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A SCATTERING OPERATOR FOR SOME NONLINEAR
ELLIPTIC EQUATIONS

RAPHAEL COTE AND CAMILLE LAURENT

ABsTRACT. We consider non linear elliptic equations of the form
Au = f(u, Vu).

for suitable analytic nonlinearity f, in the vinicity of infinity in R, that is
on the complement of a compact set. We show that there is a one-to-one
correspondence between the non linear solution u defined there, and the linear
solution uy, to the Laplace equation, such that, in an adequate space, u—uy, —
0 as |z| — +oo. This is a kind of scattering operator.

Our results apply in particular for the energy critical and supercritical pure
power elliptic equation and for the 2d (energy critical) harmonic maps and the
H-system. Similar results are derived for solutions defined on the neighborhood
of a point in R%.

The proofs are based on a conformal change of variables, and studied as
an evolution equation (with the radial direction playing the role of time) in
spaces with analytic regularity on spheres (the directions orthogonal to the
radial direction).
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1. INTRODUCTION

1.1. Motivations and setting of the problem. The purpose of this article is
to give a classification of solutions of certain nonlinear elliptic equations, by their
behavior at infinity. We consider equations of the form

(1.1) Au = f(u, Vu),

where the nonlinearity f is analytic, and with an extra emphasis on the elliptic
nonlinear equation with H? critical power nonlinearity, conformal equations in di-
mension 2, and smooth harmonic maps. Roughly speaking, we will construct, in
these considered examples, a scattering operator: we prove that when considering
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the vicinity of (spatial) infinity, there is a one-to-one correspondence between linear
solutions of

(1.2) Aur, =0 on R4\ B(0,1), wur|sa1 = uo,

where ug is a given function on S?~! and nonlinear solutions of (L)) defined for
sufficiently large x; and furthermore nonlinear solutions behave as a linear one in
an appropriate space.

This space is strong enough to distinguish each linear solution from another one
only from their asymptotic behavior. For instance, since all linear solutions converge
to 0 at infinity, the space we consider should be much finer than L or H!. The
space we use specifically translates the behaviour of the linear elliptic solutions. In
particular, it implies some analyticity in the angular variable.

Note also that the full classification is obtained in some general examples that are
critical or with additional assumptions. Yet, the construction of nonlinear solutions
from their behavior at infinity (that is one part of the scattering operator) is made
in a great generality, see for instance Theorem 5.4

The problem we consider is natural and has its own interest; we believe it will also
prove useful for related evolution problems. Indeed, one extra motivation comes
from the evidence that the asymptotic behavior of non linear object like the well-
known soliton plays a fundamental role in dynamical contexts, as it drives the
interactions: for example, the construction of blow up solutions, the construction of
multi-solitons, the analysis of collision of solitons, the soliton resolution conjecture
etc.

Let us elaborate somehow on this last example, in the case of the energy-critical
wave equation, which was studied by Duyckaerts-Kenig-Merle. They develop in
particular the channel of energy method: in the 3D radial setting [DKM13]|, the
authors manage to conclude that some initial datum giving rise to “nonlinear non
radiative solutions” should behave at infinity as the Newtonian potential % and next,
should actually be the ground state W : x > (1 + |x|>/3)~/2 (up to scaling). This
idea to “catch the ground-state by the tail” has been extended with many more
subtleties to other dimensions and other equations [CKLSI5al, [CKLSI5b, [Co15]
DKM23].

One of the key roadblocks in generalizing the above results to the non radial setting
is the lack of understanding of the non radial nonlinear objects, such as spectral
properties when linearizing around them, or their asymptotic behavior.

Our work here provides a first description in the non radial context, within a frame-
work that encompass semilinear elliptic equations together with harmonic maps or
the H-system.

We address the question by recasting the elliptic equation in terms of an evolution
equation on the sphere, where time is played by the radial variable. After performing
a conformal change of variable, the equation is obviously (strongly) ill posed, but
is amenable to resolution from infinity, for data without growing modes.

We will now define the functional setting in the next paragraph, so as to state our
results with the following ones.

1.2. The functional setting. The proof will be performed after a conformal

change of coordinates from R? to R x S?~! using spherical coordinates. The har-

monical analysis on SY~! will play a crucial role. We begin by a few generalities.

Let d > 2. We denote Aga—1 the Laplace-Beltrami operator on the sphere S?~!, and

let (¢¢.m)een,m<n, be an L? orthogonal basis of normalized spherical harmonics, so
2



that ¢¢,r, is the restriction of a harmonic homogeneous polynomial of degree ¢ € N.
Recall that ¢g ., are eigenfunctions for —Aga—1

—Agi-1¢em = L+ d = 2)pe,m,

and so Ny is the dimension of the eigenspace of —Aga-1 for the eigenvalue £(¢+d—2).
Let P, be the orthogonal projection onto this eigenspace: if v is a function defined
on S4-1,

Ny Ny
(13) PZ'U - Z(fa (bﬂ,m)(b@,m; HP[UH%Z(Sdfl) = Z |<’Ua¢€,m>|2-
m=1 m=1

We consider the positive elliptic operator on the sphere S¢—1

d—2\°
D = \/—Agdl + (T) s

so that for all £ € N and m < Ny,
d—2
Qd)é,m - (6 + T) ¢Z,m-

We denote LZ(S?!) = Span(de,m,? € N,m < N} the space of (finite) linear
combinations of eigenfunctions of ©; all normed spaces below will be meant as
completion of L3 for the underlying norm.

The space H*(S%1!) is the completion of L2(S~1) for the H* norm defined as

+oo

103 @11y == D (O PevlFaga-sys
£=0

where (¢) = /1 + |£|? is the japanese bracket (here ¢ is an integer, but we also use
the notation for a vector or a multi-index). There hold

[0l gre -1y = [1(1 = Aga-1)*"?0]| 2(ga-1y,

and both these norms are equivalent to the usual Sobolev norm considered (thanks
to some partition of unity) in each coordinate charts, [LM72, Section 7.3]. Therefore,
all usual Sobolev embeddings apply.

We will state our results using the spaces Z>. and Z° ., made of functions on S%1,

s, s,7

and which are the completion of L2(S?~1) for the respective norms:

“+oo

1/2
da—2 s _
HUHZ;CT =T HTDUHHS(Sdfl) = <Z<£>2 T2(€+d 2)|PZU||%2(S(£1)> s
£=0

too 1/2
d—2 _ s . —
and ”U”ZSUYT =z ||T D’UHHS(Sdfl) = <Z<£>2 r 2é||PEU||%2(Sd1)> .

£=0
Notice that for 1 < r < 7/, we have the continuous embedding Z;OT, C Z;‘; C H?®

together with [[v]| ;o < ||v|[4 and similarly for 0 < 7" < r < 1, there hold
20, 28, c 1o and ol < ol o

For functions defined on R¢\ B(0,rg) or B(0, 1) respectively, we will be interested
in the Z;, regularity on rescaled restrictions u(r-) : (y — u(ry) (defined on the
sphare S?~1) (for » < 7 or r > r( respectively: this dependence of the space on
the radius prompt us to the following definitions, which are meaningful due to the
continuous embedding mentioned above.
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We say that u € 255, if u defined on R*\ B(0,7¢) and such that, for all r > ro,
u(r) € 235,05 (Opu)(r) € Z32

(p = u(pr)) € €([r, +00),

s—1,r/rg’

) ne' ([Ta +OO), Z;.il,r/ro)v

s T/To

and such that the following norm is finite:

d—2 d—2 ou
s, =ro® s (Il + || (G520t roe) )

r>ro o/

oo
Z3 /o

Similarly, u e 22, if it is defined on B(0,7¢) so that for all 0 < r < 7o, u(r-) €
Oru)(r) € Z_, /e

(p = u(p)) € C€((0,7], 20 1/0,) NE (0,71, 201 1),

and such that the related norm is finite:

d=2 2 ou
lulls,, =™ s (Il + | (SR rge) )

0<r<ro

s 7‘/7"0

0
Zg ey

The exponent oo reminds that we will be interested in the behavior for || — 400,
while the exponent 0 denotes a space adapted to the vicinity of 0 (or a point).
The regularity index s appears as a fine tuning parameter: it plays an important
role in the product laws, and so in the multi-linear estimates; one could simply fix
for the rest of the article
d 3

s> 5 + 5"
For some purposes, we stated some intermediary results with more precision on s:
except if a specific weaker bound is precised, all the following results assume s as
above.
u € Z2 implies that u has the same decay as a linear solution of Au; = 0,
that is |u(x)| = O(|z|~(=?)) (see Lemma B.I5). It is actually more precise: when
decomposing in spherical harmonics, each component decays as a linear solution,
that is || Pou(r)|| o ga-1) = Op(r=d=2=) as r — +o0.
Note that in several results that we will prove, the functions we consider are vector
valued. In order to keep reasonable notations which are already heavy, we always
mean that every coordinate belongs to the related spaces: for instance, we will write
Z2 instead of (£2°)N. This should not lead to any confusion.
Finally, we drop the index r when r = 1, for example Z* := Z29

Now, we begin to present our main results for specific types of equations. The
constructions of the nonlinear solutions with prescribed behavior at infinity are
always consequence of the two general Theorem [5.4] and presented in Section [}
Theorem [(.5lis a refinement of Theorem [5.4], needed in some critical cases where we
have to use some better properties of the first iterate of the Picard iteration. This
improved behavior is observed in the case of conformal equations in dimension 2
where a “null” structure is observed.

1.3. Main results on the semilinear equation. In this section we state those
of our results which are concerned with the case of the (non derivative) nonlinearity

(1.4) fly) = Z apy®,
peN
with a positive radius of convergence.
The first statement constructs, for a general nonlinearity, nonlinear solutions having
a prescribed linear behavior at infinity. The second one, restricted to H!-critical
4



analytic nonlinearities, realizes the converse, that is, establishes that a finite energy
solutions behaves as a linear solution at infinity. The combination of both results
leads to a kind of scattering operator identifying linear and nonlinear germs of
solutions.

Theorem 1.1. Let d > 3. Assume that f as in ([L4)) satisfies the supercriticality
assumption

ap 0= (d—2)p—d > vy > 0.

Let ug € H*(S1Y), and uy, € 2 given in (L2).
Then, there exist rg > 1 and a unique small solution u € ZZ5. of (L1)) on {|z| > ro}
and such that

Moreover, the map uo — u is injective; and if ||uo|| gr. ga-1y s small enough, we can
take rqg = 1.

(Here and below, we say that there is a unique small solution u in a Banach space
Z if there exists € > 0 such that u is the unique solution in the ball centered at 0
and of radius € of Z.)

When we restrict to H! critical exponents with analytic nonlinearities (which ac-
tually leaves the three possibilities mentioned below), we obtain a full classification
of all possible solutions close to infinity.

Theorem 1.2 (Semilinear energy critical equation). We consider the equation
(1.5) Au = kuP.
where kK € R, and we assume to be in one of the following situations:

(d;p) € {(3,5), (4,3),(6,2)}.
1) Let u € H'({|z| > 1}) be a solution of (LH) in the weak sense (see Definition
[81l). Then, there exist 1o > 1 so that u € Z;‘;U and a unique uy, € Z;’f}o solution
of Aup, =0 on {|z| = ro} so that
(1.6) [Ju(r) — UL(T')”Z;’T’T/TU < Cr2 el 0.
2) Reciprocally, given ug € H*(S%1), and ur, € Z° as in (L2), there exists 1o > 1
and a unique small solution uw € Z2°  of (LA) on {|z| = ro} satisfying (LG]).

S,T0
To our knowledge, such classification did not appear elsewhere in the literature, for
any elliptic type equation. It gives both a complete rigidity and a fine description
for nonlinear solutions, concerning their behavior at infinity.
In particular, the previous theorem also implies a result of unique continuation at
infinity.

Corollary 1.3. In the situation of the previous Theorem T2 1), if u € H'({|z| >
1}) is a solution of (LX) so that

Ve eN, i3+t [ Pew(r) |l s ga-1) = 0 as r— o0,

then u = 0 on R%\ B(0,1). In particular, if u(x) = O(|z|~?) for any B € R, then
u=0.

The results in this direction we are aware of (see for instance [BK05, [David])
would be obtained considering u? as Vu for some potential V = uP~!. They require
exponential decay without distinction between the spherical harmonics.

For power nonlinearities u?, p > d;iQ (p integer), Theorem [IT] constructs a lot of so-
lutions with prescribed asymptotic linear behavior. We can perform a classification
under further decay assumption.



Theorem 1.4 (Semilinear equation with decay). Let d > 3, k € R and p € N*
with p > ﬁ and consider the equation

(1.7) Au = kuP.

1) Let u € H'({|z| > 1}) be a solution of (LT) in the weak sense (see Definition
[B1) so that for some n >0 and C > 0, we have

Vo > 1, Ju(z)] < Claf| 777",

Then, there exists ro = 1 so that u € Z2°._ and there exists a unique uy € Z>°

$,T0 $,T0
solution of Aur, =0 on {|x| > ro} so that

D)= : —(d—2)p—d)
(1.8) llu(r:) — ur(r )HZE,"T/TO < Cr e 0.

2) Reciprocally, given ug € H*(S1), and uy, € Z° as in (L2), there exists ro > 1
and a unique small solution w € Z2.  of (L) on {|z| = ro} satisfying (LF)).

S,70

In the defocusing case, the decay can be obtained using results of Véron [V&1] for
solutions constructed by Benilan-Brézis-Crandall in [BBC75].

Corollary 1.5. Letd > 3, p € 2N+ 1 with p > d;f? Let f € L'(R?) be real valued
with compact support. Due to [BBCTH|, there exist a unique real valued solution
u € L7 (RY) with Au € LY(RY) of

Au=1u? + f.
Then the conclusion of Theorem [1.4] 1) holds for w.

Here quoo(Rd) are the weak-L? spaces, for 1 < ¢ < 400, and are called spaces of
Marcinkiewicz M?(R%) in the above reference, see [BBCT7H, Appendix| or [SW71]
Chap V.3].

In particular, in the defocusing case, the assumption of additional decay in Theorem
[[4] is not necessary and can be obtained under reasonable assumptions on the
solution. Yet, this assumption is sometimes necessary with the power % being

optimal. For instance, for a H!-supercritical nonlinearity p > %, in the focusing

case k < 0, it is known that there exist radial positive solutions that behave like
C|x|7% at infinity. These solutions have a slower decay than the solutions we
construct in Z° which decay as the linear solutions, that is C|x|~(?=2). We refer
to [KSOT, Theorem 5.2] for a nice summary. We refer also to [BVV9I] Theorem 3.3]
for a dichotomy result in the case of positive solutions in the defocusing case and
p# 2 p> 1

The class of equations covered by our theorems for constructing solutions are quite
general, either for prescribed behavior at infinity (see Theorem [5.4] below) or pre-
scribed Dirichlet value (see Theorem [7.4] below). Yet, the regularity results and
uniqueness of the Dirichlet boundary value problem has to be adapted to each
equation. This is the reason why we only treated some examples for the classifica-
tion; we nonetheless believe that the strategy can be applied in many more cases.
Assuming that we are able to construct solution with prescribed behavior at infinity,
the road map for the classification in Theorem and [[.4] goes as follows:

e prove by scaling and regularity arguments that, for a rescaled version of
the solution, the trace on S%~! is small in H*(S%~1) with s large enough.

e construct a solution in the space Z2° with the same Dirichlet data on S¢~1.
By construction, this solution has the correct decay and will “scatter” to a
linear solution.

e prove a uniqueness result for the Dirichlet value problem in some appropri-
ate space containing the original solution and the solution we constructed.
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The full classification as in Theorem is not always true, but we believe that
some modifications of the methods we introduce in this paper might lead to similar
results. It would be natural to try to construct, by a modification of the space Z2°,
other sets of nonlinear solutions with different asymptotic behavior.

1.4. Main results on conformal equations in dimension 2. Let (N, h) be an
analytic compact Riemannian manifold of dimension V. Without loss of generality,
we assume that N is actually embedded in RM (for some large integer M) analyti-
cally and isometrically, see [Nas66l [GJ71, Jac72]. For Q C R open subset (d = 2 in
this section, but some definitions will also be used for any d > 2), we will consider
maps in the space

Hip(QUN) = {u € Hi, (QRM) : u(z) € N for ae. z € Q}.

We define similarly the spaces € (2, N) for r > 0. We will say that w = (uy,...,unr)
is of finite energy on Q if Vu, defined in the distributional sense on €, is in L?(Q),
i.e., the following quantity £(u) is finite:
M d

(1.9) E(u) = / [Vul?dz < 400, where [Vul> =) "> " |dauil*.

Q2 i=1 a=1
We refer to the lecture notes [Riv12| for a survey on the subject and appropriate
references. Let w be an analytic 2-form on A'. We denote @ = ma*w the pullback of
w by 7, the orthogonal projection on N, defined in a small tubular neighborhood
of N. For u € €%(Q, N), we are studying solutions of

(Conf-E) Ay = —A(u)(Vu, Vu) — H(u)(0yu, Oyu)

where A is the second fundamental forml] of the embedding V' C RM and for z € N,
H(z) is the T, N-valued alternating 2-form on 7, defined by

(1.10) VU, V,W € TN, dw.(U,V,W) = U - H(z)(V, W)
Let (e;)i=1...m be the canonical basis of RM. Denote for y € N, H;k(y) =

diy(e;, e;, ex). Note that we have H;k =—-H ka The previous formulations is quite
general and contains the following particular cases:

e Harmonic maps: Au = —A(u)(Vu, Vu)
o for d = 2 and N' = R?® (or T?), the H-system (surfaces with prescribed
mean curvature) : Au = H(u)ug A uy.
It was proved by Riviére [Riv07] that in dimension d = 2, weak solutions are actually
smooth (see also Hélein [HéI91] for the case H = 0, that is, harmonic maps), so we
won’t distinguish between weak and smooth solutions in (Conf=E)) in this case. Our
main result on the system (Conf-Cl) is the following.

Theorem 1.6. 1) Let u € H} _(R?\ B(0,1),N) be a finite energy solution of
(Conf-E). Then, there exists ro > 1 so that u € Z5, . Moreover, there exists one
unique uoo € N and ur, € 225, solution of Aur, = 0 on {|x| = o} and with value
in T, N so that

(1.11) Hﬂ'TuOCN(u(r-) — Uso) — uL(r-)HZOO <Cr %2 — 0,

s,m/Tg r—+00
where wr, _nr is the orthogonal projection on Ty, N (and Pour, =0).
2) Reciprocally, for any us, € N and up, € Z5° with value in T, N and solution
of Aur, = 0 on R?\ B(0,1) with Pyu, = 0, there exists 1o > 1 and a unique
small solution u € 235, NE>(R?\ B(0,70), N) solution of (Con=El) on {|x| > ro}
satisfying (LIT).

Lwe denote A(u)(Vu, Vu) = Zle A(u)(Og; u, Oz, u)
7



It turns out that conformal equations as (Conl=El) are critical with respect to the
limit exponents in our general Theorem B4l So, we need a refined version, namely
Theorem [5.5] that uses a better behavior of the first iteration of the Picard term.
This improved decay is proved as a consequence of a general "null" condition of the
form

(1.12) VEeC?, (€=0= f(.6=0).

We have not seen this condition elsewhere. Since &2 is the symbol of A, this seems
like an elliptic version of the celebrated null condition of Klainerman [KIa86] in
the context of hyperbolic equations. Note that the null condition has to be checked
for complex frequencies while the usual null condition for hyperbolic equations
is checked for real £&. We refer to Section for more precisions and equivalent
formulations in dimension 2.

1.5. Main results on Harmonic maps in dimension d > 3. For u € €2%(Q,/N),
we will say that u is solution of the harmonic map equation if it satisfies

(HM-E) Ay = —A(u)(Vu, Vu)

where A is the second fundamental form of the embedding of AV in RM. This
is exactly the previous equation with H = 0. For u € Hlloc(Q,N ), the equation
(HM=E)) makes sense in the the distributional sense and we will say that it is a
weak solution of the harmonic map when it is the case (see Definition for a
more precise statement).

Theorem 1.7. Let d > 3.
1) Let u € €*(R*\ B(0,1); N) be a finite energy solution of (AMEZE). Then, there

exists Uoo €N and ro = 1 so that u—ue € Z 50 Moreover, there exists one unique

ug, € 255, solution of Auy, =0 on {|z| > r0}7and with value in T, N so that
—2(d—2
(1.13) |7z, v (u(r) — o) — “L(”HZ:?T/TU < COr2d=2) 0

|7, () = us)

where Tr, A and ﬂ'i A are the orthogonal projections on T, N and T N*,
respectively. b
2) Reciprocally, for any uo, € N and uy, € Z2° solution of Auy, =0 on R?\ B(0,1)
and with value in T, N, there exists ro > 1 and a unique smallf solution u € Z5%
of ESEE) on {|z| > 7o} satisfying (LT3,
Additionally, we denote up 1 the first iterate of the Duhamel formula, that is the
only solution of

Aup 1 =T(ur)(Vur,Vur) so that |\uL71(7"~)||Z;oT/T0 Tjoo 0,

where I' are the Cristoffel symbols in coordinates given by wr, n. Then, we have
the improved decay

(1.14)  l7r, () = use) — (up(r) +upa(r))] yoo < Cr*4=2),

Remark 1.8. The regularity ¢ is not optimal, but some assumption is necessary
to avoid singular solutions that do not enter in our framework, as the ones con-
structed in [Riv95]. More precisely, in the proof, we needed enough regularity to
apply Theorem [A. 16l

Yet, it could be replaced by other types of assumption implying some smoothness.
We refer to the book [LWO0S§| on the available regularity results.

2See Theorem for a precise condition.



For instance, it is proved in [BG80] (in the case N = S¥) that € solutions are
actually analytic. Also, the theory of Schoen-Uhlenbeck [SU82| proves that small
energy minimizing harmonic maps are smooth, which happens in our context for
Ry large enough.

Remark 1.9. The convergence of the orthogonal component seems very bad with
respect to the tangential part. Yet, since the manifold N can be locally written as
a graph of the tangential part, the orthogonal component is completely computable
(without referring to the PDE) once the tangential expansion is performed. So,
with a Taylor expansion of the graph locally defined by A/, it might be possible to
obtain the same precision as the formula for the tangential part.

Remark 1.10. The analysis in [ABLV23] computes an expansion of the (locally
energy minimizing) solution of the Harmonic maps in dimension 3 with target S?
at the order »—4. Theorem[[7lallows to obtain a similar expansion, see Remark B.10
for further details.

1.6. Main results on semilinear equations close to a point. We also obtain
some result close to 0.

Theorem 1.11. Let f : R — R be an analytic function with positive radius of
convergence and such that f(0) = 0.

1) For any smooth solution u of Au = f(u) on B(0,1), there exist a solution ur, of
Aup, =0 and g analytic on B(0,1¢) for some 0 < rg <1 so that u can be written

(1.15) u=uy, + |z|*g.

2) Reciprocally, for any uy, bounded solution of Auy, =0 on B(0,1) with ur(0) =0,
there exist 0 < ro < 1 and a unique small analytic solution u of Au = f(u) on
B(0,r0) so that (IIH) holds for one g analytic on B(0,79).

Moreover, the application uy, — u is injective.

The decomposition ([ILI3) is known in the literature as the Fischer decomposition
of the function u (see Section B4). This decomposition is already known to hold
for any analytic function, so the first part is not really new. The main part of our
proof is the construction of the nonlinear solution. This result can be seen as a local
solvability result for a semi linear elliptic equations with a prescribed behavior at
a point. It seems that the available results in this context only prescribe the first 2
derivatives at one point, see for instance [Tay97, Section 14.3, Proposition 3.3]. So,
our result constructs much more local solutions, and actually all of them.

In the context of conformal maps in dimension 2, one can adapt in a straightforward
way Theorem[L6lto derive a statement close to a point in the spirit of Theorem [Tl
For harmonic maps in dimension at least 3, it seems that a similar result should
hold as well, but one would have to first prove an extra gain (for example due to a
null condition as in (LI2)).

1.7. Acknowledgments. The authors warmly thank Fabrice Bethuel and Didier
Smets for many references and insights on harmonic maps.

RC acknowledges support from the University of Strasbourg Institute for Advanced
Study (USIAS) for a Fellowship within the French national programme “Investment
for the future” (IdEx-Unistra).

2. THE LINEAR FLOW AND DUHAMEL FORMULATION

The starting point of the analysis is the following. If Au = 0 then denoting for
(t,y) € R x S¥! the conformal change of variable

(d—2)t t
o(t,y) =e = u(e'y),
9




v solves
(21) Gttv - @21) =0.

This equation is not a well behaved evolution equation but can still be amenable
to an analysis.

To make this more precise, we introduce suitable Yy ; spaces, intimately related to
the Z spaces (after a conformal change of variables) in which the results are stated.

2.1. The Y;, spaces. For a function u defined of S¥~1, let

lully. . = lle®ull s (ga-1y,
or equivalently,
= d—2
lal2,, = > (0222 P2 gansy.
=0

As before, the space Y is defined as the completion of LZ(S*~!) for the || - ||y, ,
norm. Note that for 0 < ¢ < t/, we have the inclusion Y; ¢ C Y, C H® together
with [Jul| . < [Jully, , < llully, ,. Given a regularity index s > 1 and a “time” ¢ 2> 0,

we also define the norm Y+ by

(v, 0)lly... = sup ([[o(D)ly.., + lo(T)lly._...) -
T>t

for (v,?) defined on [t,+o0c) x S?~1. The purpose of the second variable © is to

take into account the time derivative v for a solution, as is usual for second order

evolution equations.

The space Vs ; is defined as the space of functions (v, ?) defined on [t, +00) x S,

so that for all 7 > ¢, v|[; 4 o0) € C([7, +00), Yy 7) and 0y 400y € C ([T, +00), Ys_1.7)

and ||(v,?)|ly,, < 4oo. This is in the same spirit as was done for the Z,; spaces;

we make use that the Y, spaces are decreasing in ¢ (for the inclusion ordering).

We will also sometimes need the following translated version for ¢y > 0:

[1(v; 9)llyeo, = sup (G P (LGOI

and we say that (v,0) € Vi% when for all 7 > t, v[(; 4o0) € €([T,+00), Y r—¢,) and

Ojr, o) € ([T, +00), Ys—1,7-1,) and |[(v,9)]|y,00 < +00. We will essentially always
s,t

consider these spaces for ¢ > to: in which case it is a weaker space that ) ;. More

precisely, there hold

(2.2) ViZto 20, oy, <llvllye, < llvlly., < vlly.,-

for v = (v,0) € Vs, Note that the inequalities between Y norms imply (given
t>0)

supllo(lly,.._,. = sup( sup ||v<f>||ys,/to>

T>t t<r \t<7/<T

= sup | sup ||v(7)]|y. ., = sup ||u , , .
sup (sl ., ) =510 Bl oy,
Similar equality holds for © and we easily get that for t > ty > 0, the spaces ﬁ“t
are Banach spaces as intersection of Banach spaces.

The spaces )V, ; are well suited to linear solutions of the Laplace equation, in con-
formal variables, as it is shown in the next paragraphs. In particular, we have
[(ve, Ovr)lly, , = llvoll s (sa-1) where v is the decaying linear solution with Dirich-
let data vg at t = 0 (see Lemma 2] for a more precise statement).

10



The Z spaces are in fact the Y spaces after conformal transform. More precisely,
for r > 0 and s € R and a function u defined on S¢~!, then

d—2 d—2

(2.3) [ull 7o, = 12 ullY, togry a0d - lullzo =772 Jlully, “iog-

Similarly, for a function defined on R%\ B(0,70) or B(0, ro) respectively, if we denote
for (t,y) € R x S4-!
v (t,y) = e(dEZ)tu(ety) close to infinity and

—t

0 (d—2)t
v(ty) =€ 2 ule”'y) close to zero.

one can relate the ) spaces and the Z spaces:

24) [lull s = 0, 00%) and [ulzo = 10, 30 roxcr -

log(r)
Hys,log(r) s,— log(r)

Finally, as for Z spaces, we drop the index ¢ when ¢ = 0, for example Vs := Vs .

Observe that (Z4) also implies that the space 2% and Z?, are Banach spaces
with their defined norm.

2.2. The linear flow. Consider u, defined on R, x S?~!, solution to
8ttu - CDQU =F.

Equivalently, u = (u, d;u) solves

(2.5) Dyu = (5’2 (1)) u+t (g)

Notice that the resolvent operator writes

cosh(t®) sinh(¢D)
S(t) :==exp (t®02 8) = D
D sinh(t®) cosh(tD)

Although S(t) is well defined on (L3)?, the growing modes prevent it from defining
a semi-group on any reasonable space like H*(S~1) x H*~1(S%1). We will however
show that one can construct a wave operator at +oo in ), for well chosen final
data with no growing modes.

We therefore consider a linear solution with no growing modes, that is of the form

(2.6) uo = (ug, —Dug) for some ug € H¥(S71),
so that
S(t)ug = (e ug, —De P uy).

Observe that for any non zero v € H*~1(S%71) | ||S()(0,v)]y, , — 400 as t — 400

or it is infinite. Hence, given ug € H*(S~1), S(t)uy is the only bounded solution
(in YVs) of 1) with F = 0 and initial data ug at time 0. If we denote

(2.7) ur(z) = |x|_%(8(t)uo)(ln|x|,ac/|ac|), for |x| > 1,
then uy, € Z239 and solves

Aup =0 on R\ B(0,1), wuplga— = ug.

We first measure our solutions in our norms. The following Lemma explains that
Ys.+ is the natural space for linear solutions with initial datum in H*® (Sd_l) att =20
while y;f?t is adapted when the initial datum is given at ¢ = ¢.

11



Lemma 2.1. Let ug € H*(S™1). Then, for anyto > 0, S(-—to)ug € V.1, together
with the estimates uniform in t > tg,

(2.8 luoll e o1y < ISC ~ to)aollyss, < L2 ol ar,
29) [5G uollye, < Clle™ Dol s sa-1) < Ce™" 2 fuo o o)
If Pyug = 0 for all £ < £y, then we have also

(2.10) 1S Cuollyeo, < Ce™ )0 |lug| 7. g

We will often use [2.8) with ¢o = 0.
Proof. From the definitions,

IS(- = to)uollyro = IS()uolly. . = sup (le™Puolly. , + [De™Puolly._, )

T>t
= |luol| s (se-1) + [|Duol| grs-1(se-1y,
and (ZX) follows as £ + 952 < 4(¢) for all £ > 0. For (Z9), we write for ¢ > t,,

T

Puolly.., ., +sup [De”Pug|

S()ugll~to = suplle” Yo 1.
IS Cyuollyz, = s s -
= sup [e"GHODuqlly, 4+ sup [[De”FTOPygly,
z>t—tg z2t—to

< Clle™"®ug|| s (sa-1)-

For the second inequality, notice that the first eigenvalue of the operator D is %.

Finally, for (Z10)): if Prug = 0 for all £ < £y, then ug € Span(pem,t = Lo, m < Ny).
The restriction of ® to this space has first eigenvalue ¢y + %, which gives the
bound. It remains to discuss continuity: for this, fix 7 > tg and 71 > 7. Denote
u(r') = e~ (T =ty for 7/ € [r,+00). Then

lu() = u(m))

— He—(T/_tO)QUO _ e—(Tl—to)Z‘DuO‘

Ys,r—t
’ 0 Ys,ﬂ'fto

67(7'77)50 —(r1—7)D

ug — e

UoH .
HS

This clearly converges to zero as 7/ — 71, 7/ > 7 (for instance by approximating ug
in LZ). The same holds for the derivative. O

2.3. Bounds on the Duhamel term. Given a function u4 as in (Z8]), we would
like to construct nonlinear solutions u to

Opu —D%u = F(u), u(t)~St)u, as t— +oo.

More precisely, on the difference v(t) = u(t) — S(t)u,., we are looking for a solution
to the problem

Opv — D% = F(v(t) + S(t)uy)
v(t) >0 ast— 400

(F is a given nonlinear functional). The Duhamel formulation between times t < s
writes, at least formally,

St —s)v(s) =v(t) + /tS St—r1) (F(U(T) Jr()S(T)u+)) dr.

Letting s — 400, it is reasonable to assume that the left hand side tends to 0, and
we want to solve

(2.11) o(t) = — [00 St —7) (F(U(T) +05(T)u+)> ds.

12



This leads us to consider the map

(2.12) O F <t - - /:OO St —7) <F?T)> dT)

Lemma 2.2. Let s > 1 and tg > 0. Let F € €([t, +00), Ys_1,1—t,) for any t > to
and assume

+oo
ifd>3: / I1E(T)[ly, 1, dT < +00,
to
+oo
=2 [ (IO, + = IRF@) i) dr < o6,
to

Then ®(F) € Vi, and there hold for t >ty > 0:
“+oo
e L T A LT P

+oo
ifd=2: [®(F)]ym S/t IEyess ey + (7 = O PF(T)]| 2 (ga-1y) dr.

In particular, ||@(F)||y;?t — 0 ast — +o0.
Furthermore, v = (v,0) = ®(F) satisfies the equation
ouv —D*w=F, ©=20w on (ty,400) x S¥71,
in the sense of distributions.
Proof. Let us start with a few preliminary estimates. Notice that (uniformly) for
£>21, m< Ny, t>0and 7 € R,
sinh (79)

2 = ett+552) () sinh(7 (£ + 432))

d—2
Y.t [ + 2

<@ (e(t+r)(e+%) " e(t—f)(€+%)) _

(b@,m

~

If d > 3, this is true also for £ = 0, and we infer

sinh (7D) < H (e(t+7)® i e(tf'r)g) fH
,t

o

—1 :
Y, He

sinh (79)
D
sinh (7D)

D

If d = 2, then for £ =0, b0.m

=|7|, and so
Ys,t

Pof = |7l[[Pofllp2(se-1)-

Yt

Therefore,
sinh (79)

o

< H (e(t-i-r)i) + e(t—T)D) (Id _PO)fHH + THPOfHLZ(Sd*l)
Y s—1

@1 S| etm) g+ Tl Pl
Similarly, for any d > 2, £ > 0,t >0 and 7 € R,
||COSh (T@) ¢&m”yil . 5 <£>571 (e(t+7)(6+%) + e(tf'r)(l+%)) .

so that
(2.15) [[cosh (D) flly,_, , S ‘

(e(t—i-r)i) +e(t—7)®) fH

13
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In the same way, if ¢, are two real functions such that |¢| < v on [0, +00), then
for any £, m, [[¢(D)de.mae < %(D)de.m| - and so

16(D) fllms < [Y(D) [l =
for any f such that the right hand side is finite.

We can now proceed with the proof of [ZI3)); we will only do the case d = 2 (for
d > 3, the proof is similar but simpler). Denote ®(F') = (v, ©), we first estimate v

using ([2.14) (exchanging letters):

T ginh((r — o
|v(T) / MF(O’)dO’

Yoty = ‘
Ys,rfto

+oo
5 / (HeQT_tU_G)DF(O’)HHS*l + He(a—to)DF(a’)H +(0‘—T)||P0F(O’)||L2) do

Hs—1

+oo
S [ (PO ., + @ - DIRF@) do
where we have used 27 — 0 < ¢ when ¢ > 7, so that e(27—o—to)- < e@=t0) on

[0, 4+00). Similar arguments give that v € €([r, +0), Ys r—¢,) for any 7 > to.
Using (2.15]), we conclude also that v € €([r, +00),Ys_1,7—4,) for any 7 > to and

+oo
/ cosh ((7 — o)D) F(o)do

lo() sy = ]
Ys—1,0—tq

“+o0
< / 1Py, ., do

Summing up, we obtain

+oo
@)y, S3p [ (IF@lycyomiy + (0 = DIRF (@) 300 do

+oo
Sswp [ (IF@y.cs ey, + 0 = DIPF©)250-1)) dor
t

T2t

+oo
- / (IF@)lyor vy + (0 — O PoF()] 2 ) dor

which is (2I3]). The convergence to zero is immediate by dominated convergence.
Now observe that

deo(t) = ~0, ( /t ” Sinh((t@—_”@)F(T)dT)

+oo
= —/ cosh ((t — 7)D) F(r)dr = 0(t).
t
To check that v is solution of the equation, let (t,x) = h(t)pem(x) where h €

%5°((to, +00)). Denote Q = (tg, +00) x S, we easily check (using integration by
part where needed) that

<(att - 92)1)5 ¢>D’(Q),'D’(Q) = <’U7 (8tt - ©2)’l/)>'D’(Q),D(Q)

_ < <h”(t) - <e+ d22>2h(t)> ¢e,m(w>>
.
- (h”(t) - e+ %) h(t))

14
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T2 sinh (t—1) L+ %
. (/t ( (E - %) )) <F(T)a ¢evm>D’(Sd*1),D(Sd71) dT) dt

—+oo
= / h(f) <F(f), ¢é7m>'D’(Sd*1),D’(Sd*1) drdt = <Fa 1/1>D’(Q),D(Q) )

to
This gives the result by density of linear combinations of such functions. (I

For the uniqueness statements, the problem (ZII)) and the functional (2.12)) are
too demanding. We are led to consider a small variant of it, related to the Dirichlet
boundary condition, and we will obtain similar bound.

The main difference is that we are prescribing some datum at zero and imposing
some decay at +o0o. The model example is the ODE, & — x = f and we can check
that for f sufficiently decaying, there is a unique solution exponentially decaying
so that x(0) = (. We use a similar fact for our operator, which leads to a kind of
modified Duhamel formula. The first guess would be to consider

(0(t), Do) = /0 'St ( F?T)) dr

which is well defined and has value (0,0) at t = 0. Yet, this would be to impose the
Dirichlet and Neumann value and this expression might contain some exponentially
growing modes. So, it is more natural to constrain only the Dirichlet value v(0) = 0.
So, this leads us to consider

+oo
u4, p the first component of / S(—71) (F(()T)) dr and uy p= (uyp,—Duyp),
0
and the map
D e 0
(2.16) O7 F— St)usp f/t S(t—r1) (F(T)) dr

Observe that this expression is not local: the value close to zero of ®P(F) is influ-
enced by all the value of F' everywhere. This was not the case at infinity: ®(F') for
large ¢ only depends on larger times.

The expression giving ®(F) is well defined if uy p € H*(S%"1), and a condition
for this is the purpose of the following lemma.

Lemma 2.3. Let s > 1. Assuming that the right-hand side in the estimates below
is finite, ®P(F) € Y5 and there hold:

—+o0
@IT§fd>3: [®P(F)ly, < / IF() .., dr.

—+o0
ifd=2: [[®P(F)lly, S / (IF@yoer, + TIPF @) p2ga ) dr.

Furthermore, v = ®P(F) satisfies the equation
Ouv—D?w=F, inRj xS!
v(0) =0, in S471.

cosh t sinht

3More precisely, if R(t) = (7 sinht  — cosht

) is the resolvent, and if e’f(t) € L' then

—+oo
F .= R(—s) 0 ds is convergent, and the sought for solution is
0 f(s)

(z,4) = R(t)(Xo + F) — /ﬂo R(t — s) (f?s)) ds,

t
where Xo = (0, z1) is defined by z1 + fo + f1 = 0 with (fo, fi) = F being the coordinates of F.
15



where the first equation is meant in the sense of distributions.
Moreover, uy  is the unique initial datum in H® x H*~1(S~1) so that

v —S()uq pl
Proof. ([2I4) with t = 0 gives when integrated in 7

v.. =0 as t— +oo.

+oo
et Pl oy S /0 (e 2 E@ | s + [l E@)| s + I BE()22) dr

—+oo
S (I + AR FO]2) dr

Now, due to (2]) in Lemma 2] (with ¢ = ¢y = 0), we conclude that (ZTI7) holds
for the first term S(-)uy r of ®P(F). The second term is ®(F), which satisfies
similar estimates as seen in Lemma The last statement is direct due to the
convergence || ®(F)|y,, — 0 given in Lemma 2.3l The uniqueness is also direct in

view of (2.8). O
3. SOME PROPERTIES OF Y ; AND Z,; SPACES

We start by recalling the following result by Sogge for eigenfunctions of the Laplace-
Beltrami operator on a compact manifold, see for instance [Sog93, Corollary 5.1.2].

Lemma 3.1 (Sogge). Let M be a compact Riemannian manifold without boundary
of dimension n. Then, there exists C > 0 so that we have

n—1
oAl oo (ary S CA 2 [0l 2 ()
for any ¢x € L2(M) satisfying —Agpr = N2Pa.
For n = d — 1, this proves in particular that for all £ € N, and u € L?(S?1), as Pyu
is an eigenfunction for —Aga—1 with eigenvalue ¢(¢ + d — 2):

d__
(3.1) 1P| oo sa-1y < C (€)% ™" [| P po(ga—ry.-

3.1. Product law in the Y, ; spaces. Our goal in this paragraph is to prove the
following result regarding the product of two functions in Y ;.

Proposition 3.2. Letd > 2 and s > % + % There exists C' > 0 so that
_d=2,
(82) V20, VuueYe [ully, <Ce T ully, ol -

We will actually prove a slightly more general version of Proposition Recall
P, is the projector defined in (IL3]). One important property will be the following
result on product of spherical harmonics. Similar statements have been used in the
context of nonlinear Schrédinger equations on S¢ (see [BGT05]).

Lemma 3.3. Let {1 and {3 € N and Yy, be two spherical harmonics of degree ;.

The product ¢o, pe, can be written as a sum of spherical harmonics of degree € with

|61 — lo| < £ < b1+ lo. Equivalently, if £ < |61 — La| or if £ > €1 + {o, then
Pl(d)eld)ez) =0.

Proof. We refer for instance to [GHLO04, Lemma 4.50, Section 4.E.3] for the upper
bound on £. For the second part, we assume

/ Gts bry bty dio 7 0.
wesSe—1

Without loss of generality, we can furthermore assume ¢ > ¢;. We apply the first
part of the Lemma to ¢1 and ¢35 to get o < £1+/{3, thatis lg > lo—¥01 = |[la—{1|. O
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Definition 3.4. A sequence 3 = (f¢)¢en such that 3, > 0 is said to be an easing
sequence with factor k > 0, if

Vi,j,kGN, k<1+]:>ﬂk<’€ﬂzﬂj
Given such a sequence, we define the norm for functions defined on S,
2s
[0l 3vs,8 = D (O B7 |1 Pevl| 7.
T teN
Lemma 3.5. Let 8 be an easing sequence with factor k, and s > 5 + . If u,v have
finite N (s, 8) norm, then so does uv and there hold
luvllns,p) < Chllullnes,gllvllve,s)-

for some constant C' depending only on s and d (not on 8 or k).

Proof. Throughout this proof, the implicit constant in < is allowed to depend on
d and s only. We assume u,v € L3 and conclude by density.

Denote u; = Pju and v; = Pjv so that u = ),y u;, v = ZJEN vj. Due to Lemma
B3] we know that Pp(u;u;) = 0 unless |j —i| < £ < i+ j, and so:

Py(uv) E Py(uvy) E Py(uivy).
%,J
[i—g|<L<itg

We can split this sum depending on ¢ < j or j < i, and using that P, is an L-
orthogonal projection, we bound

| Pe(uv)|| 2 < Z | Pe(uivi)|lp2 < Se(u,v) + Se(v,u), where
i—dlheiss
Se(w,0) = > [lwivylze.
i, gl
Now, by Lemma [3.1]
Juill gy < € (0)F " el ooy -
so that if £ < i+ 7,

vl aga-1y < Nill o oy 105 2 a1

N2 1
(i)

S B:B; Bi ||uz||L2(Sd 1)5; ||UJ||L2 §d-1)
L

)i

S 5 B lluill L2 a1y Bj vill p2(ga-1y -

Also observe that if |¢ — j| < i < 7, then £ < 2j. Together with the above estimate,
we can bound

Se(u,v) S nﬂ[l Z @57175 ((3)° Bi ||ui||L2(Sd*1))ﬂj ||Uj||L2(gd71)

i<j

[6—jI<i
— Wd_1—s NS
SeBt Y Billvill ey Y, (D) ((0)" Bi lluill L2 (ga-1))
Jj=t/2 i, [6—7|<i<]
1/2 1/2
_ \d—2—2s -\ 28 2
S KBy ! Z B ||Uj||L2(gd—1) Z (1) <Z (1) ﬂ? ||ui||L2(Sd1)>
Jj=t/2 [e—j]<i i

17



-l _
S B ullvess D =37 B sl o ey -
i>t/2

We used the Cauchy-Schwarz inequality and the fact that d — 2 — 2s < —1. When
J=1/2,(0)° < (j)°, so that

~

(0)° BiSe(w,0) S Kllullvisig) D (€= T () By oyl o)

j
We recognize a convolution: as s > 4 + 1, (<j>%7s)j € ¢! and
1(G3)° B 1051l L2 ga-1))ille = 0]l w s )
we get
10 BeSews )l S wllulls.slolvss)
The same equality hold when replacing S¢(u,v) by ||Pe(u,v)| 2, and so
luvllngs,g) = 1 (6 Bell Pe(wv) | z2llez S Ellullnvs,pyllvllnes,)- =
Proof of Proposition[3.2. The main observation is the folllowing:

Claim 3.6. Given ¢,fy € R and t > 0, the sequence defined by 3, = elctmax(t.to))t
is easing with factor kK = e~

Proof. Let k < ¢+ j, then max(k,£¢y) < max(i, o) + max(j, £p): indeed, k < i+ j
so that k < max(i, £p) + max(j, £o), and obviously, £y < max(i, o) + max (4, £o).
(Equality holds for i,j > ¢o)

Henc& ﬂk < e(chmax(i,lo)erax(j,ég))t < efctﬂiﬂj. 0

We apply this claim to £y = 0 and ¢ = 452, for which || - v =1 llva..- O

PropositionB.2yields that the space Y5 ; is a Banach algebra (up to a multiplication
of the norm by a constant). So, we easily get the following corollary.

Corollary 3.7. Let d > 2 and s > % + % Let f be an analytic function of C of
positive radius p > 0 with f(0) = 0. Then, there exists € > 0 and C > 0 so that
for any to = 0 and u function on (tg,+00) x St with [(w, Oru)|lyro < €, then

s,tg
(f(w),0(f(u))) € y;:)to. Moreover, if f can be written f(z) = 2"g(z) with n € N*
and g analytic, then we have additionally, for any t > tg

I1f (w)

< Ce T (n=1)(t=to) ||y

n
Ys,t—tq Yst—tg *

Proof. We write g(z) = :;08 a;z* with |a;| < Cp~* (up to changing p by a smaller
one). For ¢ > tg, We have, by definition, [lu|ly. iy, S fort >ty By the algebra
property of Proposition B.2, we get for ¢ > tg

+oo
o Ca—2, . "
1f@ly, , ,, < DO Hagle™ T ufm
=0
+oo
_d=2(y _ 1
<Che™ (t—to)(n—1) ||u||7}l/swtit0 Z(CE/'O)Z'
1=0

This is convergent if € is small enough and gives the last announced result. Writing
O¢(f(u)) = (Opu) f'(u), we get similar result and prove the rest of the Corollary. O
18



3.2. The elliptic null condition in dimension 2. Here we focus on the dimen-
sion d = 2. In that case, the rate in the exponential in ([B:2]) is zero, and there is a
priori no extra decay on non linear terms. However, if u and v are linear solutions
of

8ttu — ©2U =0

and when the product satisfies a special “null condition”, extra cancellations occur
and one derives improved estimates. This is particularly relevant for critical cases,
as are conformal equations, which we detail in Section
We work in radial coordinates: let z = (¢,0) € R x R/27Z ~ R x S! be the running
point: observe that

|0 = D.
We will denote & = (&, &) the coordinates of a vector & € C2.

Definition 3.8. Let A be a C-valued bilinear form on C2, which we represent by

a 2 X 2 matrix
A= <““ “t‘)) € M5(C),

agt  age
so that for &, € C2, A(&,n) = ¢T An.
We say that A satisfies the elliptic null condition if
vEeC?,  (p(6) =0= A€ =0),

where p(€) := — (&7 + &2) is the symbol of the Laplace operator, defined on C2.

If A:V — Bilg(C?,C), 2 — A(z) is a map defined on a neigborhood V of 0 € R?,
with values in C-bilinear forms on C2, we say that A satisfies the elliptic null
condition near 0 if for all z € V, A(z) satisfies the elliptic null condition.

Lemma 3.9. Let A € .#>(C), we denote A” = (:1 _2@) A (;1 :1)
We have the equivalence:

(1) A" has null diagonal terms.

(2) For all j,k € Z such that jk > 0, A(C(j),((k)) = 0, where we denoted
C(k) :== (—Ik|,ik) € C2.

(3) A satisfies the elliptic null condition.

Proof. Notice that the entries of A” are (for 4,5 € {1,2})
(A7) = A=D1 (=177
By homogeneity, we see that
(3.3) Vp,g € R, A(C(p),¢(q) = IpllalA(C(sgnp), ((sgnq)),

so that () and (2)) are equivalent.
Second, @) implies (): it suffices to test with ((£1), for which we have

PCED) = —1 - =0,
Last, for the converse, we notice that p(§) = 0 is equivalent to & = +i&:. So, in
particular, £ = (&,&p) = (&, £i&) = —&(—1,Fi) = —&((F1) and
A(,€) = AC(FL).¢(F1) =0
by assumption. (I

Remark 3.10. Two important examples of matrices satisfying the null conditions

will be the matrices A = I, and J = <_01 (1)

form Vv - Vu and V+v - Vu = {v,u} = 0;v0pu — Ogv0su respectively. We compute
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the corresponding matrices (IQ)b = ((2) 3) and J® = (021 2(;) that have null

diagonal indeed.

Proposition 3.11. Let s > 3/2, there exists C > 0 so that the following holds.
For ug,vo € H*(SY), denote u(t) and v(t) the associated linear solutions to (Z1))
with data (ug, —Dug) and (vo, —Duvg) at t = 0 (with no growing modes); denote also
Vu = (Opu, Opu) and similarly Vv = (Oyu, Opu).

Lett > 0 and A : St — #>(C) such that A(0) satisfies the elliptic null condition
of Definition for all § € S*.

Then, we have

(34)AC)(Vu(t), Vot)lly,_,, < Ce | A

Yoo 1000l =—1(s1yl|Qovoll o1 (s1)-

Proof. Due to the choice of the initial data for u(t),v(¢), they can be decomposed:
0) = Zajeij‘ge_‘j‘t, v(t,0) = Zﬁkeik‘ge_lklt.
JEL kEZ
for some complex coefficients o, 8;. Then
= 3 ayeiieliltg )
JEZ

and similarly for Vv, so that

A(Vu, Vo)( Zo‘aﬂk/‘ CG), C(k))eiT+RI8 o=(sl+IkDE

Denoting R = {(j, k) € Z* : jk: < 0}, condition (2)) writes that for all (4, k) € Z*\R,
A0)(¢(4),¢(k)) =0, so

A(e)(vu(t5 9)5 V’U(t, 9)) = Z a]ﬂk|j||k|A( )sgn(]) bgn(k)el(J+k)667(‘j‘+|k|)t
(J,k)ER

S S Y lilaglk|Brag ettt 00 il kD

oce{£1}2 (j,k)ER, LEL

where R, = {(j, k) € R : (sgn(j),sgn(k)) = o} and we decomposed the component
A(0)° of the matrix A(f)" (introduced in Lemma 3.9} recall (3.3))) in Fourier modes

iné:
9)% = E ag,gewee—wt.
LEL

The choice of the renormalization factor e~ ¢l is consistent with the equality

_ Z<£>2572) |a072|2.

LEL

(3.5) HA

Therefore, for m € N*,
1P (AC) (Vult), Vo) 172 s,

<2

ec{t}

2

Z Z |jaj||k/’ﬁk||ag,[|€_(|j|+‘k‘+|é|)t

oe{£1}? jt+k+Ll=em
(Gk)ERS

(and the corresponding equation for m = 0, without the e sum). Now, the key
property that we use is the following statement:

Claim: if (j,k) € R, then |5 + k| < |7] + |k] — 2.

Let us prove the claim. Let (j, k) € R, then j, k # 0 and have opposite signs. In the

case |k| > |jland k > 0, j < 0, we have |j+k| = |k|—|j| = |j|+]k|—2]j| < |7]+]k|—
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The case |k| > |j] and k < 0, 7 > 0 gives the same result and the claim is proved
by symmetry.

Now that the claim is proved, we can get back to the proof of the Proposition and
get

V(j, k) € R, e~ (ilHIRDE  g=2t o —li+klt,
Hence, if j + k+ ¢ =em and (j,k) € R, then m < |¢| + |em — ¢| = |¢| 4+ |7 + k| and
e~ glHIEIHIEE =2t o—mt

We obtained the bound

1P (A(V, Vo) (£,0)) || L2eyy < e 2fe™™ > D liaslkBrllas,el.
oce{£1}? j+k+l=Etm

Asj+k+ 10 =em,
(m)" = Gk 0T ST AR 0T
and we get for m € N,
™ (m)* | P (A(Vu, Vo) (£,0)) | 22(s)
<e Z Z Gyt |jej]|kBr||ao,e| + symmetric terms
c€{£1}? j+k+l=Etm

Squaring and summing over m € N, we recognize a trilinear convolution: due to
Young’s inequality, the continuous embedding £2 * ¢! x ¢* — ¢2 holds. This gives

Vo S DG eyl <Z|kﬁk|> (Z |aa,e|)

JEZ keZ LEZ

[A(Vu, Vo)(?)]

+ symmetric terms.

We now recall (85) and that
. A\ 25—2 25—2
19suolFy—rry = D i ()77 |00vollFre—s gy = D IkBul* (k).
JEZ keZ

By Cauchy-Schwarz inequality, we infer

1/2
Z |k0&k| 5 ||89u0||H5*1(S1) (Z <k>225) 5 ||(99’LLQ||[_1571(S1)7

kEZ keZ

because 2 — 2s < —1. The same gives

D kB S ll0ovoll ey and D lage] S IAL v, ...
kEZ LeZ

This allows us to conclude to

1AV u, Vo) Oy, S € 0ol o1 1) l|9pvoll -1y 14 v

and from there, to ([B.4)). O
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3.3. Polynomials in Y, ; spaces. Product with monomials appear naturally when
performing the conformal transform. We first recall the following classical Lemma
that will be used several times in the article:

Lemma 3.12 ([GHL04, Lemma 4.50, Section 4.E.3|). Let Py, denote the space of
homogeneous polynomials of degree k and ﬁk the space of harmonic polynomials of
degree k on R?. Denote P, and Hy, the spaces obtained by restricting these polyno-
mials to S¢=1. Then, we have

_ rk/21 [k/2]
Pk = @ T21Hk,2i and Pk = @ Hk,Qi.
i=0 1=0

Lemma 3.13. Let s > 0. Then, there exists C = C(d,s) > 0 so that for any
a € N multi index and t > 0, we have

(3.6) lly“|

In particular, ||2*|| 50 < C ()*T>.

d—2
v, < Cellal+557)t <0¢>S+1 )

Here, we have written y® for the restriction to S¥~! of the function defined on R¢
by x + 2% while we have written 2 for the function defined on B(0,1) C R<.
Combining (3:6]) and [B32]), we get that for s > % + % and any a € N¢, u € Yy,

(3.7) V20, [y ully., < Cla)™ el

Yo,e

d - S .
Proof. x® =T[;_; z7" is a homogeneous polynomial, it decomposes into
o § 23
xr = |.’L'| hla‘,gj,
i<lal/2

where hjq)—2; is a harmonic polynomial of degree |a| — 2j. When restricted to the

sphere, we get
Yyt = Z h|a\—2j-
i<lal/2
Now hjq|—2; is an eigenfunction of © with eigenvalue |a| — 25 + 922 'so that
_gjyd=2
Py = Z €t©h\a|—2j = Z ellol—2i+5 )th‘a|72j.
i<lal/2 i<lal/2
Also, the decomposition is orthogonal so that
2 2
”yaHHS(Sdfl) = Z thoz\—2j||HS(Sd*1)a
i<lal/2

and therefore

_oiyd=2
||ya|\%/s,t = Het@yo‘His(Sd,l) = 262(‘04 AR )t||h\a|72j||§15(8d*1)
J

a—2 2
<IN ool e sa-1y = €20 T 1y 1 -

J

To conclude, it suffices to finally notice that

HyaHHs(Sd—l) S HyaH%‘M(Sd*I) < ||$a|‘3§(ﬂ(3w(0,1)) = Z HaﬂxaHLm(de(oyl))
IBI< s]
S (@) < ()™t

~
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Concerning the second part, since for u(z) = z%, u(ry) = rl®ly®, while for w =
=20+ T w(ry) =rlel (452 + |af) y so we estimate

d—2 a—2
ooy = sup P, + (52 ) s T

< <ls

< C{a) sup rz el =5t —lel ¢ ¢ (a)*F2 O
0<1<1

3.4. Embeddings in usual spaces. In this section, we first describe the notations
concerning usual spaces and then describe their link to our spaces Z.
In all what follows, H!(R?) denotes the completion of €>°(R?) for the norm || Vul| . (RY)-

2d
d—2

the critical Sobolev exponent for the Sobolev embedding L2~ ¢ H'. We will some-
times use a localized version

For d > 3, this is isomorphic to the functions u € L?" with Vu € L? with 2* =

(3-8) lull L2* (o1 < CallVull L2 (zy1)

valid for any v € H'({|z| > 1}). Here, we denoted H'({|z| > 1}) the restriction of
such functions to {|z| > 1}. H}({|z] > 1}) denotes the completion of €>°({|z| > 1})
for the norm [[Vu|[ 2 (f|4/>1y)- This is isomorphic to the functions in H'({|z| > 1})
with trace zero on S%~!. We will avoid the use of H' in unbounded domains of
dimension 2 since the definition contains subtleties that are not necessary here.
We have the following embedding of the Z spaces into the usual homogeneous
Sobolev space H*.

Lemma 3.14. 1) Let d > 3, s > 1 and u € Z2°. Then v € H'(|z| > 1). If
furthermore s > (d — 1)/2, then u € LP(|z| > 1) for any p > #12.
2) Letd=2,s>1 and u € Z° such that for some v > 0,

< +o00.
230,

w— %jfe,mqw% (m> |

V(r(lahata/lab) = 1'aba () 5+ L Tang ().

we infer, using y - Vga-1g(y) = 0 for any g : S¥~! — R and y € S?~!, the orthogo-
nality of (¢r,m)e,m and |[Vsa—s ¢rml|72a-r) = (€ +d = 2),

2
IVl = Ce Y / (mm ngdz))rd—ldr

y ou
sup 7 <||U(T')|Z;or+ 5 ()

r>1

Then, Vu € L*(|z| > 1)

Proof. We decompose

As

+oo
< Cd/l S (I Fh P + (O e (1)) 1
£,m

On the other hand, for r > 1,
()5, = 1972 37 [ Foan (PO P249=2 5 212057 £, ) 202
,m

l,m
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Similarly, for s > 1,

T 2uer i) ()
9 u Taru T

2 2

<£>2(571)

24— 42‘61 2fem )4 fl (1)

oo
Zsfl,'r

2

24— 42‘61 2fem )4 f) (1)

Finally notice that

2+(d 2) o).

2

) pd—3—(2d—4) g
234,

()2 < | S22 Fn(r) + 7 ()

From these computations, if d > 3, then

+oo d—2 ou
IVl S | ("“(T'WZ?%JFH( S )

o0
< Jlull3 / A=ddr < 3.

d+2
d—2
gl 2 ga-1y S N9l g a1y S r(d=2) ||g||ZgoT where we have used ® > 452 in the

Moreover, for 2* =

and s > 1 and r > 1, we have by Sobolev embedding

2
sense of operators of H*(S?~!). In particular,

0 T d
) -1 2" —1-2*(d—2 2%
(2l >1) 5/1 r ||U(7")||L2*<Sd—1>d7’5/1 r D u(r)| G, dr

oo
< ||u||%;o / 3 < e,
1

so that u € H'(Jz] > 1). If s > (d — 1)/2, we similarly have

||9||Lp(sd DI ||9||Loo(sd DY HQHHs(sdfl) S rm (=2 ”g“Zg’OT )

and the same argument gives for any p > d 5

—+o0
el 1) S / P ED () |1 dr S [l
1

If d = 2, under the extra assumption we bound similarly

—+o0
Ou > / rV "y < +00.
1
O

7’5(7")
Lemma 3.15. 1) Letu € Z0. If s > ¢ — 1 then u € L>(B(0,1)). If s > 4 + 1,
then u € Wli’COO(B(O, 1)\ {0}) and more precisely, provided the right hand side is

finite, there hold
2) Letu € 2. If s > % — L then u € L>®(|z| > 1) with the decay
u(@)] < 12172 ull zoo s [ PeCulr)l pooga-1y Ser™ @27 Juf 7o -

Ifs> %+ L thenue Wh>°(|z| > 1) and more precisely, there hold

) S llull zze-
230,

2 < v .
||u||H1(‘1‘21) Ni;l;r (HU(T)”Z;OT +

oo
230,

ellse (501 S 5UP (nu Mz, + 1 |rGete
0<r<1

1 1
(39)||U||W1o¢(‘z‘>1) ,S 31;11) (ﬁ”U(T)Hzgfr + rd—1

24
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Functions in Z? are actually not well defined at 0 as there can be oscillations:
sin(In [z]) € (,5( Z¢, but is not continuous at 0. So, the above Lemma should be
understood as the existence of an extension to B(0, ) with the expected properties.
For Z2°, there is actually a 1/r9~! gain, which we will not really exploit.

To study smoothness issues of function with an emphasis on spherical regularity, it
is convenient to define the following differential operator: for u defined on B(0, R)
or on its complement in R¢

(3.10)
Au(z) == (ngflum) (%) where u, is defined on S~ by u,(y) = u(ry).

In particular, it allows to express

Ju T 1

Proof. a) First let us observe that if f € Z2, then for r < 1,

(3.11) Vu(z) =

+oo
(312) [Ifl50, = D r 2 OP P Z ey
=0
—+o0
> Z<€>25|\P€f||%2(sd71) = ||f||§1s(§d71)-
=0
Similarly, if g € Z2°, then for r > 1,
—+o0
(313)  llglize, = D r 0> Pgl Fagary = 7P gl Fr ganny.
£=0
b) Let s > £ — 1 and u € Z2. The Sobolev embedding L>(S~1) c H*(S%!)

writes, for some C independent of r > 0,

l[u(r )l oo ga-1) < Cllulr) || = (sa-1).-
Hence taking the supremum in r < 1, we get

lull oo (B(0,1)) = sup [Ju(r:)||poe(ga—1y < Clluf| zo.
0<r<1

(We used (B12) on the last inequality).
d) Let now u € Z° with s > £ — 1. As'in ¢),

[ull Lo a=1) < Sgll)rd_2||u(r')”L°°(Sd*1) < Cllullzz.
rz

(We used (BI3) on the last inequality). This gives the first part of 2). For the second
part, using (31)),
P | Py () e g1y < C (O P Py () B

+oo
< C(eyd=225pd=2 Z p2mt 52 (m)** || P (u(r)) | 72 (ga-1y
m=0

< OO 27 u(r) |2, < COTT* 7 ul Z -

e) Now assume that s > % + % and let f be defined on S%~!. We have Vgi—1 f =
Vsa-1 Ps- f where Pt = Id — P, is the projection orthogonal to the constants on
S9!, Then, the Sobolev embedding W1>°(S9=1) ¢ H*(S%1), writes

—+o0

1/2
|‘de*1f||L°°(Sd*1) 5 ||P0LfHHs(Sd—1) 5 <Z<£>2S|Plf|%2(gd1)> .
£=1
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f) Let s > ¢ + 1 and u € Z0. We recall 3.1I):

ou x 1
— Au(z).
orfal e

In view of the first equality in (Bﬂl) for0<r<1

Vu(z) =

lu(r)llZe . > ’QZ (O [1Pe(u(r)) 72 (ga-y,

and so, using e),
A1) = [Vt ooy S Pz,
Hence

ou

1
ar + ;||AU||L°°(rsd1)>

The statement regarding W,>>°(B(0,1)\ {0}) is similar, workmg on B(O, 1\B(0,70)

for any ro > 0. This gives 1).
g) Similarly let u € Z¢° with s > % + % Then for r > 1

Vul| Lo (B(0,1)) < sup (}

o<r<1

Loo(rSd—1)

< sup @u iz, ]\

0<r<1

—+o0 —+o0

()3, = D r 2220 | Pef | Fagga-ry = 72070 Y (O Palu(r)) |72 go-1),

£=0 =1
and so from e)

IAull Lo (rga-1) = [[(Vsa-1) () || oo ga-1) S 77 ()]

7o .

s,r

Hence

[Vl Lo (jz)>1) < sup (H@T

1
;||AU||Lw(r§d1)>

Lo (r§d—1)

1

1 ou
< —u(r )|z + —=
< sup (rd lulr)llze, + 5=

E(T')

Z>°

) Slullze. O
Lemma 3.16. Assume d = 2, and define u(x) = u <%> Then ||| zoo = ||t z0-

:I; s s
Proof. By definition, for » > 0, we have the equality for functions defined on the

sphere S?—1
u(r) = u(-/r).
Hence, as d —2 =0,

[a(r)llzg

Similarly, as

G%Q() ol V(o) - 17 = V“Gﬁ)(@ﬁ%ﬁ%'z
1 T 1 T xz/|z|? ou T
= TRE Y <W> Y <W> '% a (’E) (W>-

As before, we infer that
ou
() e

(%)

= [Ju(:

= Il /r) e ga-1y = /P20,

oo oo
230 Zs—lJ/T
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and the conclusion follows from taking the supremum in r > 1. (I

3.5. Action of some operators. In the case of nonlinearities with derivatives,
we will need to understand the effect of several operators on the spaces Y;: and
Ys.+. One of the problems will come from the fact that some functions are defined
on the manifold S¥~! and the gradient is therefore in 7’S?~!, while we will need to
consider power series.

We will see S¥~! as embedded in R? so that we can consider TySd*1 C R? for
y € S%=1. For any i € [1,d], one natural operator that we will use, is the following
operator, defined for v function on S¢~1,

(3.14) Di’U =€; defl’U.

where - is the usual scalar product in R? and (e;);—1... 4 is the canonical basis of R<.
D; comes naturally when we want to consider the operator 9; on R?, written in polar
coordinates. It turns out that for some nonlinearities that have some structure, we
will need to decompose D; with a “main order term” —y; (CD — %) That is why,
or any i € [1,d], we define the operator
d—2
Riv=D,;v+y; (33 — ?) .

Lemma 3.17. Let s € R. There exists Cs q so that for any u € Y 4 there hold, for
all i € [1,d],

(3.15)¥¢ > 0, |Dul

v, te Dy, +etIRiully,_,, < Coallully, -

Finally, if d =2 and S* ~ R/277Z is parameterized by 6, then we have

1Bpully, ,, < Csluly, , -

We emphasize, in [B.15), the loss for D; and the gain for R; of an exponential factor
t
e’
Proof. The part about Du is direct from the definitions. Decompose u =, - Pru,
so that
PDju =Y P;D;Pu.
keN

If K =0, D;Pyu = 0. Otherwise, Pyu is the restriction to S?~! of a homogeneous
harmonic polynomial in R? of degree k > 1, say Hj. We have for  in R?,

—¢; VH, = —e¢;- AH, P _
oz, (x) =e; - VHy, |z|e w(x) +e 2l or (x)
When restricted to S~ !, we get by homogeneity of Hy, for all y € S%1,
0H,, d—2
Sk (0) = (DsHilsr- 1)) + k() = (D:Pe)(0) 4 (2 = 252 Pt

Now H, k_1 = %};If“ is a harmonic polynomial of degree k — 1, so that its restriction
to S~ is an eigenfunction of Aga—1. On S¢~!, using the decomposition of u, we
have

Diu(y) = —yi (9 - %) U(y)Jrk;* Hy 1 (y) = —yi (9 - %) u(y)+Riu(y).

Hy, andjg' % are homogeneous harmonic polynomials of degree k. Multiply the equa-
tion AHy, = 0 by Hj and integrate by parts on B(0, 1), we get

/ @mm:/ IV H 2.
Sd-1 B(0,1)
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Also, by homogeneity, o, Hy, = kHy. So, we obtain for any k € N*|

- 1~
| Hklsa1172(ga-1) = EHVHkH%Z(B(O,l))'

Since Hj, = ag’“fl , by elliptic regularity and uniqueness for the Dirichlet boundary

T4

value problem AHy 1 =0 on B(0,1) (see for instance [LM72, Chapter 2, Theorem
8.3]), we have

IVHE[IZ2(5(0,1)) < CllHkllzr2(50.)) S CllHtalsar s /2(ga-1)
< C<k/’>3||Hk+1|Sd*1H%Z(sdﬂ))-

Hence, uniformly in k£ € N,
| Hilga—1]p2@ga-1) < OCk) | Hpq1lsa1 || L2se-1)-

We have Pgﬁk,l =0if £ # k — 1 so that, for £ € N, P,R,u = ﬁg. Therefore, we
can estimate, uniformly in ¢ € N,

[1PeRiul| L2 (sa-1) < CON(Heta)ga-1 [ 2gi-1) = (O Peyrull L2 (sa-1),

and we can bound

+oo
2 s— a2
Ry, ,, =D (2D PRl g0

£=0

+oo
d—2
<Oy (O T Pl

£=0

—+o0
d—2
<O (- 1P P2 o
=1

— 2
<Ce |l

Finally, thanks to (37), we get

—2
(o)

The last statement in dimension 2 is immediate taking the orthonormal basis
(€™*?) ez and seeing that P, is the orthogonal projection on Span(e?? e=#%). O

< Ce'llully,,-
Yso1,¢

Remark 3.18. It might be instructive to see with one example the effect of the
operator D; and the operator R;, for instance in dimension 2 where S! ~ R/27Z.
Take u = sin(nd) with n € N*. Since (at least for small 6), § = arctan(y/x) where
the typical variable is (z,y) € S' C R? with (z,y) = (cos(f),sin(d)), we have
Vsiu = (—0zu, Oyu) = ncos(nd)(—sin(f), cos()). In particular,

Dyu = —ncos(nf) sin(f) = —n sin(nd) cos(d) + nsin((n — 1)0) = —zDu + Ry u.
Then
1Roully, ,, =n(l+ (n—1)%)E 02D o el o e ful)y,

as expected. The simplifications coming from some structure of the nonlinearity will
for instance be consequences of identities like 2 +y? = 1, that is cos?() +sin?(0) =
1. This allows to obtain,from a trigonometric polynomial of order 2, a trigonometric
polynomial of order 0, and so, improves the estimates in the norms Y ;.
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4. SCATTERING IN CONFORMAL VARIABLES

4.1. A first general result. Let g be the nonlinearity after performing the con-
formal transform, that is

f(u(z), Vu(z)) = g(t, y,v(t, y), Ov(t, y), Vyu(t,y)),

where e’ = |z| and y = % € st

We state our result for system of equations on the unknowns v = (vy,...,vx), for
ulterior purposes, in particular when studying harmonic maps. However to present
the proofs, we try to limit notational inconvenience and we will assume N = 1; the
scalar case contains already the essence of the result. We separate the time variable
t (corresponding to the radial variable) because we will exploit the fact that it is
better behaved.

So, we are interested in solving the system on v = (vy,...,vN), given by

(4.1) Opv — D% = g(t,y,v, O, Vyv)
where © acts component by component, that is,
Vi € [[17N]]7 8ttvi *szi = gi(tayvvvatvvvyv>a

for a smooth function g = (g1,...,gn) wheret € R,v € RN, dyv = (Qsv1, ..., OoN),
Vv = Vgi1v = (Vyv,...,Vyon) and for ¢ € [1,N], dww; € R and (y, Vyv;) €
TS41,

As f will be analytic (see Section 2], we assume that for ¢ € [[1, N], the functions
g are, in variable (t,y,v,w, z), of the form of a series indexed by the parameters
aeNL B veNV §e MyaqN):

(42) gi(tayvvvwvz) = Z bi,a,ﬂ,’y,(;(t)yavﬂw’yz(;'
«,B,7,0

In the above sum, we use the standard convention for multi-index powers of a

vector:
N N N d
B _ Bi v o Yi 5 _ dij
V- = vyt w' = w)', 20 = 25
i=1 i=1

i=1j=1
The w and z variable of g; are meant for the derivatives of v: w; will have the place
of Oyv; and z;; that of Djv; so that (z;;)1<j<a describes Vyv; € T,S9™1 C R (recall
the definition of D; in (B14)).
In the various sums below, we use latin letters for index for which the sum is on
finite sets and greek letters where the sum might be infinite.
For technical purpose, we will assume that each b; o g.,5 can be written

biopys(t) = biw(t),

LEN

where, to simplify notations, we gather the parameters into one index

9= (o, B,7,0,1) €0 :=N" x NV x NV x #yq4(R) x N,
0 and ky € R so that we have
0, |bio(t)] < Bge "t

and for any ¥ € O, there exists By

=
(4.3) Vi e [1,N], vt >

This assumption will naturally fit f being analytic, as it will be clear from paragraph
In many cases, it will be enough to consider that only the terms with « = 0 are
not zero; we will drop the index ¢ in this case. We will use the same convention if
we have always o = 0.
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We denote

d—2 d—4
(4.4) vo = ko — |al + (18] + 7] = ) —— + 18] ——-

(see Remark 1] for explanations) and define the series

(45)  h(o,p,6) = > By () ™ (18] + || + [0l P I IHI=1 grogro
veO
hi(o) == h(o,1,1) = 3 By ()" (|8 + || + |8])o #1101,
YEO

We can assume without loss of generality (due to the (|8| + |y| + |d|) factor) that

(4.6) By #0 = ||+ |y|+ 0] =1

and we will always assume that for sufficiently small o, the series defining hy is
convergent.

Denote

(4.7) vy = inf{vy : ¥ € ©, By # 0}.

We will always assume
(4.8) vy = 0.

Remark 4.1. The definition of the exponent vy in ([@4]) might seem a bit mysterious
at first, but it just reflects the exponential decay given by any term by (t)y*v®w? 2°
which corresponds (in the scalar case) to by(t)y®v(t)? (0pv)Y (D;v)%

e Ky is the exponential decay of the constant (in y) by.

e |a| comes from the loss described by [B.7) in Lemma

e || comes from the loss of e! for the action of D; due to (BIH) in Lemma

B.17

e We have a multiplication of |3] + |y| + |d| functions in Ys_1 4, so, it creates
an exponential gain of factor (|8]+ |y|+ (6| — 1)%52 due to [B2) in Lemma

Adding all the above yield the rate vy in ([£d]). These exponents will be crucial in
Lemma below.

The purpose of the following two results is to construct solutions of ({1l defined
for large times and with a prescribed linear behavior

v (t) = 8(t)(vo, —Dvo) = (S(t)(vi,0, —Dvi0))1<i<N,

as t — +oo (which is non growing in the Y, ; norms), where vg = (v1,0,...,v1,n) IS
given. The idea is to perform a fixed point argument in v = (v,v) € Vs, (that is,
each component of v lies in Y ;) on the map

(4.9) v O(g(t,y, 0,0, Vy0)), with @:=v+wvg

where the map @ is defined on ([2.12) and acts component by component.
Here is our first result.

Theorem 4.2 (Conformal variables). Let s > £+ 3. We assume a stronger version
of @X), namely that vy > 0. Then, there exists C > 0 and n > 0 so that the
following holds. Let

vo = (vio)i<isn € HY(S™Y), v := S()(vo, —Dvyp),
and tg = t1 = 0 such that
(410) W(Cllosllys e~ =) <o
s,tg
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Then there exists a unique (with v — vy, small) solution v = (v1,...,vN) € y;f}to
(defined for times t > tg) to the integral formulation of the system ([@Il), with final
condition

(4.11) [v—villy,, Se ™ =0 as t— +oo.

~

We emphasize that (£I0) assumes implicitly that the quantity
h(CH'UL”y:}tO Je~(to=t) o—t1)
is finite, which is not always the case. To discuss this, given A,e, D € R, we consider
the following property on h:
(4.12) VY €O with By #0, ky=(—A+e)(8]+|yv|+15]—1)— D.

This is convenient because it allows to relate h and hy, and in particular ensure
convergence of the former.

Claim 4.3. Assume that h satisfies (II2)) with A,e > 0 and D € R. Then there
holds

Yo =0, Vp, A€ (0,1], h(A\o,p,\) < A Pphi(X0).
Proof. We have

h(A Ao, p, A Z By s+1 (18] + |y + |6|)o—|ﬁ‘+|7‘+|5|71p1/19>\m19
9EO

where
my = ke + A(|B] + v+ 16| = 1) =2 (B8] + || + 6] — 1) — D.

(We used the assumption ([@I2)) for the inequality). Now, vy > 19 and as 0 < p, A <
1, we infer

WMo, 0,0) < 37 By () (18] + y| + 18]) (A ) P11 1+101=1 pro =D
JEO
<A Ppon(Mo). O

We are now in a position to give some conditions under which Theorem [£.2] applies
(proven after its proof).

Lemma 4.4. Under the reinforced condition vy > 0, the assumption [EI0Q) holds
if one of the following assumptions is satisfied
(1) h1(0) = 0 and we have to = t1 = 0 and |[vo| g=ga-1) is small enough.
(2) t1 =0 and t is large enough (depending on vy ), and there exist € > 0 and
D € R and so that, for all ¥ € © such that By # 0,

(4.13) vy 2 e(|B8] + |y +16] — 1) — D.

(3) there exists Ly € N such that Ppvg = 0 for all £ < £y, and h satisfies ([EI12)
with A = 4y + %, e>0and D € R; and ty and ty — t1 are large enough
(depending on vy ).

Remark 4.5. Assumptions (@I3) and @I2) (for any n) are obvious if By # 0
only for a finite number of ¥: this corresponds to a polynomial nonlinearity in the
original variable. They are mainly made to ensure the convergence of the series.
The condition 3) is actually used only for 5 = 0 or 1.

The proof of Theorem 2] follows from the following technical but crucial estimates.
As mentioned above, we will assume for the purpose of the proofs that we are in
the scalar case N = 1.
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Lemma 4.6. Let s > & + 2. There exists a universal constant C > 0 so that for

everyt >t 20, v, w E Slt, and denoting
(4.14) 8 (1) = max (Jloll s ool ey )
then we have
(o) = W(w) ]y $ D ™™ By ()™ (18] + [y + [8))(CM (1) P10
ISC)

+oo
[ ol 147 = et
t s,T
Similarly,

1@y, < D e By (a) (18] + 3] + [8])(CM (1)) P
9€O

+oo
<[ ol + oely )1+ 7= e ar,
s : :
Proof. We do the difference estimate only, as the other one follows in a similar
fashion. First, note that due to (3.14),
(Vyo(7))i; = €5 - Vyui(T) = Djvi(7).

From Proposition 3.21 and Lemma B.17, as s — 1 > % + %, for any 5,7 € N, § € N¢
(recall we do the proof for N = 1), and time 7 > ¢t > 1, denoting

v=v+wv,, wW=w+vL,

there hold
[15(7)°0(r) " (Vy (7))’ = @(T) () (V@ (1) |lv, ., o,

1 1) d=2 (51 (r—
S (181 + Iy + BDCIHHIA e Bt -) 452 (=)

< (ollyer, + lwlyer+ oLl )P0 — o],
(4.15)

< (18] + |y] + [6]) (C M (£))1B1+ Iy IHII=1 o= (Bl +]vI= A2 418|457 (r—t1) v —wl|r, -
(We denoted Cj the maximum of the constants appearing in estimates ([B.I3) and
([3.2), and one can pick C = 3Cy. We also used [|v||yn < M(t) for 7 >t and the

same for v and vy,.)
Assume first d > 3. Using the above inequality together with the Duhamel bound

[213), the product law [B1) and the decay (L3, we get
[0 (v) = W(w)lyn

<> / bo() g (B(r)5(r) (V (7))

9eO
— (1) w(7) (Vy@(7))°) Iy, ey 7

S Bo () (8] + ] + [0])(CM (t)) P+
IeO

too d—2 d—4
« e o7 elal(r=t1) o= (I =D A2 R0 |y |, dr
)
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< Z By ()"t et (18] + |y| + |6])(CM (¢)) P11 I+I81=1

~

YeO

“+o0
x / e Ty — awl|y_dr.
t S8, T

(In the last inequality, we have used e™"*7 = e rotie=rmo(T=1) and the definition
[#4) of vy.) This gives the expected estimates in this case.

If d = 2, we rely on estimate (ZI3). So, we need to bound the term with Py, which
we can estimate as before (because s — 1 > 1= d/2): for any 7 > {4,

[ Povllz2sty < 1Povllms—1sty < [vllvevreys

and so

—+o0
/ (1 = OIIPF (7)o @ydr $ D By (@)™ e (18] + 4] + |0])
t 9O

X (CM(t))IBHIvHIJIfl
“+oo
/t (1 —t)e (T ||y — wl|yu dEl
Proof of Theorem [{.3 We consider
v ={wey, : lwlys <lvelys |-
Observe that for t > t1, and v > vg > 0,
—+00 +o0
/ (147 —t)e VTt dr = ¢7v(t-t) / (14+7—t)e " Ddr
t t

(4.16)
Let v,w € Y and ¢t

< Cuoe_l/(t_tl)-
> to. We have ||v||y;1t < ||v||y;1t0 < ||vL||y§’1750 and similarly

||”||y;1t < ||'UL||y;1t0. In particular,
M(t) < llorllys, -
where M(t) was defined in ([@I4). Hence, using Lemma 6 we get for v,w € Y
and t > to >t >0,
(117) [9(w) ~ W) |,
S0 Bofa) e (18] + Il + [0 (ClvL ]y )R
vEO

+oo
X / ||’U - w”yh (1 +7— t)e_”ﬂ(T—tl)dT
t 5,7

~

YeO

s+1 —kyt1 _
S 3 Bo (@) e (18] + Il + |8 (Cllow e, A1

_ —ug(t—t1)
<o = wly, e

< B(Cor ], e e o w]
And similarly, there holds
(018) 19l S A(Clor ]y e, e ) (ollyen + fonlys,)

Denote C; the maximum of the implicit constants appearing in (@I7) and (EIF),

and choose n = 1/(2C1). The above computations, applied with ¢ = ¢y, prove

that ¥ maps the closed Y into itself and is contracting in the Banach space zfto.
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Therefore, ¥ admits a unique fixed point » = (r,7) in Y. Then from definition (£.9)
and Lemma [2.2] we have 7 = 97 and

Our — D%*r = ®(g(t,y,r +vr, 0 (r + vr), Vy(r +vr))).

In particular, vy, 4+ 7 is the desired solution. For (@IIl), we combine ([@I8) with the
bound h(a, p1p2,s) < p{°h(o, p2,<) for p; <1 and ¢ > 0, so that

e N e

=N ys,to ’

< ne—uo(t—to) .
Finally, the uniqueness of solutions with v — vy, small in ;1,50 is a consequence of
the uniqueness of the fixed point. O

Proof of Lemma[{4] For (1), recall that from Lemma 2.1} |lvz[ly, < l[vollms(se-1)
is small, and actually can be made smaller that the radius of convergence of hy; as
h1 — 0at 0, h(Cl|lvLlly,,1,1) = hi(C|lvr|y.) can be made small.

For (2), we observe that the hypothesis together with vy > 0 implies that there
exist 7 > 0 such that

Vo
vo 2 20(|B] + [y + 18] = 1) + =

1_ewg
4 |D]+vo

For example, n = fits using

(ID[ 4 vo)vy = [Dlvo + voe(IBl + 7] + 6] = 1) = 0D = voe(|B] + |y| + |6] — 1).
Then we decompose
vy o vy 14 vy
Z—+—+—-2 ol —1)+ — + —,
vy > o+ 2Bl + Iy + 16 = 1) + 5 +
which leads to
ho,e™, 1) < By (@)™ (18] + [y| + 14])
9
> e*V0t0/2(Je*ﬁto)|ﬁ\+|’¥\+|5|*1e*l’ﬂt0/4

< e—Voto/Qh(o-e—’ﬂto’ e—t0/4, 1).

Since by Lemma 2.1} we have |[vrllyo, < Cllvo| gs(sa-1y uniformly on to > 0,
s$,t0
applying the previous estimate with o = Cllvg|lyo, gives h(Cllvr|yo, ,e7*,1) <
s,to s,to

e~ 70t/ 2h(Cllvg | o (ga-1ye ™0, et/ 1), As h(-,-,1) is defined and bounded on a
neighbourhood of (0,0), this last expression is finite and arbitrary small for large
to.

For (3), recall the estimate (Z.I0) of Lemma [21], which is uniform for ¢ > ¢ > 0:

_ d—2
HlelJ};lto < Ce (fo+45 )t1||’U0||H5(Sd—1)-

Since h; has a positive radius of convergence, we can fix ¢; > 0 large enough so
that hq (eistl ||’U0||Hs(sd—1)) is finite.

Using Claim [£.3] for #; as above and any to > t1, and as all coefficients are positive,
there hold

W(Cllogllyn et ety < A(Ce™ 0 pp | e o=t i)
s,to s,to
< ePhemo o=t py (Ce™ M ||ug || e (ga-1)).-

In the current case, 1y > 0: hence it suffice to choose ty — t; so large that the
e~vo(to—t1) factor absorbs the eP*' factor and make the right-hand side small. O
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There are some limit situations where the assumptions of the previous theorem are
not fulfilled, but we can still build a solution. This is the case for example if the first
iterate of the Duhamel formula (that is ¥(0)) is better than expected and decays
in time: a convenient space is given by the norm

v(t—t1

— )
(4.19) ol g, = sup e’ ol

to

given v > 0 and tg > t1 > 0. We also simply denote Xli“to =X, t- X;}to defines also
a Banach space (as we done for the other space times spaces like Z2° etc.). Here is
our result.

Theorem 4.7 (Conformal variables 2). Let s > 4 + 2 and v > 0. Then, there
exists C > 0 and n > 0 so that the following holds.

Let v = (vi0)1<isn € H¥ (S 1) and vy, := S(-)(vo, —Dwo). Recall that we assumed
ESR); also assume that for ty > 0,

(4.20) T(0) € Xy, .

(¥ is defined in ([E3); v may depend on vg). We finally assume to > t1 = 0 are
such that

(4.21) h(CN, et eh) <y, where
N := max (eiy(toitl)||\I/(O)||X,f,1to’ ”vLHy;,lto) '

Then, there exists a solution v € y;lto (defined for times t > to) to the integral
formulation of the system (@), with final condition

(4.22) v —vrflyn et =0 as t— +oo.
st

Furthermore, one has the more precise convergence

(4.23) lv = v — ¥(0) < e Aot

lye,
Uniqueness holds for v — v, — ¥ (0) small in Xut,lto-

As before, ([E2I) assumes implicitly that the quantity h(C'N,e~(*o=t) ¢=t1) has a
finite value. For instance, it happens in the following situations.

Lemma 4.8. Here, we assume hi(0) = 0 and vy > 0. The assumption @21 is
satisfied for instance if either
(1) llvollgs(sa-1y and [|¥(0)||x, , are small enough, and to =t; = 0.
(2) U(0) € X,0, and there exists £y € N such that Pyvg =0 for £ < {y € N and
h satisfies [{I12) with A = {og + %, >0 and D =0; and t; and tg — t;
are large enough (depending on vy ).
Proof. Let tg > t1 > 0 as in the assumption. The idea is to perform a fixed point
argument on the map ¥ defined by

(4.24) T (v) = U(T(0) +v) — ¥(0),
in a ball of Xzf,lto' We apply Lemma 8 and we get, for ¢ > tg and denoting
M (t) = max ([[o + W(0) |y [or |y, ):

1)l = [T (¥(0) +v) — ¥(0)

lya
ys,t

S Z By (a>5+1 e—mtl(|6| + |7| + |6|)(CM(t))‘B|+M+‘5‘—1
JEO

Iy
ys,t

—+oo
></ 19(0) + vy (147 — e 0—r
t
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< Z By (a)* et (18] + |y| + |8])(CM (¢)) 11+ II+I81=1
9eO

+oo
< W (0) + ]l o / (47 f)e ot gy
vit Jy

S Z By (a)* et (18] + |y| + |6])(CM (¢)) 11+ II+I81=1
V€O

x ||W(0) + ”||x‘1 e~ wotv)(t—t1)

We use used ([£I8]), with an implicit constant dependent on v > 0. This yields,
when applied to t = tg,

1) s, <SS By ()™ (18] + | + [6])e ot e vt =t (O M (1)) P+ I8
YeO

< (Iloll g, + 1O, )
S AOM(t0), =0, ) (ol + 1¥O) ey ).

This useful for the fixed point argument. For the more precise convergence, we go
back to the next to last bound, and derive the sharper bound (recall vy > 1), for
all ¢ > to,

s 1 —kgt1 —
19l S D7 Bofa)*™ (18] 4 1yl + [o)e" (€M (1)) PPl
°t jee

% (Il + 1Oy, )
(4.25) < hEM ), 1,e) (ol + 12040 )
We now turn to the difference estimate: using again Lemma and denoting
N(t) = max ([(0) + vll s [W(0) + w]yor , oy )
there hold:
() — () [y, = [W(0) +v) — T(W(O) + w)]1,

Z By (a)*Th e ol (|8] + |y| + |6])(CN (¢))Pl+II+1o1-1
YeO

A

“+oo
X / v —wllyn (147 —t)eTar.
t =T

As before, we infer

H\i/('v) - \i/(w)Hleto < h(CN(to), e lfomt), e)lv - w”Xj}m'
Consider

Y ={we &, : |wly, <max([¥0)] g loelys )}

v,to s,to

If v €Y, then, since v > 0 and ty > t1, we have

< e_l/(to—tl) ||,U||Xz,lt0 < €_V(t0—t1) ma,X(||\I/(0)||X£}tO, ||'UL||y;1t0)

ol ,.
< max(e” " T(0)[| o oLy ).
v,to s,tg
Therefore, given v, w € Y, there hold
M(to), N(to) < [Z(0)yn + max(e—u(to—h)||\I/(O)||X5’1t0a lvzllys, )
< 2max(e"’(t°_t1)||\II(O)||Xz}t07 ||UL||y;}t0) =2N.
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Therefore h(CM (ty),e~(to=1) e=t1) h(CN(tg),e~(o=t) e=t) L p. If 5 is small
enough, as 1y > 0, the previous estimates show that U is a contraction in the
complete space Y and so has a (unique) fixed point r there: hence v := v, +%(0)+r
has the required properties. Indeed, from definition {{24), m := ¥(0) + r satisfies

m = U(0) + U(r) = U(¥(0) +r) = U(m).

The same arguments as in the end of the proof of Theorem allow to conclude
that v satisfies the integral formulation of (£1]).
It remains to check the decay estimates. From [28), v — vy — ¥(0) =r = ¥(r) €

Xzﬁrw,to’ which yields estimate (£23). Since vy > 0, the combination of (420) and
(E23) give (A22). Uniqueness follows from uniqueness of the fixed point. O

Proof of Lemma[{.8 Notice that, due to the assumptions, hq(r) = O(r) as r — 0.
Case (1) is straightforward as [[vr[[yo < [[vol| g sa-1)-
For case (2): Now recall (Z10)

d—2
lorlly, < Ce (0 52)0 |l g | s g1

Fix ¢; so large that hy (Ce’(e‘)*%)tl ||’U0||H5(gd—1)) < 7. Now, from the definition

(E19) and Z2), any w € X, 0,

v(t—t1 v(t—t1 —vty

]| er = sup "= wl| o < sup e Jwlly, , < em sup e |w]y,,
v,to > st > >0

=to =Zto =

<e " lwllx
so that for w = ¥(0),
et (o)

v,07

I, <€ IEO]x, o

Therefore, we can fix tg so large that
e B(0)] 0 < sy, -
For this choice of tg > t1, Therefore,
N <onllyn, < Cem 00 gl g gansy.

In the series defining h, the coefficients and and the exponents vy > vy > 0 are
non-negative: hence h is non-decreasing in its first two variables. Therefore,

W(CON, e~ 0=t =) < p(Ce (0t 552)0 g | o gary, 1,e71)).
Finally, using Claim [£3] with A = £y + %, e >0 and D = 0, we can conclude
h(CN, e~ 0=t e~y < hy(Ce =" ||vg | o (ga-1)) < 1. 0

We saw in Section and Lemma 317 that the operator D; can be written D; =
—Y; (@ — d;2) + R; where R; has a better behavior. In particular, we will see in
Lemma (. Il below, that after performing the conformal transform, we can also write
the nonlinearity as

x
fu(@), Vu(z)) = gn(t,y, v(t,y), (B —D)v(t, y), Ru(t,y)), where e' = [z], y = —

x|’
and we have written for short Rv(t, y) = (Rv; (L, v), ..., Rav(t, ¥))i<i<d1<<n (e
it acts component by component like D). So, we are interested in solving the system
on v = (vy,...,uN), given by
(4.26) Opv — D2 = gn(t, y,v, (0, — D)v, Ro)
or equivalently,

Vi€ [1,N], Onv; —D%v; = g, (t,y, v, (O — D)v, Rv),
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for a smooth function g = (go.1,---,9n n),and t € R,v € RN, 9,0 = (9,01, ..., 0vN),
Ro = (Ruy, ..., Roy).

We make similar definitions for gg; as in the previous section. The only difference
will be that w and z are meant for different derivatives of v: w; will have the place
of (0 — D)v; and z;; that of R;v; so that (z;5)1<;<a Will correspond to ;.

We assume that gs admits an expansion as in (£2)) with coefficients b; o g~,6,%
which satisfies the decay ([@3) for some rates kg x € R.

We denote the new exponent vy, that will play the same role as vy in this new
context

(4.27) vomn = o —lal + (8 + | - 2 11515,

Remark 4.9. As we explained before in Remark [.T] the definition of the exponent
vy m reflects the exponential decay rate given by any term by (t)y*v w7z which
now corresponds (in the scalar case) to by (t)y®u(t)?(9; — Du)7 (Riu)?.

In parallel to this new exponent can be explained by the following contributions:

e Ky is the exponential decay of the constant (in y )by.

The loss || comes from the Lemma [3.13

A gain |§] comes from the gain of e~* for the action of R; described in

Lemma 317 (it is the main difference with the previous case of vy.

e We have a multiplication of || + |y| + |4 functions in Y;_1 4, so, it creates
an exponential gain of factor (|8] + |y + 6] — 1)452 due to Lemma 3.2

Adding all the above yield the rate (£27]). These exponents will be crucial in Lemma
below.

We emphasize that, due to their better behavior, we gain a factor 2|6| when using
the operators fR; instead of the operators D;.

Denote
vo,; = inf{vy s : ¥ € ©, By # 0}.

We finally define mutatis mutandis the series hoy as in with vy and kg replaced by
vy m and kg m respectively. We will always assume that for sufficiently small o, p
and ¢ = 1, the series defining hg; is convergent, in particular

voo = 0.

Theorem 4.10 (Conformal variables, refined). For equation [A28), the same re-
sults as Theorem [I.2 and [ holds with vy, vy and h replaced by vy », vo.m and
hax.

Proof. The proof is exactly the same except in Lemmal[Z.6lwhere we have to estimate
instead the following term

[5()? (i(7)) = Do(r)))" (SR (7))’ = () (t(r) = Db (7)) (Ri(7)[lv..y .,
S8+ |y + |5|)Cgﬁ‘+|’Y‘H&'*le_((m\+|’Y\+|6|—1)%+\5‘)(7_t1)

BIHA1161 =1 |y —

X (lollye 4 llwllye + ozl wllys,

-1 - 1)d=2 1151 4)(r—
5(|5|+|7|+|5|)(CM(t))|ﬁ\+lv\+l5l Le—(UBI+v[=1)SF=+15]5)( tl)””_wnyﬁ};

where we have used similarly the product estimate of Lemma[B.2lbut we used instead

the refined estimates for R; in Lemma [3.17 that provide the gain e~* instead of the

loss et for D;.

Once again, the key point is the rate in the e~ (7=*1) factor, with the |§|d/2 exponent,

instead of |d](d — 4)/2 in (£IH). O
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5. SCATTERING CLOSE TO INFINITY
Let 19 > 0 and
D(0,m0) = {(u, @) € RN x My a(R) : |ul, || <o}
be a small polydisc centered at 0 in RV x AN ,4(R). We consider
f=f,....fn) : D(0,m0) = RN
an analytic function on D(0,np): each of its component can be decomposed
(5.1) filu,w) = Z a; pqulw?
(p,q) ENN XNN4\(0,0)

For simplicity, we assume convergence up to the boundary, that is

(5:2) Vi€ [LN] D Jaipalnd T < oo,

P.q
We consider the system on u = (uy,...,uy) (defined on subsets of R?), given by
(5.3) Au = f(u, Vyu)

that is, for all ¢ € [1, N] by

Au; = fi(u, Vyu).
Given ug € H*(S?™1), recall that from (2.7)), there exist a unique solution uy, € Z°
of

(5.4) Aurp =0 on R\ B(0,1) and wup|se—1 = uo.

The goal in this paragraph is now to relate uy, to a solution of the nonlinear system
(B3). For this, we will recast this question via the conformal transform and rely on
the abstract result of the previous Section Hl

We start by relating both equations, in the original variables and in conformal
variables, recalling the definitions in Section

Lemma 5.1 (Conformal change of variable close to infinity). Let d > 2, R > 0,
and f as in (&I). We define the analytic functions g and gn by
d+2t

- d—2
g(t,y,v,w,z)e2f<e_0122tv,e_%t( 5 v®y+w®y+z)>

d—Zt

where t > 0, y € R4, v € RN, w € RN, 2 € My a(R) (we will actually only
evaluate g for y € S 1; w and z correspond to the time and space components of
the gradient, respectively).
For u € €*(R4\ B(0, R),RN) with 1wl e\ (o, ry) < min(p, o), we have the
equivalence

e u solves the equation
(5.5) Au = f(u,Vu), z€R%\ B(0,R).

(d—2)t

e The map v defined on [log(R), +00) x ST L by v(t,y) =e 2 u(ely), solves
the equation

attrU - QQ’U = g(tv Y, 0, atva vy”% (ta y) € [1Og(R)7 +OO) X Sdil-

e The map v defined on [log(R), +00) x ST~ by v(t,y) = e u(ety), solves
the equation
attv - ©2U = gfﬁ(ta Y,v, (at - :D)’Ua 9%), (ta y) € [lOg(R), —|—OO) x Sd_l‘
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Moreover, any other function g so that

g(t) y’ U’ w’ z) = g(t) y’ U’ w7 z)
forall (t,y,v,w) € RxS*1x(RV)? and z € (T,S" 1)V satisfies the same property;
this holds also for any function gm so that
gm(ta Y, v, w, Z) = gfﬁ(tv Y, v, w, Z)

for all (t,y,v,w) € R x %1 x (RV)? and » € (R)N.

Remark 5.2. The point in mentioning g is to underline the fact that the function g is
only applied with w = V,v whose coordinate lie in TySd’l. We could have defined g
only on T'S?~! for the (y,w) variable, but then the series expansion property would

be not as tractable. This will be useful when the nonlinearity has some structure,
see Theorem and its corollaries below.

Example 5.3. Harmonic maps from R? to the sphere SV ¢ RN+ solve
Au = u|Vul?.

We can write the system near the north pole ey11 = (0,...,0,1), and consider only
the coordinates u1,...uy, taking into account that u takes value in SN with

N

2

1 —Zul.
=1

UN+1 =
Then
1 N
Vun 1] = I Z U Un VU, = Vg,
A/ 1— Zé:l ’U,% m,n=1

so that for s = 1,..., N, the corresponding nonlinearity writes

N+1 d

filwm) =ui y Y =iy
j=1 k=1

N d

N d

1

] D S we
j=1k=1 1—> 0 uj mn=1 k=1

This is the formulation of the Harmonic map equation in local coordinates, which

usually contains Cristoffel symbols of the target manifold. From there, one derives

the formula of g;, fori=1,..., N.

Proof. In order to avoid tedious notations, we only prove the result when u is scalar.
We denote t = Inlz|, y = % € S%1. We recall the notation ([BI0) Au for the

[2]
angular derivative. We will use similar definition for (Agi-1u)(z). As

_ o (d=2u  Odu\ 4
atv(tay) =e ( 2 r + 87’) (6 y)a

Vyo(t,y) = e%t/\u(ety).

We have u(z) = |x|_%v (ln |, Ii_l) so that (as Vv L y)

z Ou 1 d—2 T
Vu(z) = ——(2) + —Au(z) = — v + v+ —V,v
@ =g or O ) = g A g

d—2
— et (_ 5 yu(t,y) + yorv + Vyv) .
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In particular,

d—2 . ,
Oiu = e~ 3t (—Tyzv + y' 0y + Div)

d
—e 2

t (yi(atv —Dv) + i)‘{iv) )
So, we have

2

flu,Vu) = f (edztv(ety),e%t <d ; 2yv + yov + Vyv))

=f (e_%tv(ety), e8! (y(Opv — Dv) + 9%)) .

Concerning the Laplacian, we compute

OtV + Agd—l’U

2
— (—d ; 2) e(‘df)tu(ety) + <2 <—d ; 2) + 1> e(dgz‘)tet%(ety)

2
@-2t o, 0°u
or?

+e 2 e
d—2 2 —2)¢
:( 2 ) T ule'y)

@2 [d—10u o%u 1
te |: ot E(ety) + W(ety) + E(Agd—l u)(ety)}

(d—2)t

(e'y)+e = (Ageru)(e'y)

(d42)t

— (%)QU(ﬁ,y) +e 2 (Au)(e'y).

(d+2)t

That is (v — D%0)(t,y) =e 2 (Au)(ely). Then, u solves (5.5) if and only if

8ttv — @2’1} = 6%?]“ (e%tv, 67%t (— Yyvu + y@tv + Vyv))

= g(ta Y,v, 5,51}, vy’U) = gm(ta Y,v, (at - :D)’Ua m’U),

with the chosen definition. This gives the first result for g and gmn.

For g, we only have to notice that g(¢,y,v, v, V,v) and g(¢, y, v, Ov, V,v) take the

same value for all (¢,y), which is the case by the assumption, since Vv € TySd_l =
1L

Yy O

We now state our main results for (.3]): the first one relates to Theorem and
the second one to Theorem .7l For f as in (BI), the relevant exponent is

(5.6) v = inf{(d = 2)(lp| +lg]) = d: aipq # 0}

Theorem 5.4. Assume d > 3. Assume that f as in (B.1), satisfies the supercriti-
cality assumption

(57) v, > 0.

(So that in fact vy > 1). Let ug € H*(S%™1), and uy, € Z° given in (5.4).
Then, there exist rg > 1 and a unique smallu € Z5.  solution of (B.3) on {|z| > ro}
and such that

(5.8) l(w—ur)(r)|| goo <r /" 50 as r — +oo.

s,r/TQ ~

Moreover, the map uo — u is injective; and if ||uo| s ga-1y is small enough, we can
take rqo = 1.
a1



Recall that from 2.8) and @24), ||ur(r)|z= ,,, remains bounded from below as
/o

r — 400, so that (B.8) gives the leading term of the expansion of u, and as a

consequence, uy is unique.

Theorem 5.5. Let d > 3 and v > 0. Assume that f as in (1) satisfies with the
supercriticality assumption:

(59) 1% 2 0
Let ug € H*(S%™Y), and uy, € Z° given in (5.4), and assume that
(5.10) sup r? || f (ur, Vur)(r)|| g < +00.

r>1 s—1,r

We also assume that at least one of the extra conditions holds true:
e |luollgs(s-1) is small.
e ug has mean zero: Pyug = 0.
e foralli € [1,N] and p € NV, if a; o # 0, then |p| > ﬁ (this is always
fulfilled if d = 5).
Then, there exist ro = 1 and a u € 25, solution of (B.3) on {|z| = ro}, and such
that

[[(w— UL)(T')Hzgo St — 0.
This solution is unique among those such that

Tﬁ(u —ur —ur.1)(r)

or

sup  [[l(w—ug —up) ()2, +
=70 o

oo
22 /o

is small (where ury € 25, is the solution to Aur i = f(ur,Vur) such that
||uL71(r~)||Z;cr/r0 — 0 asrT — +00).
Moreover, the map ug — u is injective (when defined); and if ||uol| . (ga-1) and the

left-hand side of (BI0)) are small enough, we can take ro = 1.

Note that the assumption |p| > d/(d — 2) seems to be necessary in some cases
where the solutions deviate from the linear asymptotic we describe by a logarithm
correction, see for instance |[V81].

Theorem [B.4] will typically be used in the case of the semi linear elliptic equation
with supercritical exponent, whereas Theorem [5.5]is in order when considering the
same equation with critical exponent. Theorem [[.1]is a particular case of Theorem
B4 where f(u, Vu) = f(u).

Sometimes, notably when derivative are involved, we can make use of extra structure
in the nonlinearity which leads to appropriate cancellations. One example is given
by the next result.

Theorem 5.6. 1) Assume d > 3 and that the coordinates of f(u,w) can be written
in the form

(5.11) > i quPQY?
(p,@) ENN x4 (2N)\(0,0)
where Q € M (R) is the matriz of the scalar products (in R?): Q; = w; - wp =

Zld:l w1 Wk, and we assume that the summability condition (5.2) holds. The rel-
evant exponent is now

vi,; = nf{(d — 2)|p| + (d — 1)|g| — d : @i pq # 0}.
Then if d > 3,
(a) The conclusion of Theorem [5.4) holds replacing assumption (1) by v1.: > 0.

(b) The conclusion of Theorem [543 holds replacing assumption (59) by v1,: > 0.
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2) Assume d = 2 and that the coordinates of f(u,w) can be written in the form

(5.12) > UP (a5 QY2 + by o2V ?),
(p,q) NN x N (2N)\(0,0)

where ¥ € M (R) is the matriz of the symplectic products (in R?): Tk =W, 1Wk2—

wjowk1 (and (B2) holds for the (a;pq)p.q and the (bipq)p.q)- Define now
;= inf{(d - 2)|p| + (d —1)|g| —d : a; p,q # 0 or b; p 4 # 0}.

Then, if ug either small or with mean 0, the same conclusions can be reached as in

(a) and (b).

Note that in (5.I1]), the scalar product is in the base space R?, that is with respect to

the the derivative variable while in (5.12]), the index 1 and 2 are with respect to the

derivatives in the target space R?. In particular, @, 1wk 2 — @; 20,1 corresponds

to the Poisson bracket {u;,ur} = 9pu;0yur — 0yu;0yui, where the running variable

in R? is (z,y).

This kind of special structure on f will be relevant for Harmonic maps, which

precisely take the form (B.I1)) while the structure (5.12) is typical of the H-system.

Remark 5.7. It might also be possible to add some potential V' in some suitable
space (like V' € Z2°). Yet, it seems at first sight that it would require the initial
time to be large. Indeed, the fixed point that we perform for ¢ = 0 requires that
the nonlinearity is of order at least 2.

Theorems 5.4 and rely on the applications of Theorem and [T respectively.
We make the proofs simultaneously since a large part of the argument is common
to both situations.

Proof of Theorems and 23 Here we do the proof for general N. We check that
concerning (Vu)? for g € .4y q4(N), we have

d—2 !
<e—%t( 2 v®y+w®y+z)) = e 511 P (y, v, w, 2)

where P, is a polynomial, of partial degree |g| in the variable (v,w, z), and which
can be written
5

Pq (ya v, w, Z) = Z cq,a,b,%ﬁyaULw’yz )
(a,L,y,0)€dq
where
Jq = {(a,1,7,8) € NT x NN 5 NV 5 Ay a(N) : |a| + 18] = g, |¢] + 7] = |al}
and the coefficients cq,a,8,y,5 are bounded by
g, < (d/2+ DM,

from the multinomial formula of Newton. Notice that if («,¢,7,0) € Jg, then
leel, |el, |71, 16] < |g| so that we can bound the cardinal of J,

(5.13) gl S (lg| + 1) FF2N+N,

(Notice that in the scalar case N = 1, o and ~ determine ¢, but for general system,
this is no longer the case). Then using Fubini (to be justified by the following
computations)

d+2

gi(t’yavawaz) =e 2

p,q
d—2 d d+2
_ , —(*F=Ipl+glal—5F=)t, o, p+e, v L0
= E E Qi,p,qCq,a,1,7,6€ (3 2 2 )y vtowz

0,4 (a,i,v,0)€Jq

(d=2), 1 d
tzai%qe (%2 |p|+2‘q‘)tUqu(yaanaZ)
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N
where (recall we denote ¥ = (o, 8,7, 9,1))

d—2 d d+2
§ : . (= ptila-57)t
Qi,p,qCq,a,t,7,6€ (%3 2 2 )’

(.)€l
with Iy = {(p,q) € Nx N%: (a,1,7,0) € J,, B =p+1}.

Let ¢ € © such that by # 0, so that Iy # &. For any (p, q) € Iy then

(5.14) Ipl =18 — ¢l and |g| = || + |y| + ] are prescribed,

so that the rate in the exponential as well and can be expressed in terms of ¥:
d+2 d-2 d d+2

(155 21ol + Slal = T2 = T208 — ) + 20l + 4 10D — TF 2 =,

Also notice that |8| 4+ |v| 4+ |0] = |p| + |¢|. Denoting
= (d/2+1)lb\+lv\+lél Z ‘max_|aip.gl,
(p.9)€ls

(By = 0 if Iy is empty), we have the expected estimate (L3]). We can then express
vy in terms of ¥, without involving ¢. Note that if By # 0 then J; # @ and so

el + 7] = |l From (@.4),
w:wwwﬂw+w4ﬂ;2wﬂi
= (d=2)(18] +10]) + (d = D] + |e] = |of =
(5.16) = (d=2)(|8] + 6] + Iv]) —
In particular, since (p,q) € Iy, by (E14), we have:
vy = (d—=2)(Ipl + lql) —d = v1.

As this is true for any ¥ € O, we infer vy > 11 (recall that vg is defined in ([{@7)).
Under any of the assumptions (5.7) or (59), we see that (L) is fulfilled. Also
18] + |7+ 16] = |p| + |g| = 1 so that (Z6) holds as well.

Under the supercriticality assumption (5.7]), and as only integers are involved, we
infer g > 1 > 0: this means that under the assumptions Theorem [5.4] the first
hypothesis of Theorem holds.

We now turn to the convergence of the series defining h. Recalling (&), we have
for0<o<1:

=Y Bo(a)" (1] + | + 6] I+

YEO
S ipal R h
szzéfﬂf”;@]]'a .l Bpq(0)  where
Ry q(0) = > (d/2 + D)L B) 4 |y| + [8])o !Bl IO,

JEO
(a,t,7,6)E€Jq,p=B—1t

Given p,q, in the sum defining R, ,(0), we have |p| + |q| = |B] + || + |0], and
|a| < |g|. Also the cardinal of the indexation set is |J,| (because (8 is prescribed by
p and ¢. Hence, using (513)), there hold, for 0 < o < 1

Ry (o) < (d/2+ D)lal(p| + |q| + 1)+ 2o lPIHlal=1 7|
< (d/2 + Dl(|p| + |q| 4 1)sTNFDE+2) glpl+lal =1,
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Since (|p| + |g| + 1)sFVHDE+2) CSVNdeIPIHq\fl for some large constant Cs 4,
and all p, ¢, we conclude

hi(o) S Ziéf[lﬁ)szﬂ i p.ql ((d + 2)o)PIF1al=1,
Psq ’

By the assumption on f (.2)), this is convergent for o small enough, and h; is well
defined for small o.

Due to (B.3)), if ap 4 # 0, then (d —2)(p+ |¢|) — d > 0 and in particular p+ |q| > 2,
and so hy(0) = 0.

For Theorem [5.4] in the general case, we want to apply Lemma [£4] assumption
(2) (in the specific case where [[ug|| 7 (ga-1) is small and ro = 1, we use Lemma 4]
Case (1)). So it suffices to check the lower bound [I3]) on vy: in view of (B.I6)
and as d > 3, we can choose e =d—2 >0 and D = 2.

This shows that under the conditions of Theorem (.4l we can apply Theorem [£2]
and construct the solution v in conformal variables. Letting u be the conformal
inverse and 79 = €%, v is in the appropriate space thanks to (2.4)). This also gives
the convergence in the original variables. Theorem [5.4] is proven.

Regarding Theorem .5, we want to apply Theorem 7} it remains to check (#20)
and ([@21)). Recall the assumption (E.I0): written in conformal variable, we see that

it implies (due to ([23))

_d=2,. dt2 —ut
(5.17) ||g(t,y,vL,8tvL,Vva)HYSiLt =e = tpr2 f(uL,VuL)HZ;iLet <e
and so using Lemma 2.2] we infer that for ¢t > 0,

19(0) o, = 199ty 01, B0z, Vo) s,
+oo
< / (147 — O)llg(t,yvm, Veyur)(®)lly, . odr
t

—+oo
< / (1+7—t)e T Ddr < e,
¢

~

Taking the supremum in ¢ > 0, we infer that ¥(0) € X, o and ([@20) is satisfied.
We now focus on (@21)). If ||u || g7+ (ge-1) is small, we can apply directly the case (1)
of Lemma (.8).

Otherwise, we want to apply Lemma ([3]), Case (2), with £ = 0 or 1: so we are to
check [@I2)) with D = 0.

Let ¥ € © such that By # 0. Let (p, q) € Iy such that for some i, a; 4 # 0, then
we can express from the definition (G.13])

(5.18) kg + (60 + % —s) (B[ + Iyl + 6] = 1)
=(lo+d—2—e)(|p| +lal — 1) + |g] — 2

By assumption 1 > 0, so that |p| + |g| > 7%. Therefore the above term (E.I8) is
bounded by below by

2 2(60 — E)
d—2 d—2
If |g| 2 1 or £y > 1, it can be made positive for e = 1/2. If |g| = 0 and £y, = 0, the
term in (BI8) writes (d —2 —¢)(|p| — 1) — 2. As |p| > 2, this is positive if d > 5.
Otherwise, our assumption implies that |p| > ﬁ + 1 and so

de
d—2

(bop+d—2—¢) +lgl —2= + |q]-

d=2-¢)(pl-1)-2>d-2+
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which is non-negative for e = 1/d > 0.

Due to case (2) of Lemma (L8], there exist tg > t1 > 0 (large) such that (£20)
holds and we are in a position to apply Theorem .7} we obtain a suitable conformal
solution v € Y%, . As this space is included in to undoing the conformal trans-

s,to* s,to?
form yields a desired solution u € 25 where ro = In(to). This proves Theorem
O

Proof of Theorem [5.8. Here, due to cancellations specific to the vectorial nature of
the equations, we also do the computations for general N > 1.
Let us compute the term w; - w; according to the change of variable of Lemma [5.1]
for 4,5 € [1, N]): we obtain (for the term corresponding to gm)

d
Z e~ " (ykwi + zik) (Yrw; + Zjk)
k=1

d d d
=e (wiwj +w; Z YrZjk + W Z YkZik + Z Zikzjk> :

k=1 k=1 k=1

We used that ZZ:1 y? = 1 since y € S41L.
In dimension 2, we compute ;w2 j — w2 ;w1,; according to the change of variable
of Lemma 5.1 We obtain

e” M ((yrwi + zi1) (Yow; + 2j2) — (Yo2w; + zi2) (y1w; + 2;1))

=e (1wizjo + zi1 (Y2wj + 2j2) — yawizj1 — zie(y1w; + z51)) -

Observe that in both cases, terms are at most linear in y and those where y appear
also carry a z factor: hence, for any contributing by, there hold

ol < [].

Also, there is no v involved in any of the expressions, so that the index ¢ is not
useful anymore, and we drop it for the rest of the computations.

We can now argue as in the previous proof of Theorems [(.4] and

Regarding uP(Q)%/2 for ¢ € .#x(2N): denote

d d d
m (Y, w, 2) 1= wiw; + w; E Yk Zjk + wj E YkZik + E ZikZjks
k=1 k=1 k=1

the contribution where we erased the e~% factor. m(y,w,z)?? is a polynomial, of
partial degree ¢ in the variable (w, z). Therefore, uPQ9/? can be written

d—2 d d+2
—( == |p|+5lql—= )t 2 « &
e ( p) ‘p‘ 2|Q| 2 ) Ca,'y,(sy va'YZ

(a,7,0)€Jq

)

where
Jg = {(,7,0) € N* x NV 5 .y a(N) : |5] + |6] = g, o] < 5]} -
Let ¢ = (o, B,7,0) € © such that («,7,d) € J, and S = p, the corresponding

d—2 d d+2 d—2 d d+2
Hﬂ,m—?|P|+§|Q|—— = T|ﬁ|+§(h|+|6|)_T’

2
and so (see Remark [.9))

vomn = ko —lal + (8 + 1l - )2 4161
(d—2[B] + (d ~ DI(}7] + 13]) + 18] ~ o] —d
(d = 2IB] + (d ~ 1)(5] +16]) —d

(d—2)lpl + (d~ 1)lg| —d.
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Thus, we obtained vy, > 11 m,, for both cases (1) or (2).

One can then reproduce the end of the proofs of Theorem (.4l and using in-
stead the refinement given by Theorem [LI0 Now, we want to check that some
assumptions that allowed to apply Lemma 4] or [£.8] can be fulfilled.

First, note that the assumptions also imply |p| + |g| > 2 if a; ¢ # 0 or b;pq # 0,
so that we will also have h1(0) = 0. In particular, if we assume smallness, the Case
(1) of Lemma [£4] or L8] is applicable.

For the equivalent of Theorem 5.4 we have vy n > (d — 2)(|8] + | + |0) — d, so
[#T13) is satisfied with e = d—2 > 0 since d > 3. So, we apply Lemma [£4] Case (2).
For the equivalent of Theorem B35 we want to verify Case (2) of Lemma [£8 The
computation (B.I8) still holds for £y x. We denote that under both cases d > 3 or
d = 2, we always have o+ d—2 > 1. In particular, if £ < 1, the expression in (B.I8)
is positive as soon as |¢| > 2. Moreover, under the structural assumptions of the
nonlinearity we made, we have either ¢ = 0 or ¢ > 2. So, it only remains to check the
case ¢ = 0. It can only happen for d > 3, for which the same analysis as in Theorem
B4l works, under the same assumptions. We conclude the proof similarly. O

Remark 5.8. In what follows, the refined Theorem (.5l will be applied in cases where
the better behavior of the first Duhamel estimate (5I0) will be valid for any wg,
as seen in Section for the case of derivative nonlinearities satisfying some null
condition. Yet, there can be some cases where the better behavior of the Duhamel
term is due to ug. For instance, in dimension d = 3, if we consider polynomial type
nonlinearities as in Theorem [[.T], the critical exponent is given by the condition
v=(d—2)p—d >0, that is p > 3. Consider the system

Au = u® + v,
Av = v° + v?v

It is critical for our criterium because of the cubic coupling nonlinearity. Yet, if
we consider some "asymptotic datum" of the form uy = 0, vo € H*(S?"!) then,
(510) will be satisfied because f(ur,vr) will be of the form (0,v%) which has a
good behaviour since the power 5 is supercritical.

6. SCATTERING CLOSE TO ZERO

For problem close to zero, each one of the theorems in Section [ has its counterpart
close to 0. We only write those corresponding to the applications we have in mind,
and omit the proofs unless when they are not as in the scattering close to infinity.
We start with the equivalent of Lemma [5.1] but close to zero. The results look very
similar except for the sign of the exponent terms. This will not change the ideas
of the proofs, but it does impact the numerology. In particular, our results close to
zero require some “small” degree of monomials for the nonlinearity while the results
close to infinity required some “large” degree.

Lemma 6.1 (Conformal change of variable close to zero). Let d > 2 and R > 0.
Let D(0,(p,0)) = {(w, 2) = (w, 21, ..., 24) € R4 : jw| < p,|2| < o} be a polydisc
in R4 and f: D(0, (p,0)) — RY be a smooth function on D(0, (p,o)).

We define the smooth function g by

d+2

wheret >0, y €S, v e RN, w e RY, 2 € My a(R).
For v € C*>(B(0, R)) with [l (50, r)) < min(p, o), we have the equivalence
a7



e u solves the equation
Au = f(u,Vu), x€ B(0,R)

(d—2)
@2y t

e u(t,y)=e" u(e™ty), v solves the equation

Opv — D20 = g(t,y,v,00,Vyv), (t,y) € [—log(R),+00) X sé-1,

(d—2
2 )t

o v(t,y) =e" u(e~ty), v solves the equation

v — D% = gw(t,y,v,0v +Dv,Rv), (t,y) € [~ log(R), +oo) x S*~1.

Moreover, any other function g so that g(t,y, v, w, z) = §(t,y, v, w, z) for all (t,y,v, w) €
R x S x (RM)? and z € (T,S* 1N satisfies the same property.

The same also holds for any function g so that g (t,y,v,w,z) = gn(t,y,v,w, z)
for all (t,y,v,w,2) € R x ST x (RN)2 x AN 4(R).

Proof. The computations are mostly the same as in Lemma 5.1l up to a few changes

of exponent and signs, changing t to —t, that is t = —In|z|, y = |§—| € S 1. For

instance, as we have instead u(x) = |z|’%v (f In|z|, Ii_l) so that (as Vyv L y)

d—2 T
oz v +
2

=— v — Vv
20| o] .

d—2
— 5t < 5 yo(t,y) — yorv + Vyv>

So, we have f(u,Vu) = f (e¥tv,e%t (—452yv — yov + Vyv)).

Concerning the Laplacian, changing ¢ to —t in the formula of Lemma 5.1 we still
_ (d+2)t

have (Oyv — D%0)(t,y) = e~ 2 (Au)(e"ty). O

Here is the result without extra structure (analog to Theorem [5.4)).
Theorem 6.2. Assumed > 2 and f as in (1)) satisfies the subcriticality assump-
tion
Qip.q 7& 0= q=0.

Let ug € H*(S1), and denote ug, € Z° the associated bounded solution of
(6.1) Aurp, =0 on B(0,1) and wug|ga-1 = up.
1) If either f is polynomial, or ug has zero mean, then, there exist ro < 1 and a
unique u € 22, solution of [5.3) on B(0,70) \ {0} so that

|(w—wur)(r)|l 4o , <r®> =0 as r—0.

s,m/T0

Moreover, the map ug — u s injective.
2) If instead f satisfies (aip,q # 0= |p| > 2) and |lug|| 7. (ga-1) is small enough,
the conclusion of 1) holds with ro = 1.

Here is the results where the first iterate is better behaved, when the nonlinearity
f has structure (corresponding to Theorem [B.6]).

Theorem 6.3. Let d > 2, v > 0 and assume [ has the structure as in Theorem
26, that is (BI0) and, if d = 2, (&I2), with the summability condition [B.2). Also
assume that f as in ([B1) satisfies the subcriticality assumption:

Aipg 7 0= lq| <2.

Let ug € H*(S?1), denote uy, € Z9 the associated bounded solution of ([G.). We
assume furthermore that
(6.2) sup > || f(ur, Vur) ()| 40 . < oo
0<r<1 sThr
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1) If ug has zero mean, then, there exist ro < 1 and a unique u € ZS . Solution of

E3) on B(0,70) \ {0} so that

lw—ur)(r)lzo S —=0 as r—0.

0

Moreover, the application ug — u is injective (where defined).
2) If instead f satisfies
aipq 7 0= [p|+lq| =2,
and |[uo|| gre ga-1) and the right-hand side of [6.2) are small enough, the conclusion
of 1) holds with ro = 1.

Remark 6.4. The extra assumption that ug has zero mean is natural in this context:
the associated linear solution converges to this value at zero and we need to be sure
that f is well defined there. It can be easily removed by transforming f by f(-+xo).
It was not necessary in the problem at infinity, since all linear (bounded) solutions
converge to zero at infinity, except for d = 2.

Proof of Theorems[6.2 and[6.3 The computations are similar to that in the proofs
of Theorems [.4] and (we use their notations): the gain and losses explained in
Remarks 4.1l and (respectively) are the same, and the exponent in e’ in front of

2 d-—2
the monomial, is now the opposite _tte + ——1p|+ §|q|
More precisely, due to Lemma [(.] g now takes the following form:
gi(t,y,v,w,z) = e~ -4 Za 22‘p‘+%|q|)tvaq(y,v,—w,z)
P.q
= Z Z aivnqca,w,é(_l)ve_(#_¥p_%lql)tyavpﬂwvzé
P4 (a,i,v,6)€Jq

(6.3) = Z biﬁ(t)yavﬂwvzé,
JEO
Where 19 = (CY, ﬁa v, 63 L) and
biﬂ9 (t) = (_1)Vca,b,y,6 Z ai%qe %*7|P|*d\q\)
(p,9)E€ly

As before, p = f—¢ and |q| = |¢|+|v|+|J]| are prescribed in Iy, so for any (p, q) € Iy

G52~ 2~ Slal = 152~ TS0~ )~ S0+l + 18)) =

2
We also define

Bao = (d/2 + 1)+ 1v1+16] ;
9 = (d/2+1) > e [iql,
(p,a)ETls

(otherwise 0 if the sum is empty), and we have the expected estimate (3]
If b; 9(t) # 0, then Iy # @ and we have

d 2 d—4
vy = kg —lal + (18] + 7] = 1) =~ + 0| ——
=2—la| = 7] — || = 2/d]
=2—|af —[q| = 4].
We start by considering 1) for both Theorem [6.21 and Theorem [6.3]
In the context of Theorem [6.2] the assumption is that ¢ = 0 so that « are § as well

(as |a| < |g|). Hence vy = 2, and v1 = 2. We want to us Theorem 2] It remains to
check the smallness condition ([@I0), which we do by applying Case (3) of Lemma

4] that is verifying (£I12]).
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If f is polynomial, this condition is always satisfied (by choosing D large enough).
Otherwise, we assumed that ug has zeo mean, so that £, = 1 (that is ug of zero
means). Now, as for contributing b; g, |¢| = |y| = |0] = 0 (as ¢ = 0) formula (6.4)

writes
nﬁ:QEEAJ——Mﬂ <<1+§%3>+1)mﬂn+2

so that Case (3) of Lemma[4lholds with € = —1 and D = —2. Theorem[d.2 applies,
and ([@II)) gives the claimed convergence rate.

For Theorem [6.3] we want to use the structure assumption (&I and apply Theo-
rem [LI0 Following the proof of Theorem [(.6] first notice that

d—2

at2 _
lg(t,y, v, Opvr, Vyvr)lly, |, =€ = flup, Vur)z e v

Hence (£20) holds. Then we need to compute the new exponents: gg; has a similar
structure as ([6.3) (mostly only changing w to —w), and we recall that there is no
index ¢, p = 8, |v|+19] = |g| and |a| < |8]. Then as before for a contributing ¢ and

(p,q) € Iy,

d+2 d—2 d+2 d-
(6.5) —;-——Hf%|fﬁ;~a—4mf4w+wrfM%
and so
d—2 d
Vﬂ,m=f€199%—|Oé|+(|5|+|7|—1)T+|5|§
d+2 d-—-2

d—2
=222 Lal— Jol + (ol + el - )52 + 19

=2—lql - |a|+l5| 2*Iql

By assumption |¢| < 2 so that v1 5 > 0. Now, we need to check that we can obtain
the smallness of ([II0) by applying Lemma (@J)), Case (2). The definition (E.1)

gives

d—2 d—2
ko =2 = —5— (1Bl + 7| + 18] = 1) = (W[ +10) > === (1Bl + vl + 0] = 1),

since || + 6] = |¢|] < 2. In particular, @I2)) holds true with ¢y = 1, ¢ = 1 and
D = 0. We are in a position to apply Lemma (£8), Case (2) and then Theorem
4,10

It remains to treat 2) of both Theorems. We use the case [Il of Lemma 4] and
Lemma (). Recall the relation (5.I4), so that the extra assumption ensures that
for any contributing ¢ (and (p, q) € Iy)

1B+ v +10] —=1=[p[+]g| =1 >1,
and so hy(0) = 0. O

7. GENERAL RESULTS FOR THE DIRICHLET PROBLEM

In this part, we gather the equivalent of the previous theorem we stated for scatter-
ing at infinity or at 0 for a Dirichlet problem. The proof are mainly the same once
we have the equivalent of the Duhamel formulation for Dirichlet problem stated in
Lemma 2.3
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7.1. The Dirichlet problem in conformal variable. In conformal variable, we
are interested in solving in s the problem

(71) 8ttv - ©2U = g(ta Y, v, atva v’yv)v U(O) = o,

where vg is given (we underline that the condition bears only on the function, not
its time derivative).

It will be convenient to introduce a map similar to ¥ for which we will seek a fixed
point, and adapted to data at infinity: for this, we use the operator ®* well adapted
to the Dirichlet boundary condition, instead of .

More precisely, given vg € (H*(S¥ 1), we denote

(7.2) vy = S(*)(vo, —Dvp),
and define the operator
(7.3) (e :'v»—)@D(g(t,y,ervL,i)Jri)L,Vy(ervL)))

where ®% is defined in ([Z.I6) and acts component by component.

Theorem 7.1 (Conformal variables). Under the same assumptions as Theorem
£ and hq1(0) = 0, there exists n > 0 so that for any given data
vy = (UI,O, . ,'UN,O) S HS(Sd_l), with H’UO”HS(S(!—I) <,

there exists a unique solution v = (v1,...,vn) € Vs (defined for times t > 0) to
the integral formulation of the system (L)), with initial condition v(0) = vy.
Moreover, there exists a unique vy € H*(S!) so that

lv = SC)(vs, =Dy, Se™ =0 as t— +oo.

~

Proof. The proof is the same as Theorem [5.4t our goal is to construct a fixed point
for ¥P. The only modification in the argument is that we have to take to =t; =0
which imposes the smallness of [[vg|| s (ge-1): this corresponds to case in condition
(1) of Lemma A4

We need the following variant of Lemma adapted to the Dirichlet operator:

Lemma 7.2. There ezists a universal constant C' > 0 so that, given vy, as in (L2)
and v, w € (ys)k so that denoting M = max (||v||y,, ||w||y., |vL|ly.), then we have

[P () = OP(w)[ly, D By ()™ (18] + |y] + [8)(CM)PIFPIHRI=L
veO

—+oo
<[ e - wly, dr
0
where WP (depending on vr) is defined in (T3). Similarly,

sl
192 (0)lly, S By (@)™ (18] + |y] + [8]) (€M) FIHIFII=
veo®

—+oo
< [ e (ol + oy, ) dr
0

We omit the proof of Lemma [.2] since it follows closely the lines of that of Lemma
[L6 where the estimates of Lemma[2Z2are replaced by the estimates (ZI7) in Lemma

23
Using now Lemma [7.2] we get for v,w € Y := {w : ||w|y, < ||vL|y.}

122 (v) — P (w)]y,
<SS Bo @)™ (181 + 1l + 18] + D)(Cllug ||y, ) AL

rveoe
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+oo
X / |lv—w|y, e "dr
0

S D Bo (@)™ (181 + il + 18] + 1)(Clug )

veO®
+oo
X ||lv — wl|y, (/ TeVOTdT)
0

S hi(Clluclly)llv —wly,.
And similarly, [[¥P (w)]|y. < hi(Cllor|y.)||velly,- A classical argument shows that
for n > 0 small enough, ¥ admits a unique fixed point r € Y.

Also g(t,y,r+vr, 0 (r +vr), Vy(r+vr)) € Vs so that Lemma[Z3] applies (and the

discussion that precedes it): in particular, v is the first component of

/()OOS(_T) (g(Tay7T+’UL,at(T04’ vL),Vy(r+vL))> dr. .

In the case of a gain of the first Duhamel iterate, we get similarly the following
result.

Theorem 7.3 (Conformal variables 2). Under the same assumptions as Theorem
[Z7, there exists n > 0 so that for any given data vo = (v1,0,...,vn,0) € H*(ST1)
such that

[voll s ga-1) + 1P O) ]Iy, <7
and satisfying

vP(0) € &, 0.

Then there exists a unique solution v = (v1,...,vn) € Vs (defined for timest > 0)
to the integral formulation of the system (@1, with initial condition v(0) = v
Moreover, there exists a unique vy € H*(ST"1)N so that

lo = SO (ws, ~Dwy)ly,, S 50 as t— +oo.

Proof. Tt follows the lines of the proof of Theorem [£7] with the same modification
as in the proof of Theorem [Tl using Lemma O

7.2. The Dirichlet problem close to infinity. We consider again the system
3), now with boundary condition:

{Au = f(u,Vzu) on {|z| > 1},

(7.4)
U|Sd—1 = U,

where ug is given. We have analoguous results to that in Section Bl and the proofs
follow the same lines: we leave the details to the reader.

We assume f can be expanded in power series as in (5.I)), and we recall the definition
(E8) of the exponent:

v1 == inf{(d — 2)(|p| + lg|) — d : aip,q # O}
Here is the first general statement (corresponding to Theorem [.4)).
Theorem 7.4. Assume that d > 3 and f satisfies
(75) 1% 2 0

There exists n > 0 so that the following property holds.
Let ug € H5(S*™1) with |Juol| grssa-1) < 0, then, there exvists a unique u € Z5°
solution of (CA)); moreover, there exists a unique u4 1, € Z5° solution of Auy , =0
so that

[(w—vuyr)(r)|zee =0 as r— 4o0.
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Actually, convergence holds with rate r—"*.

The next statement consider the case when the first Duhamel iterate has improved
decay (corresponding to Theorem [B.5]).

Theorem 7.5. Let d > 3, v > 0 and assume f satisfies
(76) 141 2 0.

There exists n > 0 so that the following property holds.
Let ug € H*(S1), denote ur, € Z° the solution in Z° of

Aup, =0 on{lz| =21} and wuplga—1 = uo,
and assume that

ol sy + 801 [, P =, <
Tz ’
Then, there exists a unique u € Z° smalll solution of (C4); moreover, there exists
a unique w4 ;, € Z° solution of Auy 1, =0 so that

I(w — u*"L)(T')HZ?,"T —0 as r— +oo.

Actually, convergence holds with rate r=".

Finally, in the case when f has a structure so that the corresponding g does not
depend on y, we have the analoguous of Theorem [5.6

Theorem 7.6. Let d > 2. Assume that f has the structure as in Theorem[5.0, that
is (I and, if d =2, (BI12). Recall the relevant exponant

vt o= inf{(d - 2)|p| + (d = 1)|q| — d : aip,q # 0}

Then:
(1) The same result as Theorem[7.4) holds replacing assumption (L) by v1 ., > 0.
(2) The same result as Theorem [T holds replacing assumption ([T6) by 11, > 0.

7.3. The Dirichlet problem close to zero. Finally, we state the equivalent of

Theorem and [6.3] for Dirichlet boundary condition, close to zero, that is:

(77) {Au = f(u,Vzu) on B(0,1)\ {0},
u|§d71 = Uug.

Note that the solutions are naturally constructed outside of zero because of the

change of variable. Yet, they will be proved to be solution on B(0,1) in several

cases.

The proofs are the same, and we leave the details to the reader.

Theorem 7.7. Assume d > 2 and that f as in (BI)) satisfies the subcriticality
assumptions

aipg 7 0= (¢ =0 and |p| > 2).
There exists n > 0 such that the following holds.
Let ug € H5(S*™1) with ||uol| grssa-1y < 0, then, there exists a unique u € Z5°
solution of (TT)); moreover, there exists a unique uy 1, € Z2 solution of Auy =0
(on B(0,1)) so that

[(w— u+,L)(r-)||22T =0 as r—0.
Actually, convergence holds with rate r2.

4See Theorem for a precise condition.
53



Theorem 7.8. Assume d > 2, [ as in (&) satisfies the structure condition of
Theorem[2.8 (that is, @I1) and, if d = 2, (£12)) and the subcriticality assumptions

aipg # 0= (lg| <2 and |p| +|q| > 2).
Let ug € H*(S?1), denote ug, 1, € 29 the associated bounded solution of
Aurp =0 on B(0,1) and ug|ge—1 = uo,
and assume that we have the bound

[uoll s ra-1y + sup 27" || f(ur, Vur) ()l zo <.
0<r<1 s—hLT
Then, there exist a unique u € Z? smallfd solution of [Td); moreover, there exists
a unique uy 1, € Z2 solution of Auy 1, =0 (on B(0,1)) so that

[(w— u+,L)(r-)||Zgr =0 as r—0.

Actually, convergence holds with rate r”.

8. APPLICATIONS

8.1. Critical semilinear equations. This section is about the proof of the main
results about the critical semilinear equation. We first give a definition of weak
solution.

Definition 8.1. We say that u € H. ({|z| > R}) is a solution of
Au= f(u) on {[z| > R}

if we have

o € €°({|z] > R}, /

|z|>R

Vu-Vvd:E—i—/ fu)v dx =0

|z|>R

Proof of Theorem [ This is just a particular case of Theorem [5.4] when f does
not depend on the derivatives. [l

Proof of Theorem 2. 1) Let & > 0 small to be chosen later. Since u € H'({|z| >
1}), there exists ro so that [[Vul| 2,5y, /2) < €. Denoting u™ (z) = (10) Y2~ Yu(roz),
the function " satisfies ||Vu"||2(,151/2) < € and is solution of the same ellip-
tic equation. By Sobolev estimate (B.8), we have also [[u™|| 2 (|, 51/0) S €. If € is
small enough, the trace estimate of Proposition [A.6] given in the Appendix, yields
[[u"]ga—1 ||H5(Sd*1) Se

We notice that for the critical exponent p = 2* — 1 = %, Theorem [5.4] and [Z.4]
hold with vy = (d — 2)p — d = 2. Let us choose £ small enough so that Ce < 7
where 7 is given in Theorem [[4 it applies and yields a solution & € Z2° so that
U|ga—1 = u"|ga—1. We check easily that it satisfies

il 2o S lalss ooy S e

Due to Lemma B4, % € H'(|z| > 1), NS all 2* (j2151) < Ul z < €. In particular,
for € small enough, the uniqueness property given in Propositii)n [A3] applied with
q=2*—1and @ = 2*, implies that u = u™ and therefore, u™ € Z2°. Hence
uezZz .

The scattering result (L)) is obtained from the similar statement in Theorem [7.4l
2) The converse (and last part) of the Theorem is actually a consequence of Theorem

4] and a special case of Theorem [I1] O

5See Theorem for a precise condition.
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Proof of Corollary[L.3. Theorem [L.2 gives ro > 1 such that for any £ € N,

(rfro) = [ Pow = u) ) e ooy < Nw = un) )l = 0.

From the assumption and triangular inequality, we infer
(r/rg)t= 2+t [ Pewr(r)ll grsga-1y = 0 as 7 — +o0.

Now, notice that Pyur(r-) = (r/ro)~ =2 =¢Pyur(ro-): hence Ppu; = 0 for any
¢ € N, and therefore vy, = 0. The uniqueness in Theorem 2) implies v = 0 in
{]z| = r} for a possibly larger r1 > ro.
Now, due to the result of Trudinger [Tru68§]| (see also Section[A.2]of the Appendix for
a quantification), we have u € € ({|z| > 1}). In particular, u solves the equation
Au = Vu with V = kuP~t € L ({|z| > 1}). We can conclude by standard unique
continuation arguments that « = 0 in {|z| > 1}, see for instance [LRLR22, Theorem
5.2].
For the second part of the Corollary: let ¢ € N, then for any g > 0, the condition
u(z) = O(|z|~#) gives

||PEU(T')|‘H5(S(171) < Cl,s ”u(T')HLz(Sd*l) < Cl,s Hu(r')”Loc(Sdfl) < Cé,s,ﬁriﬁ'
Choose 8 > £+ d — 2, so that the assumptions of the first part of the Corollary are
fulfilled, and this gives the result. O

Proof of Theorem[I-j} The scheme of the proof is quite similar to the critical case
with different scaling and spaces. We only stress the differences. 1) The appropriate
2

scaling is given by denoting u"(x) = rg’j u(roz): then u™ is solution of the same
elliptic equation and satisfies ||u™ ||Lw(\z\>1/2) < Cry " For sufficiently large ro, we
can apply Proposition [A.7 to get that [[u"|se-1| . (ga-1) < Cse. Then Theorem
[[4] applies and we can construct a nonlinear solution © € Zg° with the same
Dirichlet data as u™, and with convergence to a linear solution. To conclude as
in the critical case, we want to apply the uniqueness Theorem [A.3} it remains to

check that || u™]| a1 and ||| ap-n are finite and can be made small
L2 (Jz[>1) L= 2 (Jz|>1)
enough, possibly making r¢ even larger. We use the decay assumption to get

d(p—1) _,d(p=1)

_ +

lw"| 2 <Oré - rd_l(rr )_d_"d(p;l) dr < Cyp g7

Ld(pgl)(‘m‘>1) X L 0 X Yn,d,pTo
=

For u, we use Lemma B.14 as p > d;iQ there hold @ > d%dQ' O

Proof of Corollary [L3. Note that since p € 2N + 1, then |u|P~'u = u? (recall that
u is real valued) which is the context of the equations considered in [BBCTH, [VS1].
Véron proved in [V81, Théoréme 4.1] that |z|?~2u(z) converges to a constant. In

particular, since d — 2 > p—zl, the decay assumptions of Theorem [[4] is satisfied

and we can also get by Lemma [A.8 that u € H'({|z| > R}) for R large enough. In
particular, the assumptions of Theorem [[L4] are verified. O

8.2. Conformal equations in dimension 2. The purpose of this section is the
proof of Theorem

The formulation (Conf-El) considering the embedding ' C R is well adapted for
regularity results of weak solutions as is often the case in the literature. Yet, in one
part of our results, we want to construct some solutions and it seems better suited
to consider local coordinates on the manifold A/ to ensure that the constructed
solutions indeed belong to A/. This will not be a loss of generality when the solution
is regular enough and we can localize in the target manifold .
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Let uso € N and W be a small open neighbourhood of us in N so that there
exists some coordinate charts so that W ~ V C R¥. In local coordinates, for
u € €%(Q,N), we will study some solutions of

(Cont-C) Au = f(u,Vu) with
filu, Vu) = — Zl” )Wl - V't —ZHZ )Dpu? Oyu’
j 4

= Zr W)V - Vb + = Z W)Vl - vl
Y4

where Fé‘e are the Cristoffel symbols and H},Z = fH}ﬁ,j = le.j’é. Here, we denoted

Vtu= (—90yu, Oyu). Note, that in what follows, when we will say that w is solution
of (Conf=Cl), it will always be implicit that it is valued in some local charts in the
considered domain.

Before starting the proof of Theorem [[L6] per se, we begin by checking that equation
(Conf=C)) satisfies the null condition and the various conditions of our abstract
theorems.

First we verify that the assumptions of Theorem are satisfied. We have then

w) =— nge(u)wj w5 Z Hiyp(u) (w1, k2,0 — @1,0002,k)
gt Jit

We see that the harmonic part of the conformal system (the first sum in (ConfC)

where the Christoffel symbols I appear) has the form (GI1) of Theorem [5.6] while
the H-system nonlinearity are sums of terms of the form

Hli,é(u)(azukayué — Opuglyug)

which satisfies the typical form (B.I2) in Theorem Concerning the exponents:
d =2 and |¢| = 2 when q; , 4 # 0, so that we compute

vi; = nf{(d —2)|p| + (d—1)|qg| —d: aipq # 0} =0.

We compute the associated g for y € S* and z € (T, S')V: the expression is the
same as in the proof of Theorem for g,, but with more simplifications. Indeed,

gl(tﬂ Y, v, w, Z) = €2tf,b'(’l), e_t(w & Yy + Z))
Let us compute the term corresponding to w; - wy. It writes

2 2

D (yrw; + 2i) (yrwe + 20) = wyjwe + > 25 k20 k-
k=1 k=1

We used that 32_, 47 =1 (asy € S') and Yo, ypzip =y -2 = 0 (as z; € T,SH).
Then, the term corresponding to wy, 1we2 — we,1@k,2 Writes
(y1wk + zi1) (Yowe + 20.2) — (Y1we + 20.1) (Y2wr + 2k,2)

= wr(y12e,2 — Y220,1) + we(Y22r,1 — Y12k,2) + 28,1202 — 20,12k,2

= Wz - yL — WgZk 'yL-
We used that z; 1202 — ze,12k,2 = 0 (as 2z and z, are necessarily colinear). Notice
that for two function u , v defined on S! ~ R/27Z with running point 6, we have
Vyu-yt = dpu and Yo, (ex - Vyu)(ex - Voyv) = Vyu- Vv = dgudgv. In particular,
we get

(8.4t y,v, 0w, Vyv) ije )V¢ o7 - V4, ovt — Z Vtev Vtygvj.

This expression also allows to recover the conformal invariance of the equation.
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Let us now check (B.I0). As in the proof of Theorem (see the computations
(EI7), it suffices to verify that there holds

||g(tﬂ Y,vrL, atvL; vva)||Y571’t 5 €7Ut,

for some v > 0.

Now, in view of Remark 310, the nonlinearity g given in (8I]) satisfies the ellip-
tic null condition at each point. Hence Proposition Bl applies. As |lvr|y,_,, <
||UL||Z;<;U for t > tg := In(ro) (and the standard product law ([B.2])), the improved

product law [B4) gives

||g(tﬂ Y,vrL, atvL; vva”'qu,t S 6_2t.

In particular, due to (B.I7), we see that (5.10) is satisfied with v = 2. Hence, we can
apply our general Theorems and with v = 2. For yo, € V C RY, it means
that there exists 7 > 0, so that for any uo € H*(S%"!) with [[woll grs (ga-1y < 1, we
can construct
(a) a solution of the problem with prescribed data at infinity, that is a unique
small solution v € Z2° of ([Conf-C)) on R? \ B(0,1) so that
[u(r) = (yoo + ur(r)ll g <777

(b) asolution of the Dirichlet problem at infinity, that is a unique small solution
u € Z2° of ([Conf-C) on R?\ B(0,1) so that

Ujsd-1 = Yoo T UQ
and moreover, there exists a unique wy, € Z° solution of Awy, = 0 so that
= wi) (), <772

Concerning the problems close to zero, a similar analysis (or using conformal in-
variance of both problems) allows to apply Theorem [7.8] (since |g| = 2 for non-zero
coefficients). With the same assumptions, we can construct

(¢) a solution of the Dirichlet problem close to zero, that is a unique small
solution v € Z2° of ([Canf=C)) on B(0,1) \ {0} so that

Ugd—1 = Yoo + Up.

Item (a) answers part 2) of Theorem [L6

We now focus on part 1) of Theorem For this, we need two extra independent
results. The first one is the following theorem of removable singularity; it was proved
by Sacks-Uhlenbeck [SU81] in the particular case of Harmonic maps, i.e. H = 0.
The proof, presented in the appendix, is mostly the same once we have proved the
improved regularity Theorem [A.TT] and an equipartition result (Lemma [AT2).

Theorem 8.2. If u: B(0,1)\ {0} — N is solution of (ConlE]) with finite en-
ergy, then u extends to a smooth function u : B(0,1) — N, solution of the same
equation.

We will deduce from this result some decay for harmonic maps at infinity (by
conformal equivalence).

Proposition 8.3. There exists € > 0 so that for any u solution of (Conl=C) in
R?\ B(0,1/12) with the smallness assumption

IVull g2\ B(0,1/12)) + [0 = Yooll oo w2\ B(0,1/12))) < €

for one yoo € RY, then, u € Z%° and u is the unique small solution on R?\ B(0,1)

defined by Item with ulst = Yoo + Up.
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In particular, there evists v, € Z° solution of Avy, = 0 (with ||vr| z~ <€) so that
lu(r) = (yoo + vr(r )l g2 S 772

Proof. We consider u(z) = u (ﬁ) which is also a harmonic map with the same

bound for the energy on B(0,12) \ {0}. Theorem implies that @ is solution on
B(0,12). By Proposition [A14] if ¢ is small enough, we have

IVl oo (50,3/2)) < O and  t]st = Yooll o g1y < Cse.

Using Item [(c)} we define o € Z2 small solution of (Conf=C)) on B(0,1)\ {0} and so
that v|s1 = uls1 = ulg:. We claim that we have a similar smallness bound as that
for w on v, namely

VOl Lo (B(0,1)) T 10 = Yool oo ((0,1)) < CE-
(This is not direct from being in Z?). Indeed, following Theorem [7.8, we decompose
U=1yo+ Uy +W,

with ¥4 1, solution of Av; ;, =0 and r~“w € Z? for v = 2. The term vy 1, satisfies
the expected estimates since for a linear solution and s > 1,

HV%HLHLOO(B(OJ)) + ||5+,L||Loo(3(o,1)) S ||5+,L(0)||Hs(81) :

We use Lemmal[3.15to estimate w. Note also that the proof of Theorem [Z.8 provides
the smallness of v j, and w in the norms used. We define 97, = 04 1 + Yo — Yoo-

Theorem R 2limplies that ¥ can extended to a smooth solution on B(0, 1) of (ConfC)
(there is no singularity at 0). Proposition [A.TH then gives % = ¥. In particular,
this implies that 4 € Z? and therefore u € Z2° by Lemma Finally, denote
vp(z) = ﬁL(ﬁ) This gives the expected result, due to uniqueness in the class of
small solutions in Z°. O

Remark 8.4. In the above proof we perform a conformal transform so as to work
in B(0,1): it allows to conveniently make use of the Poincaré inequality in the
uniqueness result and to get smallness in W2 using results of the existing litera-
ture [SU8I| or [Sch84]. We believe however that it should be possible to complete
a proof directly in R? \ B(0, 1) without resorting to the conformal transform.

The second result is the existence of adapted coordinate charts where the Christoffel
symbols vanish at a point.

Lemma 8.5. Let yoo € N C R and consider 7T, N the orthogonal projection
(with respect to the Euclidian metric of R™ ) on T, N. There exists a small neigh-
bourhood W' of yoo € N such that ® := 7wy, sx|nnw is a diffeomorphism to its
image (in RM ).

Moreover, if we take orthonormal coordinates on T, N @& T, N=, its inverse can
be obtained writing N as a local graph

(@1, on) = (@1, an, Una((@, o an), - Yu (@, aw)
where the ; are analytic functions. In these coordinates, we have F;m(yoo) =0,

for the Christoffel symbols.
Moreover, if u is solution of (Conf=El) on with Q C R? with u(Q) C W, then ®ou

is solution of (Conl=Cl) on Q.

Proof. Writing N as a local graph is classical. In these coordinates, we compute for
i=1,...,N,
0 o

. _ YN 11 Oum
(0 (8_951-) = o

8xi yeces aSCZ )7

=(0,...,0,1,0,
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where the 1 is in position 7. Note also, that by definition of the tangent space, we
have

Oty
8:1:1-
Concerning the Christoffel symbols: denoting g the metric of A/ in the coordinates
given by v, and (g7 1);; = g% its inverse, recall that

(8.2) (Yoo) =0 foralli=1,...,Nand £=N+1,..., M.

N
I = 3 Zgw (0j9me + Omgej — Oegjm) -
=1
(see for instance [GHLO04, p71]). Now,
M
g 0 o\ (O
9 = 0 gy =0t 2 <a> <% |
’ J I=N+1 ! J
In view of 82), we infer that (9,,9:)(0) = 0 for all 4,5,m € [1,N], and so
F;m(ym) =0. O

We can now conclude the proof of Part 1) in Theorem

We consider a harmonic map u as specified. We apply Corollary [A- T3] with ¢ small
enough so that u,(-) = u(rg-) defined in R*\ B(0, 1) is supported in some coordinate
charts of A/ close to ., and moreover satisfies

(8.3) ||Vuro||L2(R2\B(o,1)) + [Jury — yoo”Loo(RZ\B(oJ)) SeE

In particular, we can consider the solution of (Conf=CJ) with value in a single chart.
More specifically, for W C A a small neighborhood of 3., in N' we consider the
chart ® : NNW — T, N defined by ®(x) = n7, (). Due to Lemma B3] we
see that for W small enough, ® is a diffecomorphism to its image V = ®(W). In
particular, for 7o large enough, ® o u,, = 77, n(ur,) with value in T, N ~ RY
is a solution of an equation of the type (Conl=Cl) with analytic Christoffel symbols
I' and coefficients H, and 71, _ar(ur,) satisfies similar estimates as (8.3). We can
then apply Proposition B3l to 77, ar(ur,): we obtain that mp, ar(ur,) € Z5° and
there exists wy, € Z° solution of Awr, = 0 so that

e, ) () = (e + 02| o = (7, N (@) 07) = (e + w2, S

In particular, since ry is fixed now, we can define uy, (z) = wr(x/r¢) so that wy, (1)
vr,(ror:) and
7z, oA (@) () = (Yoo +ur(r))]| yo ST

It is the expected result (ILII)). Moreover, the same computation gives w7, ar(u) €
Z, r,- Note that the fact that u(z) — Yoo implies Pyur = 0. Under the as-

|z|—+o0
sumption Pyur = 0, the uniqueness is obtained as in other cases (this assumption
is necessary since in dimension 2, this component do not decay).
Up to now, we have only proved nr, ar(u) is in the correct space, but we do not
control the orthogonal component. Yet, as explained in Lemma [R5 up to some
rotation and translation, we can assume that 7, x = RY x {0} and N’ N W can
be parametrized by a local graph

NﬂW = {(.’L‘l,.. .,$N,1/JN+1(.T1,.. .,,CCN),. ..,wM(.’L'l,.. .,.’L‘N)) ; (iCl,. .. ,ZCN) e V},

where the 1; are analytic functions. In particular, since u(z) € N, we can write
u= (ﬂTwa(u), Yn1(mr, (1)), ... ﬂ/JM(WTyDON(U)) .

Therefore, due to Corollary B.7, v belongs to Z2°

5,70 "
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This completes the proof of part 1) of Theorem

We are now concerned with part 2) of Theorem If ug is small, Item @ settles
this result. If not, ug is assumed to have zero mean, and Theorem [5.6] also concludes
for o large enough: we do exactly the same analysis, but in the other direction.
We first construct the solution of (Conf=Cl) in the tangent plane using Theorem
and then raise it to A/ C RM by adding the other coordinates. It is then solution
of (Conf-E])). We leave the details to the reader since it is very similar to part 1).

8.3. Harmonic maps in dimension d > 3. The purpose of this section is the
proof of Theorem [[L71 We begin with a few generalities about Harmonic maps.
First, we define the weak solutions.

Definition 8.6. We say that u € H} _(Q,N) is a weak solution of (HM=E]) on ©
if, for any v € €>°(Q, RM), there hold

d M M M
Z Z/ Oyt dy v’ — Z Zvi j—k (u)@aujaauk dx =0
1i=1"z|ZR =1 k=1

o=

In fact, we will mostly work in suitable coordinate charts on the target manifold
as in the previous Section B2l from which we borrow the notations given in the
beginning.

For a function u with value in V', we will consider the following equation of Harmonic
maps,

(HM-C) Au' +) T (u)Vud - Vub =0
gk

where F;k are the Christoffel symbols for the metric g in the chosen coordinate
charts. We will only consider charts where the coefficients are analytic. For simplic-
ity, we will sometimes write equation ([HM=C) as

Au+T'(u)(Vu, Vu) = 0.

As before, we state some results concerning the decay, convergence and uniqueness
that will be the main tool to prove that the solution is actually the one that can
be constructed by our general theorem. We begin by some result about the decay
of small solutions.

Lemma 8.7. Let d > 3. Let u € €*(R?\ B(0,1)) of finite energy (see (L))
solution of the Harmonic Maps equation (HM=El). Then, for any € > 0, there exists
Ry > 0 and C > 0 so that we have

||VUHL2(]Rd\B(O,R0)) €
$|d/2 = |x —d/2

o IVull L2z 5o, roy) T IVl Larav B0, Re)) + IVUll Lo R\ B0, Re)) < &-

o |[Vu(z)|<C for all z € R4\ B(0, Ry),

The next results proves that the solutions has a limit at infinity.

Lemma 8.8. Under the same assumptions as Lemma [B7, there exists uso € N C
RM 50 that u(x) — Uso. Moreover, u — us € HY(R?\ B(0,1)).

|z| =400
The following results concerns uniqueness of small Whd solutions in appropriate
norms.

Proposition 8.9. Let d > 3. There exists € > 0 (only depending on N the compact
target manifold) so that if u and v are two weak solutions in the energy space
Uoo + HY(R%\ B(0,1)) of Harmonic Maps equation (HM=E) in R®\ B(0,1)) so that
u=1v on the unit sphere S*=1 and we have the assumptions

IVull Lagay50,1y) + IVl La@a\50,1)) < €
60



Then, u = v in R4\ B(0,1)).
The proofs of the above three statements are done in the Appendix, Section [AZ4l

Proof of Theorem [L71. We first need to prove additional smallness and regularity
proved previously. Denoting ur, () = u(Roz), using Lemma 87 we get for Ry large
enough, [[Vurg || e (may po,1/2)) < C’Ré_d/2 which can be made arbitrary small. In

particular, for Ry large enough,

[ A(ur,) (Vug,, VUR0)||Lw(Rd\B(o,1/2)) <eE.

Moreover, with Lemma B8 and up to making Ry even larger, we can select us €
N C RM 50 that

ur, — Uoo||Loo(1Rd\B(o,1/2)) SE

Using standard iterated elliptic regularity, we get that for any s € R and small
n>0

lury = tosll e (B0,14m\ B(0,1-7)) < Csme-
In particular, we have the trace estimate [|(ur, — too)|sa-1| gs(ga-1y < Cse.
Now that we have gained enough regularity and decay, we see that up, is actually
solutions of the equation (HHM=C)) in appropriate coordinates for the target manifold
N. We choose the coordinates given by the orthogonal projection on T, N as in
Lemma
We can now proceed as in Section the other treated cases, except that we can
apply directly Theorem and without using the null structure (which might
hold true anyway). The equation for v = u — Y, writes

Av 4+ T (Yoo + v)(Vo, Vo) =0,

with I'(yeo) = 0 (see Lemma [RH). The quadratic nonlinearity corresponds to ¢ > 2
and, the cancellation I'(y.s) = 0 corresponds to p > 1. So, we get, for non zero
coefficients,

d=2)p+2(d—1)g—d>2(d—2) =111, > 0.
Theorem therefore yields the existence of a solution u € Z¢° of the Harmonic
map equation with the same boundary condition as ugr, — Yoo on S?~!. We wnat
to prove that

URy = Yoo = ’(j,

and for this, we will apply Proposition 839lto ug, and yo, +u. Note that Proposition
applies either for formulation (HM-E]) or (HM-CJ) in the case of regular solutions.
We need both solutions to lie in yo +H'(R?\ B(0,1)) (not necessarily small), and
with gradient small in L4(R?\ B(0,1)). For the constructed solution y., + u, we
claim the following inequality, for s > % + %,

IVl p2pa\ Bo,1)) + VUl Loy 5o,1)) < Cllull 2z -
Indeed, it can be obtained by combining Lemma BI4] estimate (39) of Lemma 315
and an interpolation argument between L? and L. .
For the solution considered ug,, we use Lemma B8 to get ur, € yoo + H'(R?\
B(0,1)) and Lemma B7 for the norm L of the gradient, observing the scale invari-
ance

IVurll Lawa\ 5o,1)) = IVl Lagay 50, Ro)) -
We are now in position to apply Proposition B9 and get ur, = yoo +u. We conclude
as in dimension 2 to get (LI3), recalling that v1 ¢ = 2(d — 2).
Finally for the orthogonal part, as in dimension 2, we write

u = (mr, ~(W), ¥ny1(mr, n(w), ..., Ya (71, a(u)).
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It is easy to see that in these coordinates, by orthogonality, we have for any j =
N+1,...,M.
2

Yi((zr, .. on) = O([(z1, ..., zn)[19).
Therefore, due to Corollary 3.7 with n = 2, each term (77, ar(w)) belongs to
Zs.r, and the orthogonal component decays like =,
Regarding the additional decay (LI4)): it is obtained after applying the conformal
transform, as a consequence of the last refinement (@23 of Theorem H.7, with
v=uvy=2(d—2).
Part 2) (on the existence of solution with prescribed scattering data) is proved
applying Theorem in local coordinates. O

Remark 8.10. In principle, our general theorem should allow to make an expan-
sion to any order of our solutions using the iterated versions of the Duhamel for-
mula. With the first iteration, we can recover a result of Alama-Bronsard-Lamy-
Venkatraman [ABLV23|. More precisely, it shows that « can be written

1
U:UO+Uharm+ucorr+O ﬁ )

with ug € S?,

3 3

1 1 1
arm = — E 0 | = E 0000 | = |,
Up Tvo+j:1pg 'j (T) +H_1Ck,é kOpOp (T)

2 2 3
d o |’U0| |’UQ| 3 a 1
an ucorr—_r—QnO_G?UO_; Vo - P;j0; - 1o,
k=1

with vy and pj;, j = 1,2, 3 orthogonal to up.
According to our description, we can divide the terms in several parts:

® g is our constant part y., at infinity
® Upqrm 18 the first sphree spherical components of our linear part uy,

I

to the tangent space. In coordinates (z1,z’) so that ng = e, the sphere S?
2

can be written as a graph 1 = /1 —|2/|2 =1— % + O|2'|*. So up to

terms O (T%), the main terms will be

2
3 . . .
° — |UT°2| ny — % Y k1 V0 - Pi0; (1) ng is the nonlinear correction orthogonal

2

3
11 1 1 o 1 1 1
1-— 3 ;’Uo + E p;0; (;) =l-23 lvo|” — - E Dj - Vo0 (;) + O(T_4)

j=1

2
|g:L vg is the first nonlinear tangential correction that corresponds to the

first iterate of the Duhamel formula in our setting, taking only “¢ as linear
component, i.e. it solves
Vo |2
v(&)I
r

2 2

v vp|v v

BN R 0 T
673 5 r

All the other terms of the linear part lead to more decaying terms in this

formula.

8.4. Local problem for analytic functions. The purpose of this subsection is
the proof of Theorem [Tl
We begin by recalling the notion of Fischer decomposition and related results, we

refer to [Ren08§].
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Definition 8.11. A polynomial P and a differential operator Q(D) form a Fischer
pair for the space E, and we say that (P, Q(D)) is a Fischer pair if for each f € E,
there exist a unique elements ¢ € F and r € F such that f = Pg+r and Q(D)r = 0.

Let Br := {z € R" : |z| < R} be the open ball in R™ with center zero and radius
0 < R < 400, and let A(Bg) be the set of all infinitely differentiable functions
f : Br — C so that for any compact subset K C Bpg, the homogeneous Taylor
series Z:;O:OO fm(x) converges absolutely and uniformly to f on K, where f,, are
the homogeneous polynomials of degree m defined by the Taylor series of f.

It follows from Lemma [3.12] (sometimes called Gauss decomposition in this context)
that (|z|?,A) is a Fischer pair for C[z1,...,2,]. We need this result for analytic
function. It is proved in the following theorem which is a particular case of a much
more general result in [Ren08].

Theorem 8.12 (Theorem 13 of [Ren08]). Let 0 < R < +oo. Then (|z]?,A) is a
Fischer pair for A(Bg).

A(BpR) seems to have naturally a structure of Fréchet space while it would seem
preferable to deal with normed spaces. We will use the following space and norm
for analytic functions on R?%. For R > 0, we say that f € A(R) if, for |z| < R, it
can be written as its Taylor expansion

=3 Lo

al dz
a€eNd
with
1]0°f
=3 = |% L) Rl .
i = 3 25 5 )| B < o

With these notations, we have A(R) C A(Br) C A(cqR) for some constant cq >
only depending on the dimension. To prove the last embedding, notice that due to
|[Ren08, Lemma 22] (actually quoting [Sic74, Lemma 1]), any function f in A(Bg)
can be extended holomorphically to some domain of C% containing Bca(0, R/v/2).
In particular, f is also holomorphic in the polydisc Be (0, R/v/2d)* € Bea(0, R/v/?2).
The Cauchy inequality for polydiscs (see for instance [H90, Theorem 2.2.7]) gives

’g:f (0)‘ < Cﬁ\/z!_d)\a\' This gives f € A(cqR) for cq < (1//2d).

Proposition 8.13. Assume f € A(R) is an analytic function around 0 of radius
R > 1, then, u € Z° with

[fllze < CR) ISl acr) -
Proof. We write for |z| <1< R

10¢
f) =3 L0 e
aeNd

We can write using the second estimate in Lemma B.13]

1]o0%f o
1z < 32 o |2 (0)] a2y < OCB) UL
aeNd
with C(R) = sup,ena (la)*"> R™1el which is finite for any R > 1. O

Lemma 8.14. Let f € A(Bg) for R > 1. Let f = fr + |z|?q with Afy, = 0 and
fr, @ € A(BR) be the Fischer decomposition of f for (|x|?,A) and A(Bgr). Then,
we have, for any 0 <r <1,

1£6) = Fulr)l 5, < o2
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where C' depends on R and f.
Proof. Select R = c4R so that A(Bg) C A(R) and f, fz, and ¢ are in A(R). Then,

we write
1F(r) = FL@llzo, = 200l 5o =7 lar ) zo . <7 llallzo < CR)T llall 4 )
where we have used Proposition 813 for the last estimate. O

Proof of Theorem [L 11l The first part is a direct application of known results on
Fischer decomposition. Indeed, it is known that C° solutions are actually smooth
and also analytic (see for instance [Fri58])in B(0,1). In particular, they belong to
A(BpR) for some R > 0. By Theorem [BI2] there exists uz, and ¢ in A(Bg) so that
(I35 is satisfied.

For the converse, let uy, be a bounded solution. Up to rescaling (by a factor 2 for
instance), we can assume that ur|sa—1 is in H*(S?~!). We can therefore apply The-
orem and there exist 7o < 1 and a unique v € Z{,  solution of Au = f(u)
on B(0,79) \ {0} so that ||(u —uL)(r-)HZSUT/T < 72. Due to Lemma [A] in the
Appendix, u is also an analytic solution in tlole classical sense on B(0,79/2). We
can therefore apply Theorem to u to get that there exist w; and g analytic
on B(0,79/2) so that Ay, = 0 and u = 4y, + |z|?g. Lemma B.14] gives after scal-

ing ||(u — ﬂL)(T-)HZg’T/STU < Or?. In particular since Z27T/3T0 C Zg,T/TO, we obtain

|(ur, —@L)(r)] 4o < Or? From Lemma Il we conclude that uy = 4 on
s,7/3r0

B(0,70/3). In particular, u = uy, + |z|*>g with g analytic in B(0,7/3), which is the

desired result. O

APPENDIX A. VARIOUS ESTIMATES ABOUT THE APPLICATIONS
A.1. A continuation result.

Lemma A.1. Let d > 2 and r¢ > 0.

1) Let u € L*>®(B(0,719)) solution of Au= f on B(0,rq) \ {0} in the distributional
sense for some f € LP(B(0,19)) for p > %. Then, it is solution in B(0,rq) in the
distributional sense.

2) Assume that s > ¢ —% andu € 22, satisfies Au = f(u) on B(0,10)\ {0} in the
distributional sense, where f is analytic. Then, u is solution Au = f(u) in B(0,ro)
in the distributional sense and is therefore analytic.

3) Assume d =2 and v € L*>®(B(0,19)) is a solution of (Conl=El) on B(0,79) \ {0}
and so that Vu, viewed as a distribution of B(0,79)\{0}, belongs to L1(B(0,ry)\{0})
for some q > 2. Then u solves (Conf=El) on B(0,79) and is analytic.

Proof. 1) To simplify the exposition, we assume 7o = 1, and p < 400 (p = +00 is in

fact a stronger assumption). Consider v = Au— f € 2/(B(0,1)): it is a distribution
supported in 0 and so can be writen

v = Z €a0a 00,
la|<N
where N € N and ¢, are constants. Denote G = mq% € LY(B(0,1)) c 2'(B(0,1))

(or —5=1Inlz| if d = 2) the Green function: —AG = . Define the distribution
h=— Z|a\<N €a0aG. Then

Ah= )" cababo=v=Au—f in2'(B(0,1)).
lal<N
Let w be the solution of Aw = f on B(0,1) and w = 0 on S%!. Since f €
LP(B(0,1)), for some 1 < p < 400, w € W2P(B(0,1)) by elliptic regularity (see for
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instance |[GT01, Theorem 9.15]). Since p > d/2, the Sobolev embedding gives that
w € L*(B(0,1)) (and in fact has some Holder regularity).
Let » = u — h — w. We have

Ar=Au—(Au—f)—f=0 in 2'(B(0,1)).

In particular, r € €°°(B(0,1/2) C L*°(B(0,1/2)), and so h = u —r —w €
L>(B(0,1/2)). To finish, it suffices observe the:

Claim: Assume h € L*(B(0,1/2)) can be written h = =37 ||y ca0aG (Where
co are constants), then ¢, = 0 for all @ and h = 0 in 2’ (R9).

The claim immediately implies that v = 0 and so Au = f in D'(B(0,1)). We
postpone the proof of the claim after the other items, which are consequences of 1).

2) Using Lemma B.15, we can extend u to B(0,1) with u € 20 C L>(B(0,1)) C
D’'(B(0,1)). Since f(u) € L>(B(0, 1)), elliptic regularity gives u € W*?(B(0,1/2))
for any 1 < p < +00. We can then iterate to prove that u is smooth and then
analytic by classical analytic regularity, see [Fri58].

3) The regularity result of Riviére gives the result once we have proved that u is
a solution of (Conl=E]) on B(0,ry) (or we bootstrap the estimates). Now, as f is
only quadratic in Vu, and from the assumptions, we actually have f(u, Vu) € L/2,
with ¢/2 > 1. We can conclude using 1).

This finishes the proofs up to the verification of the Claim, which we do now.

As h € €°(R%\ {0} N L>=(B(0,1/2)), we can consider, for w € S¥~!, the function
he @t — h(tw). Then hy, € C*°(R\ {0} N L>((—-1/2,1/2)).

Assume d > 3 for the moment. In view of the formula for G, we can write h,(t) =
Zgi:i);]v & for t > 0 and for some constants ¢, € C (which may depend on w).
Considering the asymptotics close to 0, as h,, is bounded close to 0, we infer that
¢ = 0 for all k. In particular, h,, = 0 on (—1/2,1/2\ {0}. Now this is true for all
w € S971 hence h(x) = 0 for all z € B(0,1/2)\ {0}. As h € L>(B(0,1/2) and is
analytic on R%\ {0}, h = 0 in 2'(R?).

The case d = 2 is similar taking precaution with the value o = 0 which contains
the term ¢p In|z|. But the asymptotics close to 0 imply the same result.

So, we have obtained h = 0. In particular, in the sense of distribution of B(0,1),
we have 0 = Ah = Z|a\<N Ca0a00- By the uniqueness of this decomposition, we
get cq = 0. [l

A.2. Some estimates for semilinear equations. We recall the following classi-
cal fact.

Lemma A.2. Assume thatd >3, q=2*—1 and u € H'({|z| > R}) is solution of
Au=ru? on {|z| > R}.
(in the sense of Definition[81}; if q is not an integer, we write u? for either |u|7'u
or |ul?). Then, we have
(A1) Yue Hi(z| > R), / Vu - Vo dm—l—ﬁ/ ulv dz = 0.
{lz|ZR}

|z|ZR

Proof. Due to Sobolev embedding, v € L2 ({|z| > R}) so that u¢ € L2V ({|z] >
R}), and v f\z\>R

conclude by density of €2°({|=| > 1}) in H}({|z| > 1}. O

ulvdz is a continuous linear form on H{ ({|z| > R}). We can

Proposition A.3. Assumed > 3 and q > 1. Then, there exists a universal constant
€d,q > 0 so that if u; € H ({|z| > 1}) , i = 1,2 both satisfy
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o Au; = rul on {|z| > 1} in the sense of Definition [81] for some k with
k| <1,
o up =uy on {|z| =1},

i ||U1||Ld<q4;11 + ||U2|\Ld(q71>

<e
7 (l2lz1)

(lz|>1)
then w1 = us.

Proof. The result is certainly classical, but we provide a short proof for self con-
tainedness. Consider r = u; — ug: its satisfies —Ar = Vr on {|z| > 1}, where

V(@) < Cq (lua ()77 + [ug()|77") .
That is

/ Vr - Vo d:z::/ Vrv dx
|z|>1 |z|>1

for any v € €>°({|z| > R}). Since r € H}({|z| > 1}), we can pick v, € €>({|z| >
R}) so that ||Vr — Vg — 0. This gives the convergence of the first term to
f\w\>1 |Vr|2dx. For the second term, using the bound on V, Holder estimates with

L1, 2 (1 1y 2
2« 2 ' d "\2 d) d
and Sobolev embedding ([B:8)), we get

/ Vo (z)dx
|| >1

g—1 q—1
< Cag HT||L2*(|ﬂv|21) HU”HLZ*(\JE\EI) (||u1||Ldgq2—1) (2[>1) + HUQHLqu;l) (‘1‘21))

Srllzz gz 1onll e oy IV g gy

< Caq V7l peois1) VRl L2(zs1) €7

In particular, after passing to the limit, we get

2 _
/{l 1) Vs < Caq IVrlzagaizn e

If Cy4e9 " < 1, this yields Vr = 0 and then 7 = 0. O

The following Lemma is a quantified version of the regularity result of Trudinger
[Tru68, Theorem 3]. We follow the original proof, tracking the estimates.

Lemma A.4. Assume q = 2* — 1. There exists g > 0 and C > 0 so that for any
real valued uw € H({|z| > 1/2}) solution of Au = ru? on {|z| > 1/2}, with |k| < 1
and so that

e := flullper (g1af1/2p) < €0,

then we have, for p = % = % > 2%,
||u||LP({|z|E(3/4,3/2)}) < Ce.

Proof. We denote a = 2*/2, § = 2* — 1 and notice 8 > 1, o = % € (1,5). For
any any (large) L > 0, we define the Lipschitz functions on R

0 ift <0
Gr(t)y=4{ t° ifo<t<L
Lot (el 't — (a—1)L*) ift>1L
0 ift <0
Fr(t) =3 t* ifo<t<L

ale= %t — (a—1)L* ift>1L
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They satisfy for every ¢ € R (except for ¢ € {0,L} for (A2)) and uniformly in
L >0,

]

(A.2) (Fr(1)” < aGL(t)
(A.3) (FL(t)® > tGL(t)
(A.4) Go(t) < [t]°,  Fr(t) <t
(A.5) GLt) < % G () FL(t)

—

Denote u = max(u,0). Let n € €5°({|z] € (1/2,2)}) non negative nonnegative
values, so that n(z) = 1 when |z| € [3/4,3/2]. Then v := n?’Gr(u) = n*Gr(u) €
H' 0 L7+ ({|z] > 1/2}), and

Vo = n*Gh (w)Vu + 2G 1 (w)nVn.
According to Lemma[A-2] we can now substitute the test function v in (A to get

0= / 772G’L(g)|Vu|2 + 2/ nGr(u)Vu-Vn+ :‘i/ nQGL(g)uq
|z|>1/2 |z|>1/2

|| >1/2

So, noticing that G (u)u? = Gr(u)u? and using (A.5) and then Cauchy-Schwarz,
we get

/ o PGl ()| Vuf?

/G (W) Fr(uw) [Vu| [Vn +/ n?Gr(uw)ul
\/— sV L(w) [Vul [Vn] L(u)

lz|=1/2

< / Gl ()| Vu? +/ (Fp(w)? [Vl + / G (Wt
2 Jjz|z1/2 |z|>1/2 |z|>1/2

We now bound separately the three terms of the right-hand side. For the first one,
for a constant C' = C(n, a),

/ Gy (w)|Vul* < C (FL(w)?+C n*Gr(wu
|2 >1/2

lele(1/2,2) el>1/2
Using that V(FL(u)) = F} (v)Vu and (A2), we get

/ IV (Fp ()2 = / P (FL W)’ Vul < a / PG (w)|Vul.
|z|>1/2 |z|>1/2 |z|>1/2

Concerning the third term, we use (A3) to get

/ G (Wt < / 0 (Fp(w)?ut.
|z|>1/2 lz|>1/2

Summing up, at that point, we have proved

/ [V (Fr(w)|* < CIIFL@)| 72 (zjc(1/2.2)) + C 7 (Fr(w)® u?™!

|z >1/2 lz|>1/2

(A.6) S CO[Fp(u )HL2({|x|e(1/2 2)})+C||77FL( )HLT‘ HU”L2* ({|z|=1/2})°

where we have used Holder inequality using that 5 Z 4 q2* = 1. Now, using Sobolev

embeding for nFr(u), we get

SOV (nFL(u >>||iz({|z|>1/2})

< CVEL@)ll7= + C (Vi) Fr (w7
<C

IV EL @22 + C I FL ()2 01e /22 -
67

2
InFL@l 22+ ({2112}



So, combining with (A.G) and using [[ul| 2+ (|, 51/0) = € < 1, we get

(1= Ce"™) InFr()2er < ClIFLW) 2 aier/an) -

Finally, using (AZ4)) which holds uniformly in L, for € < (2C)~ 77, we get uniformly
inL>0

2 2
HT/FL (Q)HLQ* < C ||QHL02ta(|I|€(1/212)) = 05204.
(recall & = 2*/2). This estimate is uniform in L: letting L — +o00, we obtain,
lnu |7z < G

Replacing u by —u, we obtain the same result for u and an estimate

HUHLz* (|lz|€(3/4,3/2)) S Ce*e. U

Remark A.5. Note that a quite twisted way to prove the previous result of Lemma
[A4 would be to use Strichartz estimates for the non linear wave equation outside
the translated cone. Indeed, a solution of Au = ku? on |z| > 1/2) is also a constant
solution u = ku? on |z| > t+1/2). This should prove that u € L? for some p > 2*.

Proposition A.6 (Trace regularity). For any s > 0, there exists Cs > 0, given u

under the conditions of Lemma[A with q € N, ulga—1 € H*(S*™1) and ||u|ga-1 ”HS(Sd*l) <

Cge.

Proof. We will need a (finite) sequence of decreasing domains around S¢~!. Define
n={lrl€ (1 -1/(n+4),14+1/(n+4))} so that Q41 € Q, and S~ C Q,,.

(2)?
2

[u?ll Lrosacny) < Ce? with 1 < B2 < +00, and we are in position to use elliptic

The previous LemmalA.d gives |[ul| 14, ) < Ce with po = > 2*. In particular,

regularity. Using the equation, we get

[llyy2.p0/a @) S c ||Au||LPo/q (Q0) T C HUHLPOQ (Q0)
< Ot HLPO/‘I(QO) +C ||uHLPU‘1(QO)
<

C ”uH%po(Qo) +C HU’HLPU(QO) < Ce.

By Sobolev embedding, we get Hu||Lpl(Q )y < Ce with p; = qdpog , except if gd <

2po in which case we get the same estimate for any 1 < p; < +00. We get o pl >1+0
(6 > 0) if and only if pg > 7 - m, which is the case for & suﬂimently small.
Then, we can iterate the previous process with some increasing sequence p; with
pi+1 = (1+0)p; to get that for any i € N, there exists Cj so that [|ul| s, q,) < Cie.
Fix j so large that p; /g > d. Using once again the equation, we get HuHW;p]/Q(QjH) <
Cje, and since p;/q > d, Sobolev embedding implies that

[ullcr g,y < Ce.
In particular, ||uq|\<gl(9i) < Ce? and using again the equation and elliptic regularity,
lullywzr(q,,,) < Cre for any 1 <7 < +o00. Choose r > d > 2 so that Wk is an

algebra for all £ € N, then using repetitively the equation and elliptic regularity,
we infer that k € N,

||uHW’€xT(Qi+2+k) < Chpe.

In particular, for all s > 0 integer, ||u||H5+1/2(Qi+s+s) < Cse and we get the result
by trace estimates. O

The previous results were about the energy critical equation. We now obtain similar
result for more gene general pure power nonlinearities, but under a much stronger
assumption of small L> norm. We only sketch the proof.
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Proposition A.7 (Trace regularity). Let ¢ € N*. Then, for any s > 0 and Ry > 0,
there exists C > 0 so that for any u € H*({|x| € (1/2,2)}), solution of Au = ku?
on {|z| € (1/2,2)} and so that

€= HUHLw(\z\e(l/zz)) < Ro,
then wga—1 € H*(S%1) and ulsa-1l s (ga-1y < Ce.
Proof. By elliptic regularity and using the equation, we get for any 1 < p < +o0

Fullyyas gy < C 1Al oy + C lll o)

< Cllu?l| o ) + C llull oo () < C(Ro)e-

We can them iterate as before to get the expected result. (I

Lemma A.8. Assume d > 3 and ¢ € N*. Let u € L>*({|z| > 1}) be a solution of
Au = kuf? on {|z| > 1} and assume that there exists C > 0 so that

Yz > 1, |u(z)] < Clz|~@=2.
Then, there exists C' >0 and R > 2 so that u € H'({|z| > R}) and

Viz| = R, |Vu(z) < x|~
Proof. For 7o € R?, we will use the rescaled and translated solution u,,(r) =
|z0|%u(z0 — |zolx). For |zo| > 2, it is solution of the same equation on B(0,1/2)
with [[ua, | oo (5(0,1/2)) < C242|z| 7742 We will use the following Claim.

Claim: Let v be a solution of Av = rv” on B(0,1/2) with [[v]| e p(0,1/2)) < 1-
Then, Vv is bounded on B(0,1/4) and there exists a constant D so that

||VU||L°<>(B(0 1/4) S <D ||U||L°°(B(O 1/2)) *
The Claim is classical by elliptic estimates, we omit the proof.
Let R so large that C24-2R7e1~(1-2) < 1. We apply it to ug, and obtain that
IVu®(0)] < Clao|7-1 4= that is
[Vu(zo)| < Clao| ="

This holds uniformly for |z9| > R. This implies Vu € L*({|z| > 2} since d > 2.
Note also that the decay |u(x)| < C|z|~(@2) also implies u € L? ({|z| > 1}), so
that u € H'({|z| > R}). O

A.3. Conformal equations in dimension 2. In all this section, we are in dimen-
sion d = 2 and consider solutions of equations of the type (Conf-E]). We gather some
already known facts and also some results that are quite classical consequences of
them. For some of them, the results are already written for Harmonic maps, but
we did not find the exact similar statement for equation (Conf-E). We refer to
[H02, [TW08], [Sch84] for books or survey on Harmonic maps.

It has been noticed by Riviére (see the proof of [Riv07, Theorem 1.2.]) that if u is
solution of (ConfEl), then, it is also solution of —Au = Q- Vu (scalar product in
R?M with Q = (Q)1<;j<ar defined by

_ Mo LM
Q= =3 (A5() — AL ) Vu' + 7 (Hjplw) = Hy(w)) V4u!
=1 —1
which satisfies Q) = —Q. This is a consequence of the fact that Hi, = —H/, and

we have Z Aze( )Vul = (A(u)(ei,er), Vu) = 0 (the last scalar product being
on RM) since A(u)(e;,e¢) L TuN and Vu € (T,N)?.

5That is —Au; = Z;il Qi -Vu; = Z]Nil (Qg’lazuj + Qgéayu]) fori=1,...,M.
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In particular, if Vu € L?(B(0,1)), we have Q € L?(B(0,1), so(M) @ R?) together
with ||QHL2(B(0,1)) <C ||V“||L2(B(0,1))'

The result of Riviére [Riv07] combined with the result of Giusti-Miranda and Mor-
rey (see Theorem 9.8 of [GM12] for the Holder continuity of the gradient which can
be iterated by Schauder estimates) provides the following regularity result. This
followed an earlier result of Hélein [HéI91] for Harmonic maps.

Theorem A.9. Anyu e H'(B(0,1),N) weak solution of (Conf-El) is smooth.

We have the following result of Riviére [Riv07] (we found it written in this way in
[LR14, Theorem 3.2.]) and [ST13]:

Proposition A.10. [Riv07| There exists 9 > and C), only depending on p € N*
so that for every Q € L?(B(0,1),s0(M) ® R?) with 1€ L2(50,1)) < €0 and every
u € WH2(B(0,1)) solution of —Au = - Vu, we have

||VUHLP(B(0,1/4)) <Gy HV“HL2(3(0,1)) :

We immediately obtain the following result (also written in [Laul7, Lemma 4.3]).
The statement was also obtained for Harmonic maps in [SU8I].

Theorem A.11. Suppose that u € H*(B(0,7),N) is a solution of (Conf-El). There
exists € > 0 and C > 0 depending only on N' and w such that if

/ |Vu(z)|?dr < e,
B(0,r)
then u satisfies the inequality
sup  |Vau(z)|* < CT_Q/ |Vu(z)|*dz.
z€B(0,r/8) B(0,r)
Proof. By scaling, we need to prove it only for » = 1. Fix an integer p > 2. The
equation and Proposition [A.10] give
2 2
||A“HLP(B(0,1/4)) <C ||VUHL2P(B(0,1/4)) <Gy HVUHLZ(B(OJ)) :
Let x € €>°(B(0,1/4)) equal to 1 on B(0,1/8) and denote
7,
UB,,, = —=——— u(zx)dz.
Y B(0,1/4)] S0, 4)
Applying elliptic estimates to the compactly supported function v = x(u — ug, ,,),
the Poincaré-Wirtinger inequality and our previous bounds, we get
lollwe.e(0,1/2)) < C 1AV Lo(s(0,1/2))
s¢ (HA“HLP<B<0,1/4>> IVl opo,1/a)) + [u—us,), HLP(B<0,1/4>>)

< C (180l o 0,170y + IVl Logao./a) So (VE+ 1) IVl 2o,y
Since p > 2, the Sobolev inequality gives

HVUHLw(B(o,us)) = HV”HLw(B(o,us) < |\U||W2,p(3(o,1/4))-
This gives the expected result. (I

The following equality is an equipartition result for solutions of (Conf=El) on B(0,1)\
{0}, in the energy space. This was proved for Harmonic maps in [SU8I Lemma 3.5]
using the holomorphy of the Hopf differential u3 + u2 + iu, - u,. We prove it here
by a Pohozahev type identity, following Laurain-Riviere [LR14]; there it is proved
for solutions on the full B(0,1) (see also (VII.14) in [Riv12] for the harmonic case).
So, we have to be careful about the cutoff introduced to avoid the point 0 where u
might not be solution.
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Lemma A.12. Let u € ¢%(B(0,1) \ {0}, ) with finite energy on B(0,1), and
solution of ([Canf=E)). Then, for any 0 < r < 1, we have

(A.7) / |0pu(r0)* do = 7’2/ |0,u(rd)? db.
st St

Proof. By scaling, we suffices to prove the result for » = 1. The key property is the
orthogonality when f is as in (Conf=E]), which holds pointwise on B(0,1) \ {0}
(AS) 0= <8Iu7 f(ua vu)>]RM = <ayu7 f(ua vu)>RM .
Indeed, A(u)(Vu,Vu) L T,N and d,u,dyu € T,N at each point of B(0,1) \ {0}.
For the H, it is a consequence of (ILI0), which gives
(Ozu, H(u)(0pu, Oyu)u)grr = dwy(z)(9ru, Opu, Oyu) = 0.

The same holds for d,u.
Define now the vector fields

X =20, +y0, and X, =(1-x)(n)X,

where x € C°(R?) equals 1 near zero. We claim that, for any function w €
€¢*(B(0,1) \ {0}, R) with finite energy, we have

1
(A.9) lim AwX,, - Vw dz :/ |0,w|? do — —/ |Vw|? do
n—=+o0 Jp(o,1) aB(0,1) 2 JaB(o,1)

Let us assume that is holds for now, and complete the proof. Due to (A.S]),
M M
ZAuiﬁzui = ZAuiﬁyui =0 on B(0,1)\ {0},
i=1 i=1
and so, as any singularity in 0 is voided by X,,
M
Z Au; X, - Vu' on B(0,1).
i=1
We integrate on B(0,1): using (AX9) with w = u; for each i, we can let n — +oo

to get
1
0 :/ |0yu|? do — —/ |Vul? do.
aB(0,1) 2 JaB(o,1)

Finally remark that |[Vu|? = |9,u|? +|9pu|? on dB(0,1), so that we obtained (AT
for r = 1, as desired.
It remains to prove (A9). We obtain by integration by parts on B(0,1):

/ AwX, -Vw dz = / OpwX,, - Vw do — / Vw -V (X, - Vw) dz.
B(0,1) aB(0,1) B(0,1)

This leads to compute the following two terms
Vw - V(X, - Vw) = d(X,, - Vw)(Vw) = Dy X, - Vw + X, - Dy Vw
= DywXy - Vw + Hess(w) (X, Vw),

[Vuw? )|le2

|Vw|? .
n-V 5 + div(X, 5

div (X n

[Vuw]?

= Hess(w)(Xy, Vw) + div(X,,) 2

For our specific choice of X,,, we have
Dy X, -V = (1 —x)(n)|Vw|* = n(Vx(n-) - Vw)(X - Vw)
and div(X,) =2(1 - x)(n) +nVx(-) - X.
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So, we obtain

. |Vwl|?
AwX, - Vw dz = OpwX,, - Vw do — div| X,,—— | dz
B(0,1) 8B(0,1) B(0,1) 2
+/ [(5Vx(n) - X) Vol + n(Tx(n) - Vw)(X - Vu)| de.
B(0,1) L\ 2
Since Vw € L?(B(0,1)) and n|X||Vx(n-)| is uniformly bounded, we get by domi-
nated convergence that the last integral converges to zero. For the first two terms

of the right hand side, we use the definition of X,, and integration by parts, and we
get that for each n,

2
/ opwX,, - Vw do — / div <Xn [Vl > dx
aB(0,1) B(0,1) 2

1
:/ |0,w|? do — —/ |Vw|? do.
9B(0,1) 2 JoB(0,1)

which gives our claim (A9). O

We can now give the proof of removable singularity. The proof follows [SU81, The-
orem 3.6] which was performed for Harmonic maps.

Proof of Theorem [8.2. By scaling, since u is of finite energy, we can assume without
loss of generality that u is defined and a solution of (Conf-E])) on B(0,2) \ {0} and
furthermore satisfies the smallness condition

62 = / |Vu(z)?dr < min(1/5,¢),
B(0,2)

where ¢ is given by Theorem [A 11l

Step 1. Let ¢ be a radial function of the form alog(|z|) + b on each annulus of the
form 27™ < |z| < 27™*! (m € N) so that ¢(27™) = 5= [, u(27™0)df. We claim
that

(A.10) Vo e B(0,1)\ {0}, lq(z) —u(x)] < C[VullL250,2)) -

Indeed, for 27™ < |z| < 27™*!, we have, since ¢ is monotonous on this interval as
b
a variable of r = |:I:|

la(z) — u(@)| < lg(@) — g7 ) + g7 ) — u(@)]
<g27™) —q(@™ ] + a7 — u(@)].

Note that using a finite suitable covering of the annulus, Theorem [A.T1] also gives
uniformly for 0 < r <1

(A.11) sup |Vu(z)|* < CT—2/ Vu(z)|da.
|z|=r B(0,2r)\B(0,r/2)
So, we get, for all m € N*,

Co— —m—+1 —m—+1
masc{u(z) — u()}: 2" <fal, [yl <27} <27 max | |Vue)

< CVull2p0,2)) -
In particular, taking y = 27™%10 and integrating in 6 € S', we get
q(27" ") —u(2)] < C|Vull 2502, -
Similarly, taking y = 27™%10, £ = 27™0 and integrating in 6 € S', we get
lg(27™) — Q(Q_m+1)| <C ||VU||L2(B(0,2)) :

Summing up the above two bounds, we obtained (AI0).
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Step 2. For all r € (0, 1], there hold
(A12) u2®[¥hgvm%m<r|vw;@3@w-

By dilation, (and as § = ||Vu| p,2) = [|Vul|g(o,2r) for 7 < 1), it suffices to prove it
for r = 1.

Using Lemma[A-T2] (observe that u is smooth on B(0,1)\ {0} due to Theorem [A9]),
we get for any 0 <r < 1,

/ 1Opu(r0) 2 6 = r2/ 10, u(r0) 2 do,
st st

and after integrating in r,

2 1
[l e [ pupas-d [ vue s
B(0,1) |z| B(0,1) SRACICRY

Also, since ¢ is radial,

2
/ M dz < / |Vq(x) — Vu(z)]*dz.
B(0,1) |z] B(0,1)

Hence we obtained
1

(A.13) —/ |Vul? dz < / |Vq(z) — Vu(x)*dz.
2 B(0,r) B(0,1)

To bound the right hand term, we decompose dyadically:
/ |Vq(z) — Vu(x)|?dx = Z / |Vq(z) — Vu(z)|*dz.
B(0,1) mens J B(0,2-m 1)\ B(0,2-m)
For fixed m € N*, integration by parts give

/ |Vq(z) — Vu(r)|*dx
B(0,2-m+1)\ B(0,2-™)

-/ Alg ) (¢ - w)ds
B(0,2=m+1)\B(0,2—™)

+ 2—m+1/ (q o u)(2—m+19) ) a(q - U) (2—m+19) 4o
Sl

or+
. gy Ola =) o,
) /Sl(q—u)(Q 0)- L= o-mg) ao.

Let us precise that %(r) is piecewise smooth, so that 66?‘1 means the respective left
and right derivative; u is regular outside of 0, so we can write —:f instead of W
Also 5 (2 ™@) is constant in € because ¢ has radial symmetry, and so that from
the deﬁnltlon of ¢(27™),
/ (g —uw)(2-m8) - 2L (2-mg) dp — .
gt or+
Now, using (A.10) and (A.11]), we have the estimate

Ju
—m-+1 _ —m-+1 s
2t [ w8

< ClIVullpz 0,2y VUl L2 (B0,2-mt2p\B0,2-my) = 0 as m — +o0.

(2-m+1g) d@’

Hence, summing up the telescopic series and recalling that Ag(z) = 0 on each
annulus 2™ > |z| > 27™ and the equation on u, we infer

/13(011)|VQ( r) — Vu(r)*dr = Z / Au - (g — u)dz

meN* B(0,2-m+1)\ B(0,2—™)



o(g—u
+ [ a-wo) X0 1

_ w0 — w)da _ ey 2=
Jo @it [ g0 G0 @

= u, Vu) - (g — u)dx — —u .8u(9)
Loy P90 = wde = [ (g =) 5 .

Sl

Using again the estimate (AI0) and that f is quadratic in Vu, and A and H are
(smooth and so) bounded on the compact manifold N we can estimate

2
< C(Allpe, 1H o) VullLe 0,1y 14 = @l L (500,1))

/ fu,Vu) - (¢ —u)dz
B(0,1)
<C ||VU|@2(B(0,1)) IVull L2 p0,2)) »

ou(0) ou
[ =00 252 @ < - e

ar

L‘Z(Sl)
So, inserting in (AI3]), we arrive at
1

! / Vul? < / Va(z) — Vu(z)Pde
2 /B(0,1) B(0,1)

ou

2

< ||Vu||L2(B(O,1)) ||Vu||L2(B(O,2)) +llg - uHLz(Sl) or )
L2(St

Recaﬂ that HVUHLZ(B(O,Q)) = 6 and7 a'ga'in due to Lemma m H%Hiﬁ(gl) =

1 ||Vu||2Lg(Sl) so that equivalently, this writes

1 1
- —90 / Vul? de < —=|lg—u Vu .
(5-9) [, 199 o < Z5 o= wlsey IVl
Since on S, ¢ is the average of u, we have, by Poincaré-Wirtinger inequality (and

Lemma [AT2]),

1

llg — UHL2(SI) < ||89u||L2(Sl) = E ||VU||L2(SI) :
So, we get
2
(1-25) [ [Vu@) do <[ Tullage
B(0,1)
as desired.
Step 3.

The inequality (AI2) writes

(1 - 29) / g(s)ds <rg(r) with  g(r) = [Vulls om0
This differential inequality in r integrates to yield
(A.14) vr € (0,1], / |Vul|? do < 7“1725/ |Vu|? dz.
B(0,r) B(0,1)
Applying Theorem [A11] on balls B(xo, |zo|) C B(0,2|xo|) and some translation of

m)?

Vro € B(0,1/2),  |[Vul?(z0) < |x0|*2/
B(wo,|zol)
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|Vu|2 < C|x0|71726/

|Vu|*dz.
B(0,2)



As we choose § < 1/2, then —3 — § > —1, and u has a finite limit at 0 (see the
proof of Lemma B.8). We can therefore extend u to B(0,1) with u € €°(B(0,1)).

Also, so there exists ¢ > 2 such that (—4—4)gq > —2. Therefore, Vu € L1(B(0,1/2)).
We are then in a position to apply Lemma [A 1] which assures that u is smooth. [

Corollary A.13. Let u be a weak solution of (Conf-E) on R?\ B(0,1) with finite

energy. Then, there exists us, € N C RM so that u(z) \z\:r)oo fhoe:

In particular, for any € > 0, there exists R > 1 so that for any v > R, denoting

ur(x) = u (rz), u, satisfies (Conf-E) on R?\ B(0,1) and

IVurll 22\ (0,1)) + 1tr — ool oo r2\ B(0,1)) < €

Proof. Define u(z) = u (ﬁ) which is also a solution with finite energy on B(0,1)\

{0}. Theorem implies that % can be extended to a smooth function on B(0, 1).
In particular, denoting us, = 4(0) € N, u(z) = a(z/|z|*) = uo as * — +o0. The
second result is then direct once we check that u, is also a solution of (Conf-El) on
{|z| = 1/r} with

/ |V, (z)|?dx :/ r?|Vu(rz) > dz :/ |Vu(y)2dy.

|| =1 lz|>1 ly|=r

So, it can be made arbitrary small. (I
Proposition A.14 (Regularity and trace). Let uso € N. There exists e > 0 and
C > 0 such that the following holds. Let u € H'(B(0,12)) be solution of (Conf-C))

taking values some chart around us., So that
IVull p250,12)) + v = ool poe ((0,12)) =2 € < <0
Then, we have the estimate
IVull oo (50,3/2)) < C-

Moreover, for any s < 4, there hold w1 € H*(SY) and HU‘SI

- “00||Hs(81) < Cie.

Proof. As u is a solution of ([Caonl=C]) with values in some fixed coordinate charts
around u,, by considering some embedding N' C R, we can identify u with a
solution of (ConfEl) and we use this representation from now on; the result by
Riviere [Riv07| ensures that u € €°°(B(0,12), ). Due to Theorem [AT]]

sup |Vul? < C’/ |Vu(z)|?dr < Ce2.
B(0,3/2) B(0,12)
Using the equation (Conf-E)), it implies

sup  |Au| < Ce?.
{3/4<r<5/4}

Let x be a cutoff function supported in {3/4 < |z| < 5/4} and equal to 1 on
{7/8 < |z| < 9/8}, and denote & = (u — U )x. For any 1 < p < 400, we have

AU o2 < ClAU Lo (3/4¢,<5/4)

<C HA“HLOO(3/4<T<5/4) + HVUHLW(3/4<T<5/4) + u— U’OOHLDO(B/4<T<5/4)
< Ce.

By Calderén-Zygmund estimates [GT01, Theorem 9.11], we infer

1 = ool (z/s<taicors) < I8 = toollLo(z/acrcs/ay + 1AU Lo(ra<r<s/a) < Cre-
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Since u = U + U on {7/8 < |x| < 9/8}), we can iterate by checking the equation
satisfied by Vu and then VZu to get

llu— UOO||W4vp(31/32<|x|<33/32) < Cpe.
For any 7/2 < s < 4, choosing p so that 2 < p < ﬁ, then s < 4 —1/p and by

trace estimates:

st = ey < o ter = el

<
<Cslu— UOO||W4’P(31/32§|z|§33/32) < Cse. O

Proposition A.15. There exists ¢ > 0 (depending on N and w) such that the
following holds. Let u and v be two smooth solutions of (Conf=C)) in B(0,1) so that
u=wv on the unit sphere S* and are small in the sense that

IVull Lo (g0,1)) + IVl Lo (B0,1)) < &
Then, v = v in B(0,1).
Proof. Let w = u — v, then w satisfies
(A.15dw = —[I'(u) — T'(v)](Vu, Vu) — [['(v)(Vw, Vu + Vo)
+ [H(u) — H()](0zu, Oyu) + H(v)(Oyw, dyu) + H(v)(0zv, Oyw).

where we have used the bilinearity of I' and H and the symmetry of I'. Taking
scalar product in RY of (AI5) with w, integrating and then performing an in-
tegration by parts, we get, using the Dirichlet boundary condition for w and that
IT 1Ay, 1H [l61 vy < Cnyw are bounded (since the target manifold N is compact)

Vw|?dx = I'(u) —T'(v)](Vu,Vu) - w dx
/z<1| | /N[() (0)](Vu, Vu)

! /|m|<1 T}V, V& Vo) 00 do - / [H(u) — H(v)](Oxu, Oyu) - w dz

lz]<1
- H(v)(0zw, Oyu) - w — H(v)(0zv, 0yw) - w dx
lz|<1 l|<1
(A.16% c/ IVl do+ c/ V| (|Va] + Vo)) |u] de
o<1 o<1
< 052/ |w|? da + Cs/ |Vw|® + |w|* dz
el <1 jal<1

< éf—:/ |Vwl|?dz.
o<1

(we used the Poincaré inequality on the bounded set B(0, 1), which holds due to
the Dirichlet boundary for w). For Ce < 1, this gives w = 0. O

A.4. Some results about Harmonic Maps in dimension d > 3. In this sec-
tion, we gather some already known facts about Harmonic Maps in R? (for the
initial manifold). We refer to [H02, TTW08| [Sch84] for books or survey on this very
studied topic.

One important tool will be the following e-regularity result of Schoen-Uhlenbeck
[Sch84, Theorem 2.2].

Theorem A.16 (Theorem 2.2 of [Sch84]). Suppose u € €?(B(0,7),N) is a har-
monic map. There exists ¢ > 0 and C' > 0, depending only on d, N such that
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r2_d/ |Vul> < e
B(0,r)

then u satisfies the inequality
sup  |Vul? < Crid/ |Vul?.
B(0,r/2) B(0,r)

We begin by a result about the decay of regular solution in the energy space. The
proof relies on the regularity result of [SU82] for small solutions and a scaling
argument. Some similar results also appear in [ABLV23].

Proof of Lemmal87. For xop € R% and R = |zo| > 2, we denote i(z) = u(zo+Rz/2)
which is still solution of the Harmonic map on B(0,1) . We compute

/ |Vii(z)|*dr = (R/2)2/ |Vu(zo + Rx/2)|*dx
B(0,1) B(0,1)

—(®/2 [ vatPdy,

B(zo,R/2)

Since d > 3, this becomes small for large R, so that we can apply Theorem [A.T6] to
% and 7 = 1 to get

WM®P<C/

B(0,1)
<cr [ Vu(y)Pdy.
B(0,3R/2)\B(0,R/2)
Since |V@(0)| = R|Vu(zo)|, We get

Va(eo)? < CR | Vuly) Py,
R4\ B(0,R/2)

Vo) Pde < CR [ Vu(y) 2dy
B(zo,R/2)

which is the first item once Ry is chosen large enough.

Concerning the second point, the L? part is immediate when Ry is taken large
enough, the L™ part is a consequence of the first item, while the L¢ part is obtained
by interpolation. O

Proof of Lemmal838 We first fix a direction e; = (1,0,---,0) € R? and prove
that u(ney) is convergent in N' C R™. Lemma 8.7 and the fundamental Theorem
of calculus give for n large enough |u((n + 1)e;) — u(ney)| = 22}2 In particular,
since d/2 > 1, the series is convergent and u(ne;) is convergent to some un, €
N C RM. Now, for any n € N and z € R? with |z| € [n,n + 1], there exists a
path v C R%\ B(0,n) piecewise affine and of length |y| < Cyn so that v(0) =
ne; and (1) = x. The fundamental Theorem of Calculus gives |u(z) — u(ney)| <
nsup,cpo.q [Vu(y(s))| = o(n'~%?) after having used again Lemma Bl Since 1 —
d/2 < 0, we get the expected convergence. Note also that the proof gives more
precisely

(A.l?}\u - Uoo||Loc(B(O’n+1)\B(07n)) = 0(n1—d/2> + 0(1> Z k—4/2 — O(nl—d/2).

k>n

Now, we prove u — s € H'(R?\ B(0,1)), that is « — ts, can be approximated for
the energy norm by a sequence of functions in €>°(R?).

First consider u, = x (£) (u — us) where x € €2°(B(0,2);[0,1]) equals to 1 on
B(0,1). By assumption, u,, € €2(R?) and for

Up, ::u—uoo—un:(u—uoo)(lfx(f)),

n
7



T

Vv, = Vu (1 - X (ﬁ)) — %(uf Uoo)(VX) (%) )

we can bound, using estimate (A7),

1
Voo < [ Vuldet = el oz 3 |
/Rd B0 L=(BO20\BO) 72 |,

(5]

< / |Vu|?dz + o(n®*~)n4=2 = 0 asn — +oo.
R4\ B(0,n)

Once u — U has been approximated by some €2 compactly supported functions,
it is easy to approximate it by some smooth compactly supported functions by
standard approximation process. [l

We will use the following result of uniqueness. Some uniqueness result appear in
bounded domain in [Str98| for small data in some more refined norms.

Proof of Proposition[8.9. The beginning of the proof is a similar computation as in
Proposition[A.Iblexcept that since we are on an unbounded set, we need to interpret
the integration by parts as the weak formulation of Definition 86l Also, we consider
the equation for the embedded formulation. Let w = u —v € H'(R%\ B(0,1)) with
w =0 on S, that is w € HY(R?\ B(0,1)) In particular, there exists a sequence
of w, € €X(R%\ B(0,1)) so that ||V (w — wy,)||;» — 0. Using that w solves (AIH),
we arrive as in (AI6) to

/ Vw - Vwpdr < C/ |Vu|?|wl|w,| de
{lz[>1} {lz|>1}

+C [Vw| (|Vul| + [Vv|) |wy| d.
{lz1>1}
Using Holder inequality for the exponents % + 2% + 2% =1 and % + é + 2% =1,

together with the Sobolev embedding (B:8), we obtain for n large enough

/ Vw - Vw,dx
{lz|>1}

< CIVulgaqqazy 10lle (garsip 1nlles a1y
+ C IVl agqpapzry) (Ve ooz + 10l agqraan ) 1onlzae qragzay
<C(e* +¢) IVl L2 (go1513) V@Rl L2 gags1y) -
Taking the limit n — 400, this gives
||vw||i2({|m|>l}) <C(* +e) ||vw||i2({\z\>1}) :

For € so small that C(e2 4+ ¢) < 1/2, we get Vw = 0 and therefore w = 0 as
expected. 0
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