinity and

(d—2)t

O(t,y) = e~ “Fule

) close to zero.

one can relate the ) spaces and the Z spaces:

(24) Jlullzo = 1(v>, 00>l yposcy — and lullzo = [1(v°, 90°) |y, sy -

s, s,log(r) s, s,— log(r)
Finally, as for spaces, we drop the index ¢ when ¢ = 0, for example YV, := YV, 0.
Observe that also implies that the space Z27 = and Zg,m are Banach spaces

with their defined norm.

2.2. The linear flow. Consider u, defined on R, x S4~!, solution to
8ttu - CDQU =F.

Equivalently, u = (u, Ozu) solves

(2.5) Opu = (gg (1)) u+ (2)

Notice that the resolvent operator writes

0t cosh(tD) sinh(¢D)
S(t) :==exp < 9 ) = &
D% 0 Dsinh(tD) cosh(tD)

Although S(t) is well defined on (L3)?, the growing modes prevent it from defining
a semi-group on any reasonable space like H*(S~1) x H*~1(S%1). We will however
show that one can construct a wave operator at +o0o in ), for well chosen final
data with no growing modes.

We therefore consider a linear solution with no growing modes, that is of the form

(2.6) uo = (ug, —Dug) for some ug € H¥(S*1),
so that
S(tuo = (e P ug, —De™Puy).
Observe that for any non zero v € H*~*(S%1) | ||S(¢)(0,v)]y, , — 400 as t — 400

or it is infinjte. Hence, given ug € H*(S?1), S(t)ug is the only bounded solution
(in Ys) of with F' = 0 and initial data uo at time 0. If we denote

d—2
(2.7) ur(z) = 2|77 (SE)wo)(In |z|, z/|z]), for |z| =1,
then uy, € Z;Ol and solves

AULZO on Rd\B(O,l), 'LLLlSd—l = Uup.

We first measure our solutions in our norms. The following Lemma explains that
Vs.+ is the natural space for linear solutions with initial datum in H*(S%"1) at t = 0

while ﬁ“t is adapted when the initial datum is given at ¢ = ¢¢.

Lemma 2.1. Letug € H*(SY™1). Then, for anyto > 0, S(-—to)uo € V1, together
with the estimates uniform in t > tg,

d+2
(2.8) l[woll rre(sa-1) S NSC = to)uollyre < 5 luoll s (sa-1y,

d—2
(2.9) ISC)uollyto, < Clle™ P uol| e sa-1) < Ce™™ = [fuo| s sa-1)

11



est:Hs_YstO_exp_2d ‘

eq:conf_ex

If Pyug = 0 for all ¢ < £y, then we have also

d—2
(2.10) 1S (Yol yrg, < Ce™ 20 g . gany.

:Hs_YstO
We will often use i§'§> vsVlfSE to=0

Proof. From the definitions,
IS(- = tO)uOHy;Ut = [|S(-)uo|

vo. =sup (llePuolly, . + [De Puglly,_, )

T>t

= |luol| s (se-1) + [|Duol| grs-1(se-1y,
:Hs_YstO :Hs_YstO
and E'gi Tollows as £ + % < %(f) for all ¢ > 0. For 15?&}, e wiite for ¢ > to,

IS()uollyto = suple™ P uolly, , ,, + sup [De™ P ug|
Vo 0

T>t T>t

= sup ||e*(z+t“)©uo|\ys’z+ sup ||De
z>t—tg z2t—to

Ys—1,r—t¢

,(z+tg)©uO|

Ys_1,2

< Clle™"®ug|| s (sa-1).
For the second. i qug,ﬁl&t_gkn&gce that the first eigenvalue of the operator ® is %.
Finally, for 21t Ppug = O for all £ < £y, then ug € Span(¢pem, ¥ > Lo, m < Ny).

The restriction of ® to this space has first eigenvalue ¢y + %, which gives the

bound. It remains to discuss continuity: for this, fix 7 > ¢y and 71 > 7. Denote
u(t') = e~ (T ~t0)Py for 7/ € [r, +00). Then

e*(‘l”*tg)guo _ e*(Tlfto)f‘D

lu(') —u(m)ly, ., = uo|

Yertg

’
= He_(T _T)DUO — e_(Tl_T)QuOH .
He

This clearly converges to zero as 7/ — 71, 7/ > 7 (for instance by approximating wug
in L3). The same holds for the derivative. O

sut
2.3. Bounds on the Duhamel term. Given a function v, as in :lwe would

like to construct nonlinear solutions u to

Opu —D%u = F(u), u(t)~St)u, as t— +oo.

More precisely, on the difference v(t) = u(t) — S(t)u4, we are looking for a solution
to the problem

Opv — D% = F(v(t) + S(t)uy)
v(t) >0 ast— 4oo

(F is a given nonlinear functional). The Duhamel formulation between times t < s
writes, at least formally,

St —s)v(s) =v(t) + /ts St—1) (F(U(T) Jr()S(T)u+)) dr.

Letting s — +00, it is reasonable to assume that the left hand side tends to 0, and
we want to solve

(2.11) o(t) = — /tm St —7) (F(U(T) +05(T)u+)) ds.

This leads us to consider the map

(2.12) O F <t - - /:OO St — ) <F?T)> dT)

12



1mDuhamelinft Lemma 2.2. Let s > 1 and tg > 0. Let F € €([t,+0),Ys_1.4—¢,) for any t > tg
y ) 3 3 0 y
and assume

+oo
ifd>3: / [|E(7)

to

dr < 400,

Ys—1,r—tg

Vesr g + (1 = 1) [BoF(7)l|a(ga-1y) dr < +o0.

+oo
fd=2: / (HF(T)

to

Then ®(F) € Vi, and there hold for t >ty > 0:

dr.

Ys—1,r—t¢

+oo
est:lin_Duhamel | (2fd)=3:  [|P(F)]ly0 S / |F(7)
st ¢

+oo
ifd=2: [®(F)]ym, S/t (IEyers ey + (7 = O PoF(7)]| 2 (ga-1y) dr-

In particular, ||<I>(F)Hy;0t — 0 as t — +o0.
Furthermore, v = (v,0) = ®(F) satisfies the equation

oyv —D*w=F, ©=20w on (ty,400) x S¥71,
in the sense of distributions.

Proof. Let us start with a few preliminary estimates. Notice that (uniformly) for

=21, m< Ny, t>0and 7 € R,

sinh (79)
D

— et(l+%) <£>S Slnh(T(Elj' 5%2))
Ys,t €+ ?

< <£>571 (e(tﬂ)(u%) + e(t#)(“%)) .

¢Z,m

~

If d > 3, this is true also for £ = 0, and we infer

- sinh (79) (t+7)D (t—7)D
=5 1|, sl
inh
If d = 2, then for £ =0, wqbom = |7, and so
& Ys,t
sinh (79
ST pp| = P o
Ys,t
Therefore,
inh
w‘f 5 H(e(t+7)9+e(t—7)i)) (Id*PO)fH +7_||P0fHL2(S'i*1)
D Yo Hs—1

(2.14) s [(e® s e®Y g kR fllae):
Hs—l

Similarly, for any d > 2, £ > 0,t >0 and 7 € R,

||COSh (7_©> ¢e,m||ys < <£>571 (e(t+7—)(e+%) + e(tf'r)(l+%)) .

1,

so that

(2.15) Jeosh () flly, , , S [|(+7® + =) |

In the same way, if ¢, are two real functions such that |¢| < v on [0, +00), then
for any £,m, [|¢(D)de,m | ze < [[¢(D)de,m| - and so

16(D) fllrs < 19(D)f| -

for any f such that the right hand side is finite.
13
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. :1in_Duhamel
We can now proceed with the proof of 1513%, we will only do the case d = 2 (for
d > 3, the pr. dof is similar but simpler). Denote ®(F) = (v, 0), we first estimate v
using dm%%xchanging letters):

T sinh ((1 — 0)D)
/T TF(O’)CZO‘

o)y, = \
Yar—to

—+o00
5/ (leerrem2r@)| |+ |2 F@)| 4@ = DIRF@)2) do

Hs—1
+oo
s [ (1F@ ., + @~ DIREE@:) do

where we have used 27 — 0 < ¢ when ¢ > 7, so that e(2T—o—t0) < glo—to) gp
[0, +00). Similar arguments give that v € € (|1, +00), Ys r—¢,) for any 7 > to.
Using , we conclude also that v € €([7, +00),Ys_1,+_,) for any 7 >ty and

+oo
/ cosh ((7 — o)D) F(o)do

lo() sy = ]

< [iFe)

Ys—1,0—tg

do.

Ys—1,0—tg

Summing up, we obtain

—+o0
@)y, Ssp [ (IF@lyyomiy + (0= DIBF @) 200 ) do

+oo
< sup / (IF (o)

T>t

Yiorotg (0 = DI[PF(0)l|1250-1)) do

+oo
- / (IF@)lys sy + (0 — O PoF(0) | 2 do
t

. . :1in_Duhamel L. . .
which is . The convergence to zero is immediate by dominated convergence.
Now observe that

deo(t) = ~0, ( /t - Sm((t@—_T)@)F(T)dT)

“+oo
= 7/15 cosh ((t — 7)®) F(r)dr = 0(t).

To check that v is solution of the equation, let ¥(t,x) = h(t)¢em(x) where h €
65°((to, +00)). Denote Q = (tg, +00) x S, we easily check (using integration by
part where needed) that

(B —D?)o, 7/’>Df(n),7>/(n) = (v, (O — ©2>“/’>Df(sz),p(n)

= <v, (h”(t) - (€+ %)2 h(t)> ¢e,m($)>

D'(2),D(R)

—+oo
= / h(f) <F(f), ¢é7m>'D’(Sd*1),D’(Sd*1) drdt = <Fa 1/1>D’(Q),D(Q) )

to
This gives the result by density of linear combinations of such functions. (I
14



nf_ex :Phi
For the uniqueness statements, the problem dﬁfﬂ)m the functional are

too demanding. We are led to consider a small variant of it, related to the Dirichlet
boundary condition, and we will obtain similar bound.

The main difference is that we are prescribing some datum at zero and imposing
some decay at +o0o. The model example is the ODE, & — z = f and we can check
that for f sufficiently decaying, there is a unique solution exponentially decaying
so that 2(0) = (. We use a similar fact for our operator, which leads to a kind of
modified Duhamel formula. The first guess would be to consider

), 0hv) = /3 7 (i) 00

which is well defined and has value (0,0) at t = 0. Yet, this would be to impose the
Dirichlet and Neumann value and thls expression might contain some exponentially
growing modes. So, it is more natural to constrain only the Dirichlet value v(0) = 0.
So, this leads us to consider

+oo
u4, p the first component of / S(—71) (F?T)) dr and uy p= (uyp,—Duyp),
0

and the map

(2.16) P F s St)uy p — /:OO S(t—r1) (F?T>) dr

Observe that this expression is not local: the value close to zero of ®P(F) is influ-
enced by all the value of F' everywhere. This was not the case at infinity: ®(F') for
large t only depends on larger times.

The expression giving ®(F) is well defined if uy p € H*(S%"1), and a condition
for this is the purpose of the following lemma.

Lemma 2.3. Let s > 1. Assuming that the right-hand side in the estimates below

is finite, ®P(F) € Vs and there hold:

+oo
[est:1lin DuhamelDir | (2.17)ifd >3: |[®"(F)|y, 5/ | E()ly._, ., dr.
0

+oo
fd=2: [|o°(F)lly, < /0 IE@ly.-.., + TIPoF (7) L2 (sa-1y) dr.
Furthermore, v = ®P(F) satisfies the equation
Opv—D?w="F,  inRjxS!
v(0) =0, in S471.

where the first equation is meant in the sense of distributions.
Moreover, uy p is the unique initial datum in H® x H*~1(S4"1) so that

cvceinftysolDirDuham ‘ lv-=SC)uy rlly,, =0 as t— +oo.

:D_2d
Proof. (Mﬁth t = 0 gives when integrated in 7

+oo
tslgoiy S [ (P FO s+ [P+ AREEl52)

cosht sinh ¢

3 - : _
More precisely, if R(t) = (_ sinht — cosht

) is the resolvent, and if etf(t) € L' then
+oo 0

F .= / R(—s) (f(s)) ds is convergent, and the sought for solution is
0

(@,&) = R()(Xo + F) — /;00 R(t—s) (f?s)) ds

where Xo = (0, z1) is defined by z1 + fo + f1 = 0 with (fo, fi) = F being the coordinates of F.
15



< [ (@ + IPEEe) ar

:Hs_YstO ienlinY in_| DuhamelD:Lr
Now, due to n Lemma with t = top = 0), we conclude that

for the first term S(-)uy p of ®P(F).. " he second term is ®(F'), which sat1sﬁes
similar estimates as seen in Lemma é}%@t is direct due to the
convergence ﬂq’(rFQJM , — 0 given in Lemma e uniqueness is also direct in
view of : O

3. SOME PROPERTIES OF Y;; AND Z; SPACES

We start by recalling the following result by Sogge for eigen nctlé)nﬁﬁfuthe Laplace-
Beltrami operator on a compact manifold, see for instance [[S6g93] Corollary 5.1.2].

Lemma 3.1 (Sogge). Let M be a compact Riemannian manifold without boundary

of dimension n. Then, there exists C > 0 so that we have
oAl oo (ar) < CA T 18all2(ar)
for any ¢x € L2(M) satisfying —Agpr = N2Pa.

For n = d — 1, this proves in particular that for all £ € N, and u € L?(S%"1), as Pyu
is an eigenfunction for —Age-1 with eigenvalue ¢(¢ 4+ d — 2):

d_
‘est:sogge_sphere ‘ (3.1) | Peu| oo (sa-1y < C (€) 2 ! | Peul| 2 (sa-1y-

3.1. Product law in the Y, ; spaces. Our goal in this paragraph is to prove the
following result regarding the product of two functions in Y ;.

‘lmprodanalytique ‘ Proposition 3.2. Letd > 2 and s > % + % There exists C' > 0 so that

estimprody¥st | (3.2) Vt >0, Yu,v € Y, Juvlly , < Ce "2t lully. , vy, , -
. . Y . 7 . odanalytique
We will actually prove a shgh(ﬂ%imgff general version of Proposition &]Ef Reca i

P, is the projector defined in ne important property will be the following
result on product of spherical harmonics. Similar statements ll(l)ageBE,F:en used in the
context of nonlinear Schrédinger equations on S¢ (seeﬁP

Lemma 3.3. Let {; and {2 € N and Yy, be two spherical harmonics of degree ¢;.

The product ¢, pe, can be written as a sum of spherical harmonics of degree ¢ with
|61 — lo| < £ < by + lo. Equivalently, if £ < |61 — La| or if £ > €1 + £, then

Py(¢e, ¢e,) = 0.
GallotHulinLaf
Proof. We refer for instance to hG’HEOZI, Lemma 4.50, Section 4.E.3] for the upper

bound on £. For the second part, we assume

/ G, Do, Drgdw # 0.
wesd—1

Without loss of generality, we can furthermore assume ¢ > ¢;. We apply the first
part of the Lemma to 1 and £3 to get f3 < ¢1+/{3, thatis l5 > lo—¥01 = [lo—¢4]. O

Definition 3.4. A sequence 8 = (Be)een such that S, > 0 is said to be an easing
sequence with factor k > 0, if

def :beta_kappa Vi,j, ke N, k<i+j= Br <rKB:ib;.

Given such a sequence, we define the norm for functions defined on S?~1,

2s
03,80 = D (0 BEII el
T teN
16



Lemma 3.5. Let 3 be an easing sequence with factor x, and s > %Jr%. If u,v have
finite N (s, B) norm, then so does uv and there hold

wvllnes,s) < Ckllullnesg vl vs,g)-
for some constant C' depending only on s and d (not on 3 or k).

Proof. Throughout this proof, the implicit constant in < is allowed to depend on
d and s only. We assume u,v € L3 and conclude by density.

DeI&}(I)atgmgi = Piu and v; = Pjv so that u = ),y u;, v = ZJEN vj. Due to Lemma

we know that Py(u;u;) = 0 unless |j —i| < £ < i+ j, and so:
Py(uv) = Z Py(uiv;) = Z Py(uivy).
i,j i,j
li—j|<e<i+j

We can split this sum depending on i < j or j < i, and using that P, is an L2-
orthogonal projection, we bound

| Pe(uv)|| L2 < Z | Pe(uivi)|lpe < Se(u,v) + Se(v,u), where
il <<+
Se(u,0) = D> [lwiwyle.
©,J
i<y, [€—jI<i

Now, by Lemmalﬁ,Qggg
RN |
il oo sa-1y S C @) Nwill 2 ga-ry -

so that if £ < i+ 7,

||uivj||L2(Sd71) < ”WHLN(S"’*) ij”Lz(Sd*l)

L2171
(@)
< BiB; Bi Hui”Lz(Sd*l)Bj ||Uj||L2(Sd—1)
)
21
< A0

SR B Bi ||ui||L2(sd71) Bj ||Uj||L2(gd—1) :

Also observe that if |¢ — j| < i < 7, then £ < 2j. Together with the above estimate,
we can bound

— W2_1-5 /s
Se(w,v) S B D @2 B il g a1y)Bs sl 2 gany

(A
[e—j]<i
— W _1—s A\ S
S KBy ' Z B ||Uj||L2(sd71) Z (1) ((8)" Bi ||ui||L2(Sd*1))
Jj=t/2 i, [0—jI<i<y
1/2 1/2
_ \d—2—2s .\ 2s 2
S KBy ' Z Bj ||’Uj||L2(S'i*1) Z (i) (Z (i) 51'2 ||Ui||L2(Sd1)>
J=t/2 [0—j|<i i
-l
S B Mullvessy D (€=5) 7 By llvjllaggas)

i>t/2

We used the Cauchy-Schwarz inequality and the fact that d — 2 — 2s < —1. When
J=1/2,(0)° < (j)°, so that

s RN A= A\ S
()" BeSe(u,v) S kllullnisp > (=37 () B sl 12 ga-ry):
J
17



ﬁ—S
We recognize a convolution: as s > 2 + 1 ((j) = ~%); € ¢! and
1" Bj 1vill 2 ga—1))slle> = 10llv s, )
we get
16)" BeSe(u, v)lle S Ellullns,pllvllns.p)-
The same equality hold when replacing S¢(u,v) by || Pe(u, v)||12, and so
[uvll v s, = 11407 Bell Pe(uv) 2 lle2 S Bllwll s, g 10l v s, ) - .

. odanalytique . . .

Proof of Proposition §' ﬁ ['he main observation is the folllowing:

Claim 3.6. Given ¢,fy € R and ¢ > 0, the sequence defined by 3, = elctmax(t:£o))t
is easing with factor kK = e~ .

Proof. Let k < ¢+ j, then max(k,£4y) < max(i, o) + max(j, £p): indeed, k < i+ j
so that k < max(i, £p) + max(j, £o), and obviously, £y < max(i, o) + max (4, £o).
(Equality holds for ,5 > €o)

Hence’ ﬂk < e(chmax(i,lo)erax(j,éo))t < efctﬂiﬂj. 0

We apply this claim to ¢y = 0 and ¢ = 452, for which || - v, =1 llve..- O

L. odanalytique . . .
Proposition &]5 yields {hat the space Y5 ; is a Banach algebra (up to a multiplication
of the norm by a constant). So, we easily get the following corollary.

Corollary 3.7. Let d > 2 and s > % + % Let f be an analytic function of C of
positive radius p > 0 with f(0) = 0. Then, there exists ¢ > 0 and C > 0 so that
for any to = 0 and u function on (tg,+00) x St with [(w, Opu)|lyro < €, then

s,tg
(f(w),0:(f(u))) € y;g;o. Moreover, if f can be written f(z) = 2"g(z) with n € N*
and g analytic, then we have additionally, for any t > tg

_d=2(, _
Hf(“)”Ys,tfto < Ce 2 (n=1)(t—to) ”“”?@,HO'

Proof. We write g(z) = ;;03 a;z" with |a;| < Cp~* (up to changing p by a smaller

one). For ¢t > ty, We have, by definition, |ul|,- < e for t > ty. By the algebra
L ddanalytique s,t—tg

property of Proposition we get for t > tg

—+o0
. _B _ s -
||f(u)HYSVt7tO < ch-ﬂ 1|ai|€ 7 (t—to)(n+i—1) ||uH$+z

s,t—tg
1=0
d—2 =
< Cne—T(t—to)(n—l) Hul ?’S’t,to Z(Cg/p)z
=0

This is convergent if € is small enough and gives the last announced result. Writing
O¢(f(u)) = (Opu) f'(u), we get similar result and prove the rest of the Corollary. O

3.2. The elliptic null condition in dimension 2. Here sxéerfg)&%% on the dimen-
sion d = 2. In that case, the rate in the exponential in (@%‘ézeiro, and there is a
priori no extra decay on non linear terms. However, if 4 and v are linear solutions
of
attu - QQU =0
and when the product satisfies a special “null condition”, extra cancellations occur
and one derives improved estimates. This is particularl .r%ef%ant for critical cases,
as are conformal equations, which we detail in Section %'ﬁ[
We work in radial coordinates: let z = (¢,0) € R x R/27Z ~ R x S! be the running
point: observe that
|0p = D.
We will denote & = (&, &) the coordinates of a vector & € C2.
18



ImequiNull

equivl

equiv2

eq:A_zeta_homogene |

propNullgain

est:null_ell_2d|

Definition 3.8. Let A be a C-valued bilinear form on C2, which we represent by

a 2 X 2 matrix
A= <““ ““’) € M>(C),

Ggt  Age
so that for &, € C2, A(&,n) = ¢T An.
We say that A satisfies the elliptic null condition if
VEeC?  (p(6) =0= A€ =0),

where p(£) := — (&7 + &2) is the symbol of the Laplace operator, defined on C2.

If A:V — Bilg(C?,C), 2 — A(z) is a map defined on a neigborhood V of 0 € R?,
with values in C-bilinear forms on C2, we say that A satisfies the elliptic null
condition near 0 if for all z € V, A(z) satisfies the elliptic null condition.

Lemma 3.9. Let A € .#>(C), we denote A” = (_i _Zl> A (il _1)

We have the equivalence:

(1) A* has null diagonal terms.

(2) For all j,k € Z such that jk > 0, A(C(j),((k)) = 0, where we denoted
C(k) :== (—Ik|,ik) € C2.

(3) A satisfies the elliptic null condition.

Proof. Notice that the entries of A” are (for 4,5 € {1,2})
(A%):5 = AC((=1)H (=)

By homogeneity, we see that

(3.3) Vp,g € R, A(C(p),¢(q)) = IpllalA({(sgnp), ((sgnq)),

ivi iv2
so that ué:;%, E eulveuelglilivalent.
Second, implies ([J: 1t suffices to test with ¢(£1), for which we have
PC(ED) = —1- i =0,

Last, for the converse, we notice that p(§) = 0 is equivalent to & = =+i&. So, in
particular, § = (§, &) = (&, +i&) = —&(—1, Fi) = —&§((F1) and

A(€,€) = EAC(F1),¢(F1) =0
by assumption. .

Remark 3.10. Two important examples of matrices satisfying the null conditions

will be the matrices A = Iy and J = <01 (1)), corresponding to terms of the

form Vv - Vu and V4o - Vu = {v,u} = 0;v0su — Ogv0su respectively. We compute
the corresponding matrices (I)” = (g (2)) and J* = <_02@ 202> that have null
diagonal indeed.

Proposition 3.11. Let s > 3/2, there exists C > 0 so that the following holds 0
For ug,vo € H*(S'), denote u(t) and v(t) the associated linear solutions to ((I%%
with data (ug, —Dug) and (vo, —Dvg) at t = 0 (with no growing modes); denote also
Vu = (Oyu, Ogu) and similarly Vo = (Oyu, Opu).

Lett > 0 an Ao'mﬁll — M>(C) such that A(0) satisfies the elliptic null condition
of Definition or all § € S'.

Then, we have

(34)AC)(Vu(t), Vot)lly,_,, < Ce | A
19
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Proof. Due to the choice of the initial data for u(t), v(¢), they can be decomposed:
0) = Zozjeij‘ge_‘j‘t, u(t,0) = Zﬂkeik‘ge_lklt.
JEZ keZ
for some complex coefficients o, 8;. Then
Za e eIt ()
JEL

and similarly for Vv, so that

A(Vu, Vo)( ZajﬁkA C(5), C(k)) e+ = (Ll IRDE

iv2
Denoting R = {(j, k) € Z? : jk < 0}, condition SWrites that for all (4,k) € Z*\R,
A(0)(C(7),¢(k)) =0, s0

A(e)(vu(ta 9)) V’U(t, 9)) = Z a]ﬁk|.7||k|A( sgn(j), sgn(k)ei(j—i_k)ee_(‘j‘-i_lkl)t
(4,k)ER

Z Z Z|j|aj|k:|6kag7gei(j+k+€)9e_(‘j‘ﬂk'*‘mt,

oce{+1}2 (j,k)ER, LEL
where R, = {(j,k) € R : (sgn(j),sgn(k)) = o} and we decompoged the component
A(0)° of the matrix A(f)" (introduced in Lemma reca i Fourier modes

iné:
_ Z Qg eeie It
LET

The choice of the renormalization factor e~ l*I* is consistent with the equality

= 30 Dag

LEL

(3.5) HA

S 1,t
Therefore, for m € N*,
[P (AC)(Vu(t), Vo) |72 sy

>

ee{t}

2

Z Z |jaj||k/,5k||%,e|ef(ljl+\k\+lfl)t

a'€{:|:1}2]+k+€ em
(4,k)ER,

(and the corresponding equation for m = 0, without the e sum). Now, the key
property that we use is the following statement:
Claim: if (j,k) € R, then |5 + k| < |7] + |k] — 2.
Let us prove the claim. Let (j, k) € R, then j, k # 0 and have opposite signs. In the
case |k| > |jland k > 0, j <0, we have |j+k| = [k[|—|j] = |j|+|k[—2[j] < |j]+|k|—
The case |k| > |j| and k < 0, j > 0 gives the same result and the claim is proved
by symmetry.
Now that the claim is proved, we can get back to the proof of the Proposition and
get

V(j, k) € R, e~ (dlHIEDE  g=2to—lj+klt
Hence, if j + k+ ¢ =em and (j,k) € R, then m < |[¢| + |em — | = |¢| + |j + k| and

e~ (dl+IEFIEDE o =2t —mt.

We obtained the bound
[P (A(Vu, Vo) (£, 0)) || p2syy < €™ > > liegllkBrllac.l.

oe{£1}? j+k+l=Etm
20



1mdecompHarmo

Asj+k+L{=em,
(m)™ =Gk 0TSO AR 0T
and we get for m € N,
e (m)* ™ | P (A(V, Vo) (£, 0)) | 2

<e D] ) ()" |je] kB la,e| + symmetric terms
ce(E1)? j+hHi—tm

Squaring and summing over m € N, we recognize a trilinear convolution: due to
Young’s inequality, the continuous embedding £2 % ¢! x ¢ — ¢2 holds. This gives

v S DG eyl (Dkzﬁkl) (Zlaa,A)

JEZ keZ LeZ

[A(Vu, Vo) (#)]

+ symmetric terms.

Y
We now recall and that
. N\ 25—2 2s—2
190l 3s—1 g1y = Z e | (4) o N1G6vollFre-1(s1) = Z KBk |? (k) -
JEZ ke

By Cauchy-Schwarz inequality, we infer

1/2
Z |k0&k| 5 ||89u0||H5*1(S1) <Z <k>225> 5 ||(99’LLQ||[_1571(S1)7

kez keZ
because 2 — 2s < —1. The same gives

D kB S ll0ovoll ey and Y lage] S IA% v, ...
kEZ LeZ

This allows us to conclude to
JA(Vu, Vo) ()lly._,, S e > 10guollmre—1 sy [ 9ovol -1 51y | A [l v.y.,»

null_ell_2d
and from there, to . (I

3.3. Polynomials in Y, ; spaces. Product with monomials appear naturally when
performing the conformal transform. We first recall the following classical Lemma

that will be used several times in the article:

GallotHulinLaf ~
Lemma 3.12 (hG’HUV[, Lemma 4.50, Section 4.E.3]). Let P denote the space of

homogeneous polynomials of degree k and Hy, the space of harmonic polynomials of
degree k on R%. Denote P, and Hy, the spaces obtained by restricting these polyno-
mials to S*=1. Then, we have

_ rk/21 [k/2]
Pk = @ T21Hk,2i and Pk = @ Hk,Qi.
i=0 =0

Lemma 3.13. Let s > 0. Then, there exists C = C(d,s) > 0 so that for any
a € N multi index and t > 0, we have

d—2 s
(3.6) ly“ly,., < Cellol+ 30 (a)*HE,
In particular, ||2*|| 50 < C ()*T>.

Here, we have written y® for the restriction to S¥~! of the function defined on R¢

by z — x% while we gave written x® for the function defined on B(0,1) C R<.
:ya mpro S

Combining and , we get that for s > % + % and any o € N4, o € Y1,

(3.7) ¥t 0, y*ully,, < C () el uf
21
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d - S .
Proof. x* =[];_, " is a homogeneous polynomial, it decomposes into
o § 23
xr = |.’L'| hla‘,gj,
i<lal/2

where hj4)—2; is a harmonic polynomial of degree [a| — 2j. When restricted to the

sphere, we get
Yo = Z hjaj—2;-
i<lal/2
Now hjq|—2; is an eigenfunction of © with eigenvalue [a| — 25 + %, so that
_ogjyd=2
e Py = Z P hjo)-2; = Z AR R N
i<lal/2 J<lal/2
Also, the decomposition is orthogonal so that
2 2
||ya|\Hs(sdfl) = Z Hh|a\72j||Hs(sdfl)a
i<lal/2
and therefore

_gjpd=2
e = 1€y e gy = D U2 Ty o1 oy

J

|

a—2 22
< 2T TRy gl sa-ry = 1Ty B oy,
j

To conclude, it suffices to finally notice that

HyaHHs(sdfl) S H?JQH%M(SH) < ||$a|\s§r51(3w(o,1)) = Z HaﬂxaHLw(Bmd(oJ))
EINE

< (@) < ()t

~

Concerning the second part, since for u(z) = 2%, u(ry) = rl®ly®, while for w =
=2y + r‘g—;f, w(ry) =rlel (452 + |af) y so we estimate

d—2 d—2 d—2
lolzg = sup Ny, + (D5 +lal) sup Py,

X X

< C <Oé> sup rd_;Z‘HOé‘r—%—hl\ < C <a>s+2 ) O
0<1<1
3.4. Embeddings in usual spaces. In this section, we first describe the notations

concerning usual spaces and then describe their link to our spaces Z.
In all what follows, H'!(R?) denotes the completion of €>°(R¢) for the norm || Vu/| [2(RY)-

For d > 3, this is isomorphic to the functions u € L?" with Vu € L? with 2* = dQ—fIQ
the critical Sobolev exponent for the Sobolev embedding L2 ¢ H'. We will some-

times use a localized version

(3.8) lull v ((ayz1p) < CallVull 2 (g 1)

valid for any u € H'({|z| > 1}). Here, we denoted H'({|z| > 1}) the restriction of
such functions to {|x| > 1}. H}({|z| > 1}) denotes the completion of €>°({|z| > 1})
for the norm ||VU||L2({\1\>1})- This is isomorphic to the functions in H!({|z| > 1})

with trace zero on S%~'. We will avoid the use of H' in unbounded domains of
dimension 2 since the definition contains subtleties that are not necessary here.
We have the following embedding of the Z spaces into the usual homogeneous
Sobolev space H*.
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Lemma 3.14. 1) Let d > 3, s > 1 and u € Z2°. Then u € H'(|z| > 1). If

furthermore s > (d — 1)/2 then u € LP(|z| > 1) for any p > 7%.
2) Letd=2,s>1 and u € Z such that for some v >0,

%( ) <+
TaT‘ T ZOil 0.

sup " <||u<r~>|Z;cr +

r>1

Then, Vu € L?(|z| > 1).
Proof. We decompose

w— ;nmmnmm (H) |

V(f(j2l)g(a/|21)) = £'(])g (| |)i+ ﬁ')vgm (ﬁ;')

||

As

we infer, using y - Vga-19(y) = 0 for any g : S¥~! — R and y € S?~!, the orthogo-
nality of (¢em)e,m and [|Vea-r dpml|72gar) = €€+ d —2),

+oo
IVl = €3 / (1t + L2 0 - 2)) -t

+oo
s Cd/l (PP + (O fem(r)[*) =2 dr.
lm

On the other hand, for r > 1,
()1 7o, = 7772 D | feam ()P (O r2F972 > 2420 7 fy 4 (r) (0%,
,m

l,m

Similarly, for s > 1,
20t )
5 utrgul(r

2 2

<€>2(s—1)

2d— 4z‘d 2f€m +7°fem()

ZZ 0,
2

2d— 4z‘d 2f€m +7°fem()

Finally notice that

PP < |52 ) )

From these computations, if d > 3, then

teo d—2 ou
Vel < | <|u<r->|%m H(F g )

o0
< Jull2 / PA=ddy S fJul2e.

2+<d 2) om0

2

) pd—3—(2d—4) .
234,

d+2

Moreover, for 2* = > and s > 1 and r > 1, we have by Sobolev embedding

lgll 2 ga-1y S Mgl a1y S 7 —(d=2) ||9Hzoc where we have used ® > 952 in the

sense of operators of H*(S4~1). In particular,
“+oo +o0
2* d-1 2* d—1-2"(d—2 2*
FllZi sy /1 P ) |2 gy /1 A1 D)y 1) i

* o0 *
Lo [ ot Sl
1
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so that u € H'(Jz] > 1). If s > (d — 1)/2, we similarly have
gl Logi-1y S N9l oo si-1) S N9l s (ga-1y S (42 191l 225, »

d

and the same argument gives for any p > %5,

s

—+o0
HuH]Zp(|m|>1) 5/ Tdilip(di?)”“(r')Hpoonr Sp Hqugo
1 ;

If d = 2, under the extra assumption we bound similarly

0 Foo
Y ) / r V7 ldr < 400.
1

TE(T')
O

Lemma 3.15. 1) Letu € Z0. If s > 4 — 1, then u € L>(B(0,1)). If s > 4 + 1,

then u € W;2°(B(0,1) \ {0}) and more precisely, provided the right hand side is
1

loc
finite, there hold
by % e (1, + )
0<r<1 ’ r Zg—l,r
2) Letu € 2. If s > % — 1 then u € L>®(|z| > 1) with the decay
u(@)] < 1217 P ull zoe s I Peulr)l g gamry Ser™ @27 Juf o -

Ifs> %+ L thenue Wh>°(|z| > 1) and more precisely, there hold

2 < v .
HUHHl(‘z‘)l) Nigll)r (HU(T)HZ?T +

)
220,

ou
7’5(7")

1 ou

7’5(7")

) S llull zg-
230

Functions in Z? are actually not well defined at 0 as there can be oscillations:
sin(In [z]) € (,5( Z¢, but is not continuous at 0. So, the above Lemma should be
understood as the existence of an extension to B(0, r¢) with the expected properties.
For Z2°, there is actually a 1/r9~1 gain, which we will not really exploit.

To study smoothness issues of function with an emphasis on spherical regularity, it
is convenient to define the following differential operator: for v defined on B(0, R)
or on its complement in R?

(3.10)

Au(z) := (Vga-1u)y) (%) where u, is defined on S~ by u,(y) = u(ry).

1
est:Zinfty_Wiinfty‘ BINullyroo(zy=1) < sup <ﬁ||“(r')||zg,°r + 1
Tz

In particular, it allows to express

0 1
eq:grad_la.mbda‘ (3.11) Vu(z) = a—Z(x)% + mAu(m)

Proof. a) First let us observe that if f € Z9, then for r < 1,

+oo
(312) Il = > O 1 Pflaga)

=0
+oo
> D (OFIPS 2 ga-1) = 11 (ga-1)-
=0
Similarly, if g € Z2°, then for r > 1,
+oo
(313)  lall3 = 3 r 20 Pig ey > 22 gl
=0
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b) Let s > ¢ — 1 and u € Z?. The Sobolev embedding L>(S1) ¢ H*(S% 1)
writes, for some C independent of r > 0,

lw(r)ll Lo sa-1y < Cllu(r )| gs sa-1)-
Hence taking the supremum in r < 1, we get

lull Lo (B(0,1)) = S lu(r)|l Loega-1y < Clluf| zo.

;72 Hs
(We used Mﬁ the last inequality)
d) Let now u € 22 with s > £ — 1. As'in ¢),
[ull oo (jz21) < Sg};r “llu(r)ll g a1y < Cllullzz.

=

:7i H
(We used T%gs }éeslahsetrgnequality). This gives the first part of 2). For the second
part, using ) B

— d— N
F2(0+d—2) ||Pl(u(r'))||2L°°(Sd*1) < C ()12 p2(trd=2) ||PZ(U(7"))||%2(Sd—1)
< C(0)i=22yd-2 ZTQ(’"*_ )2 || P (w(r) |72 ga-1)

<O 2SIIW“)IIz;oT <O lullZ .

e) Now assume that s > % + % and let f be defined on S4~!. We have Vgi—1 f =

Vsa-1 Pi- f where Pt = Id — P, is the projection orthogonal to the constants on
S9=1. Then, the Sobolev embedding W1>°(S4=1) c H*(S%1), writes

oo 1/2
||de 1f||L°°(Sd 1)~ ||PO fHHS(S'i 1y~ <Z<£>25||Plf||%2(gd1)> .
£=1
d 1 0 :grad_lambda
f) Let s > § 4 5 and u € Z_. We recall :
ou x 1
Vu(z) = — Au(z).
orfal " Jal

Hs
In view of the first equality in W_E)r 0<r«<l1

lu(r)llZe > _22 Y2 Pe(u(r)) 72501,

and so, using e),
[Aull Lo (rsa-1) = [[Vga-1tir|| Lo sa-1) S rllulr)| 2o, -

Hence

0<r<1

1
—||AU||Lw(rsd1)>
Loo(rSd—1) r

< sup (Hu ||Zo H >
0<r<1

The statement regarding VVliCOO (B(0,1)\{0}) is similar, working on B(0, 1)\ B(0, ro)
for any 7o > 0. This gives 1).
g) Similarly let u € Z° with s > £ + 1. Then for r > 1,

Vu| e <
|| U||L (B(0,1)) sup (H@r

+oo —+oo
lu(r )2, = Y r 22 2O | Pef T agany = r2 @70 Y (O Pelulr)) | 2ary,s
£=0 (=1
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and so from e)
IAull oo (rga-1y = [[(Vsa-1u) ()| Lo ga-1y S 77 Ju(r) [ zgs, -
Hence

ou
Vul| e < —
IVl < sup (H i

1
+ ;||AU||Loo(rsdl)>

) Sllullzee. O
230

Lemma 3.16. Assumed = 2, and define u(z) = u <%) Then ||u|| zoo = |||l z0-
x s s

Proof. By definition, for » > 0, we have the equality for functions defined on the
sphere %1

Lee(r§d-1)

1

1 ou
Ssup | = ||u(r)]|ze + —=
up (rdn )z, + =

E(T')

u(r-) = u(-/r).

Hence, as d —2 =0,
()l zes, = llu(-/r)llzzs, = lr2u/r)l e ga-ry = lu/Pliz0 -

Similarly, as

ou - T T 1 2x - x
(5 ) @ = ivate) 5 =vu (52 (e - )
1 x 1 x xf|x]? ou x
BREAS (W) A (W) VAN ANEEA
As before, we infer that
ou
o =5 e

(5

and the conclusion follows from taking the supremum in r > 1. (I

200

s:actionder

3.5. Action of some operators. In the case of nonlinearities with derivatives,
we will need to understand the effect of several operators on the spaces Y, and
Yst. One of the problems will come from the fact that some functions are defined
on the manifold S*~! and the gradient is therefore in 7’S?~!, while we will need to
consider power series.

We will see S*~! as embedded in R? so that we can consider TySd_l C R¢ for
y € S1. For any i € [1,d], one natural operator that we will use, is the following
operator, defined for v function on S¢~1,

(3.14) Div = ¢€; - Vga-1v.

where - is the usual scalar product in R? and (e;);=1,... 4 is the canonical basis of R¢.
D; comes naturally when we want to consider the operator 9; on R?, written in polar
coordinates. It turns out that for some nonlinearities that have some structure, we
will need to decompose D; with a “main order term” —y; (CD — %) That is why,
or any i € [1,d], we define the operator

v = Dyv + (s_d_;Q) "

Lemma 3.17. Let s € R. There exists Cs q so that for any u € Y, there hold, for
all i € [1,d],

(815)vt >0, [Dully, ,, +e ™ [Dully, ,, +e [Rauly, ,, < Coaluly, -
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actdtheta

Finally, if d =2 and S* ~ R/277Z is parameterized by 0, then we have
< Cyllully, -

:Ytt0
We emphasize, in (w,_fhe loss for D; and the gain for R; of an exponential factor
t
et

100y,

s—1,t

Proof. The part about Du is direct from the definitions. Decompose u = >, . Pru
so that
PDju =Y P;D;Pu.
keN

If k =0, D;P,u = 0. Otherwise, Pyu is the restriction to S*~! of a homogeneous
harmonic polynomial in R? of degree k > 1, say Hy. We have for = in R,

6Hk x aHk

ox; || | | Or ().

When restricted to S*~!, we get by homogeneity of Hy, for all y € S4~1,

(ac):ei-VHk— —e; - AH(z) +e; -

0Hj, d—2
S ) = (Difs 2 )0) + k) = (DiPe)() + i (9 - ©52 ) Py
Now H, E—1 = %’z kL is a harmonic polynomial of degree k — 1, so that its restriction

to S~ is an eigenfunction of Aga—i. On S¢~!, using the decomposition of u, we
have

Diu(y) = (@ - u) y)+ > Hiaf —Yi (9 - %) u(y)+Riu(y).

keN*

Hy, andjg' % are homogeneous harmonic polynomials of degree k. Multiply the equa-
tion AHy = 0 by Hy and integrate by parts on B(0, 1), we get

/ @mm:/ IV H 2.
Sd—1 B(0,1)

Also, by homogeneity, O, Hy = kHy. So, we obtain for any k € N*,

~ 1 ~
HHk|Sd*1||i2(Sd*1) = _HVHICH%Z(B(O 1))-

Since Hj, = 61;’““ by elliptic regularity and umquenesslfoc%rs talllee I]lgémchlet boundary
value problem AHj1 =0 on B(0,1) (see for instance [LM7Z Chapter 2, Theorem
8.3]), we have

||VH1€H%2(B(O,1)) < CHHkJrlnH?(B(O 1) = < Ol Hpgq1lga- 1HHS/2(gd 1))

< < > ||Hk+1|Sd*1HL2(sd71))-
Hence, uniformly in & € N,

| Hilga—1]p2ga-1) < OCk) | Hpq1|sa1 || L2sa-1)-

We have Pgﬁk,l =0if £ # k — 1 so that, for £ € N, P,R;u = ﬁg. Therefore, we
can estimate, uniformly in ¢ € N,

| PRl ooy < CUN (Herno s iy = O Pesrul ey,
and we can bound
“+o0
_ d—2
9%l , = 3402 TV PR
=0
I ¢ d—2
s 2 -
<Oy (O T Pl

£=0
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+oo
<OY (=12 T Pl gy
=1

— 2
< Ce™ lully, -

: d_
Finally, thanks to 1&' E ], We ggt

(o)

The last statement in dimension 2 is immediate taking the orthonormal basis
(€™*9) ez and seeing that P, is the orthogonal projection on Span(e??, e=#%). O

< Ce'ully..,.

Ys—1,t

Remark 3.18. It might be instructive to see with one example the effect of the
operator D; and the operator fR;, for instance in dimension 2 where S ~ R/27Z.
Take u = sin(nf) with n € N*. Since (at least for small 6), § = arctan(y/x) where
the typical variable is (z,y) € S' C R? with (z,y) = (cos(f),sin(f)), we have
Vsiu = (—0zu, Oyu) = ncos(nd)(—sin(f), cos()). In particular,

D,u = —ncos(nd)sin(f) = —nsin(nh) cos(f) + nsin((n — 1)0) = —a2Du + R, u.
Then
1Reully, ,, =n(l+ (n—1)*)E 02D o el o e fully,

as expected. The simplifications coming from some structure of the nonlinearity will
for instance be consequences of identities like 22+ = 1, that is cos?(6) +sin?(0) =
1. This allows to obtain,from a trigonometric polynomial of order 2, a trigonometric
polynomial of order 0, and so, improves the estimates in the norms Y ;.

4. SCATTERING IN CONFORMAL VARIABLES

4.1. A first general result. Let g be the nonlinearity after performing the con-
formal transform, that is
F(u(@), V() = g(t, y, v(t, y), o (t,y), Vyo(t,y),
x
where e’ = |z| and y = Tl € st

x
We state our result for system of equations on the unknowns v = (vy,...,vn), for
ulterior purposes, in particular when studying harmonic maps. However to present
the proofs, we try to limit notational inconvenience and we will assume N = 1; the
scalar case contains already the essence of the result. We separate the time variable
t (corresponding to the radial variable) because we will exploit the fact that it is
better behaved.
So, we are interested in solving the system on v = (vy,...,vN), given by

(4.1) Orv — D% = g(t, y,v, v, Vyv)

where © acts component by component, that is,
Vi € [[17N]]7 attvi *szi = gi(tayvvvatvvvyv)a

for a smooth function g = (g1,...,gn) wheret € R,v € RN, dyv = (Qyv1, ..., 0N),
Vv = Vgiv = (Vyv,...,Vyon) and for ¢ € [1,N], dww; € R and (y, Vyv;) €
TSe-1,

. . . ec:Duh . .
As f will be analytic (see Section Ei, we assume that for ¢ € [1, N], the functions
g; are, in variable (¢,y,v,w, z), of the form of a series indexed by the parameters
o€ Nd, B,y € NN, 0 € %N,d(N):

(12) Gty v, = Y b s

a,B,7,6
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estimaabetaiota |

def:nu_a

defhhi

hypokabc

def :nu0

hypokabcnu

rkxplaincoeff

In the above sum, we use the standard convention for multi-index powers of a

vector:
N N N d
B _ Bi v o Vi 5 _ 0ij
v° = vyt w' = w;, 2= 2
i=1 =1

i=1j=1

The w and z variable of g; are meant for the derivatives of v: w; will have the place
of Oyv; and z;; that of Dju; so that (zi5)1<j<a describes Vyv; € T,S471 € R (recall
the definition of D; in &1})

In the various sums below, we use latin letters for index for which the sum is on
finite sets and greek letters where the sum might be infinite.

For technical purpose, we will assume that each b;  g,4,5 can be written

biagra(t) =D bia(t),
LEN
where, to simplify notations, we gather the parameters into one index
9= (a, B,7,0,1) € O := N x NV x NV x .4y 4(R) x N,
and for any ¥ € O, there exists By > 0 and ky € R so that we have
(4.3) Vi€ [1,N], V¢t >0, |big(t)] < Bge "t

dhis assumption will naturally fit f being analytic, as it will be clear from paragraph
EI In many cases, it will be enough to consider that only the terms with + = 0 are

not zero; we will drop the index ¢ in this case. We will use the same convention if
we have always o = 0.

We denote
d—2 d—4

(4.4) vy = kg —lal + (18] + 7] = 1) =~ + ] ——

laincoeff . .
(see Remark or explanations) and define the series
(45)  h(o,p,s) == By ()" (18] + |y] + |6 gl PIEIIHEI= gro oo,
Y€
hi(o) := h(o,1,1) = Z By ()T (18] + || + [8])o!PIH I IHIo1=1,

(G
We can assume without loss of generality (due to the (|3| + |y| + |d|) factor) that

(4.6) By #0 = |5+ |y|+ 9] > 1,

and we will always assume that for sufficiently small o, the series defining hy is
convergent.

Denote

(4.7) vo = inf{vy : ¥ € ©, By # 0}.

We will always assume

(4.8) vy = 0.

.. . :nu_a . .
Remark 4.1. The definition of the exponent vy in 1&&} might seem a bit mysterious
at first, but it just reflects the exponential decay given by any term by (t)y*v°w? 2°
which corresponds (in the scalar case) to by(t)y®v(t)? (0pv)Y (Dsv)%.

e Ky is the exponential decay o.f the congst Izltrg-gl ) by.,. . Lv¥st
|| comes from the loss described by in Lemma ﬁl i

:Y£t0
) comes from the loss of e! for the action of D; due to mﬁ Lemma

We have a multiplication of |3| + |7y| + |d| functions in Y;_q, so. 1t creates
En exponential gain of factor (|8]+[y|+ (5] — 1)452 due to Ei'i; in Lemma
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Adding all. t(}elecabove yield the rate vy in (Iﬁ):.gg[’%ese exponents will be crucial in

Lemma elow.

:sys_conf
The purpose of the following two results is to construct solutions of 1&5] } aeﬁned
for large times and with a prescribed linear behavior
v (t) == 8(t)(vo, Do) = (S(t)(vi,0, =Dvi0))1<i<n,
as t — 400 (which is non growing in the Y;; norms), where vy = (v1,0,...,v1,n) IS
given. The idea is to perform a fixed point argument in v = (v,0) € Y, (that is,
each component of v lies in Vs ;) on the map
(4.9) U v O(g(ty, 0,0, V,0), with @:=v+wvp

. hi
where the map ® is defined on (MEnd acts component by component.
Here is our first result.

th:conf | Theorem 4.2 (Conformal variables). Let s > 4+3. We assume a stronger version
of Eigi, namely that vy > 0. Then, there exists C > 0 and n > 0 so that the
following holds. Let

vo = (vio)i<isy € HY(S™™Y), v := S()(vo, —Dvyp),
and tg = t1 = 0 such that

asumhvLtl | (4.10) h(C||vL|\y;}t07ef(toftl),eftl) <.
Then there exists a unique (with v — vy, small) solution v = (v1,...,v )ang);lto
(defined for times t > to) to the integral formulation of the system L with final
condition
(4.11) [v—vrly,, Se ™ =0 as t— +oo.

vLtl
We emphasize that (Mﬁumes implicitly that the quantity
h(CH’UL||y:1tO , 67(t07t1)7 e*tl)

is finite, which is not always the case. To discuss this, given A,e, D € R, we consider
the following property on h:
infkvartheta| (4.12) V¢ €O with By #0, kg = (—A+e)(|B|+|y|+16|—1)— D.

This is convenient because it allows to relate h and hy, and in particular ensure
convergence of the former.

i thet
cl:h_h1| Claim 4.3. Assume that h satisfies M%A,s > 0 and D € R. Then there
holds

est:h_h_1 Vo >0, Vp, A€ (0,1], h(Aa,p, ) < A Ppoh (o).
Proof. We have

WMo, p,0) < 7 By () (18] + ] + [6]) o PIHIH11=1 g o
YeO

where
my =Ky + A(|B] + 7|+ 16| = 1) = e (I8] + |7[ + 6] = 1) — D.
i thet
(We used the assumption 1&‘ lEviarfor ef Eae inequality). Now, vy > vp and as 0 < p, A <

1, we infer
h(A\ e, p,\) < Z By (a)*T (18] + || + |8]) (A= o)Al I IH181=1 o \ =D
(G
<A Ppoh(Mo). O
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. o, . . .o . . H Conf .
We are now in a position to give some conditions under which Theorem &{2 applies
(proven after its proof).

vLtl
Lemma 4.4. Under the reinforced condition vy > 0, the assumption m_/ﬁlds

if one of the following assumptions is satisfied

hypott0 (1) h1(0) = 0 and we have to = t1 =0 and |[vo| g=ge-1) is small enough.

hyp3nu (2) t1 =0 and tg is large enough (depending on vy ), and there exist € > 0 and
D € R and so that, for all ¥ € © such that By # 0,

[infouvartheta] (4.13) v > (|8 + [y| + 6] = 1) — D.

i thet
(8) there exists by € N such that Ppvg = 0 for all £ < £y, and h satisfies ﬁf 'Eviar =2
with A = £y + %= 2, e>0and D € R; and ty and ty — t1 are large enough
(depending on vo)

. i vartheth vartheta . .
Remark 4.5. Assumptions an or any 1) are obvious if By # 0

only for a finite number of ¥: this corresponds to a polynomial nonlinearity in the
original variable. They are mainly made to ensure the convergence of the series.
The condition 3) is actually used only for ¢, = 0 or 1.

:conf . . . .
The proof of Theorem &%HOWS from the following technical but crucial estimates.
As mentioned above, we will assume for the purpose of the proofs that we are in
the scalar case N = 1.

Lemma 4. 6 Let s > & —|— 3 There exists a universal constant C' > 0 so that for
everyt >t 20, v, w E slt, and denoting

[aetme]  (4.14) 2 (1) = max (Jfoll g, ooy ey, )

then we have

[V (v) — I\yrlwz —wot1 B () (8] + || + [8])(CM (2)) Bl I+181=1
IS

+oo
X/ lv = wl|y (147 — )T~ dr,
t 8,7

Similarly,

@)1y, S D e By (@) (18] + [yl + 18] (CM (1) P
V€O

—+o0
<[ oy + 0wl )1+ 7= e,
t , ,

Proof. We do the difference estj e only, as the other one follows in a similar
fashion. First, note that due to

(Vyo(7))ij = ej - Vyvi(T) = Djuvi(T).
odanalytique

From Proposition and Lemma I&ﬁt%s s—1> % + %, for any 5,7 € N, § € N¢
(recall we do the proof for N = 1), and time 7 > ¢ > 1, denoting

)

v=v+wv,, wW=w+vL,

there hold
[15(T)°0(r) " (Vyo(7))° = @(T) () (V@ (1) |lv, ., oy

é|— — —1)4=2_ T—11
< (18] + || + [8])CRPHIHIRI=L =81+ +181=1) 552 =[] (r—t)
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1BIHA1161 =1 |y —

X ([ollye 4 llwllye + vzl wllys,

(119

1 - _1)d=2 dedyor g
< (|5|_,_|7|+|5|)(0M(t))lﬂ\+lv\+|6| Lo=(UBI+ =) F=+18] == )( t)|‘v_w|‘y§}7-

;YEt0
(Weigller%%gg Cp the maximum of the constants appearing in estimates (&%d
1@32), and otie can pick C' = 3Co. We also used |[v[|), < M(t) for 7 > ¢ and the

same for v and vy,.)

sgume ﬁ\gﬁ‘gm (gIZ 3. Usi berg@oge inequalit gggaet‘gehceag (y;cfiath the Duhamel bound
, the product law an e decay , wWe ge
1%(0) — W (aw)]

<Y /OO [ (DIlly™ (8(7)°0(7)" (V45(7))°

veo V!t
— () w () (Vi (7)°) llv. s, dT

< Z By <a>s+1 (8] + |v| + |5|)(CM(t))|ﬂ\+lv\+|6l—1
V€O

too d—2 d—4
« e 0T elal(rt1) o= (BN =D AR —0) |y gy L, dr
)

S Z By <a>s+1 e_'wtl(|5| + |7| + |6|)(CM(t))‘B|+M+‘5‘—1
JEeEO

+oo
X / e T v — wl|yn_dr.
;

(!E E’g%lg gast inequality, we have used e "7 = e~ vt1e=%v(7=t1) and the definition

of vy.) This gives the expect d estimates in this case.
If d = 2, we rely on estimate 15']3) So, we need to bound the term with Py, which
we can estimate as before (because s — 1 > 1= d/2): for any 7 > {4,

| Povllz2sty < 1Povllgs—1(sty < vllveiyroe, s

and so

+oo
/ (T = OIPF (7)o @ydr S By (@)™ e (18] + 4] + 19])
t 9EO

> (CM(t))IﬂHIvHIéI—l
+oo
/ (r = )e=" =) g — ]|, dE
t , T

th:conf .
Proof of Theorem @.—We consider
— t1 .
v ={wed,: lwlys, <ozl }-

Observe that for t > t1, and v > vg > 0,

+oo —+oo
/ 14+7-— t)eiV(Tftl)dT = e ¥(t-t) / (I+7-— t)efl’('r*t)dT
t t

=

Let v,w € Y and t > to. We have [[v|,n < [[vflyn < [lvrllyn  and similarly
s,t s,tg s,to
[y, < orllyn, - In particular,

M) < ozl
32



t inegG
where M (t) was defined in M Hence, using Lemma ﬁ,n_ev%fé get for v, w €Y
andt >t >t >0,

(@.17) [%(0) - B(w)ly,

s+1 —k _
<Y Byla) e ot1(|5|+|7|+|5|)(C|\vL|\y;}t0)\ﬁ|+h|+\5\ 1
YeO

+oo
X / lo — wlly (147 —t)e "~ Dar
t s,T

s+1 —k _
<Y Byla) e ot1(|5|+|7|+|5|)(C|\vL|\y;}t0)\ﬁ|+h|+\5\ 1
JEeEO

_ —vy(t—t1)
ST——

ShCllucl,, e e )l — wlyn,-

And similarly, there holds

@18) W)y S A(Clonly e e ol + ocl ).

. o L :Psildiffest:Psil
Denote € the maximum of the implicit constants appearing in an )

and choose = 1/(2C1). The above computations, applied with ¢ = tg, prove
that ¥ maps the closed Y into itself and is contracting in the Banach space y% Psi

Therefore, ¥ aggt}ia}cnseﬁ%ique fixed point r = (r,7) in Y. Then from definition

and Lemma, we have 77 = O0;r and
Opr — D%r = ®(g(t,y,r + v, O (r +vr), Vy(r+wvr))).

inftysol :Psil
In particular, vz, +r is the desired solution. For ﬁsi | ;, we combine (ﬁfﬂgﬁth the

bound h(a, p1p2,s) < p{°h(o, p2,<) for p; <1 and ¢ > 0, so that
hCllvrly,,, e e™) < h(Clv

e—(to—tl), e—tl)e—uo(t—to)

/

Verig
—l/o(t—to) .

N

ne

. . . . . t .
Finally, the uniqueness of solutions with v — vy, small in V', is a consequence of

the uniqueness of the fixed point. (I

Lem: conf ienli
Proof of Lemma[ﬁ.—c% (1), recall that from Lemma E]iﬁl oL V. S llvoll s ga-1)

is small, and actually can be made smaller that the radius of convergence of hy; as
h1 — 0at 0, h(Cl|lvLlly,,1,1) = hi1(C|lvr|ly.) can be made small.

For (2), we observe that the hypothesis together with vy > 0 implies that there
exist n > 0 such that

0
vy = 2n(|B| + [y +16] — 1) + 5

For example, n = fits using

1_ewg
4 ‘D‘Jrl/o
(ID| + vo)ve = [Dlvo + voe(|B] + 7| + [6] = 1) — oD = voe(|B| + [v| + [6] = 1).
Then we decompose
vy ) vy o vy
Z >+ —+——2 o —1 -5 T
vz 4 B (g4 10 - 1)+ 2 A
which leads to
h(o,e™,1) <Y By (@)™ (18] + 7] + [6])
9
« e*V0t0/2(U€*ﬁto)|ﬁ\+|’¥\+|5|*1€*l’ﬁt0/4

< e_”"t"/Qh(oe_"tU, e_t°/4, 1).
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‘ est:psi(0) _exp ‘

est:hl_small

| cvceinftysolnu |

| est:sol_conf_nu+nu_O0 |

ienlinY

Since by Lemma &]il; we have |lvr|yo, < Cllvol|gs(ga—1) uniformly on to > 0,
s:to
applying the previous estimate with o = Cllvr|lyo, gives h(Cllvr[lyo, e7,1) <
s,to s,to

e~ /21 (C||vgl| s (ga-1ye ", e*0/4 1), As h(-,-,1) is defined and bounded on a
neighbourhood of (0,0), this last expression is finite and arbitrary small for large
to. L

. :Hs_YstO_exp_2dmlienlinY | .
For (3), recall the estimate dﬁfﬁ of Lemma [2.I[ which is uniform for ¢y > ¢; > 0:

(s d=2
HvLHy:lto < Ce (fo+45 )tlHUO”HS(Sd*l)'

Since h; has a positive radius of convergence, we can fix ¢; > 0 large enough so
that hl(e_atl Uy |‘ﬁ[f(§d*1)) is finite.

Using Claim or t1 as above and any to > t1, and as all coefficients are positive,
there hold

W(Cllogllyn et ety < A(Ce™ T4 pp | e o=t i)
s,to s,tg
< ePhemo o=t py (Cem M ||ug|| e (ga-1y).-

In the current case, vy > 0: hence it suffice to choose ty — t; so large that the
e~vo(to=t1) factor absorbs the eP*t factor and make the right-hand side small. [

There are some limit situations where the assumptions of the previous theorem are
not fulfilled, but we can still build a solution. This is the case for example if the first
iterate of the Duhamel formula (that is ¥(0)) is better than expected and decays
in time: a convenient space is given by the norm

(4.19) o]yt = sup e~ |0,
v,to t>to st

given v > 0 and tg > t; > 0. We also simply denote Xli”to =X, 4. Xﬁ}to defines also

a Banach space (as we done for the other space times spaces like Z2° etc.). Here is
our result.

Theorem 4.7 (Conformal variables 2). Let s > 4 + 2 and v > 0. Then, there
exists C >0 and n > 0 so that the following holds.

iget v = (vio)i<i<y € H® (S¥1) and v, := S(-)(vo, —Dvy). Recall that we assumed

;s also assume that for tg > 0,
(4.20) T(0) € X, 4.

:Psi
(¥ is defined in (ﬁ),ﬁsu1 may depend on vg). We finally assume tg > t; > 0 are
such that

(4.21) R(CN,e~(t0=t) o=ty <y where
N = max (O 0 (O) | or e )
Then, there exists a solution v secg}nglto (defined for times t > to) to the integral
formulation of the system L with final condition
(4.22) v — 'UL”y;}t Se =0 as t— +oo.
Furthermore, one has the more precise convergence

(4.23) v — v, — ¥(0) < e~ (o)t

”y:’lt
Uniqueness holds for v — vy, — ¥ (0) small in Xut,lto-

:hl_small | L. .
As before, E'il | Assures implicitly that the quantity h(CN,e~(*o=%1) ¢=t) has a
finite value. For instance, it happens in the following situations.
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:hl_small
1em:th_conf2_hyp‘ Lemma 4.8. Here, we assume hi(0) = 0 and vy = 0. The assumption 1&:&]; 18

satisfied for instance if either

(1) ||'UOHH5(Sd 1y and |¥(0)|x, , are small enough, and to =t; = 0.

(2) () € X,0, cmd there exists Lo € N such that Ppvg =0 for £ < £y € N and
h satisfies wz Af€0+—,€>0andeO and t; and ty — 1
are large enough (depending on vo)

Proof. Let tg = t1 > 0 as in the assumption. The idea is to perform a fixed point
argument on the map ¥ defined by

defpsitilde | (4.24) \i/(’v) = T(T(0) +v) — ¥(0),
t %ZEEE .
in a ball of A, . We apply Lemma and we get, for ¢ > to and denoting
M) = mas (o4 9Oy oz, ):
1 ()llye, = 12(T(0) +v) = (0]

<37 By ()T e (18] + ] + [8])(CM (1)) PO
Y€O

+oo
IR0 vl (17— e
t ,T

< Z By (a)*T e % (|8] + || + [8])(CM () PlHII+Is1=1
JeO

+o00
X [[U(0) + vl o1 /t (147 — t)e-GotT=t gy

S Z By (@) T et (|8] + || + [8])(CM ()1 FIH1I+Io1-1
9ed

X || ¥(0) + ’UHth e~ otr)(t—t1)

xp_tail
We use used (m_p_ﬂ? an implicit constant dependent on v > 0. This yields,
when applied to t = tg,

19(0) s, S D7 Bola) (18] + Iyl +[al)e ™" re= (0= (CM ) P11 011
YeO

X (Iollyes, + 12(O0)] e, )
v,to v,to

est:tPsi_vtheta 5h(C’M(tO),e’(tO’tl),e’tl)(||v||Xt1 + [T (0)]| pa )
v,to v;to

This useful for the fixed point argument. For the more precise convergence, we go
back to the next to last bound, and derive the sharper bound (recall vy > 1y), for
all ¢ > to,

19 (v Ol <ZB YL (18] + 7] + |8]) e ot (C M (t)) B+ I+1a1-1
Y€

% (Il + 1Oy, )
(4.25) SHOM@), 1,67 ([0l gy, +10O) e, )

G
We now turn to the difference estimate: using again Lemma ﬁn_;ﬁ_d denoting
N(t) = max ([ (0) + ol s, [9(0) + wlyos , ol )
there hold:

1P (v) = T (w)[lyn = [T(TO) +v) = V(L) +w)],n,



<SS By (@)™ e (18] + ] + [81) (CN (1)) #1F v 1+191-1
JYEO

+o0
x / lv —wlyn (1+7—t)e T dr,
t s, T

As before, we infer

18(0) — B(w)] e, S BCN(to),e™ @) ™) o — w] o .

ez,
Consider
v = {weal, lwly <max(90)] g loclya )}
v,to v,to s,to
If v € Y, then, since v > 0 and tg > t;, we have

ol < e ol gy < e max([EO0) s, oy, )

< maX(e_u(to—t1) ||\II(O)||X5’1tO, HULHy;,ltU )
Therefore, given v, w € Y, there hold

M(to), N(to) < [#(0)] 1,

< 2max(e T W(0)]| yer  [lvLllyn ) = 2N.
v,tg s,tg

—v(to—t1)
e max(e™ D B(O0) g, oy, )

Therefore h(CM (ty), e~ 01) e=t) h(CN(tg),eto=t) e~t) L p. If 5 is small
enough, as 1y > 0, the previous estimates show that U is a contraction in the

complete space Y and so has a (unique) fixed point r a?eée:il%ﬂl&e v:i=v,+V(0)+r

has the required properties. Indeed, from definition , m = U(0) + r satisfies
m = U(0) 4+ U(r) = U((0) +r) = ¥(m).

. :conf
The same arguments as in the end of the Iaropf gfc:)[;llgeorem &Eﬂbw to conclude

that v satisfies the integral formulation of :

;tPsi_v ~
It remains to check the decay estimates. From (Eﬁ@,vi—tm —¥(0) =r=¥(r)
t1 . K . tisol conf_nutnd . 3 ;psi(0) _ex

XL . ich yields eistlmate ). Since 7y > 0, the combination of an

D con solnu X )

give . Uniqueness follows from uniqueness of the fixed point. O

:th_conf2_ h

Proof of Lemma 2'% Notice fl%at, due to the assumptions, hi(r) = O(r) as r — 0.

Case (1) is straightforward as Q?Y%U&ige‘k §2cuv0||Hs (84-1)-

For case (2): Now recall

d—2
HUL”y:ltl < Ce_(eo""T)tl HUO”HS(Sd*l)'

Fix t; so large that hy (C’e*(eﬁ%)tl H'UO”Hs(Sni—l)) < 7. Now, from the definition

M and dﬁ?%y w € Xy,

v(t—t1 v(t—t1 —vty

|y = sup e’ |y < sup e wly, , < e sup e |w)
v,to t>to st t>to t>

AZR

<e " lwllx
so that for w = ¥(0),
e (0)

v,09
e LI
Therefore, we can fix tg so large that

e T (0)lx, o < llorlly -

S,t1
For this choice of tg > t1, Therefore,
N <lonllys, < Cem 20 gl g gaesy.
s,t1
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In the series defining h, the coefficients and and the exponents vy > vy > 0 are
non-negative: hence h is non-decreasing in its first two variables. Therefore,

W(CN, e~ 0=t o=ty < p(Ce™ (Ot 32) 0 gy || o gamr), 1, e71)).
:h_hi
Finally, using Claim mhw_ﬁh A=10y+ %, e >0 and D = 0, we can conclude
h(CN, ei(toitl), €7t1) < h1(0678t1 H'UO”HS(Sd—l)) < n. O

;actionder iv
We saw in Section t§'§ and Lemma I%Efﬁat the operator D; can be written D; =
—Y; (’)D = dii)} aJ{i?é% where fR; has a better behavior. In particular, we will see in

Lemma %l i Ee ow, that after performing the conformal transform, we can also write
the nonlinearity as

fu(z), Vu(@)) = gn(t,y, v(t,y), (0—=D)v(t,y), Ru(t,y)), where e’ = |z|, y = %

and we have written for short Rv(t,y) = (R,v; (L, y), ..., Rav(t, ¥))igi<d1<<n (e
it acts component by component like ). So, we are interested in solving the system
on v = (vy,...,vN), given by

eq:sys_confrefin‘ (4.26) v — D% = gn(t, y, v, (0, — D)v, Ro)

or equivalently,
V’L S [[15 Nﬂa attvi - 92’01' = giﬁ,i(tv Y, v, (at - @)’U, %U),

for a smooth function g = (gor 1, .-, 9n n),and t € R,v € RN, 90 = (91, ..., 0vn),
Rv = (Ruy, ..., Roy).

We make similar definitions for g as in the previous section. The only difference
will be that w and z are meant for different derivatives of v: w; will have the place

of (0y — D)v; and z;; that of R;v; so that (zi;)1<; :wi_lsl;e(%%gespond to Rv;.

We assume that gm adma'ts an. expansion as in E%E) with coefficients b; o g,,6,%

which satisfies the decay or some rates kg, € R.
We denote the new exponent vy, that will play the same role as vy in this new
context

d—2

d
(4.27) o = ko — |al + (18] + ] = 1)—5— +dl5.

laincoeff
‘ rkxplaincoeffrefin ‘ Remark 4.9. As we explained before in Remark lﬁ,p_'ﬂw—dﬁﬁition of the exponent

vy s reflects the exponential decay rate given by any term by(t)y*vPw7z% which
now corresponds (in the scalar case) to by (t)y“u(t)?(9; — Du)” (Riu)?

°.
In parallel to this new exponent can be explained by the following contributions:

e ry is the exponential decay of the copstant {in y )by.

e The loss || comes from the Lemma

e A gain @ comes from the gain of e~ for the action of fR; described in
Lemma it is the main difference with the previous case of vy.

e We have a multiplication of [3] + || 4 [6] functions in Y,_ 4, so, it creates

. R d—2 alytique
an exponential gain of factor (|8|+ |y| + |§| — 1)%5= due to Lemma t}z]‘ﬁf

: £
?ddei!né); all the above yield the rate (@Zﬁ%ﬁﬁ exponents will be crucial in Lemma

elow.
We emphasize that, due to their better behavior, we gain a factor 2|6| when using
the operators fR; instead of the operators D;.

Denote

vom = inf{vym : 9 € ©, By # 0}.
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est:fDSE
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def:u_L2

We finally define mutatis mutandis the series hg as in with vy and kg replaced by
vy, and kg m respectively. We will always assume that for sufficiently small o, p
and ¢ = 1, the series defining hg; is convergent, in particular

vo,;: = 0.
. . :sys_confrefin
Theorem 4.10 ( g:rlcfo%rfr; } variables, refined). For equation 1&'28;, the same re-
EQ an

sults as Theorem olds with vy, vy and h replaced by vy m, Vo, and
ho .

Proof. The proofis exactly the same except in Lemmal.6lwhere we have to estimate
instead the following term

15(r)? (5(r)) — D3(r)))? (RE(7)) — @(7)? (ii(r) — Do (7)) (R (7))’
S B+ vl + |5|)C’(l)m+|7‘+|6|_16*((|ﬁ\+|7\+|6|71)%+\5\)(77t1)

Ys—1,7—t;

yz}T)\BlﬂvIHé\—le —

< (18] + || + |5|)(CM(t))|ﬁ\+|’Y\+|5|*%*((WH’H*U%HM%)(T*tl)H’u — w”yﬁlf

X (lollye, +llwllys + vzl Wy,

L. . odanalytique
where we have used similarly the produgt estimate of Lemma ﬁ]E but we used instead
the refined estimates for R; in Lemma%a’c provide the gain e~ instead of the
loss et for D;.

Once again, the key point is the ratein the e~ (7=1) factor, with the |§|d/2 exponent,
:mult_Psi
instead of ||(d — 4)/2 in ; O
5. SCATTERING CLOSE TO INFINITY
Let 770 > 0 and
D(0,m0) = {(u, @) € RN x My 4(R) : ul, || < mo}
be a small polydisc centered at 0 in RV x AN ,a(R). We consider
f=(fi,--, fn): D(0,m0) — RY
an analytic function on D(0,70): each of its component can be decomposed
(5.1) filu,w) = Z a; pqulw?
(p,q) ENN xNN4\(0,0)

For simplicity, we assume convergence up to the boundary, that is

(5.2) Vie [LN], > Jaip gl < oo,

P.q
We consider the system on u = (uy,...,uy) (defined on subsets of R%), given by
(5.3) Au = f(u, Vyu)

that is, for all ¢ € [1, N] by
Au; = fi(u, Vyu).
:u_ L
Given ug € H*(S?™1), recall that from (ﬁ)%ﬁﬁere exist a unique solution uy, € Z°
of

(5.4) Aup =0 on R4\ B(0,1) and wup|se1 = uo.

he (S)ag rlP this paragraph is now to relate uy, to a solution of the nonlinear system
or this, we will recast this question Vi&h S‘cehce c(:oonl%formal transform and rely on

the abstract result of the previous Section Et
We start by relating both equations, in th prggligl?&e;/ariables and in conformal
variables, recalling the definitions in Section ﬁ‘ﬁt
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Lemma 5.1 nformal change of variable close to infinity). Let d > 2, R > 0,
and f as in . We define the analytic functions g and g by

- d—2
g(t,y,v,w,z):e#tf (edzztv,egt( 5 v®y+w®y+z)>

d+2

gon(t yv,w,2) = e Ff (e F e M way + 2))

where t > 0, y € R4, v € RN, w € RY, 2 € Mn.a(R) (we will actually only
evaluate g for y € S*1; w and z correspond to the time and space components of
the gradient, respectively).
For u € €*(R¢\ B(0,R),RYN) with lull e ra\ B0, Ry < min(p,o), we have the
equivalence

e u solves the equation
(5.5) Au= f(u,Vu), =€R?\ B(0,R).

(d—2)t

e The map v defined on [log(R), +00) x ST=1 by v(t,y) = e~ = u(ely), solves
the equation
att’l) - QQU = g(tv Y, 0, atva v’yv)a (ta y) € [log(R)v +OO> X Sdil'

d—2)t

e The map v defined on [log(R), +00) x ST by v(t,y) = e u(ely), solves
the equation

attv - ©2U = gm(ta Y,v, (at - :D)’Ua 9%), (ta y) € [lOg(R), —|—OO) X Sd_l‘

Moreover, any other function g so that

9(t,y,v,w, 2) = §(t,y,v,w, z)
for all (t,y,v,w) € RxS*1x (RN)2 and z € (T,S* 1)V satisfies the same property;
this holds also for any function gm so that
gm(ta Y, v,w, Z) - gfﬁ(tv Y, v, w, Z)

for all (t,y,v,w) € R x S¥~1 x (RV)? and » € (R)N.

Remark 5.2. The point in mentioning g is to underline the fact that the function g is
only applied with w = V,v whose coordinate lie in TySd’l. We could have defined g
only on T'S?~! for the (y,w) variable, but then the series expansion property would

be not as traééallallg,c Ts_gleigi%vfll be useful when the nonlinearity has some structure,
see Theorem and its corollaries below.

Example 5.3. Harmonic maps from R? to the sphere SV ¢ RN+ solve
Au = u|Vul?.

We can write the system near the north pole ex4+1 = (0,...,0,1), and consider only
the coordinates ui,...uy, taking into account that u takes value in SY with

N
2
1—Zue.
=1

UN+1 =
Then
1 N
|VuN+1|2 - Z U Uy VU, * VU,
A/ 1-— Zévzl u% m,n=1

so that for s = 1,..., N, the corresponding nonlinearity writes

N+1 d

filw=) =i >
j=1 k=1
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N d
E E w_],k + — E UmUn § Wm,kWn, k-
j=1k=1 \/ Z@ 1ué m,n=1

This is the formulation of the Harmonic map equation in local coordinates, which
usually contains Cristoffel symbols of the target manifold. From there, one derives
the formula of ¢g;, fori =1,..., N.

Proof. In order to avoid tedious notations, we only prove the result when 11 1S S scalar.
We denote t = Inlz|, y = T € S4=1. We recall the notation u for the

]
angular derivative. We will use similar definition for (Agi-1u)(z). As

_ 4t d—2u @ t
ounlt.y) = et (5224 5 @)

Vyo(t,y) = e%tAu(ety).

We have u(z) = |z| (ln|z| B |) so that (as Vv L y)
x Ou 1 d—2 x 1
Vu(z) = — — () + —Au(z) = — ~ v + 500+ — Vv
( ) |:L'| aT( ) |:C| ( ) 2|$|d+ ai2 t |$|% Y

| ™

-2
yu(t,y) + yowv + Vyv) :
In particular,
da—2 .
Ou = e~ &t (—Tyzv + y'0w + Div)

=3t (y" (9w — Dv) + Ryv) .

So, we have

Vo) = 5 (—<y> (-

7f( “Flolely), e dt(y(atvfﬁv)nﬁﬁv)).

Concerning the Laplacian, we compute

d—2

yv + yov + V, v))

8ttv + Agd—l’u

d—2\? 2 d—2 (d=2)t 2>t au
() s ({152 ) et

t a —2)t
T (ety) + T (Agaoru) (')

82

d—2\" @2
(52
@2 [d—10u, , Pu, , 1 .
te 2 |: ot E(ey)+ﬁ(ey)+§(Agd71u)(ey)

(%) it y) +e 7 (Au)(ely).

2 inell
That is (9uv — D20)(t,y) = e 2 (Au)(e'y). Then, u solves 1B5g=11nfeand only if
2 —2 d—2
Opv — D20 = ed%tf (e—thU, e~ 5t (— yu + yorv + Vyv)>

= g(ta Y,v, 5,51}, vy’U) = gm(ta Y,v, (at - ’/‘D)’Ua m’U),

with the chosen definition. This gives the first result for g and gg.
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est:f(ul)_exp

scattranslrdcrit |

For g, we only have to notice that g(t,y, v, 0yv, V,v) and §(t, y, v, Opv, V,v) take the
same value for all (¢,y), which is the case by the assumption, since Vv € T,,S?1 =

yt. ([
. i :conf

We now state our main resg t'scg(ﬁ%ﬁ?ﬂ%nﬁ t one relates to Theorer.n and

the second one to Theorem or f asin , the relevant exponent is

(5.6) vy = inf{(d —2)(lp| + lg|) — d : aipq # 0}

Theorem 5.4. Assume d > 3. Assume that f as in (ﬁi satisfies the supercriti-
cality assumption

(5.7) v > 0.

:u_L2
(So that in fact vy > 1). Let ug € H*(S™1), and uy, € Z° given in .
Then, there exist ro > 1 and a unique smallu € Z75. - solution of on {]z| = ro}
and such that
(5.8) [(w—ur)(r)llgee  Sr7"* =0 as r— 4o0.

Moreover, the map uy — u is injective; and if ||uol| s (sd-1) 18 small enough, we can
take ro = 1.

:Hs_Yst ivnorm .
Recall that from an , ur(r)|| ze ,,, Temains bounded from below as
vl

ttranslr
r — 400, so that i§'§> gives the leading term of the expansion of u, and as a
consequence, uy, is unique.

Theorem 5.5. Let d > 3 and v > 0. Assume that f as in (ﬁf satisfies with the
supercriticality assumption:

(59) 1% 2 0
iu_L2
Let ug € H*(S?1), and uy, € Z2° given in iﬁ‘ﬁ»f and assume that
(5.10) sup > ||f(uL,VuL)(7"~)HZool < +o0.
31 S

We also assume that at least one of the extra conditions holds true:
o |luo|| gs(s-1) is small.
e ug has mean zero: Pyug = 0.
e for alli € [1,N] and p € NV, if a; o # 0, then |p| > ﬁ (this is always
fulfilled if d = 5). )
H S_OTr
Then, there exist ro > 1 and a u € Z;’,‘}U solution of 1&&3} on {]z| = ro}, and such
that

_ . < p7V
I =)z, ST 520

This solution is unique among those such that

rg(u —up —ur,1)(r)

or

sup 1 | ll(w = ur — wr,1) ()2, +
T2>T0 o

oo
23 1o

is small (where ur1 € 2. is the solution to Aup1 = f(ur,Vur) such that

S,T0
H“Lvl(r')llszr/ro — 0 asr— 400).

Moreover, the maE ug @L%L_gc injective (when defined); and if ||uol| o (ga-1y and the

left-hand side of are small enough, we can take ro = 1.

Note that the assumption |p| > d/(d — 2) seems to be necessary in some cases
where the solutions deviate from the linear asymptotic we describe by a logarithm
correction, see for instance [VS1].
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deffstructbracket |

existglobP
Theorem B‘ﬁ V'Vll %yplcally be used in the case_ of eth}% tse_‘[%ipliaqlelar ellipti'c equation
with supercritical exponent, whereas Theorem 1s 10 order when considering the
. . s existglobPintro
me equation with critical exponent. Theorem 1S a particular case of Theorem

where f(u, Vu) = f(u).
Sometimes, notably when derivative are involved, we can make use of extra structure
in the nonlinearity which leads to appropriate cancellations. One example is given
by the next result.

Theorem 5.6. 1) Assume d > 3 and that the coordinates of f(u,w) can be written
in the form

(5.11) > i p quP Q92
(p.q) ENN X n (2N)\ (0,0)

where Q) € M (R) is the matriz of the scalar products (in R?): ij’f)s? wj W =
27:1 w1k, and we assume that the summability condition (ﬁ)%[ds. The rel-

evant exponent is now

vy = inf{(d = 2)|p| + (d = 1)lg| = d : aipq # 0}
Then if d >3, thmexistglobP , bpginft
(a) The conclusion of Theoreml%é Xglosggslggplglc&ng assumption ( [T7E 0.
(b) The conclusion of Theorem olds replacing assumption (| yvim = 0.
2) Assume d = 2 and that the coordinates of f(u,w) can be written in the form

(5.12) > WP (a5 QY% + bip 2V ?),
(p,q) NN x N (2N)\(0,0)

where ¥ € M ( isdle matriz of the symplectic products (in R?): %, = w,10k2—
wj 2wk (and ) holds for the (aip.q)p.q and the (bipq)p.q). Define now

vi;m = 1inf{(d — 2)|p| + (d —1)|g| —d : @i pq # 0 or b; p 4 # 0}.

Then, if ug either small or with mean 0, the same conclusions can be reached as in
(a) and (b).

Note that in (mf_%% scalar product i igr%}égbl%ggge%pace R9, that is with respect to
the the derivative variable while in ,the index 1 and 2 are with respect to the
derivatives in the target space R2. In particular, W1 Wk,2 — W;,200k,1 corresponds
to the Poisson bracket {u;,ur} = 0yu;0yur — 0yu;0yur, where the running variable
in R? is (z,9).

This kind of special stré;c%ﬁger op f will be relev or arg&%rgic maps, which

precisely take the form while the structure 1s typical of the H-system.

Remark 5.7. Tt might also be possible to add some potential V' in some suitable
space (like V' € Z2°). Yet, it seems at first sight that it would require the initial
time to be large. Indeed, the fixed point that we perform for ¢ = 0 requires that
the nonlinearity is of order at least 2.

exist istglobPgain :conf :conf2
Theorems B% and ‘Btg rely on the applications of Theoreml&m &{Z respectively.
We make the proofs simultaneously since a large part of the argument is common
to both situations.

ist i stglobPgai
Proof of Theorems ﬁﬁfd Wﬁege Wedo the proof for general N. We check that
concerning (Vu)? for g € .4y ,q4(N), we have

d—2 !
<e%t( 5 v®y+w®y+z)) = e 2P, (y v, w, 2)
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where P, is a polynomial, of partial degree |g| in the variable (v,w, z), and which
can be written
Pq(y,’U,’LU,Z) = Z Cq,a,b,%(syaUvazéa
(a,L,y,0)€dq

where
Jq = {(@,1,7,6) € NY x NV x N¥ x .y a(N) : |a] + 18] = ¢, |¢| + ] = |al}
and the coefficients c4,o,3,y,5 are bounded by

lcg,aqy.sl < (d/2 + 1)‘q‘a

from the multinomial formula of Newton. Notice that if («,¢,7,0) € Jg, then
leel, |el, |71, 19] < |g| so that we can bound the cardinal of J,

(5.13) gl < (lg| + 1)FF28+N4,

(Notice that in the scalar case N = 1, @ and «y determine ¢, but for general system,
this is no longer the case). Then using Fubini (to be justified by the following
computations)

d+2

gi(t’yavawaz) =e 2

P.q

d—2 d d+2
_ ) —(*F=Ipl+glal—5F=)t, o, pte, v L0
= E E Qi,p,qCq,a,1,7,6€ (3 2 2 )y vtowrz

0,4 (a,i,7v,0)EJq

= 3 oty e,

9€O

_(4=2 d
tzai,p,qe (%2 |p|+2‘q‘)tUqu(yaanaZ)

where (recall we denote ¥ = (o, 8,7, 9,1))

d—2 d d+2
= E - +2]q|—942)t
ba(t) = @i,p,qCq,c,e,7,6€ (“Z*p+glal-23*) ,
(p,9)€ly

with Iy = {(p,q) € Nx N%: (a,1,7,0) € J,,B=p+1}.
Let ¢ € © such that by # 0, so that Iy # &. For any (p, q) € Iy then

(5.14) Ip| =18 — |l and gl = ||+ |y| + ] are prescribed,

so that the rate in the exponential as well and can be expressed in terms of ¥:
d—2 d d+2 d-2 d d+2

(BB lpl + Slal = = = 52081~ el) + 50kl + byl +18]) = 2 = .

Also notice that |8| + |v| + |0] = [p| + |¢|- Denoting

. . i imaabetaiota
(By = 0 if Iy is empty), we have the expected estimate 15':&; We can then express
vy in terms of ¥, withg it involving ¢. Note that if By # 0 then J, # @ and so

[t| + |7| = |a|. From )

d—2 d—4
vy = ky — |af + (|8] + 7| - 1)T + |5|T
= (d=2)(I18] +16]) + (d = )|y| + [¢| = |a] = d
(5.16) = (d—=2)(|18] + [0] + |v]) — d.

.pg_ib
In particular, since (p,q) € Iy, by Mﬁe have:
vy = (d—=2)(Ipl + lgl) —d = v1.
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:nu0
As this is true for any ¢ € O, w infer 1o = v grggall that Z/E is defined in (ﬁ)’%

Under any of the assumptions or we see that 1s tulfilled. Also

0.
18] + |v] + 16| = |p| + |g| = 1 so that }rl'dsfats well.
Under the supercriticality assumption and as only integers are j V&livs?td ws
infer vp > 1 > 0: this cans, that under the assumptions Theorem E@; the %rsf

hypothesis of Theorem olds. N
We now turn to the convergence of the series defining h. Recalling (ﬁ% we have
for0<o<1:

= 2 Bofa)* ™ (18] + bl + ool

YeO

< Zzg[[lflx |aip,qRpq(0) where

p.q

Rpq(0) = > (d/2 + DRI Q) L] 4 [y| 4 [o])ol PRI
veEO

(e,e,7,6)€Jq,p=B—1

Given p, g, in the sum defining R, 4(c), we have |p| + |q| = || + || + |6], and

la| < g|. Also the car(ém%l of {he indexation set is |Jy| (because 3 is prescribed by

p and ¢. Hence, using ere hold, for 0 <o <1
Rpq(0) < (d/2+ 1)1 (p| + [g] + 1)*+2oPIHa=L ||
< (d/2+ 1)|q|(|p| + |q| + 1)s+(N+1)(d+2)J\p\+lqlfl_
Since (|p| + |g| 4+ 1) tNFDE+2) < Oy 2IPIFld=1 for some large constant C y 4,
and all p, ¢, we conclude

hi(o) < Z En{[lla)J\(l]] | p.q|((d+ 2)o)PIFlaI=1,

:DSE
By the assumption on f (ﬁ),_t"h-ls is convergent for o small enough, and h; is well

defined for small.g.
Due to ;1 apq # 0, then (d —2)(p+ |¢]) —d > 0 and in particular p + |¢| > 2
and so hy(0) = 0.

(2) (in the specific case where [|ugl| ;7. ga-1) is small and ro = 1, we use Lemma

Case (1)). So it suffices to check the lower bound on vy: in view of

and as d > 3, we can choose e =d—2>0and D = 2'exist LobP . cont
This shows that under the conditions of Theorem Bﬂ,w%aTapply Theorem lﬁi
and construct the solution v in conformal variables. Letting u be the conformal
inverse and 7y = e, u is in the appropriate space arg{lgs t lis also gives

the convergence in the original variables. Theorem i proven

tglobP :psi(0)_
Regardin The%em Etgf}%g Want gﬁaén%%?&i?heorem ﬁc_?tl_remalns to check Efimﬂ =

and ecall the umptlon written in conformal variable, we see that
it implies ( due to

_d—2,. di2 _
(6A7) gty vn. 00 Vool = e T s Vun)llz |, S,
uhamelinfty ’
and so using Lemma iélgl; we imfer that for ¢ =0,

e (0)]

existglobP :conf .
For Theorem in the general case, we want to apply Lemma assumptggn.conf
:nu

y;{t = H(I)(g(tayavLaatULavva))Hyg,t
+oo
< / (147 — O)llg(t,ysvm, Vegur)(T)lly, . odr
t

—+oo
< / (1+7—1)e T Ddr < e,
¢
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:psi(0)_
Taking the supre% pt >0, we infer that ¥(0) € X, 0 and (m‘)’%ls satished.
cont2’

We now focE;s on -] o || 7= (se-1) is small, we can apply directly the case (1)

of Lemma . th. conf
Otherwis e want to apply Lemma ﬂ‘§>, Case i?i, with £o = 0 or 1: so we are to
check Wi =0.

Let ¥ € © such that By # 0. Let (ﬁi? £ dy such that for some i, a;pq # 0, then

we can express from the definition

d—

2
518) wo+ (1o 152 <) (814 bl +16 - )
—(to+d—2 =)ol +1al— 1) +1al -2

theta+
By assumption v > 0, so that [p| + |q| > d%dQ' Therefore the above term Es ié; T
bounded by below by
2 2(60 — E)
d—2 d—2
If |q| > 1,0r fg = 1. it can be made positive for e = 1/2. If |g| = 0 and £y = 0, the
= & +é Y
term in iﬁ‘iﬁ» WIiTes (d—2—¢)(|lp| — 1) — 2. As |p| > 2, this is positive if d > 5.
Otherwise, our assumption implies that |p| > ﬁ + 1 and so
de
d—2

(fo—l—d—Q—E)

+1lql —2= + lql.

d=2-¢)(pl-1)-2>d-2+

>1—de,

which is non-negative for

4 :%h>c9i1f2_h :psi(0) _ex
Due to case (2) of Lemma , there exist to 2 ¢ > 0 (large) such that Eiim

holds and we are in a position to apply Theorem we obtain a suitable conformal
solution v € yzjto. As this space is included in ;?tov undoing the conformal trans-
rm vields a desired solution u € Z27  where ro = In(fo). This proves Theorem

O

thminftyspecial
Proof of Theorem tm._Hg?g,—clﬁto cancellations specific to the vectorial nature of
the equations, we also do the computations for general N > 1. ovarinft
Let us compute the term w; - w; according to the change of variable of Lemma wg—z
for i,j € [1, N]): we obtain (for the term corresponding to gs)

d
Z e~ (yrwi + zik) (yew; + ;1)
k=1

d d d
=e ¥ (linj twi Y gz w; Y yrzie + Zzikzjk> '

k=1 k=1 k=1
d . _
We used that Y 5 _, y? = 1 since y € S4~1.
In dlmen51En %i we « (’ﬁl;ngute w1,iWa,; — Wa,;W1,; according to the change of variable

of Lemma € obftain
e ¥ ((hwi + zin) (y2w; + 2j2) — (Yowi + zi2) (Y1w; + 251))
=e (y1wizjo + zi1 (Y2wj + 2j2) — yawizj1 — zie(y1w; + 251)) -

Observe that in both cases, terms are at most linear in y and those where y appear
also carry a z factor: hence, for any contributing by, there hold

lal < 4].
Also, there is no v involved in any of the expressions, so that the index ¢ is not
useful anymore, and we drop it f(?r the rest of the compulgﬁtg}){glssf istelobPeain
We can now argue as in the previous proof of Theorems an
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Regarding u?(Q)%/? for q € .#x(2N): denote
d d d

mi (Y, w, 2) 1= wiw; + w; E YkZjk + Wj E YkZik + E ZikZjk,
k=1 k=1 k=1

the contribution where we erased the e~% factor. m(y, w, z)q/2 is a polynomial, of
partial degree ¢ in the variable (w, z). Therefore, u?Q4/? can be written

d—2 d d+2
—( =" Ipl+5la|l =57 )t 2 o 0
e ( p) ‘p‘ 2|Q| 2 ) Ca,'y,(sy va'YZ

(a,7,0)€Jq

)

where
Jo = {(,7,0) € N* x NV 5 A a(N) = |5] + |6] = g, o] < 8]} -
Let ¢ = (o, 5,7,0) € © such that («,v,0) € J; and S = p, the corresponding

d—2 d d+2 d-2 d d+2
= — — - = — J) — ——
Ro; = —5—pl + Slal = — 5 1B1+ 5 ([ +16]) = ——,
laincoeffrefin
and so (see Remark E‘ﬁ;
d—2 d
voun = o — lal + (18] + 1| = )= + 1313
= (d=2)|B[ + (d = )|(I7] + |8]) + |6] — |a| —d
z (d—=2)|f[+ (d—1)(r[+10]) —d
> (=Dl + (d— Dl —
Thus, we obtained vy.» > v1.,, for both cases (1) or (2). oxist i stelobPrain
One can then reproduce the end of the 8 ogfgef f”i[l‘)heorem an using in-
stead the refinement given by Theorem \ we wang to check that some
assumptions that allowed to apply Lemma “can be rultilled.

First, note that the assumptions also imply |p| + |q| = 2 if a; ¢ # 0 or b;pq # 0,

so that we wil gals:(é °%§V6’ éﬂ_(:% 5_9- In particular, if we assume smallness, the Case

(1) of Lemma .4 or is appligable. .

Eor. the equivalent 'of Theorem Eiﬂt we have o = (d—2)([B] + ] F.10) —d, so

1&‘ ] !ii is saf}sﬁed with e = d—2> 0 since d.> 3. So', we apply Lemma as:etgglbnﬂ_h
For the equivalent of Theorem B‘ﬁ[ Wo want to verify Case (2) of Lemma €

computation still holds for kg 9. We denote that under both cases d > 3 Of) tate
d = 2, we always have {o+d—2 > 1. In particular, if € < 1, the expression in W
is positive as soon as |¢| > 2. Moreover, under the structural assumptions of the
nonlinearity we made, we have either ¢ = 0 or ¢ > 2. So, it only remains to check the

se g — 9&)@ can only happen for d > 3, for which the same analysis as in Theorem
E{E WOI“ES, under the same assumptions. We conclude the proof similarly. (Il

£ plied in cases where

e u
the better behavio .ofl ltﬂ)e first Duhamel estimate (B.10) will be valid for any wuo,
as seen in Section %the case of derivative nonlinearities satisfying some null

condition. Yet, there can be some cases where the better behavior of the Duhamel

term is due to ug. For instancT{fE i% ;gigclef})%iﬁ)f}lgo: 3, if we consider polynomial type

nonlinearities as in Theorem e critical exponent is given by the condition
v=(d—2)p—d >0, that is p > 3. Consider the system

Au = u® + v,
Av =05 +uv
It is critical for our criterium because of the cubic coupling nonlinearity. Yet, if

we consider some "asymptotic datum" of the form ug = 0, vg € H*(S%"1) then,
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:f (ul)
1E'ii!i Will Do satisfied because f(ur,vr) will be of the form (0,v?) which has a
good behaviour since the power 5 is supercritical.

6. SCATTERING CLOSE TO ZERO

:scattinft

For problem close to zero, each one of the theorems in Section Em%mterpart
close to 0. We only write those corresponding to the applications we have in mind,
and omit the proofs unless when they are ot as ]_}III]f Ehe scattering close to infinity.
We start with the equivalent of Lemma E]i Bt close to zero. The results look very
similar except for the sign of the exponent terms. This will not change the ideas
of the proofs, but it does impact the numerology. In particular, our results close to
zero require some “small” degree of monomials for the nonlinearity while the results
close to infinity required some “large” degree.

Lemma 6.1 (Conformal change of variable close to zero). Let d > 2 and R > 0.

Let D(0,(p,0)) = {(w, 2) = (w, 21, ..., 24) € R4 jw| < p,|2| < o} be a polydisc
in R4 and f: D(0, (p,0)) — RN be a smooth function on D(0, (p,o)).
We define the smooth function g by

- d—2
g(t,y,v,w,z) = ef#tf (edzztv, e%t(f 7Y QY—wRy+ z)>
wheret >0, y € S, v e RN, w e RY, 2 € My 4(R).
For uw € C*(B(0, R)) with lull e (0, r)) < min(p, o), we have the equivalence
e u solves the equation

Au = f(u,Vu), z € B(0,R)

o v(t,y) = e~ TR

Opv — D20 = g(t,y,v, 00, Vyv), (t,y) € [—log(R),+00) X sé-1,

u(e~ty), v solves the equation

—t

o v(t,y) = e’(df)tu(e y), v solves the equation

Duv — D% = goa(t, 4,0, 00 + Do, o), (t,y) € [~ log(R), +oo) x 41,
Moreover, any other function g so that g(t,y,v,w, z) = §(t,y, v, w, z) for all (t,y,v,w) €
R x S x (RM)? and z € (T,SY )N satisfies the same property.

The same also holds for any function g so that gw(t,y,v,w,z) = gn(t,y,v,w, z)
for all (t,y,v,w,2) € R x S1 x (RN)2 x Ay a(R).

evarinft
Proof. The computations are mostly the same as in Lemma %] if up to a tew changes
of exponent and signs, changing t to —t, that is t = —In|z|, y = Il € S 1. For

Tz]

instance, as we have instead u(x) = |z|’%v (f In |z, I;_I) so that (as Vyv L y)

d—2 x
Vu=— 5V — ——5 O + ——5 Vv
2] x> ]2

d—2
— 5t (_ 5 yu(t,y) — yowv + Vyv>

So, we have f(u,Vu) = f (e%tv, est (—452yv — yov + Vyv)). ]
inft
Concerning the Laplacian, changing ¢ to —t in the formula of Lemma %] if We still

_ (d+2)t

have (Oyv — D%0)(t,y) = e 2 (Au)(e"ty). O

. . existglobP
Here is the result without extra structure (analog to Theorem iﬁ%
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thmexistglobPO

scattranslrd0

thmexistglobPgainzero ‘

Theorem 6.2. Assumed > 2 and f as in & satisfies the subcriticality assump-
tion

Aipq #0=q=0.
Let ug € H*(S1), and denote ug, € Z9 the associated bounded solution of

(6.1) Aup, =0 on B(0,1) and wugp|ga—1 = up.

1) If either f is polynomial, or wug has zero mean, then, there exist o < 1 and a
. . : S_OTrl

unique u € Z7 - solution of on B(0,70) \ {0} so that

||(u—uL)(r-)||Z0/ <r?50 as r—0.
/0

Moreover, the map ug — u s injective.
2) If instead f satisfies (aip,q # 0= |p| > 2) and |lug|| s (ga-1) is small enough,
the conclusion of 1) holds with o = 1.

Here is the results where the first iterate is et;ul%tbse}g%\llgg, when the nonlinearity
f has structure (corresponding to Theorem

‘ est:f (uL) _exp0 ‘

scattranslrdOnu |

%&gg%r& c6 Lgﬁuglt/ 2, v>0.and Lssyme. ]f has the structure as i Thgggﬁm
ﬂm, that is an d =2, 18']5) with the summabzhty condition T(l@)ﬁﬂso

satisfies the subcriticality assumption:

Qip,q #0=|q[ <2
inQ
Let ug € H*(S%1), denote ug, € Z? the associated bounded solution of WW@

assume furthermore that

assume that f as in

(6.2) sup 1277 || f(ur, Vur)(r)l| o < +oo.
0<r<1 s=lr

1 %00}1}95 zero mean, then, there exist ro < 1 and a unique u € Z o Solution of
0,70) \ {0} so that

(w—ur)(r )l S —0 as r—0.

Moreover, the application ug — u is injective (where defined).
2) If instead f satisfies
Gipg#0=>1pl Flal =2,
and ||uol| s ga-1y and the right-hand side of i are e enough, the conclusion
of 1) holds with ro = 1.

Remark 6.4. The extra assumption that uy has zero mean is natural in this context:
the associated linear solution converges to this value at zero and we need to be sure
that f is well defined there. It can be easily removed by transforming f by f(-+xo).
It was not necessary in the problem at infinity, since all linear (bounded) solutions
converge to zero at infinity, except for d = 2.

lobP6i st gl obPgainzero
0. obJPhe computations are similar to that in the proofs

their notations): the gain and losses explained in

“are the same, and the exponent in e’ in front of

2 d-2 d
the monomial, is now the opposite — + + T|p| + §|q|

evarkero Z
More precisely, due to Lemma %]i g now takes the following form:
gi(t,y,v,w,z) =e dHtZa 2""Jr%|‘1|)tvaq(y,U,—w,z:)
d—
= Z Z aim,qCa,Lmé(_l)ve_(#_%p_%lql)tyavpﬂwvzé

P4 (a,i,v,6)€Jq

Proof of Theorems.

hmexi

of Theore [
Remarks [.1
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(6.3) = Z bio(t)yvPw?2°,

9eO
where ¥ = (a, 8,7, 9,¢) and

bia(t) = (1) ans D aipge” (F T RIAL
(p.a)€ly
As before, p = f—¢ and |q| = |¢|+|v|+|J]| are prescribed in Iy, so for any (p, q) € Iy

d—2 d+2 d

+ 2 d -2 d
formkappa0 (6-4-d7f ———1Ipl = 5lal = —— = ——(Bl = |¢]) = 5(le| + |7 + [3]) =: K.
2 2 2 2 2 2
We also define

By = (d/2 + 1)1+ I+l a ineals
9= (d/2+1) > e [i.q|
(P9 €Ly
imaabetaiot
(otherwise 0 if the sum is empty), and we have the expected estimate @Eﬁlifnaa Seetd
If b; 9 (t) # 0, then Iy # @ and we have

d—2 d—4
Vﬂ:fw*|Oé|+(|ﬂ|+|7|*1)T+|5|T

=2—a| = |yl =] = 24|
=2—|a| =g = 14].

. . existglobPO existglobPgainzero
We start by considering 1) fi rel}glostglgﬁj orem E{E and Theorem
In the context of Theorem EEEL the assumption is that ¢ = 0 so th, t o are 0 as well
(as [af < |g|). Hence vy = 2, and 1y, = 2. We want to us Theorem remains to

heck Igpe.smal.lne.ss condition. | , which we do by applying Case (3) of Lemma
at is verifying .

If f is polynomial, this condition is always satisfied (by choosing D large enough).
Otherwise, we assumed that ug has zeo mean, so that £y = 1 (that is ug of Eero1 ap0a0

means). Now, as for contributing b; g, |¢| = |y| = |§] = 0 (as ¢ = 0) formula
writes
d+2 d-—2 d—2
Ky = T—TIﬁI > (— (HT) +1) (18] = 1) + 2,
: £ : by
so that Caggt 3S)o9f Lemma, Iﬁ'hc_glll—d's with e = —1 and D = —2. Theorem Cf;)pnplies,
and EHPERE e limed sopvorsence rate ruc
For ! ?eog1 re% we want to use the struc, ren%sgnépitai?n (ﬁﬁﬁm apply Theo-
rem ollowing the proof of Theorem st nofice that

a2, dia -
lg(t.y,vr, dvr, Vyvr)lly, ,, =e= |r2 flur, Vur)zo e vt

Hence (L0 holds. ze%loen we need to compute the new exponents: gs; has a similar
structure as (6.3) (mostly only changing w to —w), and we recall that there is no

index ¢, p= 8, |7+ 9] = |g| and |a| < |6]. Then as before for a contributing ¢ and

(p,q) € Iy,
, d+2 d-2  d _d+2 d—2  d B
(6.5) T*T|p|*§|Q|* 5 3 |ﬂ|*2(|7|+|5|)*-m9,m,
and so
d—2 d
Vﬂ,mwa,m—|Oé|+(|5|+|7|—1)T+|5|§

d+2 d-—2 d d—2
= - —_ — — —1—

= = Sl = Slal — e+ (gl + lal = )= + 1]
=2~ gl ~Jal + 3] > 2~ |a].
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By assumption |g| < 2 so that V1% > 0. Now, we need to.check that we can obtain ..
the smallness of (M_W applying Lemma , Case . The definition
gives

d—2 d—2

ko =2 = —— (1Bl + [y + 18] = 1) = ([ +[0]) > === (IB] + ]r| + 0] = 1),

. . infkvartheta .
since || + || = |g| < 2. In particular, (Im_h_lﬂa‘g%%n%lt lo=1,e =1 and
Eig , Case E]i

= n(%i'e\%\{i% are in a position to apply Lemma and then Theorem

tt0 : £
It remai tpthtrc%%‘%QZg of both The rems, We use the case “ of Lemma Iﬁ%
Lemma E'ﬁ; Reca. l_ffie relation , 50 that the extra assumption ensures that
for any contributing 9 (and (p, q) € Iy)

1Bl + v +16] =1 =p[ +|g] =1 =1,

and so hy(0) = 0. O

7. GENERAL RESULTS FOR THE DIRICHLET PROBLEM

In this part, we gather the equivalent of the previous theorem we stated for scatter-
ing at infinity or at 0 for a Dirichlet problem. The proof are mainly the same once

we have EQ%&%E%%%M of the Duhamel formulation for Dirichlet problem stated in

Lemma

7.1. The Dirichlet problem in conformal variable. In conformal variable, we
are interested in solving in )5 the problem

eq:sys_conf_Dir . it — v=g(,y,v, 0, v), v = o,
7.1 ) D2 t v, V,, 0

where vg is given (we underline that the condition bears only on the function, not
its time derivative).

It will be convenient to introduce a map similar to ¥ for which we will seek a fixed
point, and adapted to data at infinity: for this, we use the operator ®* well adapted
to the Dirichlet boundary condition, instead of .

More precisely, given vg € (H*(S¥ 1), we denote

(72) v = 8(-)(’()0, —@’UQ),
and define the operator
(7.3) P v ®P(g(t,y,v +vr, 0+ 91, Vy (v +v1)))

:PhiD
where ®7 is defined in (md acts component by component.

k%h&(’)&'em 7.1 (Conformal variables). Under the same assumptions as Theorem

and h1(0) = 0, there exists n > 0 so that for any given data
Vo = (’UL(), e ,’UNﬁ()) S Hs(Sdil), ’LUZth HUOHHS(Sd*l) < 7],

there ezists a unique solution v = (vi,,...uN) € Vs (defined for timest > 0) to

the integral formulation of the system EE[ i, with tnatial condition v(0) = vy.

Moreover, there exists a unique vy € H*(S¥1) so that

~

cvceinftysolDir ‘ v —S()(vg, —Dvg)|ly., Se " =0 as t— +oo.

Proof. The proof is the same as Theorem ﬂ%gglo%?is to construct a fixed point
for ¥P. The only modification in the argument is that we have to take to =t; =0
which imposes, the smallness of [|vo[| = (ge-1): this corresponds to case in condition
(1) of Lemma -
We need the following variant of Lemma Iﬁ%é“apted to the Dirichlet operator:
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:vL
1lminegGDir2 | Lemma 7.2. There exists a universal constant C' > 0 so that, given v as in (ﬁ)ﬁ

and v,w € (Vs)* so that denoting M = max (||[v||y., |w|y., |vLly.), then we have

197 (v) = TP (@) lly, $ D Bo (@)™ (18] + [y| + [8])(C) I
veo®

“+o0
<[ e - wly, dr
0

:PsiD
where WP (depending on vy ) is defined in (ﬁ)ﬁﬂfmilaﬂy,
12 ()lly, S Y Bo (@)™ (18] + || + [8)(CI)PHIIFI=

veo®

+oo
< [ e (ol + oy, ) dr
0
inegGDir

ir2
e grgit the pr0f)f of Lemma Lé;%.m efi)lllll(ggvs closely thellines of tha i%f_ &u%%%ﬁir
ere the estimates of Lemma, EEE are replaced by the estimates n Lemma
amelzero
inegGDir2
Using now Lemma Elﬂf we get for v,w €Y = {w: ||w|y, < ||vLly.}
est:PsildiffDir | TP (v) — TP (w)|y,

$ Y Bo (@) (8 + 1+ 3]+ D(Cllow ) A1
veO

+oo
X / |lv—w|y, e "dr
0

S Bola)™ (1814 Il + (6] + D(Cllo[ly,) A=

veEO
+oo
X ||lv — wl|y, (/ Te_VOTdT)
0

S h(Clluclly)lv —wly,.
And similarly, [[¥P (w)]|y. < hi(Cllor|y.)||velly,. A classical argument shows that

for n > 0 small enough, ¥ admits a unique fixed point r € Y

uhamelzero
Also g(t,y,r+vr, 0 (r +vr), Vy(r+vr)) € Vs so that Lemma E]ﬁ applies (and the
discussion that precedes it): in particular, v, is the first component of

/oOo S(-7) (g(T,y,r + vL,at(TOvL ), Vy(r + vL))) dr.

In the case of a gain of the first Duhamel iterate, we get similarly the following
result.

O

Theorem 7.3 (Conformal variables 2). Under the same assumptions as Theorem
Wre exists 1 > 0 so that for any given data vo = (v1,0,...,vn,0) € H*(S?71)
such that

lvoll 7+ (sa-1) + 1€ (O)ly, <n
and satisfying

vP(0) € X, 0.

Then there exists a unique solution v = (vy, .. ‘gvc%?fe Vs (defined for timest > 0)
to the integral formulation of the system ﬁ%ﬂmtial condition v(0) = vg
Moreover, there exists a unique vy € H*(ST"1)N so that

cvceinftysolDircrit ‘ [v—S()(ws, —Dwi)|ly,, Se =0 as t— +oo.
;conf2
Proof. 1t follows the lines of the Pfr&of of TheErem %h the same modification
. : CO ir eg I
as in the proof of Theorem using Lemma (I
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7.2. The iDirichlet problem close to infinity. We consider again the system

S_oTr
(l&i, now with boundary condition:
Au = - > 1),
(14) { w=f(u,Vou) on {Jo] > 1)

U|Sd—1 = Uuop,

L. . . :scattinft
where ug is given. We have analoguous results to that in Section EL and the proofs
follow the same lines: we leave the details to the reader.

cassyme f can be expanded in power series as in H and we recall the definition
of the exponent:
vy := inf{(d = 2)(|p[ + lq|) — d : aipq # 0}.
. . existglobP
Here is the first general statement (corresponding to Theorem iﬁ‘ﬂ»

‘thmexistglobPDir ‘ Theorem 7.4. Assume that d > 3 and f satisfies

|est:nu1_scrit_D | (7.5) vy = 0.

There exists n > 0 so that the following property holds.

Let ug € H® Sd_slgi%_uith lluoll s (sa-1y < m, then, there ewists a unique u € Z°
solution of s moreover, there exists a unique uy 1, € Z5° solution of Auy =0
so that

I(uw — u+7L)(T')Hz§?T =0 as r— +oo.

Actually, convergence holds with rate r—"*.

The next statement consider the case when tl%?, first Duhamel iterate has improved
%Ee}ustglo gain

decay (corresponding to Theorem .

‘thmexistglongainDir ‘ Theorem 7.5. Let d > 3, v > 0 and assume f satisfies

|est:nu1_crit_D | (7.6) vy = 0.

There exists n > 0 so that the following property holds.
Let ug € H*(S?1), denote uy, € Z° the solution in Z° of

Aup, =0 on{lz| =21} and wuplge-1 = uo,
and assume that

o503y + 5pr* |z, Vs ) ()l e, <
Tz ’

;sys_Dir
Then, there exists a unique u € Z2° smalll solution of ( E:Zi, moreover, there exists
a unique w4 ;, € Z° solution of Auy 1, =0 so that

[l (w — U’JﬂL)(T')HngT —0 as 71— +oo.

174

Actually, convergence holds with rate r=".

Finally, in the case when f has a structure so thﬁ tll%& tc%rg%sl]gimding g does not

depend on y, we have the analoguous of Theorem

ru ) rac
is and, if d =2, . Reca e relevant exponant

inftyspecial
thminftyspecialDir | Thgo%exﬁn Zt'ﬁ' Letd > 2. ssume th%létf has the structure as in Theorem %:%, that

vi,; = nf{(d — 2)|p| + (d — 1)|g| — d : @i pq # 0}.
Then:

1) Th ; T [thmexistglobPDir . :nu1_s~:rit_D0
(1) The same result as Theorem holds, reg g%f}{]rassumptzlon 1.0y Ui 5 O-
(2) The same result as Theorem olds replacing assumption yvim = 0.
4 Eﬁexistglongain .
See Theorem or a precise condition.
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s:Dirzero

thmexistglobPDir0

thmexistglobPgainDir0

[Gefsoluext]

egnsemilin

7.3. The iric}%] t oblegp close to zero. Finally, we state the equivalent of
eX1S stglobPgainzero . .

Theorem an E‘ﬂ %or l%lrlcé et boundary condition, close to zero, that is:

(77) {Au = f(u,Vzu) on B(0,1)\ {0},

U|Sd—1 = UgQ-

Note that the solutions are naturally constructed outside of zero because of the
change of variable. Yet, they will be proved to be solution on B(0,1) in several
cases.

The proofs are the same, and we leave the details to the reader.

Theorem 7.7. Assume d > 2 and that [ as in M satisfies the subcriticality
assumptions

Aipg 7 0= (¢ =0 and |p| > 2).
There exists n > 0 such that the following holds.

Let ug € HS%Sd’:})i}Ugth lluoll s (sa-1y < m, then, there ewists a unique u € Zg°

solution of T moreover, there exists a unique u. 1, € Z2 solution of Auy =0

(on B(0,1)) so that

[(w— u+1L)(r')||zg,r =0 as r—0.

Actually, convergence holds with rate 2.

Theorem, 7.8 Assung .22, / os in
Theorem at 1s, and, if d = 2, (
aipg 7 0= (lg| <2 and |p[ +[q| > 2).

Let ug € H*(S1), denote ug 1, € Z° the associated bounded solution of
Aur =0 on B(0,1) and ug|ge-1 = uo,

gati%ies the structure condition of
fstructbracket L . .
2) ) and the subcriticality assumptions

J(DJE‘

and assume that we have the bound

[uoll e ma-1y + sup r*7" [|f(ur, Vur)(r )l zo <.
<r<i s=1,r

: _Dir0
Then, there exist a unique u € Z? smallll solution of if'f}, sm(;;eover, there exists
a unique uy 1, € Z9 solution of Auy. =0 (on B(0,1)) so that

[(w— u+,L)(r-)||Zgr =0 as r—0.

Actually, convergence holds with rate r”.

8. APPLICATIONS

8.1. Critical semilinear equations. This section is about the proof of the main
results about the critical semilinear equation. We first give a definition of weak
solution.

Definition 8.1. We say that u € H. ({|x| > R}) is a solution of
Au= f(u) on {|z| > R}

if we have

Vv € €°({|z| > R}), / Vu- Vo dx—i—/ fu)v de =0
|z|>R |z|>R

thmexistglobPintro . existglobP
Proof of Theoremh: Il This 1s just a particular case of Theorem when f does

not depend on the derivatives. Il

5 Eﬁexistglongain .
See Theorem or a precise condition.
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thiH1 .
Proof of Theorem hz._i'e)gLet e > 0 small to be chosen later. Since u € H*({|z| >
1}), there exists ro so that [|Vul| 2,15, /2) < €- Denoting u™ (z) = (r0)¥ 2 Tu(roz),
the function u™ satisfies |[Vu"|| ;- yizy S € and is solution of the same ellip-
tic equation. By Sobolev estimate 1&%: we hawi SO .LLpuJL%th&&?l/Q) e. If eis

small enough, the trace estimate of Proposition IA_.bJ given in the Appendix, yields
<e.

exist istglobPDir

[ lsa—1 |l g (sa-1y

We notice that for the critical exponent p = 2* — 1 = g+§,
hold Wit}'l vy = (d —2)p—d = 2. Let us choose € small en01.1gh 50 that Ce < 7
where 7 is given in Theorem iftﬂt 1t applies and yields a solution u € Z2° so that
U|ga—1 = u"|ga—1. We check easily that it satisfies

Theorem and

il zoe S lulsa-rllpgega-1y S €

ectZ
1 Tl 5 ox < ||lu <
Due to Lemmal&ﬂ}ﬁH (Jz| = 1), NS ||uHL2 (lof>1) ||uHZ§O e In particular,
for € small enough, the uniqueness property given in Proposition ig:ﬁf app led with
qg=2*—1and (q L - = 2*, implies that u = u"™ and therefore, v € Z2°. Hence

[e ]
uc zzéTO . ttranslrdinverseHlregpuiss existglobPDir
The scattermg result ) 1s obtained from the similar statement in Theorem ﬁ%

é ; Lhe canyerse (and last part) of tiﬁé Tgleorefnbbsl %ctually a consequence of Theorem
and a special case of Theorem (I

UCP 1
Proof of Corollary Weorem glr\?es ro = 1 such that for any ¢ € N,
(r/ro) ™ 1 Po(u = ur) () o ga-ny < N =) ()l g == 0.

r/rg T—>+00

From the assumption and triangular inequality, we infer
(r/rg)t= 2+t [ Pewr(r)ll grsga-1y = 0 as 7 — +o0.

Now, notice that Pyur(r-) = (r/ro)~ =2~ Pyur(ro-): henc Leur = 0 for any
¢ € N, and therefore ur, = 0. The uniqueness in Theorem implies v = 0 in
{lz| = r1} for a possibly larger 1 = 1. o . 13

Now, due to the result of Trudingerfl T168] (see also Section ﬁ%?%ppendix for
a quantification), we have v € €*°({|z| > 1}). In particular, u solves the equation
Au = Vu with V = kuP~t € L2 ({|]z| > 1}). We can conclude yestandard unique
continuation arguments that v = 0 in {|z| > 1}, see for instance [LRLR22, Theorem
5.2].

For the second part of the Corollary: let £ € N, then for any 8 > 0, the condition
u(z) = O(|z|~?) gives

1 Pets(r )l ge ooy < Co ()| gy < Coos )| i sy < Clsr™

Choose 8 > ¢+ d — 2, so that the assumptions of the first part of the Corollary are
fulfilled, and this gives the result. O

egdeca;
Proof of Theorem ifiz Ihie scheme of the proof is quite similar to the critical case
with different scaling and spaces. We only stress the differences. 1) The appropriate
2

scaling is given by denoting u"(x) = rg’j u(rox): then u is solution of the same
—n .

elliptic equation and satlsﬁes l.ptl(ﬂje dabzddd) S < Cry". For sufficiently large o, we

can apply Proposition |A_._7J To get that u™sa—1 | s (ga-1y < Cse. Then Theorem

eX1sS
applies an we can construct a nonlinear solution u € Z° with the same

Dirichlet data as u™, and with convergence to a linear solutiog. ! &o%%ggllue e as
in the critical case, we want to apply the uniqueness Theorem 1t remains to
check that ||u" || a(p—1) and ||| ap-n are finite and can be made small

(I=z>1) L7 2 (Jz|>1)
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enough, possibly making ry even larger. We use the decay assumption to get

dp—1) oo d(p—1) _pd=1
el <o / 1 o) < g
(I=|21) 1
. injectZ
For u, we use Lemma Bﬁm > —%5 there hold d(p dp=1) > 255 O
ocsemi
Proof of Corollary ii'ﬁ Note that since p € 2N + 1, then |u|P~lu = EC@IL that
u is real valued) hg(;h is the context of the equations considered in BB( 7o V1.
Véron proved in , Théoréme 4.1] that |z|?~2u(z) converges to congtant. In
particular, since d 2 > pi the decay assumptlons of Theorem “ tﬂ is safisfied

radsemi
and we can also get by Lemma i%g that %f H1 > R}) for R large enough. In
are verlﬁed.

particular, the assumptions of Theorem (I

8.2. Conformal eq
proof of Theorem [0l _ ormembed
The formulation (Conf-El] considering the embedding A" € RM is well adapted for
regularity results of weak solutions as is often the case in the literature. Yet, in one
part of our results, we want to construct some solutions and it seems better suited
to consider local coordinates on the manifold A/ to ensure that the constructed
solutions indeed belong to N. This will not be a loss of generality when the solution
is regular enough and we can localize in the target manifold N.

Let uso € N and W be a small open neighbourhood of us in N so that there
exists some coordinate charts so that W ~ V C R¥. In local coordinates, for
u € €%(Q,N), we will study some solutions of

(Conf-C) Au = f(u,Vu) with
fi(u,Vu):—ZFﬂ )Wl - V't —Z )y Oy’

! tiﬁls in dimension 2. The purpose of this section is the

=— ZI‘ )Vl - Vub + = Z w)V4ud - Vb,
gl
where FZZ are the Cristoffel symbols and H le%',j = le.jé. Here, we denoted

Viu = (=9,u, d,u). Note, that in what follows, when we will say that u is solution
of , it will always be implicit that it is valued in some local charts in the
considered domain.
1regHarmon
efore starting the proof of Theorem ‘8 per se, we begin by checking that equation
satisfies the null condition and the various conditions of our abstract

theorems. . .

. . . inftyspecial
First we verify that the assumptions of Theorem are satisfied. We have then

. 1 .
@) =—Y Ti(w)w; @ — B > Hjy(u) (w1 k2,0 — @1,0w2.k)
Jil 5.l

We see that the harmonic part of the conformal syste ¢ first sum in (K oA
where the Christoffel symbols I" appear) has the form [6)

the H-system nonlinearity are sums of terms of the form
H/i,é(u)(axukayul — 3Iw8yuk)

. . . tructbracket inftyspecial
which satisfies the typical form in Theorem iﬁtﬁi Concerning the exponents:

d=2 and |¢q| = 2 when a; , 4 # 0, so that we compute

vi; = nf{(d —2)|p| + (d—1)|qg| —d: a;pq # 0} =0.
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We compute the associated g fo?i gE i§f§15 and & € (T,S')N: the expression is the

same as in the proof of Theorem or gs, but with more simplifications. Indeed,
gl(t) Y, v, w, Z) = €2tfi(1}, e_t(w ® Yy + Z))
Let us compute the term corresponding to w; - w,. It writes
2 2

> (kw; + zik) (Ykwe + zex) = wjwe + > 25 k20 k-

k=1 k=1
We used that 32, 42 =1 (asy € SY) and i, yezir =y -2 = 0 (as z; € T,S").
Then, the term corresponding to wy, 12 — we,1@k,2 Writes

(y1wk + 2i1) (Yowe + 20.2) — (Yrwe + 20.1) (Yowk + 2k.2)
= wr (Y1202 — Y22e,1) + We(Y226,1 — Y12k,2) + 28,1202 — 20,1%k,2
= WkZze - yL — WgZg 'yL-
We used that z; 1202 — ze,12k,2 = 0 (as 2z and z, are necessarily colinear). Notice
that for two function u , v defined on S! ~ R/27Z with running point 6, we have
Vyu-y- = dpu and Y i, (ex - Vyu)(ex - Voyv) = Vyu- Vv = dgudg. In particular,
we get

. . 1 _ _
(8.4t y, v, 000, Vyv) = — ngé(v)vtﬁzﬂ Vg0t — 3 Z H;é(v)V#gve - Vi,
gt gt

This expression alsq all Wli;oe}“{ecover the conformal inv; iagnggtofo%}%ea%%uation.
et, us now check . As in the proof of Theorem Eig see the computations
1t suffices to verify that there holds
Hg(ta Y,vrL, atvL; vva)HY571’t 5 €7Ut,
for some v > 0. £9

:nullmat
Now, in view of Remark I&ﬁf’c‘h?nonlinearity g gi‘éen %Eul ) satisfies the ellip-

tic null condition at each point. Hence Proposition app IES- ﬁsruMLstl, S

luLllze, fort > to = %111(58) (and the standard product law , the improved
s :null_ell_
product law gives

lg(t,y, v, Ovr, Vyur)lly, |, e 2t

ig_ex ;£ (ul) _ex
In particular, due to (&i—wB Sﬁ}%@ﬁﬁ%{gd with v = 2. Hence, we can

apply our general Theorems and with v = 2. For 5o, € V C RY, it means
that there exists 7 > 0, so that for any uy € H*(S?!) with l[woll prs(ga-1y < m, we
can construct

(a) a solution of the problem W%th %r%scribed data at infinity, that is a unique

small solution u € Z2° of on R?\ B(0,1) so that

| scattranslrdHM | [lu(r) — (Yoo + “L(T'))Hzgfr < r2.

(b) asolution of ghe Dir;’chlet problem at infinity, that is a unique small solution

u € ZX of on R?\ B(0,1) so that

Ujsd—1 = Yoo T UQ

and moreover, there exists a unique wy, € Z$° solution of Awyr, = 0 so that
—2
[(w = we) ()l g, S 777
COI}cernlng the problems close to zero, a similar an sis; g%lgbsl;ggi ISDQII%gormal in-
variance of both problems) allows to apply Theorem (since [q] = 2 for non-zero
coefficients). With the same assumptions, we can construct
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i:solzeroDir

thmsackuhlextensconf |

propchartsasym ‘

(¢) a solution of the Dirichlet problem close to zero, that is a unique small
solution u € Z° of (%ﬁ) on B(0,1)\ {0} so that

Ulsd—1 = Yoo + Up.

1regHarmon
Item (a) answers part 2) of Theorem !:%ﬁ .

regHarmon .
We now focus on part 1) of Theorem or this, we need two extra independent
results. The first one j t_g? following theorem of removable singularity; it was proved
by Sacks-Uhlenbeck [SUSI] in the particular case of Harmonic maps, i.e. H = 0.

The proof, presented in the alig ng f1§ hnostly the same once we have praved the

improved regularity Theorem and an equipartition result (Lemma%ﬁ
ormembed

Theorem 8.2. If u : B(0,1) \ {0} — N is solution of (E%Smmmte en-

ergy, then u extends to a smooth function u : B(0,1) — N, solution of the same
equation.

We will deduce from this result some decay for harmonic maps at infinity (by
conformal equivalence).

Proposition 8.3. There exists € > 0 so that for any u solution of (I%% n
R%\ B(0,1/12) with the smallness assumption
IVl 22\ B0,1/12)) + 114 = Yooll oo (r2\ B(0,1/12))) S €

for one yso € RY fien u. € Z° and u is the unique small solution on R?\ B(0,1)

inftyDir s
defined by Itemli@? 1th Ulgt = Yoo + Ug-

In particular, there exists v, € Z3° solution of Avy, = 0 (with ||vr| z~ <€) so that
lu(r) = (oo +oLr )l 2z S 777

Proof. We consider u(z) = u (‘ ‘2) which is also a harmonic map with the same

sackuhlextensconf .
bound for the energy on %1 % 123& 9 étr'];: rem ﬁtﬂ implies that u 1s solution on

o armon
B(0,12). By Proposition it € i1s small enough, we have

IVl e (p(0,3/2)) < C& and  [t]ss — Yool e g1y < Cise

lzeroD
Using Ttem ioxx?grieﬁnile v € ZY small solution of d%) on B(0,1)\ {0} and so

that v]g1 = uls1 = ulg:. We claim that we have a similar smallness bound as that
for w on v, namely

IVl e (50,1)) T 10 = Yool o (B (0,1)) < Ce-

.. . . . . existglobPgainDirQ
(This is not direct from being in Z2). Indeed, following Theorem we decompose

U =1yo+ 04+ W,

with 0 1, solution of A74 1, =0 and r~“@w € Z?2 for v = 2. The term v, satisfies
the expected estimates since for a linear solution and s > 1,

Vg, L”Loo(B(o myt+ vy, L”Loo(B(o 1) ~ S v4..(0 )”Hs(sl) :
existglobPgainDir0Q

We use Lemma wf%ezsotlmate w. Note also that the proof of Theoremiﬂprowdes
the smallpess Of{&ﬁk& nd w in the norms used. We define 0y, = 94 1 + yo = .

Theorem E@ implies that 0 can extended to a smonth solition on B(O 1) of (I%
(there is no smgulanty at 0). Proposition %:]E %Een gives i, = v, In. particular,
this implies that @ € Z? and therefore u € ZX° by Lemmazgﬁ_ﬁﬁy, denote
vp(z) = ﬁL(ﬁ) This gives the expected result, due to uniqueness in the class of

small solutions in Z°. O
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Remark 8.4. In the above proof we perform a conformal transform so as to work
in B(0,1): it allows to conveniently make use of the Poincaré inequality in the
uniqueness res#t Land 49 get smallness in 2> using results of the existing litera-
ture ]_We believe however that it should be possible to complete
a proof directly in R? \ B(0, 1) without resorting to the conformal transform.

The second result is the existence of adapted coordinate charts where the Christoffel
symbols vanish at a point.

Lemma 8.5. Let yoo € N C RM | and consider 7T, N the orthogonal projection

(with respect to the Euclidian metric of RM ) on T, N. There exists a small neigh-
bourhood W of yoo € N such that ® := 71, nx|nnw is a diffeomorphism to its
image (in RM ),

Moreover, if we take orthonormal coordinates on T, N & Tyw./\/l, its inverse can
be obtained writing N as a local graph

Y1, oy) = (21, 2N, YO (1, 2N, - Y (R, -, N)

where the ; are analytic functions. In these coordinates, we have Fém(yoo) =0,
for the Christoffel symbols.

. g X ormembed X
Moreover, if u is solution of (E%Smh Q C R? with u(Q) C W, then ®ou

is solution of on €.

Proof. Writing N as a local graph is classical. In these coordinates, we compute for

i=1,...,N,
0 oY 51/1N+1 OYm
* 0,...,0,1,0 .
w (81'1) 81'1 ( 9 sy Uy Ly Uy axz ) ) axz )a
where the 1 is in position 7. Note also, that by definition of the tangent space, we
have

9
psi(y_infty) | (8.2) a—w(yoo)zo foralli=1,...,Nand {=N+1,..., M.
T

Concerning the Christoffel symbols: denoting g the metric of A/ in the coordinates
given by v, and (g71);; = g% its inverse, recall that

=3 Zg 9jgme + Omge; — Oegjm) -

. GallotHullnLa N
(see for instance [GHLO4, p71]). N
M

RN RN ) (5
gZ]—g(axivaxj)f(sz,jﬁL Z <8$Z> <6$J)

I=N+1
. ( _infty) ..
In view of we infer that (0p,9:;)(0) = 0 for all 4,j,m € [1,N], and so

F;m(yoo) =0. O

iregHarmon
We can now conclude the proof of Part 1) in Theorem % alinvers
We consider a harmonic map u as specified. We apply Corollary ﬁmsmall
enough so that u,,(-) = u(rg-) defined in R?\ B(0, 1) is supported in some coordinate
charts of A/ close to ¥, and moreover satisfies

(8.3) IVtro |l ey po.0)) + ltro = Yool Lo o\ B(o.1)) < €

In particular, we can consider the solution of with value in a single chart.
More specifically, for W C N a small neighborhood of y, in N/ we consider the . oo
chart ® : NNW — T, N defined by ®(x) = 77, (). Due to Lemma E’EE we
see that for W small enough, ® is a diffeomorphism to its image V = ®(W). In
particular, for 7o large enough, ® o u,, = 77, n(ur,) with value in T, N ~ RY
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is a solution c')f an equation of the type (I% .Wi.th anal.ytic Christo le%;_/gnbols
I" and coefficients H, and ay aq_eég’cst ) satisfies similar estimates as . We can
then apply Proposition E'ﬁ to 71, N (Ury): We obtain that mp, ar(ur,) € Z5° and
there exists wy, € Z° solution of Awr, = 0 so that

77yt () = (e + wi(r )| e, = (|77, 8 () (ror) = (oo +wi(r)l| 7o S7

In particular, since ry is fixed now, we can define uy () = wr(x/r¢) so that wy, (1)
vr (ror-) and

17z, oA (@) () = (Yoo + ur(r Hzm <Sr
translrdinverseHarmonMap o

It is the expected result (ﬂiﬁ]ﬁ) Moreover, the same computation gives 77, _a(u) €

Zs.ro- Note that the fact that u(x) | |—> Yoo implies Pour, = 0. Under the as-
x| —+o0

sumption Pyuy, = 0, the uniqueness is obtained as in other cases (this assumption
is necessary since in dimension 2, this component do not decay).

Up to now, we have only proved 7r,__ ~(u) is in the correct spac bu;n. é‘é‘%i%lg not
control the orthogonal component. Yet, as explained in Lemma %’EE up to some
rotation and translation, we can assume that 77, » = RY x {0} and N'NW can
be parametrized by a local graph

NﬁW:{(xl,...,:L'N,?/}N+1(x17...,:L'N),...71/)M(x17...7:I:N>>;(1:1,...,1:N) GV}?

where the 1; are analytic functions. In particular, since u(z) € N, we can write

u = (m1, N (W), Uns1 (T, (W), oar(mr,  ar(w)) -
1yt
Therefore, due to Corollary ﬁ; fl;m;? gelongs to Z° IresHarmon
This completes the proof of part 1) of Theorem i:ﬁﬁi {regHarmon .
We are now concerned with part 2) of Theorem Ug 1S sSma. )| settles

this result. If not, ug is assumed to have zero mean, and Theorem 5.0 also concludes

for rg large enough: we do exactly. the same analysis, but in the other directi i ftvepecial
We first construct the solution of in the tangent plane using Theorem EEE

and then r, use it 1o N c RM by adding the other coordinates. It is then solution
of . We leave the details to the reader since it is very similar to part 1).

8.3. Harmonic 1 amon &1510n d > 3. The purpose of this section is the
proof of Theorem “téé We Begm with a few generalities about Harmonic maps.
First, we define the weak solutions.

o onicMaps
Definition 8.6. We say that u € H. _(Q,N) is a weak solution of WWQL

if, for any v € €>°(Q, RM), there hold

ZZ/ OBt — 3 S v A (1), 0| =0

a=1i=1 |z| =R 7j=1k=1

In fact, we will mostly Worlé.i%n%litable coordinate charts on the target manifold

as in the previous Section rom which we borrow the notations given in the

beginning.
For a function u with value in V', we will consider the following equation of Harmonic
maps,

eqnHarmonicMapsChristo | (HM-C) A’ + Z I (u)Vu? - Vub =0
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where F;k are the Christoffel symbols for the metric g in the chosen coordinate

charts. We will only consider charts where the coe}flﬁci%rr}ts are analytic. For simplic-
. . . . . onicMapsinristo
ity, we will sometimes write equation as

Ay +T'(u)(Vu, Vu) = 0.

As before, we state some results concerning the decay, convergence and uniqueness
that will be the main tool to prove that the solution is actually the one that can
be constructed by our general theorem. We begin by some result about the decay
of small solutions.

RJHM
Lemma 8.7. Let d > 3. Let u € ‘52(%”1 %!B 0.1\ of finite energy (see ( 'é;)

solution of the Harmonic Maps equation . Then, for any e > 0, there exists
Ry > 0 and C > 0 so that we have

”quL?(Rd\B(O,RO)) €
$|d/2 = |x —d/2

o IVull L2z 5o, roy) T VUl La e\ B0, Re)) + IVUll Lo R\ B0, R)) < &

o |Vu(z)| <C for all x € RY\ B(0, Ry),

The next results proves that the solutions has a limit at infinity.

1mregHMHd
1m:H1HM| Lemma 8.8. Under the same assumptions as Lemmal8.7, there exists us, € N C
RM 5o that u(z) — Uso. Moreover, u —uy € HY(R\ B(0,1)).

|z|—+o0

The following results concerns uniqueness of small Whd solutions in appropriate
norms.

propUCPRdHarmon | Proposition 8.9. Letd > 3. There exists € > 0 (only depending on N the compact

target manifold) so that if u and v are two weak solutionsicz}'dré the energy space
Uoo + HY(R?\ B(0,1)) of Harmonic Maps equation mn B(0,1)) so that
u=v on the unit sphere S*1 and we have the assumptions

IVull o o,1)) + IVOl La@a 1) < &
Then, u = v in R4\ B(0,1)).
: :HM3
The proofs of the above three statements are done in the Appendix, Section %ﬁ

1Harmondimd
Proof of TheoremﬁE ﬁ We first need to prove additional srjgllreleﬁﬁﬁnd regularity

proved previously. Denoting ugr, () = u(Roz), using Lemma B.7Twe get for Ry large
enough, [[Vurg || e (may po,1/2)) < C’R(l)_d/2 which can be made arbitrary small. In
particular, for Ry large enough,

”A(uRU)(vuRm Vru‘Ro)||L°°(]R'i\B(O,1/2)) <€
. :H1HM .
Moreover, with Lemma %d up to making Ry even larger, we can select us, €
N C RM 5o that
[ure = tooll oo (re\ B(0,1/2)) S €

Using standard iterated elliptic regularity, we get that for any s € R and small
n>0

lure = Usoll s (50,1400 BO,1-m)) < Csne-
In particular, we have the trace estimate [|(ur, — too)lsa-1| s (ga-1) < Cse.
Now .that we have ga%ned enqu. }}) nrieg;llélasmlyi éitr(l)d decag'/7 we see that up, is actl'lally
solutions of the equation in appropriate coordinates for the target manifold
N. We E[éoogeegblesgoordinates given by the orthogonal projection on T, N as in

Lemma
60



injectZsild

:conf2
We can now proceed as j Segti@ﬂ% oth%.treated cases, except that we can
. infty yspecialDir . .
apply directly Theorem and without using the null structure (which might

hold true anyway). The equation for v = u — Y, writes
Av 4+ T (Yoo + v)(Vo, Vo) =0,

ojectiso
with T'(ys0) = 0 (see Lemma @’Ei The quadratic nonlinearity corresponds to g > 2
and, the cancellation I'(yo,) = 0 corresponds to p > 1. So, we get, for non zero
coefficients,
(d—QR +2(d-1)g—d>2(d—-2)=:v1.: > 0.
inftyspecialDir . . - .
Theorem erefore yields the existence of a solution u € Z2° of the Harmonic

map equation with the same boundary condition as ugr, — Yoo on S?~!. We wnat
to prove that

'LLRU*yoo:U

) ) - UCPRdH’armon - .
nd for this. we will apply PYQPOS ' _‘QH. Ty I U Note that PI‘OpOS?thn
applies either for formulation ([HM-EI e case of regular solutions.

We need both solutions to lie in yo +H'(R?\ B(0,1)) (not necessarily small), and
with gradient small in L4(R? \ B(0,1)). For the constructed solution y.. + @, we
claim the following inequality, for s > % + %,

V]l p2ga\ 50,1)) + Hva”Ld(Rd\B(O:l)) < Cluf zo -

. . .. ectZ :Zinfty Wiin;
Indeed, it can be obtained by combining Lemma estimate of Lemma

and an interpolation argument between L? and L.
. . (H1HM 71 (Td

For the solution congidered yr,, we use Lemma wﬁget URy € Yoo + H'(R*\
B(0,1)) and Lemma &'ﬁor_’ﬁﬁe norm L of the gradient, observing the scale invari-
ance

Vu = ||Vu .

' ' || ROHL'i(]R'i\B(O,l)? ' [ H&w&\a%(&{%)) _

We are now in position to a ]%alig(f%)isi%&é??e land get ur, = Yoo +1. We conclude
as in dimension 2 to get , recalling that 11, = 2(d — 2).
Finally for the orthogonal part, as in dimension 2, we write

u = (ﬂ-TyooN(u)a 1/1N+1(7TTny(U))a e 7¢M(7TTny(U))-
It is easy to see that in these coordinates, by orthogonality, we have for any j =
N+1,...,M.
2
Uil o) = O,z P).
Therefore, due to Corollary E;f With n = 2, each term v;(mr, a(u)) belongs to
Zs.r, and the orthogonal compoae%éggccaaﬁmlﬁhe .
Regarding the additional decay : 1t 1S obtained after %PQI‘}QR% ut+1111%_ nf&gq}zal
transform, as a consequence of the last refinement 0 eorem with
v=uvy=2(d-—2).
Part 2) (on the e)E'?te%gte of solntion with prescribed scattering data) is proved

applying Theorem in local coordinates. (I

Remark 8.10. In principle, our general theorem should allow to make an expan-
sion to any order of our solutions using the iterated versions of the Duhamel for-
mula. With the first iteration, we can recover a result of Alama-Bronsard-Lamy-
Venkatraman [ABLV23|. More precisely, it shows that « can be written

1
U:UO+Uharm+ucorr+O ﬁ )

with ug € S?,

3 3
1 1 1
Uharm = —o + ijaj (;) + > Ohdidy (;) :
j=1 k=1
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subsectFischer |

defFischer

thmRender

2 2 3
and wu :7|v0| ng — [0l vof§ E vy - p;i0; 1 no
corr r2 613 r 777 r ’

with vg and p;, j = 1,2, 3 orthogonal to up.
According to our description, we can divide the terms in several parts:

e wug is our constant part Y., at infinity

° Unarm is the first sphree spherical components of our linear part uy,
_ |UO|
T

° Zk =100 " P;0; ( ) no is the nonlinear correction orthogonal

to the tangent space. In coordinates (z1,2') so that ng = e1, the sphere S?
72

can be written as a graph 1 = /1 —|7/|2 =1 — % + O|2'|*. So up to

terms O (%4), the main terms will be

11 3 1 i 1
2
1—5 ;vo—l—;pj@j (;) :1—ﬁ|1}0| ij ’an < )+O( )

vol?
673 )
first iterate of the Duhamel formula in our setting, taking only “® as linear

component, i.e. it solves

|vo|? volvol* v v\ |2
A (=B ) = -2 v ()]
( 6r3 " rd r r
All the other terms of the linear part lead to more decaying terms in this
formula.

8.4. Local problem ggr airslgzlé;_%ic functions. The purpose of this subsection is
the proof of Theorem

We begin by recalling the notion of Fischer decomposition and related results, we
refer to [Ren0g.

Definition 8.11. A polynomial P and a differential operator Q(D) form a Fischer
pair for the space E, and we say that (P, Q(D)) is a Fischer pair if for each f € E,
there exist a unique elements ¢ € F and r € F such that f = Pg+r and Q(D)r = 0.

Let Br := {z € R" : |z| < R} be the open ball in R"™ with center zero and radius
0 < R < 400, and let A(Bg) be the set of all infinitely differentiable functions
f : Br — C so that for any compact subset K C Bpg, the homogeneous Taylor
series Z:;O:OO fm(x) converges absolutely and uniformly to f on K, where f,, are
the homogeneous polynomials of degree m defined by the Taylor series of f.

It follows from Lemma%i%&n_eﬁmes called Gauss decomposition in this context)
that (|z|?,A) is a Fischer pair for C[z1,...,2,]. We need this result for analytic
function. It is proved i the | fo 0W1ng theorem which is a particular case of a much
more general result in [Ren0s].

Theorem 8.12 (Theorem 13 of BRI Let 0 < R < +o00. Then (|z|*,A) is a
Fischer pair for A(Bg).

A(BRr) seems to have naturally a structure of Fréchet space while it would seem
preferable to deal with normed spaces. We will use the following space and norm
for analytic functions on R%. For R > 0, we say that f € A(R) if, for |x| < R, it
can be written as its Taylor expansion
1ovf
=3~
a€eNd
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lemFischercvgece ‘

with
o°f
oz

1
I lacmy = D o

aeNd

(0)‘ Rlel < too.

With these notations, we have A(R) C A(Br) C A(cqR) for some constant cq >

nly. de(%endlng on the dimension. To prgye the last embedding, notice that due to
fRe_nUS_Lemma 22| (actually quoting [Sic74, Lemma 1]), any function f in A(Bg)
can be extended holomorphically to some domain of C% containing Bea(0, R/V/?2).
In particular, f is also holomorphic in the polydisc B¢ (0 B/Ara o< Bea (0, R/V/2).
The Cauchy inequality for polydiscs (see for instance KJHQU_TlForem 2.2.7]) gives

ng ‘ < C(R/\/—)W This gives f € A(cqR) for cq < (1/v/2d).

Proposition 8.13. Assume f € A(R) is an analytic function around 0 of radius
R > 1, then, u € Z° with

1fllze < CRYIf N acry
Proof. We write for |z| <1< R

10”
=3 ot
a€eNd

:polyYst
We can write using the second estimate in Lemma ﬁ] ?{I

o“f o
1fllzo < Z i [5ga O 12%lz0 < C(R) IFll4cr)
aENd
with C(R) = sup,ena (|a|)**? R=1ol which is finite for any R > 1. O

Lemma 8.14. Let f € A(Br) for R > 1. Let f = fr + |2|?q with Afy, = 0 and
fr, q € A(BRg) be the Fischer decomposition of f for (|z|>,A) and A(Bg). Then,
we have, for any 0 <r <1,

£ () = fr(r)ll 2o, < Cr2.
where C' depends on R and f.
Proof. Select R = c¢4R so that A(Bg) C A(R) and f, f1 and ¢ are in A(R). Then,

we write

170) = Fu)l 2y, = 7206y =72 a0 < lallzp < CCRY lal
17
where we have used Proposition angr he last estimate. ([l

thmexistzero . . . .
Proof of Theoremh: [1. The first part is a direct application of known results on
Fischer decomposition. Indeed, it i3 known that CY solutions are actually smooth
and also analytic (see for instance HS‘EI‘158 m L (0,1). In particular, they belong to

ﬁ.ngr@gﬂ some R > 0. By Theorem ere exists uy, and ¢ in A(Bg) so that

1S satisfied.
For the converse, let uz, be a bounded solution. Up to rescaling (by a factor 2 for

instanlée iéXlstC%nbggsume that 'LLL|Sd 1 is in H*(S?!). We can therefore apply The-

orem an ere exist 1o < 1 and a unique u € ZO o solution of Auw o oguz

on B(0,79) \ {0} so that ||(u—ur)(r)| 40 < r2 Due to Lemma i%Ll the
s,m/ 70

Appendix, u is also an analyi;'& gogg‘giron in the classical sense on B(0,ry/2). We

can therefore apply Theorem o u to get that there eXiEt EgF ahercg gglealytic

on B(0,79/2) so that Auy = 0 and u = ur, + |z|?g. Lemma gives alter scal-
ing ||(u— EL)(T.)HZS,T/sm < Cr?. In particular since Z° v/3r0 C Z0 we obtain

1
(ur, — L) (r)|l 4o , < Cr?. From Lemma Efiﬁle\!;/enéonclude that uy, = ur on
s,7/370
63
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B(0,70/3). In particular, u = uy, + |z|*>g with g analytic in B(0,7/3), which is the
desired result. |

APPENDIX A. VARIOUS ESTIMATES ABOUT THE APPLICATIONS
A.1. A continuation result.

Lemma A.1. Let d > 2 and r¢ > 0.

1) Let uw € L>®(B(0,719)) solution of Au= f on B(0,r9) \ {0} in the distributional
sense for some f € LP(B(0,19)) for p > %. Then, it is solution in B(0,rq) in the
distributional sense.

2) Assume that s > ¢ —% andu € 20, satisfies Au = f(u) on B(0,10)\ {0} in the
distributional sense, where f is analytic. Then, u is solution Au = f(u) in B(0,rg)
in the distributional sense and is therefore analytic.

. ormembed
3) Assume d =2 and u € L>®(B(0,19)) is a solution of (%SWB(O, r0) \ {0}
and so that Vu, viewed as a distribution of B(0). ro)\{0}, belongs to LI(B(0,79)\{0})
i@ fééﬁﬁ: on B(0

for some q > 2. Then u solves ,70) and is analytic.

Proof. 1) To simplify the exposition, we assume 7o = 1, and p < 400 (p = +00 is in
fact a stronger assumption). Consider v = Au— f € 2/(B(0,1)): it is a distribution
supported in 0 and so can be writen

v = Z €a0a00,
la|<N
where N € N and ¢, are constants. Denote G = mq% € LY(B(0,1)) c 2'(B(0,1))

(or —5=In|z| if d = 2) the Green function: —AG = . Define the distribution
h=— ngN a0, G. Then

Ah= " cadubo=v=Au—f in2'(B(0,1)).
Jal<N

Let w be the solution of Aw = f on B(0,1) and w = 0 on S ! Since f €
LP(B(0, k»ﬁofoqtf some 1 < p < +o0, w € W2P(B(0,1)) by elliptic regularity (see for
instance [GTOL, Theorem 9.15]). Since p > d/2, the Sobolev embedding gives that
w € L*°(B(0,1)) (and in fact has some Holder regularity).

Let r = u — h — w. We have

Ar=Au—(Au—f)—f=0 in 2'(B(0,1)).
In particular, r € €°°(B(0,1/2) C L*(B(0,1/2)), and so h = u —r —w €
L*>(B(0,1/2)). To finish, it suffices observe the:
Claim: Assume h € L>(B(0,1/2)) can be written h = — 37, |<y ca0aG (where
co are constants), then ¢, = 0 for all @ and h = 0 in 2’ (RY).
The claim immediately implies that v = 0 and so Au = f in D'(B(0,1)). We
postpone the proof of the claim after the other items, which are consequences of 1).

injectZ0

2) Using Lemma ﬁl iB]; e can extend u to B(0,1) with w € 29 C L*=(B(0,1)) C
D'(B(0,1)). Since f(u) € L>=(B(0,1)), elliptic regularity gives u € WP (B(0,1/2))
for any 1 < p < +oo. We can then iterate, to drr>nr0y§8that u is smooth and then
analytic by classical analytic regularity, see [FTibg]-

3) The regularity result of g{'viére gives the result once we have proved that u is
ormembe
i@%ﬁ%ﬁ;; on BB 2)

a solution of ,70) (or we bootstrap the estimates). Now, as f is
only quadratic in Vu, and from the assumptions, we actually have f(u, Vu) € L9/2,
with ¢/2 > 1. We can conclude using 1).

This finishes the proofs up to the verification of the Claim, which we do now.
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As h € €°°(R%\ {0} N L>(B(0,1/2)), we can consider, for w € S~1, the function
he @t — h(tw). Then hy, € C®°(R\ {0} N L>((—-1/2,1/2)).

Assume d > 3 for the moment. In view of the formula for G, we can write h,,(t) =
Zéi;{);rzv % for t > 0 and for some constants c; € C (which may depend on w).
Considering the asymptotics close to 0, as h,, is bounded close to 0, we infer that
¢, = 0 for all k. In particular, h,, = 0 on (—1/2,1/2\ {0}. Now this is true for all
w € S, hence h(z) = 0 for all z € B(0,1/2)\ {0}. As h € L*>°(B(0,1/2) and is
analytic on R%\ {0}, h = 0 in 2'(R?).

The case d = 2 is similar taking precaution with the value o = 0 which contains
the term cg In |2|. But the asymptotics close to 0 imply the same result.

So, we have obtained h = 0. In particular, in the sense of distribution of B(0,1),
we have 0 = Ah = Z|a\<N Ca0a00- By the uniqueness of this decomposition, we
get co, = 0. O

A.2. Some estimates for semilinear equations. We recall the following classi-
cal fact.

Lemma A.2. Assume thatd >3, ¢ =2*—1 andu € H'({|z| > R}) is solution of
Au=ru? on {|z| > R}.

oluext
(in the sense of Definition %: 5; if ¢ 18 not an integer, we write u? for either |u|9 " u
or |u|?). Then, we have

(A1) Ywe Hi(z| = R), / Vu - Vo dm—l—ﬁ/ uly dz = 0.

{lz|ZR} || 2R
Proof. Due to Sobolev embedding, u € L* ({|z| > R}) so that u? € L ({|z] =
R}), and v — f‘szuquz is a continuous linear form on H}({|z| > R}). We can

conclude by density of €2°({|x| > 1}) in H}({|z| > 1}. O

Proposition A.3. Assume d > 3 and q > 1. Then, there exists a universal con-

stant £q.4 > 0 so that if u; € H'({|z| > 1}) , i = 1,2 both satisfy Luext
oluex
o Au; = kul on {|z| = 1} in the sense of Definition or some K with

i
k| <1,
o up =uy on {|z| =1},
o [lurll aen +luzll agon

g,

<
(lz[21) (Iz1=1)

then w1 = us.

Proof. The result is certainly classical, but we provide a short proof for self con-
tainedness. Consider r = u; — ug: its satisfies —Ar = Vr on {|z| > 1}, where

V(@) < Cq (Jua ()77 + [ug(2)|77") .
That is

/ Vr Vv dz:/ Vro dx
|z|>1 |z|>1

for any v € €>°({|x| > R}). Since r € H}({|z| > 1}), we can pick v, € €2({|z| >
R}) so that ||Vr — Vu,|| - — 0. This gives the convergence of the first term to
f\r\>1 |V7|2dz. For the second term, using the bound on V, Holder estimates with

1+1+2721 1 +2—1
2 2 d "\2 d) d
1
and Sobolev embedding 1@@%,0%36 get

/ Virop (z)dx
lz[>1

<hrllze azn loall e a0 VI 4 s

65



1 —1
< Cag HT||L2*(|CE|>1) HU”HLZ*(\JE\EI) (fJua da—1) + |‘U2|‘(zdgq2—1) )

L (lz|>1) (lz|>1)
< Cag 1Vl 2 (a2 1) 1Vl L2 g1y €77
In particular, after passing to the limit, we get
/{|x|>1} IVrPdz < Cag IV a0y
If Cq,qe?! < 1, this yields V7 = 0 and then r = 0. O

rllllﬁ.g%llowing Lemma is a quantified version of the regularity result of Trudinger
[ru68, Theorem 3]. We follow the original proof, tracking the estimates.

Lemma A .4. Assume q = 2" — 1. There exists g > 0 and C > 0 so that for any
real valued w € H' ({|z| > 1/2}) solution of Au = ku? on {|z| > 1/2}, with || < 1
and so that

&= flullper (fjaf1/2p) < €0,

*\ 2

then we have, for p = % = % > 2%,

[l o (g1l (37,3720 < Ce

Proof. We denote o = 2*/2, 8 = 2* — 1 and notice 8 > 1, a = % € (1,P8). For
any any (large) L > 0, we define the Lipschitz functions on R

0 ift<0
Gr(t)y=1¢ 8 ifo<t<L
Lot (aLo 't — (a—1)L*) ift>L
0 ift<0
Fr(t) =14 t* if0<t< L

aL® 't — (a—1)L* ift>L
They satisfy for every ¢ € R (except for ¢t € {0,L} for (l%)s)l%fnd uniformly in

L >0,
(A.2) (FL(1)" < aGL (1)
F2G| (A.3) (FL(t))? > tGr(t)
(A4) Gu(t) <[t Fu(t) <
(A.5) GL(t) < —=\[GLOFL()

Va

Denote u = max(u,0). Let n € 65°({|z] € (1/2,2)}) non negative nonnegative
values, so that n(z) = 1 when |z| € [3/4,3/2]. Then v := n?’Gr(u) = n*Gr(u) €
H'N L¥ ' ({|z] > 1/2}), and

Vv = Gl (w)Vu + 2G 1 (w)nVn.

oluext emilinH1
According to Lemma iﬁﬁt we can now substitute the test function v in %L 1 to get

0= / G ()| Vul? + 2 / nCo(w) V-V + r / G (w)u?
|z|>1/2 |z|>1/2

|| >1/2

So, noticing that G (u)u? = Gr(u)u? and using (Ih) and then Cauchy-Schwarz,
we get

/ A

2
< —= /G5 (W) Fr(uw) |Vu Vn—i—/ n*Gp (u)u?
Ve Jusie VG (W) Fr(w) [Vul [V ‘ L(w)
66
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propelipticregtrace ‘

1 2
<5 [ wewwe 2 [ @Rl [ G
|| >1/2 |z|>1/2

« lz|>1/2

We now bound separately the three terms of the right-hand side. For the first one,
for a constant C' = C(n, o),

/ n%&mmmﬁ<c/‘ wumf+c/ G (W)
2] >1/2 l2le(1/2,2) jo]>1/2
Using that V(Ff(u)) = F] (u)Vu and 1%:5}1:1%1&/% get
/‘ |nvu&@gn2:1/ 72 (F ()| Vu? <c{/ PG (w)|Vul.
j2[>1/2 2] >1/2 jo]>1/2
Concerning the third term, we use (I%} to get

[ orGuwwr< [ Fuw)
|z]>1/2 lz|>1/2
Summing up, at that point, we have proved
2 2 2 g—
/ InV(FL@)]” < CIFL@l72(0e1/2,2)) + C/ n? (Fr(w)” u'™"
|z|>1/2 lz|>1/2
2 2 -1
(A.6) <C ”FL(Q)|‘L2({|z|e(1/2,2)}) +C ”nFL(Q)HL?* HU||%2*({‘$‘21/2}) )

where we have used Holder inequality using that 2% + q2_*1 = 1. Now, using Sobolev
embeding for nFr(u), we get

<OV (UFL(M))||12({|Z|>1/2})
< CnVEL(w)| 72 + C (V) Fr (w7
<ClVFL@)l[72 + CIFL @172 (a1e 1 2,2))

L. . i rmediTrud
So, combining with 1%:%} and using [|ul| pox (|pz1/0) = € < 1, We get

(1= Ce"™) InFr()2ee < ClIFLW) 2 aier/am) -

2
InFL@ 22+ ({2112}

Finally, using (I%r_%&hich holds uniformly in L, for e < (2C )7711, we get uniformly
inL>0

2 2
HUFL (Q)”L?* < c ||QHLGZ‘Q(|E|E(1/2,2)) = CEQO‘.
(recall a = 2*/2). This estimate is uniform in L: letting L — +o00, we obtain,
Inu®||7z- < Ce™.
Replacing u by —u, we obtain the same result for u and an estimate

2 2c
[l 2 o (e (3/4,3/2)) < CE™ O

g%ﬁk A.5. Note that a quite twisted way to prove the previous result of Lemma
would be to use Strichartz estimates for the non linear wave equation outside
the translated cone. Indeed, a solution of Au = ku? on |z| > 1/2) is also a constant
solution Ou = ku? on |z| > t+1/2). This should prove that u € L? for some p > 2*.

Proposition A.6 (Trace regu!g%tggi For any s > 0, there exists Cs > 0, given u

under the conditions of Lemma withq € N, ulga—1 € H*(SY™1) and |Julga— | #re (ga-1y <

Ce.
67



propelipticregtracegen |

decaygradsemi

Proof. We will need a (finite) sequence of decreasing domains around S¢~!. Define
Qn={lz]€(1-1/(n+4),1+1/(n+4))} so that Q2,11 € Q, and ST C Q,,.

The previous Lemma gives [[ul] 1no () < C with po = % > 2* In particular,
[u?ll Lro/acny) < Ce? with 1 < B2 < +00, and we are in position to use elliptic

regularity. Using the equation, we get

¢ ||AU||Lpo/q((szU) +C ”u”LPOq(QU)

||u||W2’P0/Q(Ql) <
<C ||uqHLP0/q(QO) +C ”uHLPOQ(QO)
<

C ||UH%PO(QO) + C HuHLP[)(QO) < CE.

By Sobolev embedding, we get Hu||Lp1(Ql) < Ce with p; = qdp_ﬂgpo, except if gd <
2po in which case we get the same estimate for any 1 < p; < +00. We get g—; > 149

(6 > 0) if and only if pg > ‘12—d - 2(1;15)’ which is the case for ¢ sufficiently small.
Then, we can iterate the previous process with some increasing sequence p; with
pi+1 = (1+0)p; to get that for any i € N, there exists Cj so that [|ul| s, q,) < Cie.

Fix j so large that p; /g > d. Using once again the equation, we get HuHWQ,pj/q(Q ) <
J

Cje, and since p;/q > d, Sobolev embedding implies that
[ullgrq,) < Ce

In particular, ||uq|\<g1(gi) < Ce? and using again the equation and elliptic regularity,
lullywer(q,,,) < Cre for any 1 <7 < +o00. Choose r > d > 2 so that Wk is an
algebra for all £ € N, then using repetitively the equation and elliptic regularity,
we infer that k € N,

||“Hwkvr(§zi+2+k) < Crpe.

In particular, for all s > 0 integer, ||u||HS+1/2(Qi+3+S) < Cse and we get the result
by trace estimates. (I

The previous results were about the energy critical equation. We now obtain similar
result for more gene general pure power nonlinearities, but under a much stronger
assumption of small L> norm. We only sketch the proof.

Proposition A.7 (Trace regularity). Let g € N*. Then, for any s > 0 and Ry > 0,
there exists C > 0 so that for any u € H*({|z| € (1/2,2)}), solution of Au = kud
on {|z| € (1/2,2)} and so that

€= HUHLOC(\z\e(l/Q,z)) < Ro,
then wga— € H*(S*"1) and [ulsa—1l s ga-1y < Ce.
Proof. By elliptic regularity and using the equation, we get for any 1 < p < +o0

lullwzr o,y < CllAU Lo ) + C Ul Loy
< Cllu?ll o () + C llull oo () < C(Ro)e-

We can them iterate as before to get the expected result. (I

Lemma A.8. Assume d > 3 and g € N*. Let u € L™ ({|z] > 1}) be a solution of
Au = ku? on {|z| > 1} and assume that there exists C > 0 so that

Viz| =1, |u(z)] < Clz|~@2.
Then, there exists C' >0 and R > 2 so that u € H'({|z| > R}) and

V|z| 2 R, |Vu(z)| < C"|z|_d+1.
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Proof. For 7o € R? we will use the rescaled and translated solution u,,(r) =
|$0|%u(aco — |xo|x). For |zg| = 2, it is solution of the same equation on B(0,1/2)
with [[ue, | oo (5(0,1/2)) < < 024 2|x0| 71742 We will use the following Claim.
Claim: Let v be a solution of Av = kv? on B(0,1/2) with ||U||Lw(3(011/2)) < 1.
Then, Vv is bounded on B(0,1/4) and there exists a constant D so that

||VU||L<>°(B(0 1/4) S <D HU||L°°(B(O 1/2)) *
The Claim is classical by elliptic estimates, we omit the proof.
Let R so large that C202R7 17472 1. We apply it to ug, and obtain that
IVu®(0)] < Clao|7-7 @2, that is

[Vu(zo)| < Clao|~ "1

This holds uniformly for |zo| > R. This implies Vu € L?({|z| > 2}), since d > 2.
Note also that the decay |u(x)| < C|z|~(@2) also implies u € L? ({|z| > 1}), so

that u € Hl({|:c| R}). O
A.3. Conformal equations in dimension 2. In all this sectio o\%\/nlee%gdin dimen-
sion d = 2 and consider solutions of equations of the type mmher some

already known facts and also some results that are quite classical consequences of

them. For some of them, the results are already written for H rmonic maps, but
S g 1@ not, I}Iel{in dhe exact similar statement for equation ﬁmfer to

K{Y HWOS, [5¢h84] Tor books or survey on Harmaopic maps.

It has been poticed by Riviere (see the proof of [Riv07, Theorem 1.2.]) that if u is

solution of (%,_ﬂmt is also solution of —Au = - Vu (scalar product in

RQE with © = (Q;)lgi,jgju defined by

M

Q== 3 (Alp(w) - Aly(w)) Vu' + - Z( — H}(w)) V!

=1
which satisfies Q) = —QJ. This is a consequence of the fact that H = - —H 7, and
we have Z]Ail Al (w)Vu? = (A(u)(ei, e0), Vu) = 0 (the last scalar product being
on RM) since A(u)(e;,er) L TyN and Vu € (T,N)?.
In particular, if Vu € L?(B(0,1)), we have Q € L?(B(0,1),so(M) @ R?) together
with ||QHL2(B 0,1)) S C(UVUHLZ(B (0,1))
The result of R1v1ere RT/OYDLCL({)D{];ined with the result of Giusti-Miranda and Mor-
rey (see Theorem 9.8 of [GMIZ] Tor the Holder continuity of the gradient which can
be iterated by Schauder estimates e[ig(l)r‘f-lgies the following regularity result. This
followed an earlier result of Hélein [[HEII1] for Harmonic maps.

ormembed
Theorem A.9. Anyu € HY(B(0,1),N) weak solution of 1ki§%%ﬁ] 15 smooth.

e have the following resulf, of Riviere TRET/O?] (we found it written in this way in
LR14, Theorem 3.2.]) and [STI3|:

Proposition A.10. WRET/O?] There exists eg > a@d C, only depending on p € N*

so that for every Q € L?(B(0,1),s0(M) ® R?) with 1€ L2(50,1)) < €0 and every
u € WH2(B(0,1)) solution of —Au = Q - Vu, we have
||VUHLP(B(O 1/4)) S <G HVUHL2(3(0 1)

aur : XEDP
We immediately obtain the following result (also writte Jn[Laul?, Lemma 4. 3]).

The statement was also obtained for Harmonic maps in [SUSRI].

6That is —Au; = Z;il Qi -Vu; = Z;Vil (Qg’lazuj + 937287!%) fori=1,...,M.
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Theorem A.11. Suppose that u € H'(B(0,7),N) is a solution of (E%S._TW

exists € > 0 and C > 0 depending only on N' and w such that if
/ |Vu(z)Pdr < e,
B(0,r)
then u satisfies the inequality

sup  |Vu(z)> < CT_Q/ |Vu(z)|?dx.
zeB(0,r/8) B(0,r)

Proof. By scaling, we nee@ to prove it only for r = 1. Fix an integer p > 2. The
equation and Proposition give

2 2
||A“HLP(B(0,1/4)) <C ||VUHL2P(B(0,1/4)) <Gy HV“HL2(B(0,1)) :
Let x € €>°(B(0,1/4)) equal to 1 on B(0,1/8) and denote
1
_ u
1B(0,1/4)] Jp(0,1/4)

Applying elliptic estimates to the compactly supported function v = x(u — up, , s
the Poincaré-Wirtinger inequality and our previous bounds, we get

UBy /4 =

(x)dx.

HUHW2,;7(B(0,1/4)) <0 ||AU||LP(B(O,1/4))
<C (HAUHLP(B(OJ/AL)) + ||VUHLP(B(O,1/4)) + Hu - uBl/4HLp(B(O,1/4)))

<C (HAUHLP(B(0,1/4)) + ||quLP(B(O,1/4))) Sp (Ve+1) ||VUHL2(B(0,1)) )
Since p > 2, the Sobolev inequality gives

HVUHLOO(B(O,l/s)) = HVUHLoc(B(o,1/s) < HU||W2vP(B(O,1/4))'

This gives the expected result. (]

The following equality is an equipartition result for solutions of Wf& D\
{0}, in the energy space. This was proved for Harmonic maps in [SUZ1, Lemma 3.5
using the holomorphy of the Hopf differential 2 + u + Uy, Uy We prove it here
by a Pohozahev type identity, following Laurain-Ri lere ]STRM]; there it is proved
for solutions on the full B(0,1) (see also (VII.14) in [RivIZ] for the harmonic case).

So, we have to be careful about the cutoff introduced to avoid the point 0 where u
might not be solution.

lmPoho | Lemma A.%Z. Le%ogmeembﬁQ(B(O,l) \ {0}, N) with finite energy on B(0,1), and

solution of . Then, for any 0 <r <1, we have

eq:Poho| (A.7) / |0pu(rd)|* do = 7’2/ |0,u(ro)|? db.
St st

Proof. By scaling, we suffices t ove g?geglggglt for r = 1. The key property is the
orthogonality when f is as in (E%ﬁ,—wm_d?holds pointwise on B(0, 1)\ {0}

(A.8) 0 = (Ozu, f(u, Vu))gnr = (Oyu, f(u, Vu))gar -
Indeed, A(u)(Vu,Vu) L T,N and 0,4, Oyu € T, N at each point of B(0,1) \ {0}.
For the H, it is a consequence of , which gives
(Ozu, H(u)(0pu, Oyu)u)grr = dwy(z)(9ru, O, Oyu) = 0.

The same holds for d,u.
Define now the vector fields

X =20, +ydy, and X, =(1-x)(n)X,
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where Y € C2°(R?) equals 1 near zero. We claim that, for any function w €
€¢*(B(0,1) \ {0}, R) with finite energy, we have
1
(A.9) lim AwX, - Vw dz :/ |0,w|? do — —/ |Vwl|? do
n—+00 2 JaB(o,1)

B(0,1) aB(0,1)
oPoho
Let us assume that is holds for now, and complete the proof. Due to 1%:%},

M M
ZAuiﬁzui = ZAuiﬁyui =0 on B(0,1)\{0},
i=1 i=1
and so, as any singularity in 0 is voided by X,

M

Z Au; X, - Vu' on B(0,1).

i=1

Poh

We integrate on B(0, 1): using (lﬁ)%th w = u; for each i, we can let n — +o0

to get
1
0 :/ |0,u|? do — —/ |Vul? do.
9B(0,1) 2 Jop(o,1)

:Poh
Finally remark that |[Vu|? = |9,u|? +|9pu|? on dB(0,1), so that we obtained (ﬁg
for r =1, as desired.
’ h
It remains to prove (ﬁ)._OVOVe obtain by integration by parts on B(0,1):

/ AwX,, - Vw dx = / OpwX, - Vw do — / Vw - V(X,, - Vw) dx.
B(0,1) 8B(0,1) B(0,1)

This leads to compute the following two terms
Vw - V(X, - Vw) = d(X,, - Vw)(Vw) = Dy X, - Vw + X, - Dy, Vw
= DywXy - Vw + Hess(w) (X, Vw),

2 2 2
div (Xn [Vl ) — X, - v@ T div(Xn)@
2
= Hess(w)(X,, Vw) + div(Xn)@.

For our specific choice of X,,, we have
Dy X, -V = (1 —x)(n)|Vw|* = n(Vx(n) - Vw)(X - Vw)
and div(X,)=2(1-x)(n') +nVx(:) - X.

So, we obtain

. [Vw|?
AwX, - Vw dz = OpwX,, - Vw do — div| X,,—— | dz
B(0,1) 8B(0,1) B(0,1) 2

i /Bm,n [(59x() - X) [Vul? +n(Vx(n) - Vao) (X - Vw)] da.

Since Vw € L?(B(0,1)) and n|X||Vx(n-)| is uniformly bounded, we get by domi-
nated convergence that the last integral converges to zero. For the first two terms
of the right hand side, we use the definition of X,, and integration by parts, and we
get that for each n,

2
/ OpwX,, - Vw do — / div (Xn|vw| ) dz
aB(0,1) B(0,1) 2

1
:/ |0,w|* do — —/ |Vwl|? do.
9B(0,1) 2 Jop(o,1)
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. . . Poho
which gives our claim . (I

.81
We can now give the proof of removable singularity. The proof follows TSUSL The-
orem 3.6] which was performed for Harmonic maps.

ackuhlextensconf . . .
Proof of Theorem i@“ﬁ By scaling, since u is of finite eper, ¢ can agsume without
loss of generality that u is defined and a solution of MWBHJ, 2)\ {0} and
furthermore satisfies the smallness condition

62 = / |Vu(z)]?dr < min(1/5,¢),
B(0,2)

o L WlinftyH
where ¢ is given by Theorem ﬁl E

Step 1. Let g be a radial function of the form alog(|z|) + b on each annulus of the
form 27 < |z| < 27T (m € N) so that ¢(27™) = = [, u(27™6)df. We claim
that

(A10) Ve eBOD\{0}, lg(e) - u@)] < CIVul 2o

Indeed, for 27 < |z| < 27™*!, we have, since ¢ is monotonous on this interval as
a variable of r = |z,

la(2) — u(z)] < lg(@) = a7+ a7 ) — u(2)|
<g(27™) = 27+ [g(27™) — u(2)].

:WlinftyH
Note that using a finite suitable covering of the annulus, Theorem %Jl i also gives
uniformly for 0 < r <1

(A.11) sup |Vu(z)]* < CT_Q/ |Vu(z)|?dz.
|z|="r B(0,2r)\B(0,r/2)
So, we get, for all m € N*,

- —m+1 —m+1
max {[u(@) = u(@)i2 " <fal Jp] <27} <27 max | [Vu(a)

<C HV“||L2(B(0,2)) .
In particular, taking y = 27™%10 and integrating in € S', we get
(27" —u(@)] < ClIVull 2z, -
Similarly, taking y = 27116, £ = 27™6 and integrating in 6 € S', we get
lg(27™) = q(27"Th)| < C HVUH.L?(B(O,Q)) :

Summing up the above two bounds, we obtained

Step 2. For all r € (0, 1], there hold

est:H1_bord_reg_HM ‘ (A.12) (1- 25)/ |Vul* de < r HvulliZ(aB(o ") -
B(0,r) ’

By dilation, (and as § = ||Vu| p,2) = [|Vul|p(,2r) for 7 < 1), it suffices to prove it
for r = 1.

:Hel91
Using Lemma %Q(Observe that u is smooth on B(0,1)\ {0} due to Theorem iﬁé }e:
we get for any 0 <r < 1,

/ |0pu(ro)|* df = 7’2/ |0,u(ro)* db,
st St

and after integrating in 7,

9 2 1
[ B g [ P =g [ Va)? dn
501 ] B(0,1) 2 /s
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Also, since ¢ is radial,

) 2
/ M dx < / |Vq(z) — Vu(z)*dz.
B(0,1) |z B(0,1)
Hence we obtained
1
(A.13) —/ |Vul? do < / |Vq(x) — Vu(x)|*dx.
2 /B0, B(0.1)
To bound the right hand term, we decompose dyadically:

/ IVq(x) = Vu(z)Pde = > / \Vq(z) — Vu(z)|*dz.
B(0,1) menx Y B(0,2-m T\ B(0,2-™)
For fixed m € N*, integration by parts give

/ |Vq(z) — Vu(r)|*dx
B(0,2-m+1)\ B(0,2=™)

A(g —wu) - (¢ —u)dx

_ _ g—u),_ _
m+1 _ m—+1 . m+1
2 /S (g —wem ). LI g g

—m —-m a(q - u) —-m

/3(072’"“)\3(072’")

Let us precise that %(7‘) is piecewise smooth, so that 86?‘1 means the respective left
and right derivative; u is regular outside of 0, so we can write g—:f instead of 59?“.

Also 6%7(2_7"9) is constant in 6 because ¢ has radial symmetry, and so that from
the definition of ¢(27™),

/Sl (q—u)(27™0) - a‘i—qi(z*mo) do = 0.

i quH inf
Now, using (ﬁﬁf and (%)%Vé&mﬁave the estimate
0
‘2_’"“/ (g —u)(27™T19) - —u(2_m+19) d@’
st 87’
< ClIVullLa 0,2y VUl L2 (B0,2-mt2p\B0,2-my) = 0 as m — +o0.

Hence, summing up the telescopic series and recalling that Ag(z) = 0 on each
annulus 27! > |z| > 27™, and the equation on u, we infer

Vag(z) — Vu(z)|*dr = Au - (g —u)dx
/B(m)m() (@) Z/B ()

(0,2=m+1\B(0,27™)

meN*
(g —u)
+/Sl(q—u)(9)'8r7+(9) do
_ w0 — wda _ e A=)
= [ B @+ [ (a—n) TG00 @

-/ A ORCENTS [ a=wie- 22 .

Using again the estimate (l%ﬁjﬂ and that f is quadratic in Vu, and A and H are
(smooth and so) bounded on the compact manifold N we can estimate

S C(1All e, [1H][ o) HVUHi%B(O,l)) lg = ull Lo (B(0,1))

/ f(u, V) - (g — u)de
B(0,1)

<C ”qui?(B(O,l)) IVull L2 p(0,2) »
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corscalinvers

0 < llg—ull pogor,

[ =) 252

So, inserting in (ﬁ)%v% arrive at
1
5[ v [ (Ve - Va(o)Pdo
2 /B(o,1) B(0,1)

2
< CIVullzepoa) IVullL2(po,2) + 11a — ull p2@

Ju
or

L2(St) -

ar

’8u

L2(St)

Recall that HVUHLz(B(o,z)) = ¢ and, again due to Lemma %ﬂg ||%||iz(s1) =

i ||Vu||iQ(S1) so that equivalently, this writes

1 1
50 / Vul?de < —|l¢g—u Vu .
(2 ) B(0,1) | | \/5 Hq ||L2(S1) || ||L2(S1)

Since on_S! q is the average of u, we have, by Poincaré-Wirtinger inequality (and
Lemma ,

1
llg — UHL2 COI HGHUHB (sv) = ﬁ HVUHLZ(SI) :

So, we get
(1 — 25)/ |VU( |2 d.’L‘ HVUHLZ(SI) ;
B(0,1)
as desired.
Step 3. ) :H1_bord_reg_HM
The inequality writes

(1=26) [ glds <rglr) with g(r) = [VulFaomia, -

This differential inequality in 7 integrates to yield

(A.14) vr e (0,1], / |Vu|? de < 7’1725/ |Vul? da.
B(0,r) B(0,1)

:WiinftyH
E%%%lﬁé?g Theorem lﬁ%ﬁéﬂs B(zo, |xo]) C B(0,2|zo|) and some translation of

Voo € B(0,1/2),  |Vul*(z0) < |zo| 2 /

B(zo,|zol)

|Vul> < C|x0|_1_26/ |Vu|*dz.
B(0,2)

As we choose 0 < 1/2, then —1 — 6> —1, and u has a finite limit at 0 (see the
proof of Lemma e can therefore extend u to B(0,1) with u € €°(B(0,1)).

Also, so there exists ¢ > 2 such that (—3 5:§ > .25 Therefore, Vu € L1(B(0,1/2)).

We are then in a position to apply Lemma which assures that  is smooth. [1
ormemb
Corollary A.13. Let u be a weak solution of (%SWH@Q\ ) with finite
energy. Then, there exists us € N CRM so that u(z) — Uso-
|z|—+o00

In particular, for any € > 0, there exists 1Y > 1 so that for any r > R, denoting
ormem
ur(x) = u(rx), u, satisfies on B(0,1) and
IVurll Lo e\ B(o,1)) + 1tr = Uooll oo me\5(0,1)) < €
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Proof. Define u(x) = u 1(4%) which is also a solution with finite energy on B(0,1)\
ackuh. }%11.e sconf X
{0}. Theorem @‘5 implies that u can be extended to a smooth function on B(0,1).

In particular, .denoting- Uso = 0(0) € N, u(z) = ﬂ(z/|z|2) — Uoo a5 T 5 doo; [he . o
second result is then direct once we check that w, is also a solution of on

{|z| = 1/r} with

/>1|Vur(x)|2dz/>17’2|Vu(rz)|2dz/ |Vu(y)2dy.

ly|=r

So, it can be made arbitrary small. O

pelipticregtraceHarmon | Proposition A.14 (Regularity and trace). Let us € N. There exists eg > 0 an
C > 0 such that the following holds. Let u € H'(B(0,12)) be solution of
taking values some chart around us., So that

IVullp2(p(0,12)) + 1w = tosll Lo ((0,12)) = € < €0
Then, we have the estimate
HV“HLOO(B(O,3/2)) < Ce.

Moreover, for any s < 4, there hold uis1 € H*(SY) and HU‘SI — UOOHHS(Sl

) < Cie.
Proof. As u is a solution of d%) with values in some fixed coordinate charts

around Uqo, b% conﬁggglin%g jSome embedding N/ C RM™, we can identify v with a

solutio (')é? and we use this representation from now on; the {(;ls&l%tHby
Riviere |[Riv07] ensures that u € ¥°°(B(0,12), ). Due to Theorem gll ”;

sup |Vul? € C’/ |Vu(z)2de < Ce?.
B(0,3/2) B(0,12)

. . ormembed .
Using the equation , 1t 1mplies

sup  |Au| < Ce?.
{3/4<r<5/4}

Let x be a cutoff function supported in {3/4 < |z| < 5/4} and equal to 1 on
{7/8 < |z| < 9/8}, and denote & = (u — U )x. For any 1 < p < 400, we have

AU o2 < ClAU Lo (3/4¢,<5/4)

S CllAull oo (3/a<r<5/0) T IVl Lo (37a<r<572) T 80— ool oo (3 /0<r<5 /1)
< Ce.

GTbook
By Calderén-Zygmund estimates h(} [01, Theorem 9.11], we infer

llu— Uoo||wz,p(7/8<|x|<9/s) < lu— Uoo||Lp(3/4<r<5/4) + ||Aﬂ||LP(3/4<r<5/4) < Gpe.
Since u = U + U on {7/8 < |x| < 9/8}), we can iterate by checking the equation
satisfied by Vu and then V2u to get
lJu— UOO||W4’P(31/32§|z|§33/32) < Cpe.

For any 7/2 < s < 4, choosing p so that 2 < p < 4%3’ then s < 4 — 1/p and by
trace estimates:

st — uOOHHS(Sl) <Cs|lug - u00||w4—1/p,p(51)

<

Csllu— “oo||W4,p(31/32<|m|<33/32) < Cee. 0
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propUCPDiskHarmon ‘

HarmonicR

est:Harmonic_diff |

s:app:HM3

Proposition A.15. There exists € > 0 (depending on N and w) such that the
following holds. Let u and v be two smooth solutions of in B(0,1) so that
u=v on the unit sphere S* and are small in the sense that

||VU||L°°(B(0,1)) + ||V”HL°°(B(0,1)) S¢€
Then, uw = v in B(0,1).
Proof. Let w = u — v, then w satisfies
(A.15dw = —[I'(u) — T(v)](Vu, Vu) — [['(v)(Vw, Vu + Vo)

+ [H(u) — H()](0zu, Oyu) + H(v)(Oyw, dyu) + H(v)(0zv, Oyw).

where we have used the bj meamtx of I' and H and the symmetry of I'. Taking
scalar product in RV of with w, integrating and then performing an in-

tegration by parts, we get, using the Dirichlet boundary condition for w and that
TNy 1 H [l61 vy < Cnryw are bounded (since the target manifold M is compact)

Vuw|?dz = T'(u Vu,Vu) - w dx
/NH /m[” I()](Vu, Va) -

+/ I'(v)(Vw,Vu + Vo) -w dx — / H()](0pu, Oyu) - w dx
|z|<1 |z|<1
- H(v)(0zw, 0yu) - w — H(v)(0zv, 0yw) - w dx

|z|<1 lz|<1
(A.16% c/ IVl do+ c/ V| (1Va] + Vo)) |u] de

lz|<1 |z]<1

< 052/ |w|* dz + Cs/ |Vw|? + |w|? dz
|z|<1 z|<1

< C‘s/ |Vw|?dz.
|z|<1

(we used the Poincaré inequality on the bounded set B(0, 1), which holds due to
the Dirichlet boundary for w). For Ce < 1, this gives w = 0. O

A.4. Some results about Harmonic Maps in dimension d > 3. In this sec-

tion, we gather some alreadyéc,g‘(:)g%%oﬁqﬁ §.ab gllgteHarsn}lomc Maps in R? (for the

initial manifold). We refer to HTTZTHWUB’, SEHSZIT—i%r_m survey on this very

studied topic.

F]ﬁe mé}aortant tool will be the following e-regularity result of Schoen-Uhlenbeck
Sch&4; Theorem 2.2].

choen

Theorem A.16 (Theorem 2.2 of [[Sc 582[]%7 Suppose u € €*(B(0,7),N) is a har-
monic map. There exists ¢ > 0 and C' > 0, depending only on d, N such that

if
r2_d/ |Vul> < e
B(0,r)

then u satisfies the inequality

sup |Vul? < Crfd/ |Vul?.
B(0,r/2) B(0,r)
We begin by a result about the decay of el lar solution in the energy space. The
proof relies on the regularity result of [SUS2 h{ ]E% small solutions and a scaling
argument. Some similar results also appear in [[ABLV23].
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1mregHMHA
Proof of Lemmals. 7 For 7o € R%and R = |zg| > 2, we denote i(z) = u(zo+Rz/2)
which is still solution of the Harmonic map on B(O, 1) . We compute

/ |Vi(x)|*dr = (R/2)2/ |Vu(zg + Ra/2)|>dx
B(0,1) B(0,1)

::mnf%/‘ Vuly)Pdy.
B(zo,R/2)

h
Since d > 3, this becomes small for large R, so that we can apply Theorem%’t%
% and r =1 to get

WM®F<C/

Vo) Pde < CR [ Vu(y) 2dy
B(0,1)

B(xzo,R/2)

< CRHI/ Vu(y)[*dy.
B(0,3R/2)\B(0,R/2)

Since |V@(0)| = R|Vu(zo)|, We get
Vateo)? < CR | Vuly) Py,
R4\ B(0,R/2)

which is the first item once Ry is chosen large enough.

Concerning the second point, the L? part is immediate when Ry is taken large
enough, the L™ part is a consequence of the first item, while the L¢ part is obtained
by interpolation. O

1m: H1HM
Proof of Lemma me first fix a direction e Q ,0) € R? and prove
that u(nep) is convergent in N c RM, Lemma M’émhe fundamental Theorem
of calculus give for n large enough |u((n + 1)e1) — u(ney)| = Zg/l In particular,
since d/2 > 1, the series is convergent and u(ne;) is convergent to some us, €
N C RM™. Now, for any n € N and # € R? with |z| € [n,n + 1], there exists a
path v C R%\ B(0,n) piecewise affine and of length |y| < Cyn so that v(0) =

ne; and y(1) = z. The fundamental Theorem of Calculus gives |u(§) — ylner)| <

nsup,epoq |Vu(y(s))| = o(n'~%?) after having used again Lemma ince 1 —
d/2 < 0, we get the expected convergence. Note also that the proof gives more
precisely
(A7) = tooll o (3(0,m 1 1\ B0y = 001 2) +0(1) Y kT2 = o(n!=9/2).
k>n

Now, we prove u — s € H'(R?\ B(0,1)), that is « — ts, can be approximated for
the energy norm by a sequence of functions in € >°(R%).

First consider u, = x (%) (u — uso) where x € €>°(B(0,2);[0,1]) equals to 1 on
B(0,1). By assumption, u,, € €2(R?) and for

Up = U — Upo — Up = (U — Ugso) (1—)((%)),
o512 (2)) - o 2

] ) :cygHMinft
we can bound, using estimate ,

1
Volde< [ Vuldrt = ez s 3 [
/Rd B0 L=(BO20\BO) 72 |,

< / |Vaul?dz 4 o(n®*~")n?2 -0 asn — +oo.
R4\ B(0,n)

7



Once u — s, has been approximated by some % compactly supported functions,
it is easy to approximate it by some smooth compactly supported functions by
standard approximation process. [l

We will use the foll Wing _lg%ult of uniqueness. Some uniqueness result appear in
bounded domain in ;%Sfrg Sf for small data in some more refined norms.

. ropUCPRdHarmon | . L. . .
Proof of Prcgéosgaéggi . he beginning of the proof is a similar computation as in
exce

Proposition pt that since we are on an unbounded seE %eolfgg}gtﬁﬁ interpret
the integration by parts as the weak formulation of Definition so, we consider

the equation for the embedded formulation. Let w = u —v € H'(R%\ B(0,1)) with
w =0 on S that is w € HE(R?\ B(0,1)) In particular, there exists a seﬂ%ence. R

; nic
of wy, < E> (Rd B( é}n}()n?g_g%?g [IV(w — wy)|| 2 — 0. Using that w solves )
we arrive as in 1%:%} to

/ Vw - Vw,dz < C’/ |Vul?|w||w,| dv
{lz>1}

{lz[>1}

+c/ IVw| (|Vu| + [Vo]) |wn] da.
{lz[>1}

Using Holder inequality for the expon dgéa 2% 2% =1 and % + é + 2% =1,
together with the Sobolev embedding , we obtain for n large enough

/ Vw - Vw,dzx
{lz|>1}

< CIVUlLaggapsip 0l e oz lwall 2 oz 1y
+ CIVull oz (10l ooz + 1Vl Laggapsay ) loallzee (a1
<C( +e) IVl L2 (go1513) V@RIl L2 (gap1y) -
Taking the limit n — 400, this gives
VW[l 72 gz < CE +) IVl T2((lxz1)) -

For € so small that C(e2 4+ ¢) < 1/2, we get Vw = 0 and therefore w = 0 as
expected. (I
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